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We study deformations of a spherical CR circle bundle over a Rie- 
mann surface of genus > 1. Roughly speaking, there is a diffeo- 
morphism between such a deformation space and the unramified 
universal Picard variety. On the way to the latter, we actually give 
a differential-geometric proof of the structure and dimension of the 
unramified universal Picard variety. 

1. Introduction. 

In this paper we study the deformation of spherical CR circle bundles over 
Riemann surfaces of genus > 1. (for genus = 0 or 1, see [BS] for some 
discussions) We find that there is a one-to-one correspondence between such 
a deformation space and the so-called universal Picard variety. Let AT be a 
closed (compact without boundary) Riemann surface of genus g > 1. Let 
L be a holomorphic line bundle over N with the first Chern class ci (L) (in 
H2(N,Z) = Z) < 0. The universal Picard variety with given genus g > 1 
and ci < 0, denoted by P^ is the quotient space of all such pairs (L, N) 
modulo the equivalence relation given by holomorphic bundle isomorphisms. 

First given (L, JV), we can find a hermitian metric || || : L —> R+ U {0} 
such that the circle bundle SL C L defined by || || = 1 is spherical relative 
to the induced CR structure, denoted by JL or (iJ^? JL)- (HL is the induced 
contact bundle)(see section 2 for more details) Now fix [(L,N)] in Pic. We 
have the following convention about the regularity of geometric objects: a 
geometric object is assumed to be smooth (C00) if we do not specify its reg- 
ularity. We consider the deformation of spherical CR structures on S = S^. 
By a theorem of Gray [Gr], we may just fix the underlying contact bundle 
H = H^ with the orientation induced by J = J^. Let (5 denote the space of 
all spherical CR manifolds (5, H, J) with J oriented and compatible with H. 
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([CL1]) Let Cfi be the orientation-preserving contact diffeomorphism group 

relative to H. C^ acts on & by pulling back. Let C? denote the iden- 

tity component of C^. Define the Teichmuller-type space 6* to be (5/C? . 
Similarly we can describe PiC based on a fixed background line bundle and 
define the Teichmuller-type space P/c. (see section 3 for details) P/c can 
be endowed with a natural complex manifold structure, (see Theorem C 
below) The map r : [(L,JV)] —> [{SL^HLIJL)] (equivalence relation given 
by diffeomorphisms) gives rise to a map r* : P/ —» 6Q. (see section 5 for 
definitions) 

Theorem A.     (1) ©Q has a natural smooth manifold structure with di- 
mension equal to 8g — 6. 

(2)  The map r1 : P*   —^ SQ is a diffeomorphism. 

Theorem A is in the same spirit as that of describing Teichmuller space 
by conformal classes. It is known in Teichmuller theory that we can pick 
up a unique hyperbolic metric as a representative for each conformal class. 
The similar situation occurs for our spherical CR manifolds. Let 9n_i5o de- 
note the quotient space of all pseudohermitian manifolds (M, iif, J, 0) with 
(M, H) being contact-diffeomorphic to (5, H) so that the (pseudohermitian 
or Tanaka-Webster) curvature Rjfi equals -1 and the torsion Ajfi vanishes 
modulo the equivalence relation given by diffeomorphisms. ([Wei],[Tan]) It 
follows that such (M, i?, J) is spherical and for (5, H,J = J£) we can always 
pick up a unique contact form 0 = 6^ with Rj^ = — 1 and AJQ = 0.   H is 

given a natural orientation by claiming (v, Jv) is an oriented basis of H for 
any nonzero v in H. A pseudohermitian structure (J, 0) on (S, H) is called 
oriented if both J and 0 are oriented for H . ([CL1]) To study SDt-i^ we may 
just fix (M, H) — (5, t£) and consider the space of all oriented pseudohermi- 
tian structures (J, 0) on (5, IT) with Rjp = —1, Aj^ = 0, denoted by 9Jt-i,o- 

It is clear that C^ acts on 3)1-1,0 by pulling back and 9Jt_i5o = Wt-ifi/Cg. 

Endow fSJl-ift with the C00 topology and 971-1,0 with the quotient topology. 

Let DJ^_1 o be the connected component of 911-1,0, containing (J, 0). Define 

the Teichmuller-type space 1-1,0 to be 9Jl^1)0/C?. 

Corollary B. The map i : £-1,0 -> 6^ given by L[(S, H, J, 0)} = [(5, ff, J)] 
is i(;eZZ defined and a homeomorphism. 

Thus we can endow T_i,o with the smooth manifold structure induced 
from 60 through L. 
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The universal Picard variety (or Jacobian variety) plays an impor- 
tant role for many problems in algebraic geometry. Thus our differential- 
geometric proof of the structure and dimension of the unramified universal 
Picard variety P/c has its own interest and merits an independent emphasis: 

Theorem C. P/c is a complex manifold of (complex) dimension Ag — 3. 

In section 2 we prove some basic results about spherical CR circle bundles 
arising from holomorphic line bundles. In section 3 we prove Theorem C. 
We give a representation of the tangent space of P/c in the "classical gauge" 
(see (3.32)), which maps onto the space of holomorphic (l,0)-forms through 
<9-operator with the kernel equal to the space of holomorphic quadratic dif- 
ferentials relative to the reference Riemann surface. To parametrize our 
moduli space of spherical CR structures we introduce a certain local "sup- 
porting" manifold in section 4. We also show the properness of the contact 
action in our case. In section 5 we parametrize ©Q 

as a smooth manifold 
with the aid of the map r* and the local "supporting" manifold. Finally 
we prove Theorem A and Corollary B. On the way to showing Theorem A, 
we actually obtain another representation of the tangent space of P/c, which 
is a fourth-order differential equation. (It is basically because the deforma- 
tion tensor of spherical CR structures in dimension 3 is of fourth order.) In 
Appendix A we prove the i7(l)-invariant version of Gray's theorem (Theo- 
rem 5.1).  In Appendix B we give a description of an infinitesimal slice of 

OT-Lo/Cjf- 
Our theory for the universal Picard variety has its counterpart in the 

Teichmuller theory as shown in the following table: 

Teichmuller space universal Picard variety 
conformal classes spherical CR circle bundles 

Riemannian hyperbolic metrics pseudohermitian hyperbolic geometries 

Our description of Pf using X-^o (combining Theorem A and Corollary 
B) has a topological implication. Namely, the topology of (contact, hence) 
diffeomorphism group of S in principle can be determined by the topologies 
of X_i5o and the unimodulo representative space QJt^ 0. But the topology 
of X-i^o is the same as that of P* by our theorems, which is well known. 

To study the topology of DJl^ Q, we might define a certain kind of Dirich- 
let's energy on it and use this energy functional as our Morse function. A 
similar strategy works successfully in studying the topology of Teichmuller 
space. ([Tr]) 
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Another problem is the analogue of the so-called Nielsen realization prob- 
lem about the mapping class group of a Riemann surface. The Nielsen re- 
alization problem says whether any finite subgroup of the mapping class 
group Diff+fDiffo (of a surface with genus > 1) can be "realized" as a 
subgroup of Diff+. There is an analytic proof using the above- mentioned 
Dirichlet's energy and the so-called Weil-Petersson metric. ([Tr]) We wonder 
if we can do the similar thing for a 3-manifold of circle bundle type through 
the study of T-i^o- 

As we know, the moduli space of Riemann surfaces of fixed genus is the 
quotient of Teichmuller space by the mapping class group. The compactifi- 
cation of the moduli space has been well studied. There are a couple of ways 
to do it. The way using algebraic geometry was first done by Deligne and 
Mumford. It was realized later a different approach which is based on the 
Riemannian hyperbolic geometry, (e.g., [SS], [Pa]) As for the compactifica- 
tion of the universal Picard variety, algebraic approaches have been taken 
up by several authors. ([Ds], [Is], [OS], [Cap], etc.) Towards the problem of 
compactification we hope that along with the framework of this paper there 
will be a differential-geometric approach in the near future. 

2. Spherical CR circle bundles. 

Let L be a negative holomorphic line bundle over a closed Riemann surface iV 
of genus g > 1. For such A/", there always exists a unique hyperbolic metric 
ds2 (i.e. the associated Gaussian curvature K^ = — 1) in its associated 
conformal class. Denote the volume form of ds2 by cods2. By the Gauss- 
Bonnet theorem the integral of LJds2 = —uds2/27rx(N) = uds2/4:7r(g — 1) 
equals 1. Hence [Cjds2\ is a generator of H2(N,Z) = Z. Write ci(L) = 
—m[LJds2] for m being a positive integer. 

Proposition 2.1. There exists a unique (up to a positive constant multiple) 
hermitian metric \\ \\ : L —> R+U{0} such that if we write h^^z) = \\s(z)\\2 

for a local holomorphic section s, then 

(2.1) idzd-z log h(z, z) = (m/^ - 2))uds2 

Proof Take an arbitrary hermitian metric || ||o and write ho(z, z) = \\S(Z)\\Q. 

Any other hermitian metric || ||2 is equal to A|| ||o for A being a global pos- 
itive function defined on N. It suffices to solve A for the following equation: 

(2.2) idzdz log Afo z) = (m/(2g - 2))ujds2 - idzdE log ho(z, z) 
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Equating and then multiplying coefficients of idz A dz in (2.2) by g11 = 
(gil)"1 where ds2 = g^dzdz gives 

(2.3) ±Ads2log\ = Z 

where E is a global real function. Note that both (m/(2g — 2))ujds2 and 
idzdz log ho(z^z) represent —27rci(L). It follows that /Ecc^ = 0. So we 
can solve (2.3) for A unique up to a positive constant multiple (see, for 
instance, p.104 in [Au]) and hence (2.2). □ 

Define the circle bundle SL C L by || || = 1. The contact bundle and 
the CR structure on 5/,, induced from L, are denoted i?^, JL respectively. 
Define the contact form 0L on SL by 

(2-4) 0L = -iKdL(\\   \\
2
)\SL 

with the normalizing constant K, = 2(g — l)/m. Locally write ||if;5(2:)||2 = 
h(z,z)\w\2 for w in C, a fibre coordinate. A direct computation using (2.1) 
shows that 

dOi = 7r*cjds2   (TT : SL C L —> N being the bundle projection) 

Letjw1,™2 be orthonormal coframe fields relative to ds2. Let 61 = w1 + 
iw2, 61 = w1 — iw2 be the corresponding unitary coframe fields. Hence 
ujds2 z^w^^Aw2^ (l/2)i61 A O1. From the formulas on pp. 266-267 in [We2], 
the pseudohermitian scalar (or Tanaka-Webster) curvature 

(2.5)     RJL,6L = tf^iVn (since h^ = i,    R^u = (l/2)Kds^ 

= 2(1/2)^2 = Kds2 = -1 

and the torsion 

(2-6) AJL,9L = 0 

Therefore by (2.4) in [CL1] the Cartan (curvature) tensor 

(2.7) QjL=0 

It follows ([Ca],[CM]) that (SL.HL.JL) is spherical, i.e., locally CR- 
equivalent to the unit sphere S3 in C2. The following Proposition shows 
the uniqueness of the contact form 9L in (2.5). 



306 Jih-Hsin Cheng and I-Hsun Tsai 

Proposition 2.2. Let (M, H) be a closed contact manifold of dimension 
2n+l. Let (J^Qj)^ = 1,2 be pseudohermitian structures on (M,H). (i.e. J 
is compatible with H and 9j ;s are contact forms relative to H) Suppose the 
pseudohermitian scalar curvature Rjjj — —1? j — 1)2.  Then 6i = 62. 

Proof. Write 62 = u2/n • 61 for u > 0. itlj^ and i?j^2 are related in the 
following equation: 

(2.8) (2(n + l)/n)A6fi + Rjfilu - Rjfi2u^
2)'n = 0 

(see [JL]; note that A^ is the "negative" sublaplacian relative to (J, 0i)) 
Substituting i2j^. = —1 in (2.8) gives 

(2.9) H(!Ltl)Abtt = „-tt('H-2)/n 

Suppose u achieves its maximal value > 1 at a point p. Then we evaluate 
(2.9) at p: 

n + 2 
r,     2(n+l)A       n 0 < -i Abu = u-u   n     < 0 

n 

to reach a contradiction. Similarly u cannot achieve its minimal value < 1. 
Therefore u must be identically equal to 1. □ 

Corollary 2.3. The map t in Corollary B (assuming it is well defined) is 
injective. 

