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An application of the /i-principle to CMsometric 
immersions in contact manifolds. 

G. D'AMBRA
1 

We prove here a version of the Nash C1 -isometric immersion the- 
orem for contact manifolds equipped with Carnot-Caratheodory 
metrics. 

0. Introduction and motivation. 

Let us first recall the logical structure of the CMsometric theory for the 
Riemannian manifolds without contact structure. Here one starts with a 
general smooth (not at all isometric) immersion /o of a Riemannian manifold 
Vn = (Vn, g) into R9. If Vn is compact, then by an obvious scaling one can 
make such /o : (V71, g) —> R9 strictly short. This means that the Riemannian 
metric induced by /o from R9 is strictly smaller than g, i.e. the difference 
g — go is positive definite on Vn. The key idea of the CMmmersion theory 
of Nash and Kuiper is as follows. One "stretches" a given strictly short 
immersion /o to an isometric CMmmersion /i, i.e. such that the form gi 
induced by /i equals g. This remarkable stretching was performed in the 
celebrated 1954 paper [13] by Nash under the assumption q > n + 2 and 
then Kuiper (1955) improved this result by showing that it is true when 
q — n + 1. (Clearly, this is impossible, in general, for q = n.) 

To complete the construction what remained was to have at one's dis- 
posal the starting immersion /o : Vn —> R9. For this one could invoke the 
classical result by Whitney which claims that such an /o always exists for 
q > 2n. In fact, a generic C^-map / : V —> Ilq is an immersion. Another 
possibility is offered by the Smale-Hirsch immersion theory which provides 
smooth immersions Vn —> Rg for a given q > n, provided the manifold 
Vn satisfies the necessary topological restrictions. For example, every par- 
allelizable (e.g.   contractible) manifold Vn can be smoothly immersed to 
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Rn+1 according to the Hirsch theorem (which was unavailable to Nash and 
Kuiper as it was proven in 1959, see [9]). 

Now we turn to the subject matter of the present paper where we are 
given a contact structure on a manifold V, i.e. a "maximally non integrable" 
subbundle S C T(y) (see §1 for the definitions) as well as a metric on 5, i.e. 
a positive definite quadratic form g on S. We want to isometrically immerse 
our contact manifold V to another such manifold W = (W,T C T(W),h). 
This means we seek an immersion / : V —> W which is both, contact, i.e. 
sends S to T, and isometric, i.e. induces g from h via the differential Df 
of / restricted to S (and ranging in T by the contactness assumption on 
/). The basic example of W, playing the role of R9, is the Heisenberg group 
£[2m+i (defined in 14) which is, topologically speaking, a Euclidean space 

R2m+i fibered over R2m thought of as Cm. This H2m+l carries a (rather 
natural) contact structure T C T (£r2m+1) and a metric h on T, such that 
the differential of the fibration (map) H2m+1 —> Cm is an isometry on T for 
the standard metric on Cm. Here, in order to construct a contact isometric 
CMmmersion V —> H2m+l, one may begin with a non-isometric but yet 
contact immersion (V,S) —► (H2rn+1,T) which can be easily (at least for 
compact V, see 1.4) scaled to a contact strictly short immersion /o : (V, S) —> 
(iJ2m+1,r). Then one can start stretching this /o, but this does not seem 
work in general. In fact, in order to perform a stretching in the same style 
as Nash, one needs an additional regularity assumption on /o (called (h, u) 
regularity in 1.3) which automatically implies the inequality m > rankS, 
i.e. q = 2m + 1 = dim(iJ2m4"1) > 2n — 1, n = dimV. This assumption, for 
W = H2rn+l amounts to the projected map V —> Cm being totally real on 
S. This means in our context that the differential of / : V —> W = iJ2m+1 

maps each fiber Sv to an (n — l)-dimensional subspace in Cm containing no 
C-line (cf 1.3, 1.7). Actually, Nash's stretching construction in the contact 
case (similarly to the Riemannian one) needs extra directions in the ambient 
space which further restricts the dimension to q > 2n + 3. This stretching 
procedure was carried out in [1] thus providing a contact version of Nash's 
CMsometric immersion theorem (while it is still unknown if the stretching 
obtained by Kuiper under the weakened condition q = n +1 can be rendered 
contact). What remained unfinished in [1] is the Smale-Hirsch aspect of the 
immersion theory which is what we complete in this paper. 

Namely we prove here a Hirsch type theorem for regular contact immer- 
sions (V, S) -> (W, T, h) (where the key example is W = H2™*1). We do this 
by a rather direct application of general theory from [7]. (The reader who 
is interested in the modern developements in contact geometry is referred 
to [4]). What is actually done here is checking that the general conditions 
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required by [7] are satisfied provided q > 2n + 1. We prove, under this 
restriction, the h-principle for regular contact immersions (see 1.8) which, 
in combination with [1] yields a similar result for contact regular isometric 
C1-immersions Vn —> H2mJrl for q > 2n + 3 (see 1.5). 

1. Definitions and the statement of the main theorem.. 

A 1-form /3 on a (2m + 1) -dimensional manifold W is called contact if 
l3A(d/3)m does not vanish on W. Equivalently, one can say that /? is contact if 
the restriction of d/3 on the 2m-dimensional tangent subbundle T = {/3 = 0} 
is non degenerate or, as we also say, symplectic. A codimension 1 tangent 
subbundle T on W is called contact if it can be defined (at least locally) by 
an equation /? = 0 for a contact form /?. Notice that /? is unique modulo 
multiplication by a nowhere vanishing function on W. The pair (W,T) 
in this case is called a contact manifold or a manifold W with a contact 
structure T. If a contact structure T is defined by a 1-form /?, then the 
restriction d(3\T of d/3 to the subbundle T defines a symplectic structure on 
it i.e. a field of symplectic forms of the fibers Tw C T, w G W. Denote 
d/3\T by d'/S. The symplectic form d'f3 can be naturally identified (see, e.g. 
[2], p.96) with the 'curvature' CJ = uT : A2T -> T(W)/T of the subbundle 
T C T(W) measuring nonintegrability of T itself. Note, that according to 
the Frobenius theorem the contact distribution is maximally non integrable: 
its integral submanifolds have dimension < m. To simplify our notation, in 
the sequel we shall use cu to denote the form d'/3 on T. 

1.1 In what follows we study almost complex structures, i.e. endomorphisms 
J : T —► T with J2 = —Id on contact subbundles and associated quadratic 
forms on T. 

1.1.A. Definition. An almost complex structure J : T —> T is called 
compatible (with the contact structure) if W(JTI,JT2) = ^(TI,T2) for the 
form UJ = d'/3 on T. 

Notice that this definition does not depend on the choice of (3 defining T 
since CJ is unique up to multiplication by a non-vanishing function. Namely, 
if /3 and /3i define the same T and so /3i = A/?, then d(3i = X/3 + dX A (3 and 
so d{3i\T = \dl3\T as dX A /?|r = 0, since /?|r = 0. 

Let J be a compatible almost complex structure on (T, a;) and, for 
n, T2 6 T^ C T, w G VP, put 

(1) h(ThT2) =a;(Ti, JT2)     (or /I(JTI,T2) = a;(ri,r2)). 
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Then it follows easily that 

(2) hfa, T2) = hfa, n),      h(JTI, JT2) = h(Th T2) 

and the symmetric bilinear form h is non-degenerate. 

