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Quasi-convergence of the Ricci flow
DaAN KNOPF

We study a collection of Riemannian metrics which collapse under
the Ricci flow, and show that the quasi-convergence equivalence
class of an arbitrary metric in this collection contains a 1-parameter
family of locally homogeneous metrics.

1. Introduction and statement of main theorem.

In [1], Hamilton and Isenberg studied the Ricci flow of a family of solv-
geometry metrics on twisted torus bundles. This family contains no Einstein
metrics, so the (normalized) Ricci flow cannot converge. Hamilton-Isenberg
introduced the concept of quasi-convergence to describe its behavior, writing

“...the Ricci flow of all metrics in this family asymptotically ap-
proaches the flow of a sub-family of locally homogeneous met-
rics...”

The intent of this paper is to make that statement more precise. In so
doing, we answer a question of Hamilton, who asked whether an arbitrary
metric in this class would converge to a unique locally homogeneous limit
or would exhibit a more nuanced behavior.

Definition 1.1. If g, h are evolving Riemannian metrics on a manifold M™,
we say g quasi-converges to h if for any € > 0 there is a time t; such that

sup |g—h|, <e.
Mnx [te,00)

Quasi-convergence is an equivalence relation. Indeed, the standard fact
that |U (V, V)| < |U|, |V|2 for any symmetric 2-tensor U and vector field V
implies that g quasi-converges to h if and only if for all t > .,

1-e) h(V,V)<g( V)< (1+¢) h(V,V).

We now state our result, using notation defined in [1] and to be reviewed
in §2 below.
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376 Dan Knopf

Theorem 1.2. If g is any solv-Gowdy metric on a twisted torus bundle
M f{ , there is a locally homogeneous metric h in its quasi-convergence equiv-
alence class [g]. Moreover, if h corresponds to the data (a (), Q, F),
the locally homogeneous metrics in [g] are ezactly those with the data

(t+a(8),Q, F), LeR.

Remark 1.3. Similar quasi-convergence of the Ricci flow to a 1-parameter
family was conjectured for a class of 73 metrics studied in [2).

The paper is organized as follows. §2 describes the bundles 72 — Mi —
S! and the solv-Gowdy metrics under study. It turns out that at large times,
an arbitrary solv-Gowdy metric g behaves much like locally homogeneous
metrics. §3 quantifies this observation and explicitly constructs a family A,
of locally homogeneous metrics existing for all £ > 0 which approximate g for
times ¢ > t.. In §4, we show that this family enjoys a certain compactness
property which allows us to prove the existence part of the main theorem.
The heuristic here is that g resembles a single locally homogeneous metric
closely enough that the metrics he are not too far apart at ¢ = 0. §5
completes the main theorem by explaining the very special sort of non-
uniqueness which can occur: distinct locally homogeneous metrics define
distinct equivalence classes unless they differ only by a dilation of the base
circle.

Acknowledgement. I wish to thank Richard Hamilton for his helpful
and encouraging comments.

2. Review of solv-Gowdy geometries.

We begin by briefly recalling some notation and results of [1]. Readers
familiar with that paper may skip this section.

To construct an arbitrary solv-Gowdy metric g, take A € SL (2,Z) with
eigenvalues Ay > 1 > A_. In coordinates 6, z,y on R3, chosen so that the
z,y axes coincide with the eigenvectors of A, define

(2.1) g=e*dI@db + etV dz @ dx + W dy ® dy,

where F' is constant and A, W depend only on 6. Clearly, g descends to a
metric on the product of the line and the torus 72. Let A act on R x 72 by
0,z,y) — (0 + 2m, A_z, A\ry). If

(2.2) A(0+2m) = A(6)
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and
(2.3) W (0 +2m) =W (0) +2log A4,

then A is an isometry, and g becomes a well defined metric on the mapping
torus M3, regarded as a twisted 72 bundle over S'. Notice that A governs
the length of the base circle, while F' and W respectively describe the scale
and skew of the fibers. We denote arc length by

9

(2.4) s(0) #/ A dy
0

and set
0

(2.5) Z = 83W

Then we can write the Ricci tensor as

_ L oa 1 w02 1 p-wdZ
(26) Re= 322 d0® 0 — 5™V = dv@du+ 5"V = dy @ dy.