Next suppose we have a holomorphic bundle isomorphism (0,/) : 
(LuNi) -► (£2,^3) for [(Lj.Nj)] € Pic, j = 1,2. By Proposition 2.1 and 
noting that the biholomorphism / : Ni —> N2 is an isometry, we conclude 
that 

(2-10) </>*(||   ||L2) = C||   IU, 

for some constant c > 0, where || H^-, j = 1,2 denote hermitian met- 
rics obtained in Proposition 2.1 with respect to Lj. Let rac denote the 
multiplication by c on the line bundle. Thus by (2.10) the composition 
</> o m"1 : Si,! —> iS^a is a CR equivalence. We have shown that the map 
r : [(L,N)] -» [(ASLji^L, ^L)] is well-defined. Furthermore, we have 

Proposition 2.4.  T/ie map r i5 injective. 
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Proof. Let DL denote the disc bundle of L with the boundary dD^ = S^. 
Since SL is the strictly pseudoconvex boundary of the complex manifold 
DL, it is CR-embeddable in C^ and coordinate functions (CR functions 
on SL) extend holomorphically to DL- (see, e.g., Theorem 5.3 in [Kl], 
Corollary of Theorem 1.3 in [K2], p.91(5.3.5) in [FK]) So we have a map 
ip : DL —> C^, holomorphic in DL, and CR equivalent between ODL = SL 

and IP(SL)- Denote the 0-section of DL by E. E is biholomorphic to the 
closed Riemann surface N. We claim if) : DLVE —> C^ is a biholomorphism 
onto its image. First observe that I/J is biholomorphic near the boundary SL 

and the disc bundle DL(P) = {s e DL '• \\S\\L < p} of radius p, 0 < p < 1, 
is strictly pseudoconvex. By continuity, there exists a smallest po > 0 such 
that ip is biholomorphic on DL\DL(PO) and fails to be biholomorphic on 
SL(PO) = dDL^po)- Suppose po > 0. Take q G SL(PO). Near q consider 
the determinant of the Jacobian matrix of V^ denoted J^. If ^(q) = 0, 
the subvariety defined by J^ = 0 must contain a point near q but out 
of DL{PO) due to pseudoconvexity of jD^(po)? which contradicts tp being 
biholomorphic on DL\DL(PO) (where J^ ^ 0). Thus J^(g) 7^ 0. Hence ip is 
a local biholomorphism near SL{PO)- Therefore ip must be globally injective 
near SL(PQ) since it is biholomorphic on "one side" of SL(PO)- In conclusion 
po must be 0 and we have proved our claim. 

Now take two holomorphic line bundles (Lj, A/j), j = 1,2 with associated 
spherical CR circle bundles SL/S being isomorphic. That is to say, there 
exists a CR equivalence </>: SL1 —> 5^2. As just discussed above, there exists 
a map ^1 : Z)^ —^ C^, biholomorphic on Dj^Ei (Ej's, j = 1,2, denote 
zero sections of Lj respectively) Moreover the CR embedding V7! 0 4>~1 : 

^2 -^ ^ extends to a map ^2 : SL2 —* C^, biholomorphic on 1)^2X^2, 
with Range ^2 — Range ^i by the uniqueness of solution for the complex 
Plateau problem in O^. ([HL], [Y]) Since Ej's are biholomorphic to closed 
Riemann surfaces A^'s respectively, ipj(E>j) consists of a point pj in C^. 
Suppose pi / P2. Take a suitable neighborhood U ofp2 such that r^il{U\p2) 
is biholomorphic to ijj^1 {U\p2). But they have different topological types 
since the latter is a tubular neighborhood of a closed Riemann surface £2. 
So pi = P2 and (/>i = T/^

1
 O ^1 : D^Ei —> r)jry2\£2 is a biholomorphism. 

Furthermore it is easy to see that a punctured fibre disc must be mapped by 
(pi onto a punctured disc with the puncture sitting in £2. (just noting that 
the puncture in £1 is a removable singularity) We therefore extend </>i to a 
map (still denoted (pi) from D^ into Dj^ carrying £1 into £2. We claim 
(pi is continuous on £1. Take q G £1 and q = </>i(g) G £2. Centered at g, we 
have local holomorphic coordinates {z,w) e D x D* for EiX fibres where 
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D (D* resp.) denotes the (punctured resp.) disc. Given neighborhoods U 
and V of q in Di2 with V cU, there exists a positive number r such that 
{(0, w) : \w\ < r} is mapped into V. Observe that 

(2.11)       dDL2\E2(<f>i(z,w),<l>i(0,w)) < dDxD*((z,w),(0,w)) < dD(z,0) 

where "d" denotes the Kobayashi distance. Let 

b = dDL2\x2((DL2\X2) n V, (DL2\X2)\U) > 0. 

Then there is a positive number r' such that ^(^,0) < b for \z\ < r7, so 
it follows by (2.11) that </)i(z,w) is in U for \z\ < r', \w\ < r. Once we 
know (^i is continuous on Si, then it must be holomorphic on D^ by the 
Riemann extension theorem, (we can also just invoke Theorem 6.2 in [Ko] 
p.93 to replace the above argument) Similarly extend (f)^1 holomorphically 
to DL2. Since the holomorphic map (f)^1 o^i = identity on JDz^Ei, it must 
be an identity on D^. We have shown that <f>i is a biholomorphism between 
D^ and DL2 • Define biholomorphisms <j)p : D^ (p) —> DL2 (p) for p > 0 by 
<f>p(y) = p(j)i(y/p). In local coordinates (2?, w) with w being fibre coordinate, 
we can write (/)p = (z, w) as a function of y = (z, w): at z = 0, 

z = 0(w/p), w = cw + 0(w2/p) 

for some nonzero constant c. As p goes to infinity, z approaches to 0 and w 
goes to cw. That is to say, limp-.oo </>p = </>oo : Li —* L2 exists and is a linear 
isomorphism on each fibre, and from the above argument {<f>p = (z,w)} 
is uniformly bounded on any compact coordinate neighborhood around a 
point. It follows that ^oo is holomorphic. Apply a similar argument to 
^~l{x) = p(j)^l{xlp). We obtain a holomorphic map ^ = lim^"1 : L2 —* Li 
and it is easy to see that -0 o (f)^ — ^ o ip = identity. Therefore ^oo is a 
holomorphic bundle isomorphism. □ 

3. Parametrizing Pfc as complex manifold: 
Proof of Theorem C. 

First we describe Pic by complex structures with special properties on the 
fixed background line bundle L (considered as a smooth line bundle). Since 
every holomorphic line bundle (L, N) of the fixed ci is isomorphic to (L, N) 
as smooth line bundle, complex structures on L and N are pulled back 
to L and N respectively. Let Bdiff denote the group of smooth bundle 
automorphisms of (L,N). Let J, c denote complex structures on L,N re- 
spectively. The space of all ((L, J), (AT, c)) such that the projection from L 
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onto N is holomorphic with respect to (J, c) modulo Bdiff is in one-to-one 
correspondence with Pic. Let mp : L —> L denote the fibre multiplication 
by p, a complex number. Let C* denote the subgroup of Bdiff, consisting 
of all mp with nonzero p. Let J denote the complex structure on L (and 
also on 5, cf. section 1) associated to the fixed (or reference) holomorphic 
line bundle (L^N). On L we consider the space Pic of all smooth almost 
complex structures J respecting the same orientation as given by J on L 
and satisfying the following conditions: 

(3.1) m*J = J for nonzero p (i.e. J is C*-invariant) and 

(3.2) on fibres, J is induced by the usual complex structure on C in local 
trivializations. 

Proposition 3.1. Any J in Pic is integrable. 

Proof First fix a system of local coordinates (z, w) on L (holomorphic with 
respect to the original reference complex structure J on L) with fibre coor- 
dinate w. Let dz, dw denote the tangent vectors d/dz, d/dw respectively for 
short. The condition (3.1) allows us to construct a C*-invariant (1,0)(rela- 
tive to J) tangent vector Zi on L by moving a chosen (1,0) section by the 
action of C*. Write 

Zi = fdz + gdz + hwdw + iwduj. 

C*-invariance implies that f,g,h,l are smooth functions only in z,z. It 
follows that [Zi,dw] = —hdw. Now we can compute the Nijenhuis tensor: 

N(zu dw) = -4[Zi, cy - Ai j[Zi, dw] = o, 

and it is easy to see that 

N{dw, dw) = N(dw, d*) = N(ZU d*) = N(ZU Zi) = 0. 

Thus by noting that N is skew-symmetric, the Nijenhuis tensor vanishes. □ 

Observe that (L, J) in Pic can be pushed down to (TV, c) for some com- 
plex structure c. (for v tangent to N,c(v) is defined to be 7r*J(so*(tO). 
Here so is the zero section of L over N and n : L —> N is the natural 
projection. It follows that TT is holomorphic with respect to (J, c)). Hence 
the quotient space PiC/Bdiff is in one-to-one correspondence with Pic. Let 
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Bdiffo denote the group of smooth bundle automorphisms ((^, (/)) of (L, N) 
with cf) : N —> N being isotopic to the identity. Denote the quotient group 
Bdiffo/C* by 55. (note that C* is contained in the center of Bdiffo) Define 
the Teichmuller-type space P/c to be Pic/25 = Pic/Bdiffo. We are going to 
show that 2$ acts freely and properly on Pic and P/c can be parametrized as 
complex manifold. First parametrize Pic and OS. Let us do a priori compu- 
tation of the tangent space of Pic at a reference point J. Denote Jt a family 
of elements in PiC with Jo = J. Let E be the derivative of Jt in t at t = 0 
(considered in the space of endomorphisms of TL). Jt being almost complex 
structures implies that E satisfies the following equation: 

(3.3) Eoj + JoE = 0 

Take local holomorphic coordinates (z, w) relative to J as in the proof of 
2 _ w. Proposition 3.1. Write <9& = d/dzb, 6 = 1,2 for short where z1 = z, z 

We express E as below: 

E = EEa
bdza <g)db + Eahdza ®d-h + conjugate. 

It follows from (3.3) that 

(3.4) Ea
b = 0        (hence Eal = JEJ) = o) 

Condition (3.2) means Jt^fy) = ify whose differentiation in t at t = 0 gives 
JS(<92 or ^2) — 0- Hence we have 

(3.5) E21 = E2^ = 0 

Besides, differentiating (3.1) tells that E is CMnvariant. Therefore both 
Eil and E^/w are independent of the variable w = z2. Together with 
(3.4),(3.5) we obtain 

(3.6) E = Ei1 (z, z)dz ®dz + Ei*(z, z)wdz ®du) + conjugate 

where Ei*(z, z) is just E^/w.  Ei1 and Ei* satisfy the transformation law: 

(3.7.1) Si1 = E^JhTJih')-1 

(3.7.2) £1* = Efiti)-1 + E^ih'^VF1 

under the coordinate change of trivializations: 

(3.8) z = h{z),w = g(z)w 
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for biholomorphic h and nonzero holomorphic g. Therefore we can talk about 
smooth or Hs (Sobolev s-norm bounded) E if Ei1 and Ei* are smooth or 
Hs. (the Sobolev s-norm can be defined via either a chosen partition of 
unity or a chosen covariant derivative on N) Similarly by conditions (3.1), 
(3.2), we can write an element J in Pic as 

J = YiJidz ®d}) + idw ® dw + conjugate 

where b runs over 1,1, 2,2 and Ji1, Ji1, Ji2/w, Ji2/w are independent of w. 
Therefore we can talk about Hs J if these components are all in Hs. Let PiCs 

denote the set of all such Hs J.  Let £j(<£^ resp.)  denote the linear space 

of all smooth (ifs, resp.) tensors E of the type (3.6). Since N is compact, 
(£j is a tame Frechet space in the terminology of [H] while (£^ is a Hilbert 

(hence Banach) space. Define a map $j : (£j —> Pic by 

(3.9) <f>j(E) = (I- (1/2)E o J) o j o (I - (l/2)E o J)"1 

for small (in C^-topology) E. It is easy to see that $ j extends to (£^ (still 

denoted $ j) with the range PiCs for large enough s, say, 5 > 2 by the Sobolev 
lemma, (for s > 2, iJs-space is contained in C0 and forms an algebra. Note 
also that the inverse of a nonzero Hs function on N is still in Hs) Moreover 
$j is injective for small E in <£sf as the inverse ^T1 can be given precisely 
by 

(3.10) $7 V) - 2(J - J)(J + J)"1 J, 

and it is easy to compute that (d/dt)$j(tE) = E at t = 0. (consider PiC 

sitting in End(TL)) We use {$j : J e Pic or PiCs} to parametrize Pic or 
PiCs. The transition map for the overlap region have the precise formula 
by composing (3.10) and (3.9) for two different J's. Observe that, with 
respect to a basis, each component of the transition map is a polynomial in 
components of E. It follows that the transition map is C00 (smooth tame in 
the smooth case) and hence a C^-diffeomorphism by symmetry. We have 
proved 

Proposition 3.2. Pics(Pic, resp.) is a smooth Hilbert (tame Frechet, resp.) 
manifold for s>2. 