1.1.Ai. Definition. A form h defined by (1) via some compatible J is 
called UJ-compatible . 

Notice that this definition depends on a choice of (3. 

1.1.A^. We say that h is T-compatible if it is Au;-compatible for some 
non-vanishing function A on W, where, recall, T is defined as fcer/J. 

1.1.A2. Remark. If the above h is positive definite, the pair (h,uj) defines 
a Hermitian structure on the subbundle T C T(W). That is, every fiber 
Tw C T, w € W, can be equipped with a Hermitian metric h such that its 
real part equals h and the imaginary part equals UJ. 

1.2. In this paper we consider manifolds V and W with contact structures 
S C T(V) and T C r(Wr) where we assume that S and T are globally 
represented as S = fcera and T = fcer/3 for some 1-forms a and (3 defined on 
V and W respectively. (Recall, that the global existence of a contact form 
is equivalent to the coorientability of the implied contact subbundle). 

We shall be considering on S C T(V) and T C T(W) positive defi- 
nite quadratic forms called g and h respectively, where the form g on S is 
arbitrary and the form h on T is assumed to be T-compatible. 

1.2.A. Definition. Call a manifold V a contact-Carnot-Caratheodory 
manifold (or, briefly, contact C-C manifold ) if V is endowed with a con- 
tact structure S C T(V) together with a positive definite quadratic form 
(Riemannian metric) g on S. 

An immersion / : (V, S) —> (W, T) is called a contact immersion if the 
differential Df sends S to T. 

Let y = (V, 5, g) and W = (W, T, /i) be contact C-C manifolds. We say 
a contact immersion f : (V, 5, g) —> (W, T, h) is isometric if its differential 
JD/ is an isometric homomorphism (S,g) —► (T,h). 

1.2.B. Remark. A contact immersion / : (V,S) —► (W,T) sends the 
curvature form a; = d(3 of T to the curvature da of 5, but only up to a 
multiplicative scalar. For example, if (h, cu) make a quasi-hermitian pair on 
5, the differential df : S —> T is not necessarily a complex linear map for 
associated complex structures in S and in T. It would be so if df(cj) = da, 
but df(uj) = \a is not sufficient.   In fact, we can not handle at all maps 
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/ : V —> W with complex df on S and our definition of (/&, u;)-regularity 
helps to avoid any trace of complex linearity. (Thus our result is useless for 
inducing CR-structures despite a formal similarity between two questions). 

1.3. Regular linear subspaces and regular contact immersions. Let 
L = (L, h, LJ) be a linear space endowed with a symmetric quadratic form h 
and an antisymmetric form u. 

We have the following 

1.3.A Definition. A subspace    LQ C L = (L, /i,LJ)     is    called    {h, ir- 
regular    if   the   intersection   of   the   orthogonal   complements 
(L QfiLo)   f]   (L &UJLO) has the correct codimension, namely 2dimLo (see 
1.7 for a clarification of this notion). 

We shall call this intersection (/i, u;)-orthogonal complement and denote 
it by L ®h,ujLo. 

Now, let (V, S) be a contact manifold and let W = (W, T, h) be a contact 
C-C manifold. 

1.3.Ai. Definition. A contact immersion f : (V,S) —> (W,T) is called 
(h^u)-regular if, for all v 6 V, the (image) subspace Df(Sv) C T^ of 
^ C Tv(y), it; = /(t;) is (h^u)- regular. An injective bundle homomorphism 
(/> : T(V') —> r(W) is called (h,uj)- regular if the image subspace <f)v{Sv) C 
^(W),^ = /(v) is an (/i,a;)-regular subspace for all v EV. 

I.3.B. Remark. This notion of regularity is a rather technical one and begs 
for justification. The situation here is similar to C^-isometric immersions of 
Riemannian manifolds, / : V —> R9 where the relevant regularity condition 
is freedom of / i.e. linear independence of the n + n ^ vectors of the first 
and second partial derivatives of / (see [7],p.8). 

The present techniques do not allow to approach general maps without 
suitable regularity conditions and so we are forced to add "freedom", "(/i, LJ)- 

regularity", etc.. But this does not limit our existence result as thus we get 
our contact isometric immersion with (/i, u;)-regularity as a bonus. 

1.4. The Heisenberg group example. The basic example of a con- 
tact manifold is the Heisenberg group iJ2m+1 which is a nilpotent Lie group 
with a left invariant contact structure. This H2rn+1 is, by definition, sim- 
ply connected and so is uniquely determined by its Lie Algebra L(iif2m"fl), 
where this Lie Algebra has the following presentation: there is a basis 
xi,X2i X2rm 2/1,2/2, 2/2™, z, of vectors in R2m+1 = L(H2rn+1) satis- 
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fying the following properties: 

[xi, Xj] = 0       for i, j = 1,... , m 

[j/tiJ/i]=0       for i,j = l,...,m 

[aii, T/J] = % z    for 1 < i < j < m, where    Sij    is the Kronecker symbol 

[xiyz] = [yi,z] = 0. 

Thus the vector z generates the center of L{H2m+l) and the quotient 
L(H2m+1)/center is abelian. Consequentely, H<2m+1 has one-dimensional 
center, say, C G H2m+1 and H2m+1/C = R2m. These properties 
dim(center*) = 1 and H2m+1/center being abelian, uniquely characterize 
jEj2m+i ^ a simpiy connected Lie group. Then one shows, that the left 
translates of the spanTo = span(xi,yj) C TId(H2rnJrl) = L(H2mJrl) form a 
maximally non-integrable hyperplane field T on H2m~irl. This field obviously 
is horizontal for the fibration 

rj2m+l     T>2m    rr2m+l //nr 

and the pull back to T, that we denote by h of the Euclidean met- 
ric YJ 

x<i + ]Cy? on I^2771 (for ^2m identified with the quotient algebra 
L(il2m+1)/span{2:} = span(xi,yi)) is compatible with T. 

The basic property on H2rnJtl with this geometry, and the only one we 
use below, is the existence of a 1-parameter group of self-similarities: 

A    .  0-2771+1     rr2raH-l 

induced by the following automorphisms at of L(JH
r2m+1), t 6 (—oo, +oo) 

at(xi) = = etXi 

at(j/i) = = 6% 

at(z) = : e2tz. 

These At are obviously contact, i.e.   their differential DA* send T C 
T(iJ2m+1) to T and moreover they scaZe the metric h 

A*t(h) = e2th, 

as is seen by looking at the action of at on L(H2m+1). Note, that this H2171^1 

plays the same distinguished role in Carnot-Caratheodory geometry (see (A) 
in Remark 1.6 below) as the Euclidean space in the Riemannian geometry. 
(The reader may consult [8] for more details on this). 
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1.5. Our main existence result is the following 

1.5.A. /i-principle for contact isometric immersions. Let (V, 5, g) and 
(W,T,h) be contact C-C manifolds such that there exists a contact (h,(j)- 
regular homomorphism T(V) —> T(W), (for u being the curvature of the 
contact structure T on W), pulling back u to the curvature d'a of S C T(y) 
(where d'a. = doL\s). Then V admits a contact isometric C1 -immersion into 
W if the following three conditions (i)-(iii) are satisfied: 

(i) diml^>2dimy + 3; 

(ii) V is compact; 

(iii) W is the Heisenberg group. 

1.5.Ai. Remarks. 

