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1. Introduction. 

1.1. Introduction to the problem. Let M be any compact, oriented 
smooth Riemannian surface without a boundary, and M{aija2vi.jan} (where 
a* > 0, VI < i < n) denote a K-surface associated with M. A Riemannian 
metric g is said to be well defined or smooth in M{aija2j_)an} if it satisfies 
the following two conditions: (1) g is smooth everywhere on M except in a 
set of singular points {pi,p2j * * • ^Pn}- (2) For any i{l < i < n), the metric 
g has a singular angle of 27ra; at the point pi. Therefore, the scalar curvture 
of any metric which is defined in a K-surface must have a 8—distribution in 
M; and have a concentrated weight at every singular point of the metric. 
(This is the reason why we called it K-surface.) Two smooth Riemannian 
metrics on M{aia2i^any are pointwise conformal to each other if they are 
related by a multiple of a smooth positive function on M. An old and en- 
during problem in 2 dimensional Riemannian geometry and real analysis 
is whether there always exists a "best metric" in any pointwise conformal 
class in a K-surface. Of course, the answer to this question really depends 
on what the "best metric" is. In this paper, we propose to consider two 
metrics as the likely candidates of the "best metric." The first is the ex- 
tremal metric, which is a critical point of an energy functional (L2 norm 
of the scalar curvature function). The second metric has a property that 
its scalar curvature function has an umbilical Hessian. In other words, the 
2nd covariant derivative tensor of the scalar curvature function of the met- 
ric is pointwise proportional to the metric tensor. For convenience, we use 
the abbreviation "HCMU" to denote this second metric (the Hessian of the 
Curvature of the Metric is Umbilical). Both extremal metrics and HCMU 
metrics are defined in section 2. The extremal metric includes the HCMU 
metric as a special case; both metrics include the constant curvature metric 
as a special case. While we believe that the extremal metric is the ultimate 
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choice of the "best metric," we concentrate on studying to what extent the 
topology of the underlying surface is determined by the presence of a HCMU 
metric in this paper. Our main result is: 

Theorem 1. Let g be a HCMU metric in a K-surface M[aija2j...jan}. Then 
the Euler-Lagrange character of the underlying surface should be determined 
by 

3 

x(M) = 53(l-ai) + (n-j) + 5 
i=l 

where s is the mumber of critical points of the curvaure Kg (excluding the 
singular points of g). Here we assume that ai, ^2, ....a^ (0 < k < n) are the 
only integers in the set of prescribed angles {CKI,^, ••• ,an}; and assume 
that {pj+i,--- ,pk} are the only local extremal points of Kg in the set of 
singular points {pj, 0 < j < k}. 

This theorem has an important implication: 

Theorem 2. // none of the prescribed angles in a K-surface is an integer 
multiple of 27r; this K-surface supports a HCMU metric if and only if it 
is a football with two different angles at the two poles. Furthermore, any 
HCMU metric in these footballs must be rotationally symmetric and uniquely 
determined by the area. 

Another corollay of Theorem 1 is: 

Corollary 1. If g is a HCMU metric in a K-surface MaijQ,2}...)Q:n; then 

1. The curvature Kg is continuous on all of the singular points of g. 

2. Any singular point of metric g whose singular angle is not an inte- 
ger multiple ofZir (i.e.,{pk+iiPk+2, * * * iPn}), ™<ust be a local extremal 
point of Kg. 

3. The curvature Kg does not have any smooth saddle point. 

k 
4. 5>-^) + (n-fc)<x(M). 

i=l 
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Theorem 1 was proved by studying the structure of a special Killing 
vector field. The method is elementary, geometrical. The most important 
step is to show that this Killing vector field must only have a finite number 
of singular points. In the proof, it is not assumed that the scalar curvature 
of HCMU metric is bounded. However, we do assume any HCMU metric 
must have a finite energy and area since it is a critical point of the energy 
functional. 

1.2 Historical Remarks. The classical uniformization theorem asserts 
that every pointwise conformal class, in a smooth surface without a bound- 
ary, admits a constant curvature metric. Unfortunately, the parallel state- 
ment in a K-surface is not always true. For instance, there is no constant 
curvature metric in a football if the two angles at the two poles are differ- 
ent. However, every football does support a HCMU metric. Since a constant 
curvature metric is also a HCMU metric, one might be tempted to ask if 
there always exists a HCMU metric in any pointwise conformal class in a K- 
surface. The answer to this question is no; and we will give some necessary 
conditions for the existence of a HCMU metric in a K-surface. The remain- 
ing question is: what should the "best metric" be so that every pointwise 
conformal class will admit one? To answer this question, we propose the 
following problem: 

Conjecture/Problem 1. Is any smooth Riemannian metric in a K- 
surface pointwise conformal to an extremal metric? 