Next a priori computation shows that a tangent vector of Bdiffo at the 
identity has the following form: 

(3.11) X = v1dz + vldz + v*wdw + v^wdw 
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in a local trivialization (z, w) as above, where v1 and v* are independent of 
w and satisfy the following transformation law: 

(3.12) (*-.'*(») 

for the change of trivializations (3.8). Let 2JS denote the Hilbert space of 
all X satisfying (3.12) with bounded iP-norm. (may be defined by fixing a 
finite number of trivializations and a corresponding partition of unity for N 
so that the iiP-norm is locally provided by the sum of iJs-norms of v1 and 
v*) On the other hand a bundle automorphism </> of L can be expressed as 

(f) : (z, w) -» (^(z, z), \(z, z)w) 

in trivialization (z,w), where ^, A obey the following transformation law: 

\(h(z),h(z)) =\(z,z)g(i/>(z,z))g(z)-1 

according to (3.8). We say (j) is Hs if ip and A are Hs for each trivialization. 
Let BdiffQ denote the topological space of all Hs bundle automorphisms 
of L with obvious i/'s-topology. Take X in 2}s. We want to associate a 
bundle automorphism (fix in BdiffQ. Take a (smooth) metric ds2 on N and 
a hermitian connection V of L over N. Let V = 7r*X be the projection 
of X on N. Locally V = v1dz + v1dz if -X" is expressed as in (3.11). Let 
7(p, V(p),t) be the geodesic relative to ds2 with initial point p and initial 
velocity V(p). It is well known that 7 is smooth in (p,v,t) where defined. 
Let so denote the local section of L given by (2,1). Define the connection 
form F on N by 

(3.13) Vv(so) = r(v)so 

for tangent vectors v on N. Denote {d/dt)^{p^ V(p),t) by 7f(p, ^(p),*). In 
trivialization (2,10), we identify p with 20 and move the fibre element UJQ 

parallelly according to (3.13) along the geodesic 7(20, V^o), t) (instead of 
7((^OJ^O)J ^(20,20),*) for short) to get wi at time = 1 (for small V). It is 
then easy to compute 

(3.14) wi = woexp ■ / r(^(^o,^o),*))dt 
Jo 
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(3.14) suggests the following choice of cfrx'- 

(3.15) tx^m) = (70*0,^0), 1), ^iexp[^(^o) + r(y(zo))]). 

Here we write v*(^o) instead of v*(zo, ZQ) and recall V = v1dz + v1dz and v* 
are local components of X as expressed in (3.11). We claim the definition of 
(j)X given by (3.15) is independent of the choice of trivialization. Let (z, w) 
be another trivialization related to (z,w) by (3.8). We have corresponding 
local section SQ given by (?, 1) and associated connection form F. It is easy 
to see that g(z)7o = SQ and 

(3.16) r = r-dg.g-1. 

Now applying (3.16) to 7^(^0,^(^0)5^) gives wi .= 5(^1)^1 where zi = 
7(2:0, V(zo), 1). (note that WQ = g(zo)wo and wi is given according to 
(3.14)). From the transformation law (3.12) for v* we can easily show that 
V*(ZQ) + r(V(zo)) is invariant under the change of trivialization (3.8). Alto- 
gether we have proved our claim. Observe that F is smooth and 7, hence 7^ 
is also smooth in their arguments. It follows that (fix is Hs if X is Hs. So 
we have defined a map S : 9JS —> BdiffQ by E(X) = (frx- If we write 

^x{z,w) = (^(z.^.wexp^xiz.z)), 

then 0^ gives rise to a global diffeomorphism on N (still denoted ^) and 
the inverse of E can be given by 

(3.17) F = P-1(^) 

^-r(v(.))+/lr(^(.,n-),*))*- Jo 
(with V replaced by the first formula) 

Here P is the usual map of parametrization from vector fields to diffeomor- 
phisms on N via the geodesic flow. Now it is clear that S is a homeomor- 
phism from an open set of small X to a neighborhood of the identity, say, U. 
Let l^ denote the composition with I/J from the left. By composing E with 
1$ for smooth elements ^ in 25s, we obtain an atlas {(/^(C/), E"1 o l^-i) : ^ 
is a smooth element in BdiffQ} for Bdifffi. (note that the set of smooth 
elements is dense in BdiffQ and the composition map and the map taking 
each diffeomorphism to its inverse are C0) To show the transition map being 
smooth is a matter of direct verification (using (3.14), (3.15), (3.17)) : one 
only has to observe that composing with a smooth element is smooth in the 

* v 
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original argument. (Actually we can prove Bdiff^ is a topological group 
for 5 > 3 under the operation of composition of iP-maps (cf. section 3 in 
[Eb]). However the composition map is only C0 but not C1, so to get C00 

differentiable structure on Bdiff^ we have to restrict to smooth elements 
as our "centers" of charts) Let 5JS denote the quotient space %JS/C where 
C consists of all X in (3.11) with v1 = 0,v* = a constant complex num- 
ber, (this is well defined according to the transformation law (3.12)) Since 
any finite-dimensional subspace of a Hilbert space is closed, we can identify 
QJS with the closed orthogonal complement of C in 2JS, which inherits the 
Hilbert space structure from StP. Recall 93s = Bdif'/Q/C* where C* consists 
of all fibre dilations by nonzero constant complex numbers, (see the begin- 
ning of this section) Observe that C is mapped into C* by S through the 
exponential function according to (3.14), (3.15), so S induces a homeomor- 
phism from a neighborhood of 0 in QJS to a neighborhood of the identity in 
33s. Similar construction as for Bdifffi gives us the desired charts for 23s. 
We have proved 

Proposition 3.3. Bdiff^ and Q3S are smooth Hilbert manifolds. 

Next we consider the behavior of 25s+1 (03, resp.) acting on PiCs (P;c, 
resp.) by the pullback. (well-defined because C* is contained in the center 
of Bdiffo) First we have 

Proposition 3.4. Q3S+1 acts freely on PiCs for s > 4; in particular, 93 acts 

freely on Pic. 

Proof A bundle automorphism (f) in iJs+1 fixing a complex structure in PiCs 

can be pushed down to an iIs+1-biholomorphism cf) relative to the pushed 

down IP-complex structure on N. Since </> is isotopic to the identity map, 
it follows by a standard result for genus > 2 Riemann surfaces (e.g. p.39 
in [Tr]) that </> must itself be the identity map. (to apply the Newlander- 
Nirenberg theorem [NN, Theorem 1.1], we require s > 4 so that Hs is 
contained in C2) Thus </> is just a fibre multiplication by a nonzero holomor- 
phic function A on N. Compactness of iV implies A must be a constant p. 
Therefore (f) = mp belongs to C*. □ 

Proposition 3.5. OS54"1 acts properly on P;Cs for s > 4 ; i.e. if (j^Jj = Jj 

converges to J and Jj converges to J in Hs with Jj in Pics, [</>j] in *BS+1
; 

then there exists a subsequence of [(/>j] which converges in Hs+l to some [(j)]. 
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Proof. First we have (i)j*Jj = Jj, so (j)j can be pushed down to a biholo- 
morphism (/>. from (N,Cj) to (iV, Cj), where c^, c^ are pushed down complex 

structures of Jj, Jj respectively. There is a diffeomorphism between Hs ori- 
ented complex structures and Hs hyperbolic metrics of Gaussian curvature 
-1 on a closed surface of genus > 2 ([Tr]), so we can apply the Ebin-Palais 
theorem (Theorem 2.3.1 in [Tr]) to conclude that a subsequence of (j). con- 

verges in i75+1 to some </>. Let ^(p) = q for p, q in N. Take holomorphic 
coordinates z, z with respect to c = limcj, c = limcj around p,q respectively 
so that <f> satisfies the 9-equation in these coordinates. Take local trivializa- 

tions (2;, w) and (2/, w') of L (which may not be holomorphic with respect 
to J and J respectively). Write (j)j in these local trivializations: 

for large j. Here 0. tends to (/> in i7s+1 as j goes to infinity. Moreover since 

<£ is holomorphic with respect to z^d^. goes to zero in Hs. (note that we 

need the Hs version of the Newlander-Nirenberg theorem ([FK]) to conclude 
that ^. is still in HsJrl with respect to the ^-coordinate) Now write Jj in 

Jj — dz' ® (/j^/ + ^^/ + hjw'd^ + ijw'd^t) + zdif' ® 9^/ + conjugate 

where /j, ^j, /ij, ^ are Hs functions in z, z according to (3.1),(3.2). Moreover 
J? = —/ implies that fj^Qj^hj^j satisfy the following algebraic conditions: 

(3.18a) /s + i^-i 

(3.18b) 9j(fj + fj) = 0 
(3.18c) hi{fj+i)+gilj = Q 

(3.18d) lj{fj-i) + 9jhj = Q 

Similarly for Jj we write capital i*), Gj, iJj, Lj for corresponding coeflficients 
in trivialization (2, tu). Computing (jf^Jj and comparing corresponding coef- 

ficients of wdz <g> 5W and tDd^ ® 5^ with Jj, we obtain 

(3.19a)    (i - /,- + ej)^K) - [f (z) (f (*))   ' ^ + ej 

^z) giiz))'1 gj + e) (3.19b)    (-i-/i + ei)A(%)_ 

— {UJ) = UJHJ 

—(uj) = UjLj 
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_ dcj). d(j)._   _ dcf). d(j)._ 
where Hj == Hj —Tr-hj —^-L.Lj = L7- —^-f-i P^ and J        J      oz   J      oz  J    J       J      oz  J      dz   J 

1 _ dz dz' / - v      dz dz' dz dz' _ 

'      dz'\dzl3 + >-±(*'-%*)-wr-*$)]«<*) dz —h 

Here % (!?'etc-'resp-) means ^ fc) (^ fe) ''etc-'resp-)- ^ 
is easy to see that e] and e^ converge to zero in H.s as j goes to infinitj^ 

since </>. goes to a biholomorphism (/>, and obviously Hj and !/_,• converge to 

H — I -^= I /i and L — I -^= I £ in Hs respectively, where H = lirnHj, h = 

limhj, L = limLj,£ = lim^. Let 

9      „/7,\-i     5 0i = (<->%-£(j?r«ai 
6>       ,,/TA-

1
     d_ 

and 

9       ./rA-1    5 

where / = limfj,g = lim^-. Taking the limit of (3.18b) gives g = 0 or 
i^e/ = 0. If # = 0 at p, / = i or —i by the limiting form of (3.18a). Then 

either D or D' is not zero at p and equals :L2i—. Hence either D or D7 is 

elliptic in a neighborhood of p. On the other hand, if g does not vanish at p, 
then .Re/ = 0 at p. Suppose (i-f)(a-ib)-^(^)~1g(a+ib) = 0 at p for real 

nonzero a or 6. Then it follows that the absolute value of (i — f)/^{^)~lg 
equals 1. By (3.18a) (limiting version) and Ref = 0 at p, we get / = i, which 
implies # = 0 by (3.18a) again, a contradiction. Therefore a = b = 0. We 
have proved that D is elliptic around p in the case of g(p) not equal to zero, 
so in any case we use either D or Df to do our interior elliptic estimates for 
Uj. Now we write our equations (3.19) as follows: 

(3.20a) (Dj + EJ)UJ = UjHj 

(3.20b) (D,
j + Ej)uj = ujLj. 
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Here the error operator En = eh——h e?7rz-   Let a7- = uA,p) and u* = J 3 dz        3 dz J J J 

{aj)~1Uj. Then Uj satisfies the same equation (3.20) as UJ does but with 
Uj(p) = 1. (note that (ma-i o(f)j)*Jj = Jj. Let U be a small disc centered at 

p, which is compactly contained in another small neighborhood V. Let | • \Siw 
denote the Hs norm on W. Let D? (D'?, resp.) denote the formal adjoint 
operator oiDj+Ej (Dj+Ej, resp.). It is easy to see that either DJO(DJ+EJ) 

or JD * o (Dj + Ej) is real positive self-adjoint, strictly and uniformly elliptic 

in a neighborhood V of p so that the constants 7 and u in (9.47) of [GT] 
are independent of j for large enough j. Choose small discs centered at 
p, U, VjJ = 1,..., s, V such that UcViCV2C--cVscVcV where 
each smaller disc is compactly contained in larger ones and V is chosen 
so that we can apply Theorem 9.20 of [GT]. By standard interior elliptic 
estimates, we compute (in case D = 0 at p, replace Dj o (Dj + Ej) by 

D'f O (D'J + Ej) and Uj by fi^) 

(3.21) |fii|s+i,tf < P* o {Dj + Ei)ui\a.1y1 + l^lo.vx 

< |D*(%^)|5-iyi + Ifiilo,^   (by (3.20a)) 

< |%|s,Vi   (by the interpolation inequality) 