The locally homogeneous solv-Gowdy metrics are easﬂy characterized.

Lemma 2.1. A solv-Gowdy metric g is locally homogeneous if and only if
W depends linearly on arc length.

Proof. If g is locally homogeneous, then R = —%22 is constant in space.
Since Z is continuous, it follows that 82W/8s? = 0.

If Z is constant in space, let Py = (6o, 0, v0) , P1 = (01,21, y1) be points
in M}O’\ It will suffice to construct a diffeomorphism ® : Uy — U;, where
Uo, Uy are neighborhoods of Py, P; respectively, such that ® (Py) = P; and
®*g = g. If ® is given in coordinates (6, z,y) by

@(e’x’y) = (T(07m7y)’§(0’$’y)’ n(e)a:’y))’

the pullback condition ®*g = g is equivalent to the system

(2.72) e240) = (%) 24 4 (35 ) FHW(T) | (577> F-W(r)

o0 06
or 85 0

97 F+w(e) _ [ 97 zA(T) F+W(T) on F—W(T)
(27b) e Bz t\az oz

a7\ 2 ag\? o
7 F-W(0) — [ Z1) g24(7) D) WD) _77 F-W(r)
(2.7c) e By e + By e + By e
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Note that s (6) is invertible, because 9s/80 = e4(®) > 0, and define
7(0,2,y) = 7' (s (6) + 5 (61) — 5 (60))
£0,z,y) =11+ e~ 5 ((01)=5(60)) (z — z0)
n(8,2,9) = y1 +eFEON=C) (y _yq).

Clearly, ® : Py — P;. Equation (2.7a) is satisfied, because

or 00

90 9s
To see that (2.7b) is satisfied, let w denote W regarded as a linear function
of arc length, so that W (6) = w (s (6)). Then we can write

0s o\ _ —A(r)+A®)

2
log <(%> eW(T)> =—7-(s(01) —s(00)) +w(s(0) + s(61) — s (60))
=w(s(0) =W (6).

Equation (2.7c) is verified in a similar fashion. O

Remark 2.2. When studying a single locally homogeneous solv-Gowdy
metric, one can always make A constant in space by a reparameterization
of S1; but it will not be convenient for us to do so.

If an arbitrary solv-Gowdy metric g evolves by the Ricci flow
0
(2.8) 59 = —2Re,

we shall abuse notation and allow the quantities introduced above to depend
also on time. We find that g remains a solv-Gowdy metric and that (2.8) is
equivalent to the system

o . 1,,
0 0

(2.9b) W =5.2
0

whose solution exists for all ¢ > 0. It is most convenient to study Z and
recover A and W by integration. Z evolves by
1o} H?

_ 13
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where the operator 82/0s? plays the role of the Laplacian and evolves ac-
cording to the commutator

8 8]  1,,0

For all t > 0, we identify S! with the circle z = 0, y = 0 and denote its
length by

27
(2.12) L(t)= / ds = / 4D dp.
St 0

Notice that (2.3) implies the important integral condition

(2.13) / Zds =2log Ay,
St

which is preserved by the flow.

If an evolving solv-Gowdy metric is locally homogeneous at ¢t = 0, it
remains so under the Ricci flow. For such metrics, Z is the function of time
alone

(2.14) Z(t) = \/—H—lT—/?

where ¢ = Z (0) is positive by (2.13). The sub-family of locally homogeneous
solv-Gowdy metrics can thus be indexed by (« (6), Q, F), where

(2.15a) a(d) = A(0,0)
(2.15b) Q=W (0,0).

