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Quasi-convergence of the Ricci flow 

DAN KNOPF 

We study a collection of Riemannian metrics which collapse under 
the Ricci flow, and show that the quasi-convergence equivalence 
class of an arbitrary metric in this collection contains a 1-parameter 
family of locally homogeneous metrics. 

1. Introduction and statement of main theorem. 

In [1], Hamilton and Isenberg studied the Ricci flow of a family of solv- 
geometry metrics on twisted torus bundles. This family contains no Einstein 
metrics, so the (normalized) Ricci flow cannot converge. Hamilton-Isenberg 
introduced the concept of quasi-convergence to describe its behavior, writing 

"...the Ricci flow of all metrics in this family asymptotically ap- 
proaches the flow of a sub-family of locally homogeneous met- 
rics..." 

The intent of this paper is to make that statement more precise. In so 
doing, we answer a question of Hamilton, who asked whether an arbitrary 
metric in this class would converge to a unique locally homogeneous limit 
or would exhibit a more nuanced behavior. 

Definition 1.1. If g,h are evolving Riemannian metrics on a manifold Mn, 
we say g quasi-converges to h if for any e > 0 there is a time t£ such that 

sup      \g - h\h < e. 
Mnx[t£,oo) 

Quasi-convergence is an equivalence relation. Indeed, the standard fact 
that \U (V, V)\ < \U\h \V^h for any symmetric 2-tensor U and vector field V 
implies that g quasi-converges to h if and only if for all t>t£, 

(l-s) h(V,V) <g(VtV) < (1 + e) h(V,V). 

We now state our result, using notation defined in [1] and to be reviewed 
in §2 below. 
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Theorem 1.2. If g is any solv-Gowdy metric on a twisted torus bundle 
M^; there is a locally homogeneous metric h in its quasi-convergence equiv- 
alence class [g]. Moreover, if h corresponds to the data (a (9), $1, F), 
the locally homogeneous metrics in [g] are exactly those with the data 
(e + a(0),n,F), ie R. 

Remark 1.3. Similar quasi-convergence of the Ricci flow to a 1-parameter 
family was conjectured for a class of T3 metrics studied in [2]. 

The paper is organized as follows. §2 describes the bundles T2 —» A4\ —> 
S1 and the solv-Gowdy metrics under study. It turns out that at large times, 
an arbitrary solv-Gowdy metric g behaves much like locally homogeneous 
metrics. §3 quantifies this observation and explicitly constructs a family h£ 

of locally homogeneous metrics existing for all t > 0 which approximate g for 
times t > t£. In §4, we show that this family enjoys a certain compactness 
property which allows us to prove the existence part of the main theorem. 
The heuristic here is that g resembles a single locally homogeneous metric 
closely enough that the metrics he are not too far apart at t = 0. §5 
completes the main theorem by explaining the very special sort of non- 
uniqueness which can occur: distinct locally homogeneous metrics define 
distinct equivalence classes unless they differ only by a dilation of the base 
circle. 

Acknowledgement. I wish to thank Richard Hamilton for his helpful 
and encouraging comments. 

2. Review of solv-Gowdy geometries. 

We begin by briefly recalling some notation and results of [1]. Readers 
familiar with that paper may skip this section. 

To construct an arbitrary solv-Gowdy metric g, take A G SL (2, Z) with 
eigenvalues A+ > 1 > A_. In coordinates 0,x,y on R3, chosen so that the 
x, y axes coincide with the eigenvectors of A, define 

(2.1) g = e2A de®dO + eF+w dx®dx + eF-w dy ® dy, 

where F is constant and A, W depend only on 9. Clearly, g descends to a 
metric on the product of the line and the torus 7~2. Let A act on R x T2 by 
((9, x, y)^(9 + 27r, A_x, A+y). If 

(2.2) A (9 + 27r) = A (9) 
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and 

(2.3) W (6 + 27r) = W (9) + 2 log A+, 

then A is an isometry, and g becomes a well defined metric on the mapping 
torus M\i regarded as a twisted T2 bundle over S1. Notice that A governs 
the length of the base circle, while F and W respectively describe the scale 
and skew of the fibers. We denote arc length by 

r9 

(2.4) s(0)= /   eA^du 
Jo 

and set 

d 
(2.5) Z.^W. 