1. The general notion of /i-principle (/i-for homotopy) is explained in §2. 

2. The condition (ii) can be dropped while (iii) can be replaced by T- 
compatibility of /i, but the proof is more difficult in the general case. 

1.5.A2. Example. Suppose V is a compact contractible manifold: e.g. 
V is homeomorphic to the n-ball. Then the required homomorphism 
T(V) -> T(W) does exist whenever dimW > 2dimV - 1. In fact these 
homomorphisms can be seen as sections of the fibration X^ —> V where 
the fiber Xy , v G V, consists of the injective linear maps TV(V) —> TW(W) C 
T(W), w e W, which send the subspace Sv C TV(V) to T C T(W) such that 
the resulting map Sv —> Tw c TW(W) C T(W) is (h,uj)- regular and sends 
the curvature of S at v to that of T at w. Such a map Sv —> Tw exists 
iff rankTw > 2 rankSv and then the fiber of the fibration X^ —> V is 
non-empty and so it does admit a section whenever V is contractible. 

Thus, our /i-principle implies the existence of contact isometric C1- 
immersions V —■> W = JH

r2m+1 provided V is compact contractible, and 
dimV <m — 1. 

1.6. Remarks and comments. 

(A) Every contact Carnot-Caratheodory manifold (V, 5, g) carries a nat- 
ural metric, called Carnot-Caratheodory metric where the dist(vi,V2) 
is defined as the infimum of the ^-lengths of curves joining vi and V2 
and which are everywhere tangent to S. 
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Our contact isometric immersions V —> W clearly are isometric for the 
respective C-C metrics in V and W in the sense that they preserve the C-C 
lengths of smooth curves. Thus our Theorem 1.5. A. can be thought of as the 
C-C counterpart of the h-principle for isometric CMmmersions of Rieman- 
nian manifolds to R^. (See [7]). Notice that this h-principle directly follows 
from the Hirsch-Smale immersion theory and the Nash-Kuiper isometric 
CMmmersion theorem ([10,13]). In fact, our /i-principle for (/&,a;)-regular 
contact immersions (see 1.8.A. below) is a counterpart of the Smale-Hirsch 
theory, while Nash's ideas (explained in detail in [1]) are extended to the 
contact category by the following 

(A') Short Approximation Theorem, (see [1].) Let (V,S) be a contact 
manifold and let (W,T,h) be a contact C-C manifold. If the metric 
h on W is T-compatible, then every strictly short {h^u)-regular im- 
mersion fo : V —> W can be C0- approximated by contact isometric 
C1-immersions provided dim W > max(2 dim V + 3,3 dim V — 2). 

Recall, that "strictly short" means that the pull-back h* of the metric h 
to S by Dfo is strictly smaller than #, i.e. the difference g — h* is positive 
definite on S. 

(A") The above Short approximation theorem was combined in [1] with a 
Whitney-type contact immersion theorem from [7] and the conclusion 
was the following 

Isometric Immersion Theorem. Let (V, S) be a contact manifold, let 
(W, T) be a contact C-C manifold and assume V is compact. If the metric h 
on T C T(W) is T-compatible and if dim W > max(2 dim V + 3,3 dim V-2) 
then there exists a C1-immersion f : V —> W which is contact and isometric. 

Notice, that here W is not assumed to be Heisenberg, but our dimension 
assumption is more restrictive than in the above /^-principle for immersions 
1.5.A. On the other hand, under the present (stronger) dimension assump- 
tions it is easy to see that T(V) admits the homomorphism to T(W) required 
by the /i-principle if h is T-compatible. Thus our /i-principle implies the iso- 
metric immersion theorem for W = JH'2m+1. What is new is the weaker 
dimension assumption in the case when V is contractible. 

1.7. On the algebraic meaning of (/i, ^-regularity. To have a bet- 
ter understanding of the condition of (/i, u;)-regularity, let's supplement our 
Definition 1.3.A. of regular linear subspace by the following 

1.7.A. A subspace LQ C L = (L, /i, u) is (h^u) -regular if one of the two 
following equivalent conditions (I) -(!') is satisfied: 
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(I) The linear system in x 6 L 

(3) h(x,li) = 0,     uj(x,li) = 0, 

where the vectors Zi, ^2? • • • 'm form a basis in LQ, is non singular. 

(I') The 2m covectors x -^ h(x,li) and x —> LJ^X, k), i = 1,... ,m are 
linearly independent. 

1.7.Ai. Remarks. 

1. The space Li of solutions of (3) (obviously) equals the (h^cu)- 
orthogonal complement L ©/^Lo (see 1.3.A.). 

2. Observe that, if the quadratic form h is non singular (e.g. is positive 
definite) then codim(L ®hLo) = dimLo and the same is true for non 
singular a;, but our (ft,, a;)-regularity condition is stronger than the 
joint regularity of ft and LJ. 

3. If a subspace LQ C L is regular, then obviously every subspace LQO C 
Lo is regular. Furthermore, if the forms ft and u are non-singular, then 
every 1-dimensional subspace of the linear space L is regular. 

1.7.B. Definition. We call the pair (ft, u;) quasi-Hermitian if the space 
L = (L, ft, uo) admits a complex structure J : L —> L and a Hermitian form 
h such that its real part equals ft and the imaginary part ^(x, y) = ft(x, Jy), 
is proportional to uo, i.e. UJ^ — XOJ, A ^ 0. 

1.7.Bi. Remark. This is equivalent in our framework (compare with Def. 
1.1.A^.) to the form ft being T-compatible. It is also clear that J, if it exists, 
is uniquely determined by ft and LJ via the condition 0^(2;, y) = Aft(x, Jy) as 
UJ and ft are non singular. One sees immediately that, when A = 1, h is the 
usual hermitian metric of the complex vector space (L, J). This motivates 
the name 'quasi-Hermitian' which is introduced here only for terminological 
reasons). 

1.7.C. Another useful characterization of regularity is related to the notion 
of totally-real subspaces. 

Recall, that a R-linear subspace E C Cq is said totally real if one of the 
following equivalent conditions (i)-(iv) is satisfied: 

(i) Eny/=1E = {0}] 

(ii) The real dimension of spani&(E, y/^lE) equals 2dim£'; 
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(iii) If ti, t2j • • • > *n is a real basis in S, then the vectors ti, t2j • • • ^n are 
C- independent in Cg; 

(iv) If ti,i2j--- ^n, is a real basis in £, then the vectors ti,t2j--- ,*nj 
V—Tti, \/--T^2j • • • , \/—T^n, are R-independent . 

In what follows L = (L, /i, a;) is a quasi-hermitian space, with the implied 
complex structure denoted by J.   Such L is isomorphic to some C9, q = 

- diniR L, with J <-» >/—1- 

1.7.Ci. Lemma. Let LQ C L = (L,h,u>) be a linear subspace. Then 
the space Li of solutions of the system (3) equals the Hermitian orthogonal 
complement L ©/^o- In particular, Li is complex linear, i.e. JLi = Li. 

The proof is immediate. Just observe that Hermitian orthogonality and 
the orthogonality with respect to h "together with" CJ expressed by the 
system of equations (3) are equivalent. 

1.7.Ci. Corollary. A subspace LQ d L is regular iff it is totally real. 

1.7.C". Corollary. The restriction {h,(^)\L\ to the space Li remains quasi- 
Hermitian and, in particular, both forms h and to are non-singular on Li. 