We now summarize the estimates we shall use from [1]. Let g be a
solution to the Ricci flow whose initial data g(-,0) is a C? solv-Gowdy
metric. Hamilton—Isenberg organize the proof of their main theorem into
four steps. In Step I, they show there is C' > 0 depending on Z (+,0) such
that for all ¢t > 0,

1 1
(2.16) 200l =5 <7

By Step 2, thereis a time T’ > 0 and constants m = Zpin (T), M = Zmax (T)
depending on L (0), Z (-,0) and satisfying 0 < m < M < 1/v/T such that
forallt > T,

1 1

217) Vst S 200 =
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By Step 1 again, there are C,C’ > 0 depending on L (0), Z (-,0) such that
forallt >T+1,

(2.18) Cvt—-T<L{#)<CVt-T.
By Step 4, thereis C' > 0 depending on L (0), Z (-,0) such that for all t > T,
(2.19) gZ (-,t)’ < © 5

0s (1+m2(t-"T))

3. Construction of approximating metrics.

As a first step in proving the existence part (Theorem 4.1) of our main
theorem, we find times ¢, and construct locally homogeneous metrics h.
with the following properties: h. is in a sense the average of g at t.; he
remains e-close to g for all times ¢ > t.; and most importantly, k. exists for
allt > 0.

Proposition 3.1. For any € > 0, there is a time t. > 0 and a locally
homogeneous solv-Gowdy metric h. evolving by the Ricci flow for0 <t < co
such that

sup |g— hel,, < e
M3 X [te,00)

Before proving this, we collect some technical observations.

Lemma 3.2. For any e > 0, there is t. > 0 such that Z satisfies the pinch-
ing estimate

g
(3.1) Zmax (t) - Zmin (t) < L_(t)y

and the decay estimate
S ) P —" —

for all t > t., where m., M. are defined by

(3.2)

(3‘3) 0 < me = Zmin (te) < Zmax (ts) =M, < o0

and satisfy

(3.4) me < M: <mg+¢ and ME2 <(1+¢) mg.
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Moreover, we can choose t. so that

07

oo
INE

S

dt <e.

Proof. Let T, m, M be as in (2.17) and let C be the constant in (2.19). Let
t« = max {T + C/ (m*), T + 1} and suppose t > t,. Then (2.19) implies

o0 oo
/ dtg/ © dt ¢ <e
t 0

m4 (t+t, — T)* - mi(t,—T) = "
and (2.18) implies there is C’ > 0 such that

L) <CvVt-T.

B_Z
Os

Hence for such times

VEi—T
(1+m2(t—T))%

Foe () = Zain () S [ ]3—2] ds < OC'
S1 88

Choose t. > t, large enough that (3.1) holds for ¢ > t., and that (3.4) holds
for me, M, defined by (3.3). This is possible, because

(Zmax(t)>2< t—T+1/m? 1

< _—
Zam () St=Trip0 ST EoT)

. 2
Then since %Z = aa—ng - %Zg, we observe that

4
dt

and iZmax < —lZ3

2 max*

1

A routine use of the maximum principle (proved in [3]) now establishes (3.2)
for all t > .. Od

Remark 3.3. The proof shows that for t > T + 1,
Zmax — 4min = O (t - T)_3/2 )

a result which also follows directly from (2.17).
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Lemma 3.4. Let € > 0 be given and let t., me, M, be as in Lemma 3.2.
Then there is a locally homogeneous solv-Gowdy metric

he = e* e dd @ df + e Ve de @ dz + e Ve dy @ dy

evolving by the Ricci flow for 0 <t < co so that for t > t.,
1 1

SZe(t)S )
Vit —te +1/m2 Vit —te+1/M2

where Z, = %VSI:E = e"As%i. Moreover, h. is constructed so that for all

0cS, A (0,t:) = A(0,t.) and |W (0,tc) — We (0,t)| < ¢ .

Proof. Define

. 1
(3.5) Ze0) % s
where

(3.6) G = /51 st/ . ds,

with the RHS evaluated at t.. Observe that Z, is well defined for all ¢t > 0,
because |Z (t)| < 1/+/t by (2.16), whence

1/¢2 —t. >1/22,. (t;) —te > 0.

Now recall that locally homogeneous solv-Gowdy metrics form a 3-parameter
family and define

(3.72) oe (0) = A(0,t) — % / - Z2 dt
0

(3.7b) Q. = W (0,t)

(3.7¢) F.=F.