Then we can write the Ricci tensor as 

(2.6) Re = -le2AZ2 d6®de- \eF^w^- dx®dx + \eF-w^- dy ® dy. 
2 2 os 2 as 

The locally homogeneous solv-Gowdy metrics are easily characterized. 

Lemma 2.1. A solv-Gowdy metric g is locally homogeneous if and only if 
W depends linearly on arc length. 

Proof. If g is locally homogeneous, then R = —^Z2 is constant in space. 
Since Z is continuous, it follows that d2W/ds2 = 0. 

If Z is constant in space, let PQ = (6Q, XQ, yo), Pi = (0i, #1, yi) be points 
in M\. It will suffice to construct a diffeomorphism $ : UQ —■» Wi, where 
Z//o5 Ui are neighborhoods of PQ, PI respectively, such that $ (PQ) = Pi and 
<£*# = g. If $ is given in coordinates (0, x, y) by 

$ (0, x, y) = (r (0, x, y), f (0, x, y), r? (5, x, y)), 

the pullback condition $*y = y is equivalent to the system 

(2.7a) *"<'> = (|) 2 fi^) + (|) 2 e^+^W + (g) ' e^« 

(2.7b)     eF+w W = (|l) 2 e^M + (§) ' eF+H/(T) + (|^) ' eF-wW 

F-W(tf) =  / &[.\    P1A{T)   ,   (dV\    PF+W{T)   ,   ^\    ^F-VK(T) (2.7c)      e'-l.l.|^^ + ^e'-Wm+^le 
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Note that s (0) is invertible, because ds/d6 = eA^ > 0, and define 

T(8,x,y) = S-
1(s(6) + s(61)-s(eo)) 

$ (6, x, y) = xi + e-f (s(ei)-s(^)) (a: - a:o) 

77 (61, x, y) = y1 + e#MW-Vh)) {y _ yo). 

Clearly, $ : PQ ■-> Pi. Equation (2.7a) is satisfied, because 

de    ds[) de{) 

To see that (2.7b) is satisfied, let u denote W regarded as a linear function 
of arc length, so that W (6) = u (s {9)). Then we can write 

iog((f!^ 
= a;(s(0)) = w{p). 

Equation (2.7c) is verified in a similar fashion. □ 

Remark 2.2. When studying a single locally homogeneous solv-Gowdy 
metric, one can always make A constant in space by a reparameterization 
of 51; but it will not be convenient for us to do so. 

If an arbitrary solv-Gowdy metric g evolves by the Ricci flow 

(2.8) _,7 = _2Rc, 

we shall abuse notation and allow the quantities introduced above to depend 
also on time. We find that g remains a solv-Gowdy metric and that (2.8) is 
equivalent to the system 

P-Da, |^.^ 

(2.9c) |F-0, 

whose solution exists for all t > 0. It is most convenient to study Z and 
recover A and W by integration. Z evolves by 

<2-io> !z=Sz-^3' 
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where the operator d2/ds2 plays the role of the Laplacian and evolves ac- 
cording to the commutator 

(2.11) 
d_ d_ 

dt'~d~s -~2Zd~s- 

For all t > 0, we identify S1 with the circle x — 0, y = 0 and denote its 
length by 

r n2'K 

(2.12) L{t)=       ds= eA^de. 
Js1 Jo 

Notice that (2.3) implies the important integral condition 

(2.13) /   Zds = 2\og\+, 
Js* 

which is preserved by the flow. 
If an evolving solv-Gowdy metric is locally homogeneous at i = 0, it 

remains so under the Ricci flow. For such metrics, Z is the function of time 
alone 

K    J w   Vt + W 
where C 4= Z (0) is positive by (2.13). The sub-family of locally homogeneous 
solv-Gowdy metrics can thus be indexed by (a (9), £7, F), where 

(2.15a) a(0) = A (6,0) 

(2.15b) n = W(0,0). 

We now summarize the estimates we shall use from [1]. Let g be a 
solution to the Ricci flow whose initial data g(-,0) is a C2 solv-Gowdy 
metric. Hamilton-Isenberg organize the proof of their main theorem into 
four steps. In Step i, they show there is C > 0 depending on ^(-,0) such 
that for allt > 0, 

(2,6) |z(,f)|<_l=<i.. 