Observe that a HCMU metric is also an extremal metric; and a constant 
scalar curvature metric is also a HCMU metric. According to [10], these 
three kinds of metrics are identical in any smooth surface without a bound- 
ary. If the problem 1 had a positive answer, it then included the classical 
uniformization theorem on a smooth surface as a special case. There have 
been numerous attempts to generalize the classical uniformization theorem, 
mainly focusing on the solvability of the scalar curvature equation (2.4) on 
a given K-surface. Independently, [12] and [13] have found some sufficient 
conditions for a K-surfaces to admit constant curvature metric. Under some 
restrictive conditions, [6] gave some necessary conditions for a K-surface to 
support a constant curvature metric. However, [3] had constructed a se- 
quence of constant curvature metric in S2 with 3 singular points, where the 
singular angles could be made arbitrarily large. Also in [3] , E. Calabi gave 
a sufficient condition which should be satisfied by the three singular angles, 
so that S2 with these angles will support a constant (positive) curvature 
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metric. 
There will be no uniformization theroem in a K-surface if we consider 

only the constant curvature metric as the "best metric." Therefore, we 
think the extremal metric may be a better candidate for the "best metric." 
If the problem 1 had been positively solved, it would be clear one should 
focus on the understanding of the topological obstructions to reduce the 
equation (2.3) to (2.4) and to reduce the equation (2.1) to (2.3)(these three 
equations are given in section 2). The present paper will answer to what 
extent the existence of HCMU metric in a K-surface restricts the topology of 
the underlying K-surface. Even though a constant curvature metric is also a 
HCMU metric, they shall be excluded from the discussions here. Therefore, 
a HCMU metric, in this work, must have a non-constant scalar curvature 
function. 

E. Calabi[4] has constructed a smooth HCMU metric g0 in S^222y. It 
was not known to him whether there exists any other HCMU metric on this 
K-surface. In [2], E. Calabi shows that any extremal Kahler metric must 
have maximized symmetry determined by the complex structure. He raised 
the question if the space of extremal Kahler metrics in same DeRham class 
is connected and if it could have different energy levels, since any extremal 
Kahler metric must be a local minimizer. At least in dimension 2, the answer 
to these questions are all negative. Using the main theorem, another HCMU 
metrics in 3% 2 2 are constructed explicitely. This metric demonstrated less 
symmetry and is not locally isometric to the metric constructed by E. Calabi; 
and the two metrics have different energy levels. However, these two metrics 
are connected in the same DeRham class. 

Recently, we learned an ambitious program of Donaldson [18] where he 
puts a Riemannian metric 1 in the space of Kahler metrics such that the 
later becomes an infinite dimensional symmetric space. The conjecture (or 
question) he raised is whether such a symmetric space is always geodesically 
convex. His program shows that a positive answer to this conjecture (or 
question) leads to the uniqueness of the smooth extremal Kahler metric in 
each Kahler class up to holomorphic transformation. Therefore, the above 
mentioned non-uniqueness example of degenerated extremal Kahler metrics 
becomes rather interesting and need to be further understood. Noticed 
that any HCMU metric is a degenerated extremal Kahler metric. Follow 
Donaldson's program, in [17], we proved the following results: a) the space 
of Kahler metrics is convex by C1,1 geodesic; b) it is a metric space; c)the 
extremal Kahler metric is unique in each Kahler class if the first Chern class 

lthis metric is also introduced by Mabuchi [20] and S. Semmes in [19]. 
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is strictly negative. The details of these results will be appeared else where. 
These results certainly make these examples we constructed here much more 
interesting. 

Another significant implication of these examples is that the solution of 
the Euler-Lagrange equation 2.1 is not unique, even under a very strigent 
boundary conditions. Both Calabi's metric and the one constructed by 
author have uniformly bounded curvature; the two metrics differ in the 
neighborhood of the singular points only by a smooth positive function on 
S2. Calabi's metric has more symmetry and has less energy. We conjecture 
it is a real minimizer in its DeRham class. 