It should be remarked that if LQ C L is a complex subspace, then it is 
highly non-regular, as codim^L %jaXo) = diniRLo, instead of the required 
2dimLo. 

We end this section with a few other properties of regular subspaces 
contained in the following 

1.7.D. Lemma. Let LQ C L be a regular subspace in (L, /i, u) and let 
V G L be a non zero vector {h,oS)-orthogonal to LQ. Then the linear space 
LQ = span(LQ, V) is regular. 

(This follows from L e^ == Li Q^V). 

1.7.Di. Corollary. Let li^fa be two independent vectors (h,Lj)- orthog- 
onal to LQ C L and also mutually {h^u)-orthogonal. Then the space 
LQ = span(Lo,li,l2) is regular, provided the subspace LQ was regular. 

1.8. Derivation of the /i-principle for isometric immersions from 
the ^-principle for (/i, cj)-regular contact immersions. According to 
the Short Approximation Theorem that we stated in 1.6.(A7)., all we need 
for the existence of a contact isometric immersion is a strictly short contact 
immersion V —> W and therefore our /i-principle 1.5.74. for contact isometric 
immersions follows from the following 
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1.8.A.      /i-principle   for   (/i, a;)-regular   contact   immersions.      Let 
(VjSjg), (W, T, h) be contact C-C-manifolds where h is T-compatible, and 
suppose there exists a contact fiberwise injective homomorphism TiV) —> 
T(yV), pulling back the (curvature) form UJ{= d'(3) on T to a non zero mul- 
tiple of the curvature form d'a of S,(where d'a = (da|s) ) which is {h,uS)- 
regular on S. 

Then we have the following (I) and (II) 

(I)   There exists a continuous {h^uj)-regular immersion f : V —> W, pro- 
vided dim W > 2 dim V + 1; 

(II) // V is compact and W = JH"2m+1 for m > dim V, then the above f 
can be chosen strictly short besides being contact and (h^u) -regular. 

1.8.Ai. Remarks. 

1. The first statement does not need the metric g on S. 

2. The second claim follows from the first with the help of the self- 
similarities At : H2rn+1 -» H2™*1. These Au for t « -const, 
strongly contract the C-C metric in H2171^1 and thus every contact 
immersion /o : V —> iJ2m+1 becomes strictly short when composed 
with At provided V is compact and t is small enough. On the other 
hand, if /o is contact and (/i, a;)-regular then so is the composition 
/ = At o /o since At is a homothety. Thus (I) => (II) as we claimed. 

The remaining part of the paper is dedicated to proving the first state- 
ment in the above /i-principle. This will be done in the framework of 
continuous sheaves of [7] which is explained in the following §2. 

3. The relation : (Df)*(d(3)\s = Xda does not depend on the choice of 
a and (3. In fact if we change (3 by a non-vanishing function (3 »—> A/3, 
then d(3\T becomes replaced by \d/3\T as was explained earlier. 

2. Partial Differential Relations and Sheaves. 

2.1. Let p : X -> V be a C^-smooth fibration and let X^ -► V be the 
corresponding space of r-jets fibered over V. In our case X = V x W —► V 
and X^ consists of the space of r-jets of maps V —> W at all points v G V 
with the projection p^ : j£ ►—> v e V. 

2.1.A. Definition. A differential relation of order r is a subset R C X^r\ 
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2.1.B. Example. Let (V, S) and (W,T) be contact manifolds and let us 
describe the relation Rcon distinguishing contact immersions V —» W. Our 
X here is V x W fibered over V via the projection p:VxW—>V,r = l, and 
Rcon C X^) -> y, where X^1) consists of the linear maps TV(V) -> TW(W) 
for all (v, it;) G V x W. This Rcori consists of those injective linear maps 
which send Sv C ^(F) to Tv C ^(W), for all (v,w) e V xW. This 
means that a smooth map / : V —> W is a contact immersion, iff its jet 
jfiV—* X^ lands in Rcon C X^1) . However this needs some further 
refinement. If we write S and T locally as the kernels of 1-forms a on V and 
/? on W, then the inclusion property Df(S) C T, written as (Df)*(/3) = Ace 
(which is always possible) implies that (Df)*((3) = Xda on 5. 

Thus we arrive at a smaller condition R^ori C RCOn consisting of linear 
maps TV(V) —> ^(W) sending S!,; —> T^ and pulling back d/3\Tw to a mul- 
tiple of da on fiy. This motivates the introduction of our basic relation 
Rcr C X"' defining contact (h^cu)-regular immersions . This Rcr consists of 
the linear maps 5 : TV(V) —> ^(W) satisfying the following four conditions. 

1. the maps 5 are injective (which makes our maps V —> W immersions); 

2. S(S) C T (contact condition); 

3. 5*(dp)\s = Ada for non-vanishing A (as motivated above); 

4. 5(S) C T is (/i, a;)-regular for CJ = d7/? (where, according to the nota- 
tion introduced in §1, d'fl denotes the restriction of d/3 to T). 

Clearly, if f : V —> W has j^(V) in Rcr, then it is a contact regular 
immersion, but a contact regular immersion may have jf(V) outside of this 
Rcr as the above 3. may be violated. (Say, the implied A may vanish). 
But if we strengthen the contact condition Df(S) C T by insisting that 
(Df)*(l3) = Xa for a non vanishing function A, then we see that such contact 
immersion which we call strict ( adopting the terminology of [3]), have their 
1-jets in Rcr. 

Finally, to have a perfect agreement between our relation and the rel- 
evant class of maps, we take Rscr C Rcr where we insist that not only 
S(SV) = Tw, but 5_1(TU,) = Sv. Then we arrive at the desired 'agreement'. 

Maps / : V —> W satisfying Rscr (i.e. with jj(V) C Rscr ) are exactly 
strict contact (h^cj)-regular immersions V —> W. 

2.1.Si. Remarks. 

1. Our construction of (/i, u;)-regular immersions via the sheaf theory au- 
tomatically provides strict such immersions but this is rather irrelevant 
for our ultimate purpose of constructing contact isometric immersions. 
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2. Notice, that Rscr is contained in Rcon and Rscr C RCOn is an open subset 
in Rcon- This will be crucial in the reduction of our /i-principle (see 
§3) to that in [7]. 

2.2. /i-principle. This principle says that every continuous section </>o : 
V —> R C X^ can be homotoped in R to another section, say <^i : V —> R 
which comes from a solution of R . In other words there exists a section 
f :V -+ X, such that the r-jet of /, jrf : V -> X^ sends V into R and 

this jet is homotopic to </>o in R . Notice that those sections of X^ which 
appear as jets of sections of X constitute a rather small subspace in the 
space of sections of X^r\ For example, if X = V x W and r = 1, then the 
section of X^ are just continuous homomorphisms T(V) —► T(W) while 
jets of sections V —■> X are differentials of maps V —> W. Notice that every 
homomorphism T(V) —* T(W) defines the underlying maps V -+ W, but 
not at all equals the differential of such a map. 

Having this in mind, we say that a section V —► X^ is holonomic if it is 
of the form (j) = jr(f) for some / : V —» X. Notice, that such an /, if exists, 
is unique and equal to the composition of / with the tautological projection 
xw -► X. 

Thus the h-principle can be expressed by saying that every continuous 
section V —> R is homotopic in R to a holonomic section V —> R by a 
continuous homotopy of sections V —> R. 

2.2.A. Comments and Remarks. 