By Step 2, there is a time T > 0 and constants m = Zm\n (T), M = Zmax (T) 
depending on L (0), Z (■, 0) and satisfying 0 < m < M < 1/VT such that 
for all t > T, 

(2.17) 1 < Z (-, t) < 1 =. 
7 Vi-T + l/m2 "     V    ^ - y/t - T + 1/M2 



380 Dan Knopf 

By Step 1 again, there are C, C > 0 depending on L (0), Z (•, 0) such that 
for all t > T + 1, 

(2.18) CVt^T <L(t)< Cfy/t^T. 

By 5iep ^; there is C > 0 depending on L (0), Z (•, 0) such that for all t > T, 

C7 
(2.19) 

!*<■•*> 

< 
(l + m2(t-r))2' 

3. Construction of approximating metrics. 

As a first step in proving the existence part (Theorem 4.1) of our main 
theorem, we find times t£ and construct locally homogeneous metrics h£ 

with the following properties: h£ is in a sense the average of g at te; h£ 

remains s-close to g for all times t>t£\ and most importantly, h£ exists for 
all t > 0. 

Proposition 3.1. For any e > 0; there is a time t£ > 0 and a locally 
homogeneous solv-Gowdy metric h£ evolving by the Ricci flow for 0 < t < oo 

sup      b-feel^ <e. 
M\x[t£,oo) 

Before proving this, we collect some technical observations. 

Lemma 3.2. For any s > 0; there is t£ > 0 such that Z satisfies the pinch- 
ing estimate 

(3.1) Zm&x(t)-Zm[n(t)< 
L{ty 

and the decay estimate 

(3.2) ,,     ,1, ,,      <S(-,*)< 1 

V* - te + l/m| _     V W _ y/t-te + l/Mi' 

for all t > te, where me, Me are defined by 

(3.3) 0 < me = Zmin (te) < Zmax (te) = M£ < oo 

and satisfy 

(3.4) m£ < Me < me + e        and       Me
2 <(l + e) m; 
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Moreover, we can choose t£ so that 

f dz 
ds 

dt<e. 

Proof. Let T, m, M be as in (2.17) and let C be the constant in (2.19). Let 
£* = max {T + C/ (m4£), T + 1} and suppose t > £*. Then (2.19) implies 

Ju     ds        ~ Jo 
dt = 

C 
m ̂ {t + U-Tf m*(U-T) 

<e, 

and (2.18) implies there is C > 0 such that 

L(t) < C'Vt^T. 

Hence for such times 

Zmax (t) — Zmin (t) <   / 
az 
ds 

ds < CC- 
y/t=T 

(1 + m2 (t - T)) 2' 

Choose te > t* large enough that (3.1) holds for t > te, and that (3.4) holds 
for m£, M£ defined by (3.3). This is possible, because 

(Zmm{t)\2      t-T + l/m2 1 
Umin(t);    -t-r+l/M2-     +m2(t-r)- 

Then since M+Z — ^iZ — hZ3, we observe that 

±7 .   > .lyS 
,,^min ^      Q    

min 

di' 
1       o 

and        — Zmax < --Z* 

A routine use of the maximum principle (proved in [3]) now establishes (3.2) 
for all t>te. □ 

Remark 3.3. The proof shows that for t > T + 1, 

^max — ^min — Cy ^6 — I J , 

a result which also follows directly from (2.17). 
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Lemma 3.4. Let s > 0 be given and let t£, m£, M£ be as in Lemma 3.2. 
Then there is a locally homogeneous solv-Gowdy metric 

h£ = e2A£ de®de + eF£JrWe dx®dx + eFe-W£ dy ® dy 

evolving by the Ricci flow for 0 < t < oo so that for t >t£, 

< Z£ (t) < 

where Zs = ^^ = e~A£ ^ffi.   Moreover, hs is constructed so that for all 

e£S\Ae (6, tl) = A (9, U) and \W (6, te) - We (6, te)\ < e . 