Notice that h. is well defined; indeed, the identities

210g)\+=/ st:@*e/ ds= [ Cetedo= [ Z.ds.
St St St St

show that the integral condition (2.13) is satisfied at ¢, hence for all time.
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The first assertion of the lemma is verified by the elementary observation
Me = Lmin (te) < Cs < Zmax (ts) = Ms,

which follows from (3.6). The second assertion is trivial; to prove the third,
simply notice that

IW (07t€) - We (eats)l S [Sl |Z - Cel ds S (Zmax - min) (te) N L(te) S g.
O

Proof of Proposition 3.1. Without loss of generality, assume 0 < & < 1/6.
Let t > t. and observe that

(=496, =3| [ (2= 22) Oy ir

<1/t 1 1 dr
T2y, \T—te+1/M2 T —tc+1/m2

2 (¢ —
~ log 14 M2 (t tg).
14+ m2(t—te)

Then since |e* — 1| < eV — 1 when |u| < U, we have

M2 _ m2
Q2A-AS) _ ll < 24c e <

I(eQA _ e?As) (9, t)| = 24 mg

and hence
2
60 2 _ 2
(B)) " (900 (he)ag)? < €2
Because W, is constant in time, we have

|(W = We) (6,)] < W (8,8) =W (6, 8)| + W (8, ) — W (6, )|

t o7z
\/ts —a—sdT

< 2,

<

+e

whence substituting § = 2¢ < 1/3 in the crude estimate e’ < 146 + %62
(which holds for 0 < 6 < 1) gives

|(eF+W - eFE"'We) (6, t)| = efetWe | ((W-We) _ 1’ < 3geletWe
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and thus
((7e)™)? (9zz — (he)py)® < 96

2
The estimate for ((he)¥¥)? (gyy - (he)yy) is entirely analogous. We have
shown that

|9 = hel, = (he)® (he)* (gab = (he)ap) (gea = (e) og) < 1962

for t > t¢, which is clearly equivalent to the desired result. a
4. Existence.

We have seen that for any € > 0, there is a natural choice h. of locally
homogeneous metric approximating g for times ¢ > t.. In view of our non-
uniqueness result (Theorem 5.1), it is remarkable that these choices are
close enough to one another that we can prove the existence of a locally
homogeneous metric in [g].

Theorem 4.1. There is a locally homogeneous solv-Gowdy metric heo
evolving by the Ricci flow for 0 < t < oo such that for any € > 0 there
is a time t. > 0 with

sup |9 — heolp, <&
M?\X[ts,oo)

Again, we first obtain some preliminary results.

Lemma 4.2. Let {€;} be a sequence with €; \, 0. For each j, let h; denote
the metric he; given by Proposition 3.1. Then there is a subsequence ji and
a locally homogeneous metric hoo with data (oo (6), Noo, Fo) such that

(e (), i, Fiji,) = (oo (0) 5 Qoo, Foo)

uniformly in 6. (Here, and throughout the proof, a subscript such as j
denotes quantities corresponding to the metric h; = he;.)

Proof. The argument is constructed from four claims, as follows: Claim
4.3 bounds A (-t;), hence %Aj (-,t;) by construction, hence %Aj (-,0)
by (4.1) and the local homogeneity of h;. Combining this with Claim 4.4
proves {A; (+,0)} is bounded and equicontinuous. Since Claim 4.5 bounds
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%Wj (+,0), this lets us bound %Wj (+,0). Combining this with Claim 4.6
then proves {W; (-,0)} is bounded and equicontinuous. Because F; = F' by
construction, this lets us extract a subsequence of the h; whose initial data
converge uniformly to the data of a locally homogeneous metric ho existing
for all £ > 0.

Notice that if j < k, we may (and shall) assume t; < t.