1. In our case the ^-principle says that every strictly contact (/i, u) -regular 
homomorphism T(V) —> T(W) is homotopic to a differential of a strict 
contact (h,u))-regular map. 

2. The /i-principle is a very strong claim allowing us to solve a differential 
relation R. It does not hold in general, but by the work of Gromov it 
holds under a variety of assumptions on R. In fact, we shall see that 
these assumptions are met by Rscr if dimVF > 2dimV + 1. 

3. Actually, our ultimate purpose is the solvability of another relation 
whose solutions are contact isometric maps, call it R;s . This Ris also 
lies in X^ and we solve it by deforming holonomic sections V —> 
Rcr D Rscr to holonomic sections of Ris f] Rcr. 

2.3. Local ^-principle. The global solution of an R should be preceeded 
by local solutions.   Namely, we may ask if, at a given point v e V, there 
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exists a germ of a solution of R, say /y, defined on a small neighbourhood 
Uv C V. If R is an open subset, then the germ fv representing the r- 
jet y G R C X(r), necessarily satisfies R in a small enough neighbourhood 
Uv C V as the inclusion jr(fv)(v) G R implies jr(fv)(v') G R for all r/ close 
to v. But for general non-open R the existence of local solutions at a point 
v does not necessarily follow from the existence of a single point y in R over 
v. 

2.3.A. The local /i-principle at a point v is the claim that every germ of 
a section Uv —> R can be deformed to a holonomic germ. Notice that in 
the course of such a deformation the implied neighbourhood Uv (which is 
the domain of the definition of the germ) may vary. Yet, there exists a 
smaller neighbourhood, say, Uy where all germs making up the definition 
are simultaneously defined. 

Every solution / of R gives rise to local solutions at all points v G V. This 
suggests looking at families fv:Uv-^Xoi solutions also denoted fvW), 
for families of neighbourhoods Uv C V for all v G V. Here a family of Uy s 
signifies a neighbourhood C/y C V x V of the diagonal V = V C V x V and 
our family fv is a continuous section of the fibration X —> V x V induced 
from X by the projection on the first factor V. This section, called fv(vf), 
{y, vf) G V x V, is supposed to be continuous in v and smooth in v', where 
moreover we assume the r-jet of fviv') in v' to be continuous in v. And, if 
these tZ-jets lie in R for all v G V, we speak of families of local solutions of 
R, where the parameter of the family is v. 

Notice, that every such a family of local solutions /„(?/) gives rise to a 
section (jet) cj) : V —> X^ sending V to R, namely v H-> Jlt(fv(vr)) at v/ = v. 
Sections V —> R of this nature are called extendable jets (this is much weaker 
than holonomic) and then we make the following 

2.3.B. Definition. We say that the relation R satisfies the local h- principle 
over V if every section V —> R can be deformed to an extendable jet V —> R 

In other words, this ^-principle claims that every section (jet) after a 
deformation comes from a family of local solutions. 

2.3.Bi. Important Remark. Every open R satisfies the above h- princi- 
ple. (To see this requires just going through the above definitions). 

2.4. Continuous sheaves. We shall review now some of the basic no- 
tions and results from the theory of topological sheaves which are needed to 
prove the /i-principle. We shall follow the same approach and use the same 



An application of the /i-principle to CMsometric immersions 361 

terminology as in [7]2. 
The solutions of a relation R C -X"^ form what is called a continuous 

sheaf, namely for every U C V we have a space of solutions of R over C7, i.e. 
the space of sections / : U —> X\u with jr(f)(U) C R, or equivalently, the 
space of holonomic sections U —* R. These spaces form a sheaf in the usual 
sense (see [5]). 

We recall from [6], pp.74-75, that an abstract sheaf $ over a topological 
space V is, by definition, the assignement of a set $(U) to each open subset 
U C V and of a map $(/) :$([/)-> $(17') to each inclusion I IU' cU, 
such that the following three axioms are satisfied. 

(1) If I' : U" C U' and I :U' cU, then the value of $ at the inclusion 
loT :U" CU satisfies the property: *(/ o I7) = $(/') o $(/). 

One also requires that (Id:U cU) = Id for all £/ C V and $(0) = 0. 
The elements </> 6 $ are called sections of $ over £/ and the value of 
$ on the inclusion I: U' C U is denoted (/>|£// instead of $(/). 

(2) If two sections </>i and cfo of $ over U are locally equal, then they are 
equal. Here the local equality means that for every point u G Uf there 
exists a neighbourhood C/7 c J7, such that <£i|r/' = ^li/7- 

(2') Let open subsets t/^ c U, y, G M, cover C7. If the sections ^ G $(f^) 
satisfy: ^|c/MnC/ / = ^ItZ/xOf/ / for all /i and /x' in M, then there exists 
a section 0 G $(f/) ( which is unique by (2)), such that (j)\u^ = (f)^ for 
all neM. 

The conditions (2) and (2') show that every sheaf $ is uniquely defined 
by $(£/<;) for any base of open subsets Uv C V. 

In order to extend $ to non open-subsets C C V we set $(C) = $(OpC) 
(see Remark 2.4.A below) where $(C) denotes the inductive (direct) limit of 
$(C/) over all neighborhoods U <zV oiC, In particular, we define the stalk 
$(v) = $(Opi;) for all v G V and we write ^(v) G $(v) instead of 0|opt;. 
This allows us to restrict our $ to a sheaf over C, called $|c and defined by 
(*|c)CD) = §{OpD) for all open subsets D C C and for OpD C F. Thus, 
the (restricted) sheaf $|c has the same stalks over the points c G C as $. 

2A.A. Remark. Following Sect. 1.4.1. in [7] we introduce OpC (opening 
of C in V) as "an arbitrarily small but non-specified neighboorhood of C", 

2The book [7] is the main reference for all the sheaf theoretic material used in 
this paper. Some of the definitions which are quoted in this section 2.5. are, for 
the convenience of the reader, reproduced almost literally from Sect 2.2 in [7]. 
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which may become even smaller in the course of an argument when we need 
it. 

The space of Ck- sections OpC —> X, by definition, is the direct (induc- 
tive) limit of the spaces of Ck- sections U —> X over all open neighboorhoods 
U C V of C. This space does not have a useful natural topology; however, it 
may be given a weaker structure, called quasi-topology, which nicely behaves 
under direct limits (see Def. 2.5.A. below). 

2A.Ai. A sheaf $ is called continuous (or quasi-topological) if every set 
$(£7), U C V, is endowed with a quasi-topology such that the map $(/) is 
continuous in the ordinary sense for all inclusions I :U' C U. In this case 
the space $(C) is equipped with the inductive limit quasi-topology for all 
subsets C C V. 

2.4.^2. Let $ and ^ be two continuous sheaves over V. A homomorphism 
a : $ —> ^ is a family of continuous maps au : $(U) —> ^(U) which, for 
all open U C V, satisfy to the property: aw o $(/) = *&(/) o au for all 
/ : U' C U. (i.e. the maps ajj commute with the restrictions of sections). 
Finally, a subsheaf $/ C $ is defined by giving a subspace ^(C/) C $(U) 
for all [/" C V, such that <&' satisfies the above (2) and (2'). 