A few words about the organization of this paper. In section 2, we intro- 
duce the vaiational problem, give two versions of Euler-Lagrange equations 
and then prove the two versions are equivalent. Also in this section, we 
define the three kinds of metrics discussed here. In section 3, we first show 
Calabi's construction of a HCMU metric in 52,2,2- Then we use the Theo- 
rem 1 to analyze all the HCMU metrics in S2 2 2- Using these information, 
we construct explicitely two different HCMU metrics in 3% 2 2- In section 4, 
we study the Killing vector field of a HCMU metric. In section 5, we give 
the proof of the main theorems. In section 6, we give proof to a techni- 
cal lemma which gives an estimate of the curvature function near a conical 
singular point. 

Acknowledgments. The author wishes to thank Professor M. C. Wang 
for many helpful and stimulating conversations during the course of this 
work. Thank also to Professor R. Schoen for his continued support and 
encouragements. Also to my advisor Professor E. Calabi for his warm en- 
couragements during the past two years. 

2. Euler-Lagrange Equations. 

An extremal metric is a critical point of the following energy functional: 

Kg
2dg. 

/M\{pi,P2,-,Pn} 

The appropriate variational space for this functional is the space of all 
smooth Riemannian metrics with a fixed area in a fixed pointwise conformal 
class. Let go be a generic smooth metric in Mai)a2?... jan, the function space 
is then: 

m = f 
JM 

S(go) = & e tf2'2(M)| f e^dgo = / dg0. 
JM\{pi,p2,'~ ,Pn} JM\{puP2,"- ,Pn} 

} 
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For any y> 6 S{go), the corresponding metric g = e2ip • go is smooth in 
the K-surface MQ:i)a2j...)an. Conversely, for any smooth Riemannian metric 
in MQ^C^...^, there exists a function cp £ S(go) C H2,2(M) such that 
# = e2v? • go- Observe that the function space is a subset of H2>2(M), not a 
subset of iJ^0'c (M \ {pi,P2> * * * )Pn})- If a metric is deformed in a pointwise 
conformal class, the structure of the conical angle at each singular point 
should be preserved. The Euler-Lagrange equation of this functional is: 

(2.1) AgKg + K2 = C (generic   constant). 

Equivalently, in a local complex coordinate chart, 

(2-2) ^ K9*, = 0' 

where K0 _ is the 2nd-order covariant derivative of KQ. We will show these 
two Euler-Lagrange equations are equivalent shortly. Any metric satisfies 
the equation (2.1) or (2.2) is called an extremal metric, even if it is only a 
critical point of the energy functional. 

The Euler-Lagrange equation has two special cases.   The first special 
case is: 

(2.3) Kgitz = 0. 

Any metric is HCMU if and only if it satisfies this equation (2.3). The 
second special case is: 

(2.4) Kg = c,        where c is a   constant. 

For any singular point pi(l < i < n), g can be re-written in a local coordinate 
chart (U,z)(z(pi) = 0) as: 

1 
(2.5) g = h(z1z)TZp=z;\dz\2,   h(0)>0,        VzeU. 

For any p   £   {piiP2i"' ^Pn}, we can choose a local coordinate chart 
(W, z)(z(p) = 0), such that metric g can be written as: 

(2.6) g = e2^z^\dz\2,        \/zeU. 

The scalar curvature is: 

(2-7) Kg = -^, 
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where "A" is the real Laplacian operator with respect to the local Euclidean 
metric. Equation (2.3) can be re-written as: 

a2^     2dKg   dcp(z,z) 
d z2 d z d z («) ^.« = ^4?-2;^-^^=0. 

Therefore, the equation for a HCMU metric is not elliptic type. According 
to equation (2.8), any metric is HCMU if and only if the gradient vector field 
of its scalar curvature function is holomorphic. This vector field is defined 
as: 

(2.9) vZ = V=iK,*'i-J=i.-*>.°«*.±. 

Proposition 1. The "real version" Euler-Lagrange equation (2.1) is equiv- 
alent to the "complex version" Euler-Lagrange equation (2.2). 