Claim 4.3. There is C < oo such that

0A
sup |—==| <C.
ME x[T,00) | 90
Compute
0 (0A\ 0 (1 o\ 4,07
Since by (2.17),
0 <1 1

A<D -
o~ 2 t—-T+1/M?
for t > T, there is C’ > 0 such that

A(,t) <logC’ +log/t—T + 1/M?

for t > T'. Then by (2.19), we have

90 (04 e p
‘a::(ae) <C\Vt—-T+1/M

CIO//
< 5
1+mi(t-T)
for all ¢ > T. Since there is B > 0 depending only on the initial data such
that —B < 0A/96 < B at t = T, the claim follows.

C/I

1
Vi—T+1M2 (1+m2(t—T))7°

Claim 4.4. The sequence {a; (0)} is bounded for each 6 € S*.
Let # € S! be arbitrary. For j < k, consider

1[4 1 [t
aj(a)—ak(0)=A(0,tj)—§/0 Zfdt—A(@,tk)+§/0 Z3 dt

1 [ 1[4
=§/t. (Z,%-Z?)dt+§/0 (Z} - Z7) dt.
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Since 1/¢2 — t > l/MJ2 — t;, we obtain a familiar estimate for the first
integral:

1

2

tk +M2(tk—t)
ZE - 72) dt| < <log+/1+¢,.
/ (%~ 2°) —log\/1+m2(tk—t) log v+

tj

Write the second integral as

1/%' 0 9 1/¢ —t; ti+ (1/¢2 — t)
= ZF-Z} dt=logy|—L2—L 110
2 )y (= 4) SVig—u T 1/¢;
= log \/ Pjr,
where
o (1= 2 _ 4
(4.2) Py = (1-ty) (Hl/c,%—tk > 0.
Since
1/M?-T ey 1/m? —
ti+1/M2-T “—t +1/m2
and
ti+1/m2-T t; tj +1/M? —
_— < <
ym-T ' Yye =g S TiaeoTt

we conclude that

1/M*-T 1/m?-T
< < PpP,< L
1/m2—T < Fir < 1/M2 =T

Claim 4.5. There are 0 < Z, < Z* < 0o such that Z; (0) € [Zs, Z*] for all
g
Note how
1/Z(0) =1/¢ —t; > 1/Z2, (t;) —t; > 1/M?> =T > 0
y (2.16) and (2.17), and similarly
1/Z7 (0) =1/¢2 —t; < 1/Z2;, () — t; < 1/m? = T < oo.

Claim 4.6. There are 0, < Q* such that Q; € [Q, Q*] for all 5.
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Suppose j < k. Then since Q; = W (0, t;), we have

t
Mo [*|22
tj

< e
s dt <¢;

tx
(% — ] = [W (0, ) — W (0,5)] S/t

J

O

Lemma 4.7. If heo is a locally homogeneous metric with data
(oo (8) 5 Qoo, F)
and {h;} is a sequence of locally homogeneous metrics with data
(aj (0), Qja F)
converging to (oo (8) , Qeo, F) uniformly in 0, then for any € > 0 there is
J. such that for each j > J;

sup  |hj — hooly, <&
M3 x[0,00)

Proof. The integral condition
/ Zoso (0) eaoo(e) db = 210g )\+ = / Z‘7 (O) eaj(e) do
St S1

shows that Z; (0) — Zeo (0). For § > 0 to be determined, choose Je large
enough that

Z3, (0)
70 —1l<s

Sup oo () — e (0)] <6 and
fest

for all j > Je, and consider

(Ao — 4j) (6,1) = (oo — aj) () + %/O (2%, - Z3) dt.

For any A, 1 > 0 we have the now-familiar inequality

|w =l /t 1 1 b= |
log (1— < -~ < :
og( X S A s dt <log |1+ 3

Since

1t 1t 1 1
5/0 (Zgo—Zf)dt=§/0 <t+1/Zgo(0)_t+1/Z]?(0)) dt
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and

1/23 (0) - 1/22 (0)
ZL0) S

we get our first estimate:

(Ao — A;) (6,8)] < 6 +1og V1 + 0.