2.5. Let $ = $R be our sheaf of solutions and observe that each space 
<!>(£/), U C V, (i.e. the space of solutions of R over [/) has a natural topology, 
coming from the C0-topology on the space of sections U —> X^ \u. It will be 
useful to extend this to $(K) for all compact subsets K C V, where $(K) is 
the direct (inductive) limit of $(U) for all neighborhoods U D K. Thus an 
element </> G ^(if) is given by a section <&(U) for a "small" neighboorhood 
U C V of K. The space $(1^) being an inductive limit hats no natural 
suitable topologies but it has a good quasi-topology in the following sense 
(cfr. [7], p.36). 

2.5.A. Definition. ([14]) We shall say that the set A is endowed with 
a quasi-topological structure if for each topological space P the set of all 
maps P —> A has a distinguished subset of maps that we temporarily call 
"continuous", which satisfy the following formal properties of maps which 
are continuous in the ordinary sense. 

(i) If fi : P —> A is "continuous" and if (j) : Q —> P is an ordinary 
continuous map, then the composed map /xo(/>: Q —> A is "continuous". 

(ii) If a map /z : P —> A is locally "continuous", then it is "continuous" 
where the local "continuity" means that there exists a neighboorhood 
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U C P of every point in P such that the map /x|c/ : U —> A is "contin- 
uous" . 

(iii) Let P be covered by two closed subsets Pi and P2 in P. If a map 
H is "continuous" on Pi and on P2, then it is "continuous" on all of 
P. Therefore, if Ui=i Pi = ^P is a covering of P by finitely many 
closed subsets, then a map ji : P —> ^4 is "continuous" if and only if 
MIP* ^ Pi —> ^ is "continuous" for alH = 1,... , k. 

A map between quasi-topological spaces, say, a : A —> P, is called 
continuous if a o 11: P —> P is "continuous" for all continuous maps /i : P —> 
A and for all topological spaces P. 

From now on we will write continuous instead of "continuous". 
The space of Cfc-sections OpC —► X (compare with what we said in 

Remark 2.4.A above) is equipped with the quasi-topology which is the 
direct limit of the quasi-topologies associated to the C^-topologies in the 
spaces of C^-sections U —> X for all neighborhoods U C V of C. Thus, the 
notion of continuity for maps ji : p i-» fp : OpC —> X, p G P, agrees with the 
Cfc-continuity of families described before. 

Notice that the main notions of homotopy theory make sense for quasi- 
topological spaces. For example, the definition of weak homotopy equivalence 
as well as the definitions of Serre-fibration and also of microflexibility which 
we shall be using in the sequel obviously generalize to quasi-topological 
spaces. 

2.5.P. Definition. 

(I) Let A and A' be topological spaces. A continuous map say fj, : A —> A', 
is called a weak homotopy equivalence if either of the two following 
equivalent conditions is satisfied. 

(i) The map fi is bijective on the homotopy groups, fii : 7ri(A) —> 
7^'),* = 0,1,...; 

(ii) For an arbitrarily given cell complex P, let PQ C P be a subcom- 
plex and let ao : PQ —► A be an arbitrary continuous map. Then 
the map ao extends to a continuous map a : PQ —► A if and only 
if CKQ = fj, o ao extends to a continuous map a' : PQ —» A'. 

(II) Let a : A —> A1 be a continuous map between quasi-topological spaces. 
Consider a compact polyhedron P and a continuous map <j> : P —> A. 
Let $' : P x [0,1] -► A7 satisfy $'|PX0 = <// for <// = ao i : P -> A'. 
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The map a is called a Serre fibration if $' lifts to a map $ : P x [0,1] —> 
A such that $|px0 = </> and a o $ = $', for all polyhedra P, maps 
<f> : P —■> A and homotopies $' of <j>. (In other words, the lifting $ of 
$/ can be extended over P x [0,1] in such a way that one still has a 
commutative diagram). 

(Ill) We call a a micro-fibration if for all P, 0 and $', there exists a positive 
e < 1 and a map $ : P x [0, e] —> A (where 6 may depend on P , <f> and 
$') such that $|PX0 = </> and a o $ = ^Ipxp^e]- 

2.5.Pi. Example. A submersion between smooth manifolds, a : A —» A7, 
is a microfibration. If such a map a is also proper, then it is necessarily a 
fibration. Another condition which insures the Serre fibration property of 
a submersion a is the contractibility of the fiber a-1 (a) C A for all a € A* 
where a-1 (a) is assumed to be non-contractible in case it is empty. (See [7], 
p.307 for further discussion related to this example). 

2.5.P2. 
A continuous sheaf $ is said to be flexible iff, for each pair of compact 

subsets C7 C C in V the restriction map $(C) —> ^(C7) is a Serre fibration. 
One calls the sheaf $ microflexible if all its restriction maps <fr(C) —> 

^(C7) are microfibrations. 

2.5.Cf. Comments and Remarks. It is not hard to see ([7], pag.41) 
that the sheaf corresponding to any open relation R is microflexible. In 
those cases when the pertinent differential relation is not open (the case of 
contact immersions is one of these) one needs an extra argument to show 
that the relevant sheaves are microflexible. 

One of the more significant results proven by Gromov in this connection, 
concerns sheaves which may be defined as the solution sheaf $£> of some 
partial differential operator D (for example, the sheaf of contact immersions 
has this form). We recall from [7] (see Section 2.3.1.), that D is an operator 
which goes from the space say, x? of ^-sections of some fibration X —> V 
to the space G of Cs-sections of some vector bundle G —» V, and the sheaf 
$D is defined by setting <&D(U) equal to the set of solutions of Df = 0 
over U C V. By an application of the Nash's implicit function theorem 
for infinitesimally invertible differential operators (see [7], section 2.3.2.) it 
follows that the sheaf $£> is microflexible for these D. 

In the case of contact immersions, the needed implicit function theorem 
reduces to elementary O.D.E. and the microflexibility of the corresponding 
sheaf is established ([7], Lemma (A), p.339) by using an appropriate version 
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of Gray-Moser ([6],[11]) stability theorem. (Originally, J. Gray showed in 
[6] that a small perturbation of a contact structure is isomorphic to the 
original one by a small diffeomorphism to the underlying manifold. Then 
Moser proved a similar result for symplectic manifolds and his method was 
streamlined by Weinstein and presented in a form suitable for symplectic 
immersions on p. 337 of [7], while the contact case was worked out in [3]). 

Here is the basic relation between flexibility and the /i-principle. 

2.5.D. Theorem, (see [7]). Let R C X^ be a differential relation such 
that: 

1. The sheaf of solutions of R is flexible; 

2. The relation R satisfies the local h-principle over V, 

Then R satisfies the h-principle. 

2.5.Di. Comments. The flexibility is a strong global property of R which 
plays the crucial role for proving the ^-principle. On the other hand the 
local /i-principle is essentially a local analytic fact which may be difficult 
but not geometrically significant. 

2.5.i?2« Idea of the proof of Theorem 2.5.D. The local /z-principle 
allows a deformation of a section V —> R to a family of local solutions 
(fv)^') • Uv —> X\uv,v G V and if $ = $R is flexible these can be simulta- 
neously deformed to 'new' (fv)(v') so that these new local solutions will agree 
on different neighbourhoods whenever these overlap, i.e. f™wW) = fv^W) 
on the intersection UVl H UV2 for all vi and i^ in V. Such a coherent family 
of solutions, fy^w(vf) form an actual solution fnew(y') over V required by 
the h- principle. 

Thus the problem of proving the /i-principle is reduced to establish the 
local /i-principle and the flexibility of $R. 