< l^jls-i^^   (by the same argument as above) 

< l%lo,y n^j 

where A < B means A < kB for constant k independent of Uj. On the other 
hand applying the Harnack estimates (Theorems 9.20, 9.22 in [GT]) to the 
equation: 

[D* o (Dj + Ej)} log luj] = Re(D*jHj), 

inf 

(noting that we apply theorems to log \UJ\ — V log \UJ\ > 0) we obtain the 

estimate of the supremum norm on V: 

(3.22) NL°o,y<C 

where C is a constant independent of large enough j. Combining (3.21) and 
(3.22) we get 

|^j|s+l,t/ < Cs, 

so there exists a subsequence (still denoted {UJ}) of {UJ} converging weakly 
in iirs+1 on U. By compactness, Uj converges in any weaker norm, say, L2 
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norm | • (Q. By (3.21) with [/,V replaced by U'^UiU' being a smaller disc 
centered at p, compactly contained in U) resp., we learn that Uj is Cauchy 
in iJs+1 on U'. Therefore Uj converges in HsJtl on C/7. Since iV is compact, 
we can pick up a finite number of such {U\p) to cover N. Let p^s denote 
such points and Uj^/ denote corresponding Uj on Iff. We adjust aj and Uj to 

be aj = m.aXiUjiff(pi) and Ujjj/ = aj Ujjjf. Thus Ujut{pi) < 1 so that our 
previous argument still works for all i. Now it is easy to pick a subsequence 
of ^-i^j, which converges in iP+1 on each U,

i. □ 

Consider the action of Bdiff^1 or 53s+1 on P;Cs. First we describe 
the tangent space of the orbit passing through a given element J in Pic. 
Push J down to a complex structure c on N. Take a local holomorphic 
coordinate z of N for c. Take a local trivialization (z, w) of L so that S^ 
and Zi — dz + b(z, z)wdy} form a basis of the type (1,0) tangent vectors with 
respect to J. (note that J(dz) = idz mod dw and c^, and Zi is CMnvariant) 
Want to find another trivialization z = z, w = A(^, z)it; so that dw = AG

1
^ 

and Zi = <% (mod 9^). The chain rule tells us that 

dz = dz + —(Xyiwdyj   (moddyj), 
oz 

so A has to satisfy the following 9-equation: 

d log A 
dz 

= -b. 

But it is easy to solve the above equation locally. (A is in iJs+1 if b is in 
Hs) Therefore we have a trivialization (J, w) of L, holomorphic with respect 
to J, i.e. {%, 9^} forms a basis of type (1,0) tangent vectors relative to J. 
Now use (z, w) instead of (z, w) to denote a trivialization of L, holomorphic 
with respect to J, so J = i(dz®dz + dw®dw)+ conjugate. Let fa be a family 
of iJs+1 bundle automorphisms of L. Recall that we write the infinitesimal 

fa — v1dz+v*wdw + conjugate. (cf.(3.11)) 
o 

bundle automorphism V = — 
at 

Compute 

(ftj = LyJ = 2idzv
1dz ® 9Z + 2iwdzv*dz <g) dw + conjugate. 

d_ 
It t=o 

Recall that W denote the Hilbert space of all infinitesimal bundle au- 
tomorphisms with bounded iiP-norm.     Define the first order operator 
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p : ajs+i ^ Tjpics = gs by 

(3.23) P(V) = Ly J = 2iv1
tidz <8> dz + 2iv* jwdz ®dw + conjugate 

in trivialization (z,w), where v\ = ^v1,^ = ^v*.  We want to describe 

the L2 orthogonal subspace of Range(P) in <£j, which is supposed to be the 

kernel KerP* of the adjoint operator P*. Since L is not compact, we need 
to define a suitable inner product on <£^ over N. First observe from (3.7.1) 

that E^ behaves just as a tensor on N (under the special coordinate change 
(3.8)) while Ei* does not by (3.7.2). We can adjust E\* to get a tensor by 
the aid of connection. Let || || be a hermitian metric on L. Let s(z) denote 
the local holomorphic section of (L, J) given by z —> (z, 1) locally. Let 
v = \\s(z)||2. The canonical connection associated to ||   || is given by 

u~1dv = r(z,z)dz 

with F = dz log v. The transformation law according to (3.8) goes as follows: 

r = rti + g'g-1. 

(noting that gTi = 5) Define 

(3.24) Ei = Ei* + E^T. 

It is easy to see that Ei = Eih', obeying the correct transformation law as 
a tensor. Let g = g^dzdz be the unique hyperbolic metric on N associated 
to c. We use g11 = (#ii)_1 or g^ to raise or lower indices. Also denote the 
volume form of g by dvolg. Now we can define an inner product on (S^: 

(3.25) (£, F)= [ {E^Fi1 + g^E^dvolg. 
JN 

Here we have used the expression (3.6) for E, F and (3.24) for £1, Fi = (Pi). 
Take E = P{V). Comparing (3.6) and (3.23) gives 

(3.26) Pi! = -2^,1, Pi* = -2M7*,I. 

Here vl = (v1) and u^i = dzu. Define 

(3.27) v = v* + t/r. 

Easy to check that v is independent of the choice of holomorphic trivial- 
izations.   Hence v defines a global function on N.   Recall that ci(= — m) 
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denotes the first Chern number of L. Let /i = (l/4)ci(genus(iV') — 1). For a 
special choice of ||   || according to Proposition 2.1 relative to J, we compute 

(3.28) El = -2i[v,i + fiv1] 

where vi = v1g1i and we have used — g11!"^ = fi. Substituting (3.26),(3.28) 
in (3.25) and using integration by parts gives 

(3.29) (P(V), F) = 2i I {^(-iVj + fiFi) - vF^g^dvolg + conjugate. 
JN 

(note that since g is Kahler, the usual derivative of v1 along z -direction co- 
incides with its covariant derivative. Hereafter for a tensor T on iV, Ti (T^i 
and so on, resp.) means the covariant derivative of T in the ^-direction 
(z^-direction and so on, resp.)) 

The above formula suggests a suitable inner product on Q}s for our pur- 
pose. Namely, we define 

(3.30) (V, U) = / [giiv1^ + vu]dvolg + conjugate 
JN 

for V = 2Re[v1dz + v*wdw], U — 2Re[u1dz + u*wdw] locally and v, u being 
global functions defined by (3.27). Define the adjoint operator P* of P : 
<£* _* gjs-i so tiiat 

(P(y),F)  =  (y,P*(P)). 

Then it follows from (3.29),(3.30) and (3.27) that locally 

P*(P) = 2i(PI
1,1 - iiF-Jg^dz + 2i[FI*fi + Pi*r 

+ Pi1^,! + T2)]^11^^ + conjugate. 

If we represent V by the pair (v1, v) and E by the pair (Ej1, Ei). Then we 
can write P(Vr) and P*(P) as follows: 

(3.31) P(V) = 2i{v1frV%i + iivi) 

P*(F) = 2i(g1HFI\1-»FI),g
1IFIfl). 

Let Aj = P*P. By (3.31), we compute 

Aj(V) = -^(v1^ - tivj + t^/x)), gll(vrn + /x^fl)). 

The leading term of Aj(y) is -^(AgV1, Agv) where the Laplacian A^ = 
g11d2/dzdz. Thus Aj is a second order self-adjoint elliptic operator defined 

on^K 
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Lemma 3.6. Suppose J G -Pica+i-  Then there is an L2-orthogonal splitting 

<£Sj = KerP* + P(Ws+1). 

Proof. Given E in (JrL It is easy to see that P*(E) is orthogonal to the 
kernel KerAj of Aj since KerAj = KerP. Therefore by the standard 
elliptic theory we can solve the equation Aj(V) = P*(E) for V in if5"1"1. 
Now set Eo = E- P(V). It is obvious that EQ is in KerP*. □ 

We remark that elements in KerP* are all smooth by the elliptic regu- 
larity, (note that g^ has the same regularity as J does [TV]) 

Moreover the dimension of KerP* is finite. We compute it as follows. 
First an element F in KerP* satisfies a system of linear equations: 

(3.32a) i^j -^1=0 

(3.32b) Fu = 0 

by (3.31). Solutions Fi for (3.32b) consist of all holomorphic (l,0)-forms 
Fidz on iV, denoted H1,0. Let Q(N) denote the space of holomorphic 
quadratic differentials on N. By (3.32), the projection map from KerP* 
onto H1'0 has the kernel equal to Q(N). Prom the basic linear algebra we 
learn that 

dim KerP* = dimQ(iV) + dim if1'0. 

On the other hand, Q(iV') is known to describe the infinitesimal Teichmuller 
space whose dimension is 6g — 6 by the Riemann-Roch theorem (e.g. [Tr]) 
while dim H1,0 is the same as that of the so-called Picard variety in the 
Riemann surface theory, which is known to be 2g. Therefore 

(3.33) dim KerP* = 6g - 6 + 2g = 8g - 6. 

Lemma 3.7. Given J in Pic, there exists a local smooth submanifold & of 

Pzcs of dimension 8g — 6 passing through J with the tangent space equal to 
KerP* at J. Moreover, & consists of only smooth elements. 

Proof Consider the map $j : KerP* —> PiCs. (see (3.9)) It is easy to 
see that <1>J is smooth and its functional derivative at 0 is the inclusion 
map from KerP* into €j, which is surely injective and splits by Lemma 
3.6. Therefore $j is a smooth immersion at 0. That is to say, there exists a 
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small neighborhood U of 0 such that 6 = $ j(U) is a smooth submanifold of 

Pics with dimension 85 — 6 by (3.33). Note that J is smooth and elements in 
KerP* are smooth as remarked previously. Thus 6 consists of only smooth 
elements. □ 

Now let S : QSS+1 x 6 -> P;Cs denote the action of Q5S+1 on S by the 
pullback. Observe that S is smooth and 

DE(id, J) : 9JS+1 x KerP* -> €} 

is given by DZ(id,J)([X],E) = Lx^ + £? = P(X) +^E, If Lx^ = 0, 
then X is an infinitesimal bundle automorphism fixing J. Thus [X] = 0 by 
Proposition 3.4 and hence DE(id, J) is a continuous linear isomorphism by 
further using Lemma 3.6 and noting that Aj is elliptic. Therefore S is a 
local diffeomorphism by the inverse function theorem on Banach spaces. We 
have shown the existence of "local slices": 

Proposition 3.8. There exist neighborhoods W of J in Pics<>U of id in 

53s+1 and V of J in & such that E :U xV —> W is a diffeomorphism. 

Now using freeness and properness of our Q5S+1 action (Propositions 
3.4, 3.5) plus the existence of "local slices" (Proposition 3.8), we can equip 
our quotient space Pic/VS with smooth manifold structure by a standard 
argument, (e.g. section 2.4 in [Tr]) Recall that we denote P;c/93 by P/c. 

Theorem 3.9. P/  is a smooth manifold of dimension 8g — 6. 

Proof. First we show the existence of "slices": that is to say, if we take the 
slice 6 to be sufficiently small, then each orbit of 05 passing through 6 
intersects 6 at exactly one point, i.e. <j>* J in 6 with J in 6 implies <j> = id. 
Suppose this is not true. Then there are sequences <f>j in OS and Jj in 6 
such that Jj and tfJj converge to J in Hs while all 0/s keep ontside some 
fixed Hs+1 neighborhood of id in OS in view of Proposition 3.8. (we equip 
PiC, 5B with the iP5, Hs+1 topologies, resp.) By Proposition 3.5 (properness) 
there exists a subsequence of <^, which converges to </> in iP+1. It follows 
that (f)*J=J and then </> = id by Proposition 3.4 (freeness), contrary to 
0j's sitting outside some neighborhood of id. Thus we can take the slices 
as coordinate charts (instead of their tangent spaces). It is easy to see by 
Proposition 3.8 that the transition function is smooth. □ 
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Proof of Theorem C. We will introduce a natural complex structure on Pfc. 
First there is a canonical way to define an almost complex structure 6 on 
PiC: for J in Pic, E in (£j, 

Gj(E) = JoE. 

It is easy to verify that J o E is still sitting in (£j. Let TT : Pic —> P/c be the 
natural projection. From our previous argument (TT, 25,P;C,P/C) is a (weak) 
principal 23-bundle in the sense of [Tr], p.54. (note that the right action of 
25 on Pic is given by pulling back) It is straightforward that 0 is OS-invariant 
(cf. p.88 in [Tr]), and 6 maps "vertical" vectors to "vertical" vectors: (see 
p.86 in [Tr] for the definition) since each J in Pic is integrable by Proposition 
3.1, the associated Nijenhuis tensor vanishes. It follows that Qj(LxJ) = 
JLxJ = LJXJ (cf. p.88 in [Tr]), so 0 makes (TT, OS, PzC, P/c) into an almost 
complex principal ©-bundle, (see Definition 4.1.4 on p.86 in [Tr]) Next we 
note that the Lie bracket of two vector fields on PiC can be defined as in [Tr], 
p.85: instead of using projections, we view DY(J)X(J) = d/dt\t=oY(J(t)) 
with J(0) = J, J'(0) = X(J); verify DY(J)X{J) - DX(J)Y(J) is in <£j for 
X(J),y(J) in <£j by observing that an element E in (Ej can be described 
by the following conditions: 

EoJ+JoE=0 

m*pE = E 

E(v) = 0  for v tangent to fibres of L. 