Proof. Define 

(3.5) Ze (t) = 
y/t+il/Q-t.)' 

where 

(3.6) ^^  [  Zds/ [  ds' 

with the RHS evaluated at t£. Observe that Z£ is well defined for all t > 0, 
because \Z (t)\ < 1/y/t by (2.16), whence 

l/C£
2-te>l/^ax(^)-*e>0. 

Now recall that locally homogeneous solv-Gowdy metrics form a 3-parameter 
family and define 

1   r^ 1   /    -*dt (3.7a) a£(0) = A(e,t£)-±J£ Z; 

(3.7b) ^ = ^(0,^) 

(3.7c) F£ = F. 

Notice that h£ is well defined; indeed, the identities 

21ogA+=  [  Zds = Ce [  ds=  f  CeeA£de= [  Z£ds£ 
Js1 Js1 Js1 Js1 

show that the integral condition (2.13) is satisfied at t£, hence for all time. 
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The first assertion of the lemma is verified by the elementary observation 

me = Zmin (te) <Ce< Zmax (te) = M£, 

which follows from (3.6). The second assertion is trivial; to prove the third, 
simply notice that 

|W(0,te)-We(0,te)|< /   \Z-(£\ds<(Zmax-Zmin)(t£).L{t£)<e. 

D 

Proof of Proposition 3.1. Without loss of generality, assume 0 < s < 1/6. 
Let t > t£ and observe that 

1 
\(A-A£)(9,t)\ = - f (Z2-Zl){6,T)dT 

Jte 

- 2 Jt£ [r-te + l/M* ~ r~t£ + l/ml) dT 

= log' 
ll + Mi(t-t£) 
l + m2

£(t-t£)' 

Then since \eu — 1| < eu — 1 when |u| < U, we have 

2Ae lvle M} mz 
mi 

|(e2A _ e2Ae) (M)| = e2A£   e2(A-AE) _ i   < e 

and hence 

{{he)
6e)\gee-{he)ee?< 

Because W£ is constant in time, we have 

\{W - We) {9,t)\ < \W(0,t) -W(0,te)\ + \W(9,te) - We (9,te)\ 
rtdz 

< I 
Jte ds 

dr + s 

<2£, 

whence substituting S = 2s < 1/3 in the crude estimate e5 < 1 + 5 + |52 

(which holds for 0 < S < 1) gives 

\(eF+w-eF<+w<)(e,t)\ = eF'+w< e^^-l  <3eeF^w^ 
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and thus 

((herr(gxx-(h£)xxr<98^ 

2 
The estimate for ((h£)

yy)   (gyy — (h£)    )   is entirely analogous. We have 

shown that 

\g - he\l = (h£r (he)
bd (gab - (hs)ab) (5cd - (he)cd) < 19e2 

for t>t£, which is clearly equivalent to the desired result. □ 

4. Existence. 

We have seen that for any s > 0, there is a natural choice h£ of locally 
homogeneous metric approximating g for times t > t£. In view of our non- 
uniqueness result (Theorem 5.1), it is remarkable that these choices are 
close enough to one another that we can prove the existence of a locally 
homogeneous metric in [g]. 

Theorem 4.1. There is a locally homogeneous solv-Gowdy metric hCQ 

evolving by the Ricci flow for 0 < t < oo such that for any £ > 0 there 
is a time t£ > 0 with 

sup      {g-hoolf^ <£. 
M3

Ax[t£,oo) 

Again, we first obtain some preliminary results. 

Lemma 4.2. Let {SJ} be a sequence with Ej \ 0. For each j, let hj denote 
the metric h£. given by Proposition 3.1. Then there is a subsequence jk and 
a locally homogeneous metric h^ with data (a^ (6), Jlooj ^oo) such that 

(ajk (9), njk1 Fjk) - (aoo (0), floo, i^oo) 

uniformly in 8. (Here, and throughout the proof, a subscript such as j 
denotes quantities corresponding to the metric hj = h£j.) 