2.5.12. Proving the local /i-principle for the relation Rscr. It is shown 
in [7], Sect. 3.4.3. that the sheaf $con of contact immersions V —> W satisfy 
the local h-principle for each contact structure T on W. Then we observe 
the following: 

If RQ satisfies the local h-principle and RQ C R is an open subset then R 
also satisfies the local /i-principle. This is an obvious generalization of the 
above remark 2.3.i?i. on the local /i-principle for open relations R C X^r\ 

2.6. Parametric /i-principle. The notion of the /i-principle can be 
strenghtened by extending it to families of solutions of R parametrized by 
an arbitrary polyhedron P, say fp : V —> X,p € P. 
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Here is the precise definition. 

2.6.A. Definition. Let $ = <J>R denote the sheaf of solutions of R, and 
* = *R the sheaf of sections U -> R C X^ for all open U C V. (This 
means ^(U) equals the space of sections U —* X^\u sending U to R). We 
have the natural sheaf homomorphism Jr : $ —► ^ sending each solution 
f :U ^ X oiR from $(C/) to its r-jet / i-> >(/) € $(U). (Equivalently, 
one could identify $ with the subsheaf of holonomic sections of ^ and then 
instead of the jet homomorphism $ —> ^ one could just take the inclusion 
of$to*). 

We say that the relation R satisfies the parametric h-principle if this 
homomorphism Jr : $ —► ^ is a weak homotopy equivalence, which means 
Jr(C/) : $([/) —► ^(C/) is a w.h.e. for every open U. 

2.6.Ai. Remarks. 

1. Since the notion of w.h.e. extends to quasi-topological spaces, (compare 
2.5.A) one may speak of the map §{K) —> ^(K) being (or not being) 
a w.h.e. for compact K C V, e.g. for points v G V. One can show 
easily that if a sheaf homomorphism is a w.h.e. on open subsets, then 
it is also a w.h.e. on all compact subsets in V. 

2. The parametric /i-principle trivially yields the ordinary /i-principle, 
which is our prime goal. It also allows one to decide when two (/i, o;)- 
regular contact immersions are isotopic by a (/i, u;)-regular contact 
isotopy and so we state our final theorem 3.2.E. in the parametric 
form. 

2.7. Some Remarks about restriction and extensions. We shall later 
on meet a situation where we need to extend certain maps from V to V x R 
for V embedded in V x R as V x 0. In fact, we shall not need sections on 
all of V x R but only near V x 0 C V x R. Here is the necessary sheaf 
theoretic terminology which we present in a full generality. 

Let ^ be a sheaf over a topological space A and AQ C A be a closed 
subset (where A plays the role of V x R above and AQ stands for V x 0 C 
V x R). Then \I> restricts to a sheaf on AQ say, ^u , where $u(Uo) equals 
the inductive limit of ^f(U) for all open U in A containing UQ. 

Next, suppose ^ is a (sub)-sheaf of maps from A to some space B. Then 
we can restrict maps from A to AQ thus passing from \I/o to a sheaf $o over 
AQ of maps AQ —> B. This new restriction is a sheaf homomorphism over 
AQ, denoted r : ^o —* $o and called restriction homomorphism.   (Notice 
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that ^ and $o ^e defined over different spaces and one can not speak of 
homomorphisms from ^ to $05 although one may restrict ^ to $o)- 

Coming back toy^VxOcT^xR our problem will be local extendibil- 
ity of certain maps V —> W to maps V x R —> W which will be expressed 
in the language of the corresponding restriction homomorphism (see Sect. 
3.2). 

3. The proof of flexibility and thus of the parametric 
/i-principle for the relation Rscr. 

3.1. Microflexibility of $Scr« Let again V and W be contact manifolds 
with the implied structures called S C T(V) and T C T(W) as in §1. 

3.1.A. Lemma. The sheaf $con of contact immersions V —> W (where, 
we recall, "contact" for an / : V —> W means Df(S) C T), is microflexible. 
(see (A) on p.339 in [7] for the proof). 

S.l.Ai. Remark. Observe that the subbundle S C T(V) does not have to 
be contact here, it may be an arbitrary ( codimension 1)- subbundle in T(V) 
since the regularity required in [6] to prove the statement in the Lemma holds 
whenever T C T(W) is contact, as the property contact makes the curvature 
form UJ of the subbundle T non singular. Actually, we need microflexibility 
of the sheaf $^n (see below) where the corresponding subbundle is not 
contact. (Once again we remind the reader that, according to our previous 
notation , the form u is the 2-form d'P = df3\T for (3 being the 1-form on W 
defining the contact structure T by ker/3 = T). 

Next, we introduce a Riemannian metric h on T and let $scr C $con be 
the subsheaf of strict (/i, cj)-regular contact immersions. Clearly, this is an 
open subsheaf and thus it is also microflexible. 

Here $' c $ is called open if <&f(U) is open in $(C/) for all open U for 
the topology of $(f7), and the quasi-topological version of openness (which 
we do not need here) is left to the reader. In particular, an open $/ C $ 
appears as $R/ C $R for open subsets R7 C R. 

We eventually want to show that $scr is actually flexible and satisfies 
the h- principle, provided rankT > 2(rankS +1). To do this,we take the 
sheaf $^n of contact immersions V x R —> W and its subsheaf $^r C $^n 

consisting of (/i, u;)-regular strict contact immersions V x R —► W. We shall 
also consider the restrictions toV^yxOcT^xRof <fr^n and $^r and 
shall denote these restrictions by $con and $scr respectively. 

Notice, that here the term "contact" refers to the subbundle S x R C 
T(y x R) whose rank is equal to rankS + 1. (In other words, this subbundle 
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equals the pull- back of S under the differential of the projection V x R —> 
W). 

3.2. Flexibility of <bscr. The microflexibility result established in 3.1. ap- 
plies to $^r and so it is microflexible as well as ^^ . Furthermore, the sheaf 
of contact immersions V x R —> W as well as its natural subsheaves (such 
as $^r ) is acted upon by the group of diffeomorphisms of V x R preserving 
the R-fibers of the projection V x R —> V. Thus the microflexibility of $^n 

implies the flexibility of $cori as claimed in the Main flexibility theorem on 
p.78 in [7] and this equally applies to the sheaf <I>^ and yields flexibility of 
$scr. Next, once we know that local sections of 3>scr extend to those from 
l>scr, we expect the flexibility of $scr to imply that of $5Cr. Indeed, this 
can be done but we need for this purpose a certain property (described in 
general terms in the definition 1 below) of the restriction homomorphism 
p : $scr —> $scr which better expresses the idea of consistent extensions of 
contact (and related) immersions from V to V x R D V. 

Consider two sheaves $ and $ over V and a homomorphism /?:$—>$ 
over V. Take two sets Z and Z' C Z in V and call two sections </> e $(Z) and 
4> e ^{Z') coherent if the restriction^ G $(Z) equals to p{<j)) e $(Z'). The 
space of all coherent pairs (0, $) e $(Z) x $(Z/) is denoted by Q = £l(Z, Z1) 
and the natural map §(%) —> fi is denoted by 77 = 77(Z, Z7). 

3.2.^4. Definition. A homomorphism p is called microextension if it is 
surjective and if for every pair of compact subsets Z and Z\ Z/ C Z in V 
the map 77: $(Z) —> Jl is a microfibration. 