Now we can define the Nijenhuis tensor iV(0) of 0 on P;c as usual. Then 
a direct computation as shown in [Tr], p.88 yields N(@) = 0. By Theorem 
4.1.2 in [Tr], the almost complex structure JpiC on P/c induced from 0 on PiC 

has the vanishing Nijenhuis tensor. Since P/c is a finite dimensional manifold, 
Jpic is integrable, i.e. there exists a complex structure on P/c whose associ- 
ated almost complex structure is Jpic by the Newlander-Nirenberg theorem. 
□ 

4. A supporting manifold of & and properness 
of the contact action. 

Recall (cf. section 1) that 6* is the quotient space of S modulo C%. Here 

& denotes the space of all smooth spherical CR manifolds (5, H, J) with J 
oriented and compatible with H and C? denotes the identity component of 
the orientation-preserving smooth contact diffeomorphism group C^ relative 
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to H. In this section we will parametrize a local "supporting" space of 6* 
and show the properness of the C? action. 

We will work with the aid of anisotropic Folland-Stein spaces. For F a 
vector bundle over a closed contact manifold (M, H) and k a nonnegative 
integer, let Sk(F) denote the L2 Folland-Stein space of sections of F. ([FS], 
p.241 in [CL1]) If the bundle is clear from the context, we simply use the 
notation Sk instead of ^(JP), and a norm on Sk is denoted by | • |fc. Let 
(Sk denote the completion of 6 under the norm | • \k for a fixed smooth 
background contact manifold (S,H). Let 3fc(3,resp.) denote the space of 
all oriented compatible Sk (C^resp.) CR structures on (5, H) or a general 
contact manifold (M,H) depending on the context, (note that these CR 
structures are sections of the endomorphism bundle End (H)) 

Lemma 4.1. Suppose dim M = 3. For k > 6; (a) Sk is an algebra; (b) Let 
f be a smooth function on nonnegative real numbers. Then f oh is still in 
Sk for nonnegative Sk function h. 

Proof. . (a) is known, (e.g. [BD]) (b) is probably also known. We prove it by 
induction on k. Computing the derivative oi f ohm some contact direction 
give the derivative of / composed with h times the derivative of h in that 
direction, so induction hypothesis on k — 1 plus (a) implies the derivative of 
/ o h is in Sk-i- Hence / o h is in Sk, so to complete the proof we have to 
check the starting case k = 6. But it is straightforward by observing that SQ 

is contained in S\2 or Sf and ^3 is contained in C0, etc.. (see e.g. Theorem 
4.17, Corollary 5.16 in [Fo]) □ 

Lemma 4.2. Zk is a Hilbert manifold for large k, say, k>6. 

Proof. In [CL1], we parametrize 3k for k = oo, i.e. in the smooth category 
by a map <&j given by 

* j(£?) = Eo J + E,    Eo = (l + (l/2)Tr(E2))1/2. 

(p.228, Lemma 2.3 in [CL1]) Suppose E is in 5*.. (more precisely Sk(<£j)) 
By Lemma 4.1(a) h = E^Ei1 is in S*.. Take f(x) = (1 + x)1/2. By Lemma 
4.1(b) EQ is in Sk- Therefore $j preserves Sk spaces, so does TTJ. Thus we 
can still use $j or TTJ to parametrize 3k modelled on Sk(£j). □ 

Hereafter throughout this paper we will assume that k > 6 unless spec- 
ified otherwise.   We know that a CR structure J being spherical is char- 
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acterized by the vanishing of the Cartan tensor Qj. (p.227 in [CL1]) The 
linearization DQj is subelliptic when restricted to Ker Bj. (in view of 
Lemma 3.3 and Proposition 3.1 in [CL1]) When working in the Folland- 
Stein category, it is enough to still require the reference CR structure to be 
smooth for our purpose. 

Lemma 4.3. For a smooth spherical J in Zk (and an auxiliary smooth con- 
tact form), we have the following L2-orthogonal decomposition: 

(4.1) Sk(<Ej) = KerkDQj + DQj(Sk+4((Ej)) 

where Ker^ means elements in the kernel and also in 3^. 

Proof Differentiating the Bianchi identity BJQJ = 0 in Proposition 3.1 of 
[CL1] at J in the direction E implies DQj(E) belongs to the kernel of Bj. 
(note that Qj = 0) On the other hand, for E in KerkBj, we have 

DQj(E) = -(l/24:)L*aLa(E) + terms of lower weight 

with a = 4 + iy/3 according to Lemmas 3.3, 3.2 in [CL1]. For a not an odd 
integer, La is a subelliptic operator of weight 2, i.e.  satisfies the estimate 
(4.2) in [CL1], so restricted to KerkBj^DQj is a subelliptic operator of 
weight 4 according to the above formula, i.e. earns four derivatives in contact 
directions and we have the L2-orthogonal decomposition for DQf. 

(4.2) KerkBj = KerDQj + DQj(Kerk+4Bj). 

Here KerDQj consists of smooth elements since DQj is subelliptic, hence 
hypoelliptic when restricted to KerkBj. We also have the Sk version of 
Proposition 2.4 in [CL2]:(note that notation Dj in [CL2]= Bj in [CL1]) 

(4.3) Sk(<Ej) = KerkBj + B'^S^) 

basically because A j = BJB'J is a subelliptic operator of weight 4 by Lemma 
2.1 in [CL2]. Since each element in the range of B'j is an infinitesimal contact 

orbit at J and Q j equals 0 for J in the contact orbit of J, DQ j vanishes on 
B'JSk+2)- Therefore we can combine (4.3) and (4.2) to get (4.1). □ 

Take a smooth J in & and choose an auxiliary smooth contact form 6. 
There is a local slice 6 of Z passing through J by Theorem A of [CL2], 
defined by $j(KerBj) (note Bj = D*j) for elements in Ker Bj with small 
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I * |5,oo norm. By the Sobolev lemma for our anisotropic spaces (e.g., (4.17), 
(5.15) in [F]), we have Sk C S8_4/q C Sf C T6_4/q C 3%° for k > 8. Thus 
taking elements of small Sk norm, k > 8, in Ker Bj and then sending them 

to Zk through $j, we obtain an Sk slice 6(fc) passing through J. Consider 
the map 0 : ©^ —> DQj(Sk(<Ej)i defined by 

Q(J) = n(Qj). 

Here Qj is the Cartan tensor of (J, 0),7r is the composition of the orthog- 
onal projection TTJ : Sk-4(End(H)) -> ^^((Sj) (p.228 in [CL1]) and the 
projection: Sk-4(<£j) —> DQj(Sk(<£j)) according to (4.1). 

Proposition 4.4. £}-1(0) is a smooth finite dimensional submanifold of 

&(k) for k > 10 near a smooth J. 

Proof. It is easy to see that TT is smooth and since Q j is of type 4 (pp.249-250 
in [CL1]), the map: J G Sk -* Qj € 5/^-4 for & > 10 is smooth, (note that 
Sk forms an algebra for k > 6 by Lemma 4.1) Therefore £2 is smooth. We 
compute 

(4.4) D£l(J)(E) = D7r(0)DQj(E) 

= 7r(DQj(E)) = DQj(E) 

for E in Sfc(<£;). From (4.4) it is clear that DQ(J) is surjective. Further- 
more, the kernel of DQ(J) is the same as the kernel of DQj, which splits 
according to (4.1). Thus by the inverse function theorem £} is a submersion 
at J (Proposition 2 on p.27 in [La]), so n~1(0) has a smooth submanifold 
structure near J. Moreover, finite-dimensionality follows from subellipticity 
of DQj restricted to KerBj. □ 

We will use n~1(0) as a "supporting" background manifold to prove 6o 
(an open connected subspace of 6*; see section 5) is a smooth manifold. 
First we will show the properness of the contact action in the negative 
pseudohermitian curvature case. Let (M, H) be a smooth, closed, oriented, 
contact 3-manifold. Let 5fc(M,M) denote the space of all real-valued Sk 
functions on (M, H). 

Lemma 4.5. The pseudohermitian curvature RJJ belongs to S'/e_2(M,R) 
for J, 6 in Sk with k > 8. 
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Proof. Take a smooth contact form 9. Write 6 = u29 for positive u in 
£fc(M,R). The transformation law reads 

(4.5) AAbu + Rjgu - Rjfu? = 0. 

([JL]) Here the negative sublaplacian A^ is defined with respect to (J,0). 
Suppose J is in Sk- Then it is easy to see that A^u is in Sk-2 in view of 
Lemma 4.1 if we write J with respect to a smooth J as in p.249 of [CL1] 
and apply formulas on pp. 249-250 of [CL1] to express A^-u. Moreover Rj§ 
is in Sk-2 since Rjg is of type 2 as shown in the following transformation 
formula: 

(4.6) Rjj = Rl§ + -ifa Vi1 - vilm1) 

- Mvo,iI + vo,Ii + vii,II + vIl,ll) 

- ^iiKn + viitii) - ^nKii + nui) - 2K1 + ^njl2 

(see pp.249-250 in [CL1] where we did not give the above formula precisely) 
Now from (4.5) Rjj is therefore in 5^-2 in view of Lemma 4.1. □ 

Lemma 4.6. Let (M, H) be a smooth, closed, oriented, contact 3-manifold. 

Suppose the pseudohermitian curvature Rj Q = —1 for some smooth (J, 6) 

on (M, H). Then for any J in Zk, k > 8, there exists a uniquely determined 
Sk contact form 6 with RJ^Q = — 1. 

Proof Consider the map ![R : Jk x {5^ contact forms} —> Sk-2(M, R) defined 
by 

°fi(J,0) = Rjfi. 

(well defined by Lemma 4.5) The map 91 is smooth in view of (4.5) and 
(4.6). Differentiating 9t at (J,0) in the direction (J',0') = (2E,2h6) gives 

(4.7) D9l(J, e)(2E,2he) = i(Enril - ^,11) - (AH^H + Aii^n) 

+ 4A6/i - 2Rj §h 

according to (2.20) in [CL1] and (5.15) in [Lee].   Since Rj§ = —1,4A6 — 

2Rj § = AAb + 2Id is invertible.   It follows that .D9t(J, (9) is surjective. 

Moreover it is easy to see that the kernel (D9t(J, 0))~1(O) and the space 
{(0,2h9)} span the tangent space of the domain at (J,<9) and have only 
(0,0) in their intersection. That is to say, (D9l(J, 0))-1(O) splits. Therefore 
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1H is a submersion at (J,0). (Prop.2 on p.27 in [La]) Thus fH-^-!) has a 
submanifold structure near (J, 8) and it projects onto a neighborhood of J 
in 3*. 

On the other hand, suppose i2j.^. = —1 for a sequence of smooth (Jj, fy). 
(note that 0j is uniquely determined by Jj by Prop. 2.2) If Jj tends to J in 
*Sfc, we claim that ^ tends to ^ in ^ too so that RJJ = — 1. Write fy = itfO 
for positive i^j. Then Uj satisfies the equation (4.5) with (J, 9) replaced 
by (Jj,6j). Rj^Oj = — 1 implies Rj $ must be negative by the maximum 
principle. Moreover apply the maximum principle to the equation (4.5) 
where Uj is a maximum, hence (negative sublaplacian) A^Uj > 0. Since 
both Rj § and -Rj.^. are negative, we get the uniform C0 estimate of uf 

(4.8) max^ <[-RJA)       <C 
\ i' J max 

for a constant C independent of j in view of (4.6). Similarly applying the 
maximum principle at the minimum of Uj, we obtain 

(4.9) 0<c<[(-^) 
1 
2 < mm Un 

for a positive constant c independent of j. Let A& and A^y) denote the 

negative sublaplacians with respect to (J, 6) and (Jj^O) respectively. Using 
those formulas on pp.249-250 in [CL1], we have the following estimate: given 
a small e > 0, 

(4.10) \Ab(j)u - Abu\k-2 < e\u\k 

for j large and u in Sk- For J in Sk the difference between A& and the 
corresponding operator on the Heisenberg group is small for a small region 
on M in the sense of (4.10). By a standard argument (absorbing the right 
side of (4.10) and using a partition of unity for compact M), we still have 
the subelliptic estimate for A&: 

(4.11) \uj\k < C(|A6^|fc_2 + l^-lo). 