Proof. The argument is constructed from four claims, as follows: Claim 
4.3 bounds ^A(-,tj), hence ^gAj^^tj) by construction, hence g^Af (•,()) 
by (4.1) and the local homogeneity of hj. Combining this with Claim 4.4 
proves {Aj (-,0)} is bounded and equicontinuous.  Since Claim 4.5 bounds 
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■gjrWj (-,0), this lets us bound -ggWj (-,0). Combining this with Claim 4.6 

then proves {Wj (•, 0)} is bounded and equicontinuous. Because Fj = F by 
construction, this lets us extract a subsequence of the hj whose initial data 
converge uniformly to the data of a locally homogeneous metric hoo existing 
for all t > 0. 

Notice that if j < fe, we may (and shall) assume tj < tk- 

Claim 4.3.  There is C < oo such that 

sup 
A4x[T,oo) 

dA 
de 

<c. 

Compute 

(4.1) 
d 
dt 

fdA\       d (1   2\       A   dZ 
[dej ~ de\2   )~      ds 

Since by (2.17), 

d
A<

1     1 

dt    - 2   t-T + 1/M2 

for t > T, there is C > 0 such that 

A(•,t) < logC" + log^t-T+l/M2 

for t > T. Then by (2.19), we have 

d_ (dA 
dt \d0 

<cVt-r + i/M2 C" 

V* - T + 1/M2    (1 + m2 (t - T))2 

< 
C'C" 

1 + m4 (t - TY 

for all t > T. Since there is B > 0 depending only on the initial data such 
that -B < dA/de < B at t = T, the claim follows. 

Claim 4.4.  The sequence {ay (#)} is bounded for each 6 € S1. 

Let 0 € (S1 be arbitrary. For j < k, consider 

aj (9) - ak {9) = A (6,^) - ± J' Z] dt - A(0,tk) + ^ f " Z| 

1      /*tfc 

Zdt 

■ ft
k{zl-z")dt + \f\zl-zj)dt. 
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Since 1/C| - tk > l/M? - tj, we obtain a familiar estimate for the first 
integral: 

r (z! - z*) dt 
i + MHtk-u) ,  

Write the second integral as 

1  n 
2 
fw-Wt^Jv^^MM-*) 

= log ^/P^, 

1/C? 

where 

(4.2) 

Since 

and 

""^-M'+vfah0- 
l/M2 - T 

tj + l/M2 - T 

tj + 1/m2 - T 

<i-c;<i< 

<1 + 

1/m2 - T 
tj + 1/m2 - T 

tj + 1/M2 - T 
< 

1/m2 -T     -        1/C| - tk -     1/M2 - T    ' 

we conclude that 

i/M2-r i/m2-r 
1/m2 - T 1/M2-T' 

Claim 4.5.   There are 0 < Z* < Z* < oo suc/i tfm£ Z,- (0) € [Z*, Z*] for all 
3- 

Note how 

1/Z2 (0) = l/C? - tj > 1/Zl^ (tj) - tj > 1/M2 - T > 0 

by (2.16) and (2.17), and similarly 

1/Z? (0) = l/C? - t,- < 1/2%^ (tj) - tj < 1/m2 -T<oo. 

Claim 4.6.   There are Q* < O* such that % 6 [ft*,fi*] for all j. 
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Suppose j < k. Then since % = W (0, i,), we have 

1^ *-nj\ = \w(p,tk)-w(0,^)1 < /    -QT dt = 
az 
a^ dt < £j. 

D 

Lemma 4.7. ///loo is a locally homogeneous metric with data 

Ko^ftoo, F) 

and {hj} is a sequence of locally homogeneous metrics with data 

converging to {a^ (6), Ooo, JP) uniformly in 6, then for any e > 0 tfiere is 
Jg: such that for each j > Je 

sup     {hj - hool^ < s. 
M3

Ax[0,oo) 

Proof. The integral condition 

/   Zoo (0) ea~w dfl - 21og A+ = [  Zj (0) e^^ M 

shows that Zj (0) -> Z^ (0).  For S > 0 to be determined, choose J£ large 

enough that 

sup laoo (0) - aj (0)\<5        and 
zKQ)   1 

^2 (0) 
<5 

for all j > J£, and consider 

(Aoo - ^) (0,t) = (aoo - <*,•) W + ^ (^ " Zj) dt. 