Proof. We first derive the "complex version" Euler-Lagrange equation (2.2) 
from the "real version" Euler-Lagrange equation (2.1). Observe that the 
real Laplacian operator and the complex Laplacian operator only differ by 
a constant. Thus, A^ = 2e~2(p '■§£■§=> The equation (2.1) can be written 
as follows: 

By differentiating the above expression with J^,  the results are: 

2— — — K ^ — — K 
dzdzdz    9  _ 4fe  dzdz    g + 2K . ^       = 0 

e2cp e2cp 9     QZ     9 

Exchange the order of differentiation of Kg in the first two terms, substitute 

Kg = -2 ^J* ^ into the first "Kg" of the third term, and then get rid of 
the common denominator e2ip.  The above equation then becomes: 

2— — — K   -A^ — — K   -A——     —K-0 
dz dz dz    9 dz  &z dz    g        &z dz     dz   g 

The last equation can be rearranged as: 

A (<L — R   -2—     — 
&z \dz dz    g        dz     dz ^-2«rVp-^)=o. 
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The last equation is exactly the complex Euler-Lagrange equation(2.2). To 
derive the real Euler-Lagrange equation(2.1) from the complex equation 
Euler-Lagrange(2.2), one just go through the above procedures in exactly 
the reversed order. Therefore, the two equations are equivalent. □ 

Two theorems about the HCMU metric will be given before concluding 
this section. 

Theorem 3. Any HCMU metric must be a local minimizer for the energy 
functional E. 

This theorem should be read with care. We consider only those deformations 
of a metric which vanish in a small neighborhood of the set of prescribed 
singular points. The proof of this theorem is the same as the proof in [2]. 
Readers are refered there for detailed proof. Whether a HCMU metric is a 
local minimizer, with respect to a general deformation which preserves the 
conical angle structure at each singular point, is not known. 

Theorem 4. // the scalar curvature of a HCMU metric is a constant in a 
small open set, the scalar curvature must be a constant everywhere. 

Proof. Let g be a HCMU metric with a scalar curvature function Kg. 

The gradient vector field VKg is a holomorphic vector field. If Kg is 
a constant function in a small open set O C M \ {pi,P2?*" iVn}, then 
VKg vanishes in this small open set. This further implies VKg = 0 
in M \ {pi,P2r" iVn}- Therefore, Kg must be a constant function in 
M \ {pi,P25 • • * jPn}- The theorem then holds true. □ 

3. Examples of HCMU metrics in Sf^- 

3.1. Calabi's examples. 

It is known that there exists a unique rotationally symmetric HCMU metric 
in any football if the area is given. In this subsection, we will show how E. 
Calabi uses a HCMU metric in a football to construct a HCMU metric in 
^2,2,2• Let gpq be a HCMU metric in the football S^ixy, let p denote the 

pole with an angle of ^f and let q denote the pole with an angle of ^f. Let 

S2 = {z-plane}{j{z = oo}; let £ = e    a" .   Two group actions v and n in 
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z=\infty 

r=0 

Figure 1: Calabi's metric on S'l 2 2 

S2 are defined such that: 

1 
!/(*) = - /x(2) = z.C        VzG52. 

Let (3 be the group generated by three elements: the identical map, v and 
/i. The order of group G is 6. G acts on S2 proper discontinuously. A 
generic G—orbit in S2 consists of 6 distinct points. There are three singular 
G— orbits in S2; and these orbits are: 

{0,00},      {i,C,C2},      {-i,-C,-C2}- 

The group action induces a natural projection TT as the following: 

7r:S2 S2/G. 

TV 

For any z G S2, 7r(z) = [z] is the G-orbit where z belongs to; and 
_1([^]) represents the set of points in S*2 which share a G-orbit with z. If 

[z] is neither of the orbits [0], [1] and [—1], then TT is a local isometric map 
from a small neighborhood of z to its image [z]. vr is a local 2-sheet covering 
at [z] = [1], [—1]; and a local 3-sheet covering at [z] = [0]. 

Define a holomorphic map (see figure 1) / : S2/G —> £13,12 such that: 
/([0]) = p, /([-I]) = g,   and   /([I]) = B (any regular point) in S{ii}. 

This map is then uniquely determined by /([I]).   Consider the pulled back 
metric g0 in S2: 

0 *     !?* 
9   =*   f   Qpg- 
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By definition, g0 is a HCMU metric in S'2. This metric is smooth everywhere 
except possibly on the following 8 points: z = 0, oo; and z = —1, —C, —C2; 
and z = 1,CC2- However, gpq has an angle of ^ at p and the projection 
TT has a three sheet covering at f~1(p) = [0]. Therefore, g0 has an angle 
of 27r at the two points z = 0 and 2 = 00. Consequently, g0 is smooth 
in these two points: z = 0 and z = 00. Similar arguments show that g0 

is smooth on the three points: z = —l,z = — £ and z = — C2. However, 
50 has a singular angle of An at the three remaining points z = 1,2 = £ 
and z = C2- Moreover, if /([I]) is deformed along a "waist" line(i.e., arc 
"ABCD") in 523 -^ we obtain a 1-parameter local isometric deformations of 
the HCMU metric in 3% 2 2- This local isometric deformation preserves the 
global symmetric of g0. 