Write AbUj = Ab(j)uj + (Afe ~ ^b(j))uj and substitute in (4.11). Using 
(4.10), absorbing the right side to the left and applying the equation (4.5) 
to Ai^Uj, we obtain 

(4.12) ^k^C. 
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Here C is a constant independent of j and we have used (4.8) in estimating 
A^Uj and dominating the L2 norm of Uj. From (4.12) there exists a 
subsequence, still denoted Uj, which weakly converges to u in Sk but strongly 
converges to u in Sfc_i, say. Let 6 = u20. Applying (4.11) to Uj — u and 
using the interpolation inequality to absorb \UJ — u\k-2 to the left side, we 
get 

(4.13) IUJ - u\k < \RJj§ - Rjf\k-2 + Wj - u\z. 

Here we have used an interpolation inequality (Cor.2.11 in [BD]) to estimate 
u* — u3. It follows by (4.13) that UJ tends to u in Sk, and it is clear that 
Rjfi = — 1 in view of (4.5),(4.6). We have proved our claim. Now consider 
the space 3-1 of all smooth J in 2 such that RJJ = — 1 for some smooth 
8. (unique if exists) The argument in our first paragraph shows that 5-1 is 
open in 3 (in C00 topology). The argument (and our claim) above shows 
in particular that 3_i is closed in C00 topology. Therefore 3-1 =5- The 
lemma follows since 3k is the completion of 3 under the norm | • \k. □ 

We remark that the similar idea of the above proof has been applied to 
the case of a fixed CR structure in [CH]. We can now prove the properness of 
contact diffeomorphisms acting on 3 in the case of negative pseudohermitian 
scalar curvature. We can talk about Sk contact diffeomorphism on a contact 
manifold, (see Prop.2.18 in [BD]) 

Proposition 4.7. Let the assumptions be as in Lemma 4-6. Let (j)j be a 
sequence of contact diffeomorphisms in Sk+i with k > 12. Suppose (jAJj 
and Jj converge in Sk as j goes to infinity for Jj in 3k. Then there exists a 
subsequence of (j)j which converges in Sk+i- 

Proof Prom Lemma 4.6 we can associate a unique Sk contact form 0j to Jj so 
that Rjjfij — — 1- Let gj be the adapted metric associated to (Jj, ^):([CH]) 
i.e. gj = 0? + d6j(', Jj(')). gj converges at least in Sk-2 since 6j converges 
in Sk as shown in the proof of Lemma 4.6. ^Oj is just the unique contact 

form associated to Jj = ^ Jj satisfying the equation of pseudohermitian 
scalar curvature = -1. It follows that ffigj converges at least in Sk-2' Sk-2 

is contained in H^k~2^2 (the usual L2 Sobolev space) with (k — 2)/2 > 4. 
Therefore we can apply the result of Ebin and Palais (Theorem 2.3.1 in [Tr]) 
to conclude the convergence of a subsequence (still denoted (j)j) of fa in Hk/2. 
We need to show the convergence actually is in Sk+i- Take a smooth contact 
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form 9. There is a uniquely determined smooth vector field T such that 
6(T) = l,d9(T, •) = 0. For (Jj,0) we can choose Sk admissible coframe #j. 

([Lee]) (let ei be a smooth local section of the contact bundle H. Let a;1, cc;2, ^ 
be a local coframe dual to ei, Jei, T. Then fl1 is defined to be u1 + zo;2 and 
if J is in Sfc, then a;1, a;2, hence ^1 is in S/-) Write ^ = e2^"(9. Qj converges 
in Sk since 6j converges in Sk- Also write <f>j9j = e2^9.   fj converges in Sk 

since Jj converges in Sk by the assumption, (same reasoning as in the proof 
of Lemma 4.6) It is easy to see 

(4.14) <fi§ = e-29so+i+2fi0 

Let hj = —gj o (j)j + /j. Let 0j be a local Sk admissible coframe with respect 

to (Jy, 9). Then we can adjust 0j in Sk by a modulus 1 factor (still denoted 
0)) so that 

(4.15) ^j9
1

j=eh^9]  modulo £. 

((5.5) on p.421 in [Lee]) Now suppose (j)j converges in Si for / < k. Then 
hj converges in Si too. (the composition map of an Si function and an Si 
contact diffeomorphism is still 5/ and the map is jointly continuous for I > 6. 
A proof can be given by mimicking the one for the usual L2 Sobolev spaces. 
See pp.15-16 in [Eb]. Also see Prop. 2.13 in [BD] for the precise estimate. 
Note that we start with 5^/2 with k/2 > 6 in which ^ converges) It follows 
that (j)j9j and (^0j converge in Si when applied to vectors tangent to the 

contact bundle by (4.15). Let Zi = ei + iJei where J is the limit of Jj in 
Sk- Then <^*(2i) and 4>j^(Zi) converge in 5/. Therefore (j)j converges in 
S^+i. Thus by induction we finally obtain that (j)j converges in Sk+i-       □ 

We remark that the properness of the contact action for a contact man- 
ifold is generally not true. For instance, say, 5 contains a CR structure with 
noncompact CR automorphism group. Now we can apply Proposition 4.7 
to our case (M, H) = (5, H) on which there are canonical spherical J and 
contact form 9 such that Rj§ = — 1. (and AJQ = 0. See section 2) Let 
Cj denote the group of CR automorphisms relative to J with the identity 
component Cj. We have a [/(I) action on S given by fibre multiplications 
by unit-length constants. Let Qu^ denote the space of U(l) invariant ele- 

ments in 6. Let Cj" '' denote the identity component of the group of U(l) 

equivariant contact diffeomorphisms in C^. 
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Proposition 4.8.     (a) For J in G^^Cj equals U(l) = {fibre multipli- 
cations by unit-length constants}  and is contained in the center of 

GH      * 

(b) C -       /U(l) acts on 6U^ freely and properly. 

Proof Any CR automorphism (/> in Cj relative to J in Gu^ is ^7(1)- 
equivariant by Proposition 3.14 in [Ep]. Therefore it can be pushed down to 
a biholomorphism on iV, which must be the identity since genus (N) > 2. 
On the other hand (/> extends to a holomorphic bundle automorphism of L. 
Therefore </> is just a fibre multiplication by a nonzero holomorphic function 
on iV, which must be constant since N is closed (compact without bound- 
ary), (cf. Proposition 3.4) The second conclusion of (a) follows by the 

definition of C^  '' . Now (b) is clear by (a) and Proposition 4.7. □ 

In the next section we will parametrize a certain open connected subspace 
6*0 of e*'^1) = SUM/Cft{1)fi as a smooth manifold and show that 6*0 is 
diffeomorphic to P/Co, an open connected subspace of P/c. 

5. The smooth manifold structure on &0: 
Proof of Theorem A and Corollary B. 

Let PiC0 be the connected component of Pic, containing (L, J). Define Pf 

to be the quotient space of Pico modulo the action of 25 or Bdiffo.  Pt   is 

an open connected subset of P^c.   (actually they are the same since Pic is 
known to be connected. But we do not pursue it here) 

Given an element (L, J) in P;co, there associates a unique (up to a posi- 
tive constant multiple) hermitian metric || || j on L according to Proposition 

2.1. Define p : Z/\the zero section —* R by p(s) = \\s\\ j/\\s\\ j. Here J denotes 

the complex structure on L (and also S) associated to the fixed (or refer- 
ence) holomorphic line bundle (L, N) as before. It follows that p(Xs) = p(s) 
for A in C\{0}, so p can be pushed down to define a function on iV, still 
denoted p. Define mp : L —> L by 

mp(s) = p(7r(s))s 

where TT : L —> N is the projection. Note that mp maps S = {s e L : 
||s||j = 1} onto Sj = {s e L : ||s||j = 1}.  The contact bundle H defined 
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by subbundle of TS, invariant under the endomorphism m* J restricted to 

TS, differs from H in general. We need the [/(l)-invariant version of Gray's 
theorem. Let M be a closed (compact without boundary) smooth mani- 
fold of dimension 2n + 1 with a smooth U(l) action. Suppose for each £ 
in 17(1), the action A^ on M is a diffeomorphism. Let Diffu(<l\M) de- 
note the space of all [/(l)-equivariant diffeomorphisms. Let QS^1) denote 
the space of all [/(l)-invariant (smooth) contact bundles. It is clear that 
Diffu^(M) acts on ^BUW by pushing forward. In Appendix A, we will 
show that both Diffu^(M) and ^8U^ are smooth tame Frechet manifolds 
in the terminology of [Ha]; we will also show the following f7(l)-invariant 
version of Gray's theorem, (cf. Theorem 2.4.6 in [Ha]) 

Theorem 5.1. Any contact bundle near a given one H in S^1) is con- 
jugate to H by a U(l)-equivariant diffeomorphism near the identity. The 
identity component of Diffu^(M) acts transitively on each component of 
{8^(1). 

Now apply Theorem 5.1 to our case: M = S with the U(l) action given 
by fibre multiplications by unit-length constants, (cf. section 4) Since mp 

is [/(l)-equivariant (£7(1) action also defined on L), H is [/(l)-inyariant, 
so there exists a [/(l)-equivariant diffeomorphism (f> with (j)*H = H. Note 
that two choices of such cf) are different by f7(l)-equivariant contact diffeo- 
morphisms, i.e. the inverse of the one composed with the other belongs to 
C^(1)'0. Using cj) to pull back the £/(l)-invariant CR structure (H,m*pJ\H) 

on 5, we obtain a {7(l)-invariant CR structure J = (mpO^)*(J)|jH" in S^1). 

Define r : P;Co -> &u^ by ?(L, J) = (£, H, J) where J=(mpo <I>)*(J)\H. 
The map r gives rise to a map 

Tt. pt   _, &t,U(l) 
'       '   ±  ICQ W 

("uniqueness" of ||   || j by Proposition 2.1) Recall that 

6t,t/(i) = @^(i)/cY(1)'0. 

Endow g^1) with the C^-topology so that Q^u(^ has the induced quotient 
topology. 

Proposition 5.2. The map r1 : P/co —> (S1^^ is a homeomorphism onto 
its image. 
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Proof. To prove r* is continuous, we will suitably choose a unique || ||j 

and a unique </> for a given J. Remember || ||j is determined by A in 
(2.3). We normalize the solution A of (2.3) by requiring A = 1 at some 
point p, so A is uniquely determined. Furthermore, the map :J —> A is 
continuous by the standard arguments in the elliptic theory, (apply the 
Harnack estimates (Theorems 9.20, 9.22 in [GT]) to get upper bounds for 

log A and log A"1 (cf.(3.22))) Let Diff^^M) denote the identity compo- 

nent of Diffu^\M). Let 5B^(1) denote the connected component of QS^1), 
containing H. To pick up a unique (/>, we invoke the following result. 

Lemma 5.3. There is a local smooth tame map s : QSQ —> Diff0 (M) 

near a reference point HQ such that S(H)*(HQ) = H. 

We will prove Lemma 5.3 in Appendix A. By Lemma 5.3, the map: J —> 
H composed with 5 gives a continuous map: J —> (j) near a reference point. 
We have shown that r* is continuous. On the other hand, given J in ©^W, 
we can extend J to J in P;c as below. For y not in the 0-section of L, let 
P ~ WvWj an(i define Jy by the fibre dilation: Jy(v) = Jx(m~}(v)) for v in 
mp*Hx,x = m~1(y). Since J is [/(l)-invariant, it can be pushed down to 

define a complex structure c on iV: c(7r*(i;)) = n^Jv) for v in H£,£ in S. 
Here we identify Hi with the tangent space of N at Tr(£). Let SQ denote the 
0-section: N -^ L. For y in so(N), we define Jy(v) = 5o*c(7r*(^)) for v in 
Ty(so(N)). For v tangent to fibres, we just define J to be the usual complex 
structure on C in local trivializations. Now it is a matter to verify that J is 
smooth and hence belongs to Pic. First observe that the 2-plane distribution 
2) on L defined by mp*H(p G C\{0}) and tangent spaces of soiV is smooth, 
(in a local trivialization (z, u?), this distribution can be described by the 
kernel of the one-form ihzwdz + ihdw.  Here h(z,z) = ||s(^)||^ for a local 

holomorphic section s. cf. (2.4)) To show J is smooth, it is enough to prove 
J(v) is smooth for every smooth vector field v. Write v = v® + Vf. Here 
v®- in 2) is smooth while Vf is a smooth vector field tangent to the fibres. 
It is obvious that J(vf) is smooth. Let ii denote the linear isomorphism: 
Tjt{i)N —> 'Di for £ e L so that it o % = identity on 2)^. Note that it = so* 

at 7r(£) for £ in so(N). Now we can express 

JI(VQ(£)) =ieo c(7r*(^(£))). 