Next observe that when 0 < § < log2 we have e’ < 1 + 26 and thus obtain
our second estimate:

|(Woo = Wj) (6,8)] = [Weo (6,0) — W; (6,0)]

4 6
/ Zo (0) - €@y — / Z; (0) - e dy,
0 0

6
< / Zso (0)-e°‘°°(“) 1 — (W)= (u)| 4,
0
’ Zoo (0)
+ [ 2;(0)- e L_l‘du
[ z0 S

<35(2logAy).

As in the proof of Theorem 3.1, it follows that we can make |heo — Ay, as
small as desired by choosing § = ¢ (¢) appropriately.

Proof of Theorem 4.1. Note that |g — hcol,,_, Will be small if both |g — A h;
and |h; — heoly,_ are. So take the subsequence of metrics hj, and times t;,

given by Lemma 4.2 and pass to a further subsequence according to Lemma
4.7. O

5. Uniqueness.

Distinct locally homogeneous solv-Gowdy metrics belong to the same equiv-
alence class if and only if they differ merely by a dilation of arc length. In
that case, we shall see that they approach one another at the rate C/t, where
the constant depends on the initial difference in length of the base circle.

Theorem 5.1. Let h and hy be locally homogeneous metrics correspond-
ing to the data (a(0), Q, F) and (ax (0), Q, Fi) respectively. If for some
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constant £ we have oy = o+ £ and Q, = Q and Fy, = F, then h and h,

quasi-converge with
1
|hs — k|, =0 (-t—) .

In all other cases, there are § > 0 and 6 € S such that
b — b, (6,8) 2 8

for allt > 0, so h and hy do not quasi-converge.

Proof. We consider three cases.
Case 5.2. a,=a+/4, Q. =Q, F,=F.
Writing
1 1

ViF1/C? and Z*(t):\/t+1/¢3’

we observe that £ = log (¢/{«), since by the integral condition (2.13) we have

Z(t) =

¢ B fsl ea*(e) do

It follows that the function
9
(5.2) w(6) = / (C*ea*(u) _ Cea(u)) du
0

is identically zero. So for all § € S and t > 0 we have
(W = W) (0,t) = (W = W) (6,0) = Q% —Q+w(8) =0.

Now notice that
1t 2
(A — A)(0,t) = (s — @) (0) + 5/0 (Z* (-2 (7')) dr =10+ ¢ (1),

where

1+ ¢2t
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It is clear by (5.1) that A, — A — 0 uniformly in 6 as t — co. In fact,
this identifies the critical rate at which distinct locally homogeneous metrics
h, h« approach each other, because

(24 — &) (9, 8) = A0 <e2(e+¢(t)) _ 1)

and hence

T YT _ |2were) _ 1] — |1/¢2 —1/¢?|
|hs = Ay, )h (h h)eo‘ = )e 1‘ t+ 1/
Case 5.3. ax=a+/4, Q. =Q, F, #F.

Notice that W, — W = 0 and A, — A — 0 as above. Without loss of
generality, suppose Fy, — F = § > 0. Then for all § € S! and ¢ > 0 we have

eFetWe _ FHW _ (FHW (Fo=F _ 1) 5 goF+W

—e
and hence
| — hlp, > |A*® (he — h)_| > 6 > 0.
Case 5.4. Fither o, Z a+ £ or Q, # Q.
Observe that we can always find § with
(W = W) (0,0) = Qu — Q+ w (6) # 0,

since w cannot be identically zero if a, # a + £. Without loss of generality,
assume (Wi — W) (0,0) = 6 > 0. Then if F > F, we have

Pt Wa(6,t) _ JFHW(0t) _ JF+W(6,t) ( oFe—F g6 _ 1) > FHW () ( e — 1)
for all ¢ > 0 and hence
| — hl, (6,t) > |h*® (hy — h)_,| (6,t) > § > 0.
On the other hand, if F' > F we obtain
eFemWalO,t) _ JF-W(0t) _ F-W(6,¢) ( oFe—F =5 _ 1) < F-W.) ( e _ 1)
for all ¢ > 0 and thus

)
lh* _ hlh (97t) > )hyy (h,* — h)yy) (H,t) > m > 0.
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