For any A, fi > 0 we have the now-familiar inequality 

-O-^HG^ M 
dt < log   1 + 

|/i-A| 

Since 

\jy~-^\Jl(TTWzl (0)    t + i/z7
2 (0) 

dt 
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and 

l/Z,2 (0) - l/Z*. (0) 

i/zi (0) <*, 

we get our first estimate: 

K^oo - Aj) (0,t)\<5 + log VT+S. 

Next observe that when 0 < S < log 2 we have es < 1 + 25 and thus obtain 
our second estimate: 

I (Woo - Wj) (0,*)| = [Woo (0,0) - Wj (5,0)1 

=   /   Zooty-e^Mdu-       Zj^.e^Md 
Jo Jo 

u 

< /   ZvoW-e™™^ l-e
tti(tt)-«oo(ti) 

Jo 

Jo 

cfaj 

^ (0) 
<3J(21ogA+). 

As in the proof of Theorem 3.1, it follows that we can make J/ioo — hj\h    as 
small as desired by choosing 5 = 5 (e) appropriately. □ 

Proof of Theorem 4.1. Note that \g — /^ooU will be small if both \g — hj\h. 

and \hj — h00\h are. So take the subsequence of metrics hjk and times tjk 

given by Lemma 4.2 and pass to a further subsequence according to Lemma 
4.7. □ 

5. Uniqueness. 

Distinct locally homogeneous solv-Gowdy metrics belong to the same equiv- 
alence class if and only if they differ merely by a dilation of arc length. In 
that case, we shall see that they approach one another at the rate C/t, where 
the constant depends on the initial difference in length of the base circle. 

Theorem 5.1. Let h and h* be locally homogeneous metrics correspond- 
ing to the data (a (6), fl, F) and (a* (6), fi*, F*) respectively. If for some 
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constant £ we have a* = a + £ and Q* = ft and F* = F, then h and h* 
quasi-converge with 

I*. - % = 0 (7 

In all other cases, there are 5 > 0 and 6 E S1 such that 

\h*-h\h(e,t)>5 

for all t > 0, so h and h* do not quasi-converge. 

Proof. We consider three cases. 

Case 5.2. a* = a + £, fi* = fi, F* = F. 

Writing 

Z(t) = -=1==        and        Z*(t)= 1 

we observe that £ = log (C/C*)? since by the integral condition (2.13) we have 

(51) <      ^^M     c< (     j C* _  U ^ do'6- 
It follows that the function 

(5.2) u (9) =  /   (C*ea*(w) - Cea(w)) diz 

is identically zero. So for all 9 G ^S1 and t > 0 we have 

Now notice that 

{A.-A)(0,t) = (a.-a)(9) + ±£(Z?(T)-Z2(T))dT = e + <l>(t)t 

where 

M ^(()=l,„gl±|!. 
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It is clear by (5.1) that A* - A -» 0 uniformly in 0 as t -> oo. In fact, 
this identifies the critical rate at which distinct locally homogeneous metrics 
/i, h* approach each other, because 

and hence 

\K-h\h= h69(K-h) Jee eW+W)) _ i li/c*2-i/c2l 
t + l/C2 

Case 5.3. a* = a + ^ fi* = fi, F* ^ F. 

Notice that W* - W = 0 and A* - A -^ 0 as above.  Without loss of 
generality, suppose F* - F = 5 > 0. Then for all 6 e S1 and t > 0 we have 

e^+w. _ ei^ = eF+^ (eF,-F _ ^ > ^F+W 

and hence 

\K-h\h>\hr(K-h)xx\>8>0. 

Case 5.4. Either a* ^ a + £ or Q* ^ Q,. 

Observe that we can always find 9 with 

(W* - W) (fl, 0) = Q, - SI + OJ (9) ± 0, 

since uo cannot be identically zero if a* ^ a. +1. Without loss of generality, 
assume (W* - W) ((9,0) = <J > 0. Then if F* > F, we have 

for alH > 0 and hence 

|/>*-/4(M)>r*(^-/>U(M>*>o. 
On the other hand, if F > F* we obtain 

eF*-Wm(e,t) _ eF-W(0,t) = eF-^(^t) {eF*-Fe-8 _ A < eF-W(0,t) /,-£ _ A 

for alH > 0 and thus 

\h* - h\h (9, t) > hw (K - h)     (9, t)>-—>0. 
1 + 6 

□ 
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