Since i : £ —» it is smooth as viewed as a section of End(7r*(TiV),2)) over 
L, it follows that J(v^)) is smooth, hence J is smooth. It is not hard to see 
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that the map ext : (g^1) —> Pic defined by ext(J) = J is continuous, (see 
also [Ep] for precise construction in a local trivialization and in terms of 
type (0,1) vector fields) Moreover, ext induces a continuous map ext from 
Qt,U(i) to pt^ ky ^Yie proof of Proposition 2.4 and ext or1 equals the identity 
for the same reason. Therefore r* is injective and hence a homeomorphism 
onto its image. □ 

In fact r* is surjective onto the connected component of (S*'^1), contain- 
ing the reference element [J]. We will see this below. First let us determine 
the universal cover of (5, H, J). Denote the unit disc in the complex plane 
C by D. Define the hermitian metric || ||e on the trivial holomorphic line 
bundle D x C by 

ll(^)l|e = M7(i-M2)e 

for e = m/(g — 1). (recall that — m is the first Chern number of L and g is 
the genus of N) It is a direct verification that h(z,z) = ||(^, l)||e satisfies 
(2.1) in D, the universal cover of N. Write an element A in 17(1,1) x 17(1) 
as below: 

/a   b   0> 
A=[c   d   0 

\0   0   n> 

for u in J7(l), ( ,) in C/(l, 1) with respect to the quadratic form given 

by U     0i V The grouP U(^ !) x ^(i) acts on i? x C by 0   -1 

A(z, w) = ((az + 6)/(c2: + d), uw/(cz + d)e). 

It is easy to see that A leaves || ||e invariant, (just note that \z\2 — \w\2 = 
\az+bw\2 — \cz+dw\2) Define Se C DxCby || ||c = 1. It follows that S1/(g_1) 
is an m to 1 cover of Sm^g_i) = Se and a g — 1 to 1 cover of Si. Since Si (= 
S3\{^ = 0}) is obviously spherical, Se is spherical too. The holomorphic line 
bundle L over the Riemann surface N gives rise to a representation of iri(N) 
in P£/(l,l)xC7(l) acting on DxC. Here PC/(1,1) = SC/(1, l)/center acts on 
D as holomorphic transformations. It follows that Se/ni(N) is a spherical 
circle bundle of L over N with the hermitian metric induced from || ||e 

satisfying (2.1). By uniqueness (up to a constant multiple) S = Se/TTi{N). 
As a consequence, the universal cover of S (as CR manifold), denoted S, is 
the same for any (#, ci) and is the infinite cyclic cover of Si = S3\{i(; = 0}. 
It is well known (e.g. [BS]) that S is homogeneous. 
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Proposition 5.4. Every element in 6° is U(l)-invariant up to a contact 
diffeomorphism in C*L 

Proof. First note that every spherical CR manifold is locally homogeneous 
in the weak sense (i.e. any two points have isomorphic neighborhoods). 
By TheoremJS.2 of [ENS] or Theorem 4 of [Go], the universal cover of any 
element in (5° is homogeneous and hence is CR equivalent to S by the 
classification. ([BS] or [ENS]) Denote F the fundamental group of S. It is 
not hard to see (e.g. [FG] p.44) by the theorem of Seifert and Van Kampen 
that F has a presentation: 

F = (ai, &i,..., ag, bg, h : Il-jlf [a*, &j] = h~m, h  central) 

(—m is the first Chern number or Euler number). Realize F as Deck trans- 
formations of S via the homomorphism j : F —> AutcR(S). It is known 
([BS], p.234) that AntcR(S) satisfies the following exact sequence: 

0  > R  > AntcniS) -^ PU(1,1)  > 1. 

We claim that pr o j(h) — /, the identity. Since the quotient space j(T)\S 
is CR equivalent to (5, H, J) for some J in 6°, it is compact, and hence 
has finite invariant measure. Autc#(S') acts on S transitively with the 
compact isotropy group, isomorphic to 17(1), so j(r)\ AVXCR{S) is compact, 
and hence has finite invariant measure. Let H = pr o j(r). It follows that 
i7\Pt/(l, 1) is compact and has finite invariant measure. By Lemma 5.4 
in [Ra], H has property (S) in PJ7(1,1). Therefore by Corollary 5.18 in 
[Ra] the centralizer Z(H) of H in PC/(1,1) is the centre of PC/(1,1), which 
consists of the identity. Now note that proj{h) is in Z(H) since h is central. 
Hence pr o j(h) = /, so h is mapped into the R part by j. Let dev denote 
the developing map from S onto Si C S3. Let hoi denote the holonomy 
map from AutcniS) onto AutcR(Si) = PU(1,1) x U(l) C AutcR(S3) = 
P[/(2,1). The developing pair (hoi, dev) induces naturally another pair 
{hoi', dev') : (Autc/*(£'),£) -» (AuicR(Se),Se) by noting that both Si and 
^ are covered by the common covering space Si/^-i). Let a'^b'^ h' denote 
the corresponding generators of a;, &;, h under the map hoi' oj, respectively. 
By projecting the commutator relation in F into the U(l) part of AutcR(Se), 
we obtain / = (/i7)-771. But for J, h' = 1. Hence for J in 6°, h' is also equal 
to the identity by continuity, (note that the representation map j depends 
on our spherical CR structure J on (S^H)) Thus the subgroup hoi' o j(T) 
of Autc^Se) can be viewed as a representation of 7ri(N) generated by 
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a'^b'i in kntcR^Se). Therefore hoV o j(F)\Se is the spherical circle bundle 
SJT, of some holomorphic line bundle L, determined by Proposition 2.1, as 
discussed previously, (in particular it is C/(l)-invariant) On the other hand, 
hoi' o j(T)\Se is CR equivalent to j(T)\S representing (5, H, J) in view of 
dev' being a covering map. Let E denote the CR isomorphism from (5,77, J) 
onto SL- Composing a bundle isomorphism between L and L with a fibre 
multiplication map m^, we can construct a i!7(l)-equivariant diffeomorphism 
</> : S -+ SL. (note that S may not be i7(l)-equivariant) Now ^HL and 
</>* J^ are invariant with respect to the [/(l)-action on S. By Theorem 5.1 
we can find a f7(l)-equivariant diffeomorphism ^ such that ip o (/J

-1
 o E is in 

C? while (^ o c/)"1 o E)"1^/) = T/;"
1

* O 0*( JL) is C/(l)-invariant. D 

Let 6° denote the connected component of 6, containing (5, H, J). Let 
gO,c/(i) denote the space of ?7(l)-invariant elements in 6°. Any (S,H,J) 
in (S0'u^ extends to a complex structure J on L. The argument in the 
above proof of Proposition 5.4 shows that (5, i?, J) is CR-equivalent to 
SL for a certain holomorphic line bundle L. The CR isomorphism between 
(S, H, J) and SL implies the existence of a holomorphic bundle isomorphism 
between (L, J) and L in view of the proof of Proposition 2.4. Since SL 

is uniquely determined by L_(Proposition 2.1), it follows that (S,H,J) is 
uniquely determined by (L, J), i.e. suppose two (5, iJ, Jj) have isomorphic 
extensions (L, J;), i = 1,2, then (S,H,Ji) is CR-equivalent to (£,#, J2). 
Furthermore by Proposition 3.14 in [Ep] we have 

Lemma 5.5. Let (L,Ji) be the extension of (S,H,Ji) in Q^^.i = 1,2. 

Suppose (L, Ji) is isomorphic to (L, J2) by a bundle automorphism in 
Bdiffo. Then (S,H,Ji) is CR-equivalent to (S,H, J2) by a contact dif- 

feomorphism in C-s '' . 

Let e17^)'0 denote the connected component of (S^1), containing 
(S,H,J). Define 6^ to be the quotient space of e^1)'0 modulo C^'0 

(or C? : two quotient spaces are the same by the above discussion), i.e. two 

elements in g17^)'0 are equivalent if one is carried to another by a contact dif- 
feomorphism in C^(1)'0 (or C% resp.) by pulling back. Observe that 6^ is an 

open connected subset of G^^/C^ which equals 60/C^ in view of Propo- 
sition 5.4. Since a CR equivalence </> between two [/(l)-invariant CR circle 

bundles is t/(l)-equivariant, we have S^1) (= ©^D/Cj^'0) = ©^/C^. 

Proposition 5.6. r1 : P*    -> ©0 is surjective and a homeomorphism in 
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view of Proposition 5.2. 

Proof. Given an element (S, H, J) in 6t/(1)'0? there associates an extension 
(L, J) in Pico. We claim r*([(L, J)]) = [(S,H,J)}. Recall that the con- 
struction of r* involves a map Trip and a £/(l)-equivariant diflfeomorphism 

(j) on 5. Extend ^ to a bundle automorphism (j) in Bdiffo. r(L, J) = 
(5, H, {rrip o 0)*(J)|flr) is the restriction of (rap o </>)*(J) on L to (S,H). 
Since rrip o <^ is a bundle automorphism of L in Bdiffo, it follows that 
(5, ff, (rap o (/>)*(J)) is CR-equivalent to (S^H^J) by a contact diffeomor- 

phism in C-y       according to Lemma 5.5. □ 

We remark that in [KT] Kamishima and Tan studied the deforma- 
tion space of ?7(l)-invariant spherical CR-structures by analyzing the 
space of developing pairs. Their deformation space for M = S is in 
one-to-one correspondence with our space (3tlU^ by "contact" reduc- 
tion. According to Corollary 5.2.2 in [KT], this space is homeomorphic 
to Hom(7ri(iV), PU(1,1))/PU(1,1) x T2^ and it is well known that the di- 
mension of Hom(7ri(iV), PU(1,1))/PU(1,1) is 6g - 6, the dimension of Te- 
ichmuller space.(e.g. [Go]) Thus the total dimension is 6g — 6 + 2g = 8g — 6 
(cf. Theorem 6 (d) in [Go]) while Proposition 5.6 shows that an open con- 
nected subset 6o of 6t'Lr(1) is homeomorphic to Pf of the same dimension 
by Theorem 3.9. 

Next we want to endow 6Q with a natural differentiate structure 
through the general local slice theorem, and with this differentiable structure 
on 6O,T* in Proposition 5.6 is a diffeomorphism. Given J in G^1)'0, there 
passes a local slice 6 of 3 according to Theorem A of [CL2]. Let ^3 denote 
the diffeomorphism given in Theorem A (1) of [CL2]. Define ip : P;Co —> 6 
near (L, J) with r (L, J) = (5, H, J) by 

(5.1) V7 = proJ5 0 ^P-1 0 r. 

Here projs denotes the projection onto the ©-component. Since the pullback 
by a contact diffeomorphism does not change the vanishing of the Cartan 
tensor, ip actually maps into £J_1(0). At (L, J), there passes a local slice, 
denoted 6pzC, by Lemma 3.7. We claim ip : 6piC —> n~1(0) is an immersion 
(between two finite dimensional manifolds) by choosing unique p and <f) in 
defining r as explained in the proof of Proposition 5.2. First note that 
the action of bundle automorphisms does not change the transversality of 
tangent vectors at J in Pico-   (here transversality means transverse to the 
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orbit of OS or Bdiffo acting on J) Use the bundle automorphism mpo(j) in the 
proof of Proposition 5.6 to reduce our immersion problem to the following: 

Lemma 5.7. Let J in (S^1)'0 be the restriction of its extension J in P^CQ. 

Let J1 be an infinitesimal variation of J and J' be the corresponding in- 
finitesimal variation of J in Z-   Suppose J' is tangent to the orbit of C^ 

acting on J.  Then J' is also tangent to the orbit of 53 acting on J. 

Proof. Take a local trivialization (2, w) of L relative to J with w being the 
fibre coordinate. Let 5 be the local holomorphic section given by z —> (2,1). 
Let h = h(Z) z) — ||s(2:)||2 where the hermitian metric || || is chosen according 
to Proposition 2.1. By Lemma 5.5 S is precisely discribed by || || = 1 or 
hww = 1 in the above local trivialization. It is easy to verify that Z = 
dz — (logh)zwdw is tangent to S. Let 91 = dz,92 = dw + (logh)zwdz. Then 
l^1, 82} is dual to {Z, dw}. Now we can write J = iO1 ® Z+ conjugate and 
J = J + (i62 <g) 9^+conjugate). Moreover let Jt be a family of extensions 
of Jt with Jo = J, Jo = J. Let Zt = Z + a^Z be a frame of type (1,0) 
with respect to Jt with ao = 0. (i.e. an eigenvector of Jt with eigenvalue 
i) Let 0l = (fl1 — (ai_)01)/(l — |at|2). It is straightforward to determine 
0% such that {Ol,e$,9},0$} is dual to {Zudw, Zt.d^}. The result is 0$ = 
dty + (log h)zw6t + at(log h)zw0l. 