The usefulness of this property of the homomorphism p : $ —> $ comes 
from the following : 

3.2.B. Microextension Theorem (see [7], p.85). If $ is a flexible sheaf 
and p : $ —> <f> is a microextension then the sheaf $ is also flexible. In other 
words, if $ admits a flexible microextension then $ itself is a flexible sheaf 

Now, as we mentioned earlier, the sheaf ^fr^is flexible and so the flexibil- 
ity of $scr would follow from the microextension property of the restriction 
homomorphism p : $scr —► $scr. 

So the next fact to be proven is the following: 

3.2.C. Theorem. If dim W > 2dimF + 1, then the restriction homo- 
morphism p : $scr —> $scr is a microextension. 

Proof Let us first recall how this theorem is proven for the restriction ho- 
momorphism in the case of contact immersions without extra conditions of 



An application of the /i-principle to CMsometric immersions 369 

strictness and regularity, namely the fact that the restiction homomorphism 
®con —> &con is a microextension. The essential point here is extension 
of germs of contact immersions V —> W to germs of contact immersions 
V x K —>WioTV = VxOcVxK which is equivalent to show that 
$con —> $con is surjective. Following Gromov, such extensions can be viewed 
as solutions of the Cauchy problem for contact immersions for which the 
Nash-Gromov implicit function theorem applies and yields the extendibility 
in a sufficiently strong form to give microextension, where 'strong' means 
sufficient continuity in the parameter as required by the microextension 
property. All this is done in a full generality in [7], but unfortunately track- 
ing down our specific example there appears an unsurmontable task. On the 
other hand, fortunately the contact case can be handled directly without the 
use of Nash-Gromov implicit function theorem as indicated on p. 339 of [7] 
and elaborated in [3] for strict contact immersions. In fact, an appropriate 
extension scheme is indicated in §2 of [1], where contact extensions from V 
to V x R are achieved with suitable contact vector fields in W D V. Such a 
field starts at V and its orbit gives V x R c W with the contact structure 
equal the one coming from the projection V x R —> V. Moreover, the fields 
in [1] were chosen in such a way as to respect the (/i, a;)-regularity of the 
immersion theorem implying the surjectivity of the restriction homomor- 
phism Qcr —► $cr for rankT > 2{rankS + 1). Furthermore, this process 
automatically preserves the strictness property of maps: i.e. if some contact 
immersion V —> W is strict, then so is every its extension to V x R if we 
remain close to V = V xO cV xR. Thus we see that $scr —> $scr is surjec- 
tive. However, the "microfibration" aspect of the microextension property 
needs to be verified. This can be done in the following two ways a) and b). 

a) Observe that the sheaves <Sscr C $con and $scr C $con are open sub- 
sheaves and thus, as we said before, their microfibration property re- 
duces to that of p : $con —> $cori which is established (but not ex- 
plicitely stated) in [7]. 

b) Check that the extension obtained by using contact fields satisfies all 
the microextension requirements. 

To see how it works, one has to look at another example. Namely, one 
takes the sheaf, say, $a// of all smooth maps V —> W, and studies the 
corresponding extension problem for the homomorphism $a^ —> $a//. Or, 
one may look at the homomorphism $2mm —> $zmm for immersions V —> R9 

for dimF < q. The major problem here is to interpret adequately the 
meaning of microextension. This is explained for $ = $imm in the example 
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immediately after the definition of microextension on p. 85 in [7], where 
the microfexibility property of the map 77 follows from the openness of the 
immersion condition. 

Now, in our case the sheaf $ = $con (or $ = $scr). The space $(Z) 
consists of contact (strict contact) immersions of Op(Z) C V x R to W and 
the space Q(Z, Z1) for Z1 C Z consists of the maps of the union Op(Z') U 
(V fl Op(Z)), Op(Z') C V x R, to W, such that the restrictions of these 
maps to Op(Z') and to V D Op(Z) are contact (strict contact) immersions: 
Op{z') -> W and V n Op(Z) -> W respectively. Here the map rj : $(Z) -> 
f2 amounts to the restrictions of contact (strict contact) immersions from 
Op(Z) to the union of O^Z') and V D Op(Z). 

Since the microfibration property of r] is known for $ = $cori it follows 
for $scr C $con ^ it is an open subsheaf. 

This gives a realization of the above a). To work out b) one has to look 
closer into the construction of the contact fields in [1] and observe that they 
are continous with respect to all parameters involved which is essentially 
equivalent to being a microextension in the sheaf theoretic language. Once 
that the meaning of microextension is clear for the above examples, then 
the contact extension becomes clear with the extension Lemma 2.3.A. on 
p.lMin [1]. 

3.2.Ci. Remarks. 

1. The microextension property for the sheaf $ = $sc is proven in [3] 
and so we could repeat the above with the sheaf $sc D $scr instead of 
&con D ^scrj thus deriving our microextension proof from [3] instead 

PI. 
2. Both proofs of microextension in [7] and [3] follow the same route, 

essentially the one indicated in b) and briefly explained above by in- 
volving "continuity" of contact fields on parameters. So if we start 
from scratch the b)-approach is better as one avoids references to [7] 
or [3] but then one has to look into the matter more closely. 

3.2.D. Let us now summarize the logic of the proof of the /i-principle 
for the relation Rscr C X^ for X = V x W —► V by dividing it into the 
following 7 steps: 

Step 1. Introduce the sheaf of strict contact (/i, u;)-regular immersions $scr 

consisting of solutions of the relation Rscr (see Example 2.1.2?.) and 
the sheaf $^r of strict contact (h,u>)- regular immersions of V x R —> V 
(which are solutions of the corresponding relation over V x R). 
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Step 2. Invoke the microflexibility of $^r which is a direct consequence of the 
microfiexibility of $^n. (See Sect. 3.4.3(A) in [7]). Alternatively, one 
can derive microflexibility of $scr from that for $sc D $5cr with the 
refering to [3] instead of [7]. 

Step 3. Use the fact that the sheaf $^r is invariant under special diffeomor- 
phisms of V x R and then (by applying the Main flexibility theorem 
in [7]) conclude to the flexibility of $scr which is the restriction to 
V = V x 0 C V x R of the sheaf.$*.. 

Step 4. Prove that the restriction homomorphism p : <lscr —> $scr is a mi- 
croextension provided dimVF > 2dim V + 1. 

Step 5. Apply the microextension theorem 3.2.B. and show that the sheaf 
$scr is flexible. 

Step 6. Show that the relation Rscr satisfies the local /i-principle. 

Step 7. Combine the previous steps 5 and 6 according to the pattern pre- 
sented in [7], p. 119 and arrive to the conclusion that $scr satisfies the 
parametric /i-principle and hence the (ordinary) /i-principle. 

This parametric /i-principle is our main result in this article which we 
state here once more. 

3.2.E. Theorem. Denote by \I/scr the sheaf of injective bundle homomor- 
phisms I/J : T(V) —> T(W) with the following properties: 

1. ip pulls back T to S; 

2. I/J is (h,uj)-regular, i.e. ipv(Sv) C Tw, is (h^cj)-regular for all v G V. 

Then the natural homomorphism from the sheaf $scr to the sheaf \&scr (as- 
signing ip = Df to each f G ^scr^ is a weak homotopy equivalence, provided 
W is quasi Hermitian and dim W > 2 dim V + 1. 

This theorem implies our /i-principle for strict contact regular immer- 
sions 1.8.A and thus the /i-principle for contact isometric immersions stated 
in 1.5.A □ 
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