It follows that Jt = Jt+{i<0t®dw + conjugate). Computing the derivative 
at t = 0 gives 

J^ = J^ = 2ia/
tdz ® Z + conjugate 

by observing that 0% = 0. Writing_ ^ = Si^rf^ ® 9^ + Ei*wdz ® 9^ + 
conjugate (cf. (3.6)), we obtain Ei1 = 2ia,

t,Ei* = — 2za^(log/i)5. Hence 
Ei = Ei* + Ei1? = 0 (cf.(3.24)) by noting that P = (logfc)z. Now by the 
assumption we can write J' — B'j(f) = f^81®Z + conjugate, (in [CL1] we 
write Z\ instead of Z, and choosing the specific contact form (2.4), we have 
the torsion A^} to vanish by (2.6)) That is to say, 2ra£ = f,!1- To show J/ = 
P(V) for some V represented by (v1, v) (cf. (3.31)), we take vl = /, 1/2i and 

v = -fjLf/2i. It follows that P(V) = 2z(^1j^)i + ^1) = (Z,1!^) = (i^O) 
which represents J7. □ 

Proof of Theorem A. By Lemma 5.7 the differential of r maps a tangent 
vector of Gpic at J to a tangent vector transverse to the orbit of C^ acting 

on J.   It follows that the differential of ^ (cf.(5.1)):   &Pic -» H"1^) is 
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injective. Therefore ^(Spic is an immersion by the inverse function theorem, 
so ipl&pic gives rise to a local coordinate map for ©Q 

near [J] ^ Y^ew 0^ 
Proposition 5.6. Transition functions of these coordinate maps are smooth 
because ©Pic's can be viewed as local coordinate neighborhoods for the 
smooth manifold P/c. (cf. Theorem C) Thus 69 is a smooth manifold and 
in the way to define its differentiable structure we actually obtain that r* is 
a diffeomorphism. Hence the dimension of ©Q equals the dimension of P/c, 
which is 2(4# - 3) = 8g - 6 by Theorem C. □ 

Proof of Corollary B. L\S well defined in view of Proposition 5.4. ^From the 
proof of Proposition 5.4 we learn that any spherical (5, H, J) in (5° is CR- 
equivalent to SL for some holomorphic line bundle L. Let </> : (S,H,J) —» 
(SL,HL, JL) denote this CR-isomorphism. Take 0 = </>*(#[,)• It is obvious 
that (S,H,J,0) is in 9Jt°1?0 and t maps [(5,H, J,0)] to [(5,^,7)]. Thus 
L is surjective and hence bijective in view of Corollary 2.3. On the other 
hand it is easy to see that both t and its inverse are continuous, so L is a 
homeomorphism. □ 

Appendix A: The [/(l)-invariant version of Gray's theorem. 

We will prove Theorem 5.1 and Lemma 5.3. First denote the smooth U(l) 
action by Up,0 < p < 27r with UQ = L^TT- Pick a C/(l)-invariant metric g. 
(which can be obtained by averaging the action on an arbitrary metric) Any 
i7(l)-invariant contact bundle H in ^8U^ can be uniquely determined by a 
[/(l)-invariant 1-form 9 with 9 A dO ^ 0 and \0\g = 1. Here | \g denotes the 
pointwise length with respect to the metric g. Still denote the space of all 
such 1-forms by QS^1). 

Lemma A.l. QS^1) ^s a tame Frechet submanifold of the tame Frechet 
manifold 25. 

Proof Let ft1 (fi^-/^, respectively) denote the space of all smooth ({7(1)- 
invariant, respectively) 1-forms on our closed manifold M. It is known that 
ft1 is a tame Frechet space ([Ha]). Since the process of averaging the 17(1) 
action on a 1-form is a tame linear map from ft1 to O^-QN, it follows that 

fij/n) is a tame direct summand, hence a tame Frechet space. (Lemma 1.3.3 
on p. 136 in [Ha]) Now consider the space 

Te&vW := {smooth 1-form 77: (ri,9)g = 0, Uft = 77} 
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where (,)g denote the pointwise inner product with respect to g. It is easy 
to see that the linear map proj : f^n) —> TQ^B

17
^ given by proj(rj) = 

77 — (77,9)g0 is tame. Therefore To^Bu^ is a tame direct summand of fi^-n, 

hence a tame Prechet space. Define a map $0 : Te^Bu^ —> QS^1) by 

**fa) = fa + 0)/to + 0|s- 

If we endow QS^1) with the C00 topology, then $0 is a local homeomorphism 
near 0 with its inverse TTQ given by 

Mv) = v/(r],0)9-0. 

Now we can compute the transition function for the overlap of two neigh- 
borhoods centered at 8 and 9': 

ve* o $0(77) - (77 + 0)/(7i + 0,0% - 0'. 

It is easy to see that TT^/ O $0 is smooth tame. We have shown that QS^1) is 
a tame Frechet manifold. Actually the map $0 also parametrizes 53 near 9. 
Therefore ^BUW is a tame Prechet submanifold of 05. □ 

Lemma A.2. Diffu^(M) is a tame Frechet submanifold of Diff(M), 

the group of smooth diffeomorphisms on M. Moreover, Diff^(M) is a 
smooth tame Lie group. 

Proof Let TeDif f{M){TeDif fu^\M), respectively) denote the space of all 
smooth ((7(l)-invariant, respectively) vector fields on M. Here e denotes the 
identity diffeomorphism. It is easy to see that the map pr : TeDiff(M) —> 
TeDiffuW(M) given by 

27r 

Vr(X) = ±jJup*{X)dp 

is linear and tame. Therefore TeDiffu^l\M) is a tame direct summand of 
the tame Prechet space TeDiff(M). It follows that TeDiffu^\M) is also a 
tame Frechet space. Given a smooth vector field X on M, we denote expp X 
the time =1 point of the geodesic (with respect to the invariant metric g) 
passing through p in M with the velocity X. Define * : TeDiff(M) —> 
Diff(M) by ^(X)(p) = exppX. It is known that * parametrizes Diff(M) 

near e. Moreover, * maps the subspace TeDiffu^ (M) (injectively for sure) 
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into Diffu(l\M) since C/^'s are isometries with respect to g. We claim that 
* restricted to TeDiffu{<1\M) is actually surjective onto DiffuV){M). 
Suppose (j) is a f7(l)-equivariant diffeomorphism near e and let X = \I/-1(<^). 
We need to show that X is [/(l)-invariant. Let <j)t denote the geodesic flow of 
X with respect to g. Since Up is an isometry (with respect to g), Upo faip) 
is a geodesic connecting Up{p) (t = 0) and Up o <f>(p)(t = 1) for p in M. 
On the other hand, fa o Up(p) is a geodesic connecting Up(p) {t = 0) and 
(j) o Up(p)(t = 1) which equals Up o <^(p) by the assumption. Now for </> close 
enough to e, the uniqueness of geodesies connecting two points in a convex 
neighborhood implies Up o fa = fa o Up. It follows that Up* o X = X o Up, 
i.e. X is E/(l)-invariant, so ^ parametrizes Diffu^l\M) as a tame Prechet 
submanifold of Diff(M) near e. For a ?7(l)-equivariant diffeomorphism 
ip ^ e, the local parametrization \I/-0 defined by ^^(X) = ^(X) o -0 for 
Diff(M) also parametrizes Diffu^l\M) near ^ when X's are restricted 
to TeDiffu^\M). We have shown that Diffu^\M) is a tame Frechet 
submanifold of Diff(M). It is easy to see that Diffu^l\M) is a group 
under composition and Diff(M) is a smooth tame Lie group (p. 148 in 
[Ha]). It follows that Diffu^1\M) is also a smooth tame Lie group.        □ 

Proof of Theorem 5.1. The action P : DiffuW(M) x <BUW _> ^U(i) is 

described by 

p(<j>,e) = (f>*e/\<p*e\g. 

1 
It is easy to see that the maps:((/>, 6) —> 0*0 and 77 —» {ri,rj)g = \rj\g are 
smooth tame, so P is smooth tame. Let ^(X) = DiP(e19)(X), the partial 
derivative with respect to the first variable of P at the identity e. Let H 
denote the contact bundle annihilated by the contact form 9. Let fa be a 
smooth family of {7(l)-equivariant diffeomorphisms such that 0O = e and 
d 

fa = X. We compute 
t=o dt 

d_ 
~dt 

-1 

I w1 = ^ 
t=o d* 

(l^g) 2 

= -(X\M,0)g 
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for X tangent to H. It follows that for X tangent to iJ, 

b^ = Jt 

~dt 

t=o 

t=o 
x\de-{x\de,e)ge 
nH*{X\de). 

WA^o 

Here 7r#* is the projection onto the orthogonal complement of 6. Now 
given 77 in Te^u^l\ we want to find X such that 7rtf*(XJ<i0) = 77. It is 
easy to find a unique X tangent to H so that X\d6 = 77 on H. Since 
9,H, and rj are all i7(l)-invariant, it follows that X is also [/(l)-invariant 
by uniqueness. On the other hand, X\d8 = 7rH*(X]d8) on H. But 77 is 
orthogonal to 6. Thus bg^X) = TTH* (Xjd6) = 77. We have proved that 
the map: X -» bo(X) = D1P(e,e)(X) from TeDiffu^\M) to Te%>u^ is 

surjective with a right inverse 77 —> X. It is easy to check that the linear 
mapiT? —> X is tame. Now our theorem follows from Theorem 2.4.1 on p. 198 
in [Ha]. □ 

Proof of lemma 5.3. First observe that in the proof of Theorem 2.4.1 on 
p. 198 in [Ha], we actually show that the action with a reference point fixed 
is locally surjective and has a smooth tame right inverse by Theorem 1.1.3 
on p.172 in [Ha]. This means in our case the action (j) —» P((?!>, #0) with 
#0 fixed is locally surjective and has a smooth tame right inverse V. Set 
s{H) =jy{0))~1 where 0 is the contact form associated to the contact 
bundle H near HQ. □ 

Appendix B:    An infinitesimal slice of STt-i^/C^-. 

Take a family of pseudohermitian structures (J^, 9^) on (5, H) with J(o) = 

J, 0(o) = 0. At t = 0, express 

(B.l) (Jw, 0W) = (2Eilel ®Zi + 2El
lel ® Zi, 2hJB) 

where Eil is a deformation tensor at J and h is just a real-valued function, 
(see (2.14) on p.231 in [CL1]; also note 6(^\H = 0) Next we observe the 
action of 0%.  Let fa 6 C^ be a family of contact diffeomorphisms with 
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(/>o = identity. Compute 

(<j>*tJ,<t>tO) = (LxfJ,LxfQ)   (Lemma 3.4 on p.239 in [CL1]) 
t-Q 

= (2B'jf,-(ff)0) 

((3.13) and the proof of Lemma 3.4 in [CL1]) 

where B', is the second-order operator defined on p.236 in [CL1] and T is 

the vector field uniquely determined by ^(T) = l,T_id0 = 0. Define 

B,jf = B'jf-±(ff)e. 

Then we have the following orthogonal decomposition: 

(B.2) T(lo){(Jid) : e\H = 0} = KerBj 0 Range B'3 

where Bj is the adjoint operator of B'p given by 

B3{E) = BjE+l-h0 

for E = E + k§, E = E^O1 ® Zj + ^i1^1 ® Zi. Here 5j is defined on 
p.235 in [CL1].   Note that Range B'* is the tangent space of the orbit of 

Cft passing through (3,0). The decomposition (B.2) is valid either in L2 

category or in C00 category mainly because of the fourth-order operator 

BJB'J = Aj - -f2 = -£* £a + O2   ( a = iJ- ) being subelliptic.   (see 

Lemma 2.1 in [CL2]) Now linearizing the equations Rj^ = — 1, AJJ = 0 at 
(J, (9) in the direction (• —> J, • —► 5) given by (B.l), we obtain 

(B3) f    i(£;iI)I
1-£;I

1
)1
I) + 2/i + 4A6/1 = 0 

1    EI
1
io + 2/i>I

1 = 0 

by (5.15), (5.9) in [Lee] and (2.20), (2.18) in [CL1], where Abh = -(/i/ + 
/ij1). (see (4.10) in [Lee]) Since elements in Range B'* satisfy the linear 

equations (B.3), we get from (B.2) that an infinitesimal slice of QJt-^o/C^ is 

the intersection of KerBj and the solution space of (B.3). Write K = K+k0 
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in this infinitesimal slice. It follows that K satisfies the following system of 
equations: 

^V + ^V + ifco^O 

iCtfi1,!1 - tfi1,!1) + 2fc + 4A6fc = 0 
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