3.2. Applications of Theorem 1. 

It is not known to E. Calabi then that whether the above HCMU metric is 
unique in Sf 2 2- However, we learn after theorem 1 that it is not unique. We 
have constructed another HCMU metric in 512 2 which has different enengy 
level with Calabi's metric. To certain extent, Theorem 1 offers a "blue print" 
of a HCMU metric in any K-surface. Following this "blue print," one may 
construct a HCMU metric in a K-surface in a systematic fashion. 

To illustrate this point, we will examine all of HCMU metrics in the 
K-surface 5'2{2,2,2}- Let g be a HCMU metric in S2{2,2,2}- Following the 
notations in theorem 1, g has three singular points {^1,^2,^3} and g has 
an angle of 47r at each of these three points. Let 5 denote the number of 
smooth critical points of Kg. We will divide our discussions into four cases, 
according to the number of the saddle points of Kg among the three singular 
points of g. 

1. If all of the singular points of g are local extremal points of Kg, then 
j = 0. Theorem 1 then implies : 

(3-0) + S-x('52)-2. 

However 5 > 0 since s is the number of smooth critical points of Kg. 
Therefore, this case is impossible. 

2. If exactly two singular points of g are local extremal points of Kg, then 
j = 1. Theorem 1 then implies: 

(1 - 2) + (3 - 1) + s = 2, 

or s = 1. Therefore, the following three statements hold true: 
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(i) g must have exactly one smooth local extremal point of Kg\ 

{i\) g must have two singular extremal points of Kg with angles 
47r, 47r respectively; 

(iii) g must have a singular saddle point of Kg with an angle of 47r. 

Using this information, we have explicitly constructed a sequence of 
surfaces iSf 2a 2a with HCMU metric ga for any a > 0. 

3. If exactly one singular point of g is a local extremal point of Kg, then 
j = 2. Theorem 1 then implies: 

(1 - 2) + (1 - 2) + (3 - 2) + s = 2, 

or s = 3. Therefore, the following three statements hold true: 

(i) g must have exactly three smooth local extremal points of Kg\ 

(ii) g must have one singular local extremal point of Kg with an 
angle of 47r; (2) g must have two singular saddle points of Kg 

with singular angles of 47r, ATT respectively. 

Using this information, we have explicitly constructed a sequence of 
surfaces Sf 2 2 w^h HCMU metric g. 

4. If none of the singular points of g is a local extremal point of Kg, then 
.7 = 3. Theorem 1 then implies: 

(1 - 2) + (1 - 2) + (1 - 2) + (3 - 3) + s = 2, 

or s = 5. Therefore, the following two statements hold true: (i) 
g must have five smooth local extremal points of Kg] (ii) g must 
have three singular saddle points of Kg with singular angles of 
47r, 47r,47r respectively. Using this information, we can construct a 
HCMU metric in 3% 2 2* ^ turns out that this is exactly the HCMU 
metric constructed by E.Calabi via a different method. 

3.3. Constructions of HCMU metrics. 

We will first construct a HCMU metric in 8% 2 2 as suggested in case 2. 
Consider a football with angles 47ra(a > 14) and TT respectively at the two 
poles p, q. Equip this football with a rotationary symmetric HCMU metric. 
Then the curvature function decreases monotonely along any meridian from 
p (with angle Aira ) to q (with angle TT). Choose any point A in the football 
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Figure 2: HCMU metric on S% 2,2,2 

other than p, q. Consider the meridian passing through A. Let B be any 
point in this meridian qAp which situated between q and A. Now cut the 
football along the arc qBA. The arc qBA becomes two identical arcs: qBA 
and qB'A. Construct two identical copies of this football which are cutted 
open exactly the same way, and re-glue the two footballs together via the 
open arcs (the arc qBA in one football glues together with the arc qBA in 

the other football, while the arc qB'A in one football glues together with 
the arc qB'A in the other football). The resulting surface is S'2, while the 
resulting metric has three singular points where the metric has singular angle 
47ra, 47rQf, and 47r respectively: Point p and pi has angle 47ra respectively; 
point A has 47r angle; point q is a smooth point after gluing. This metric 
is clearly HCMU, but not locally isometric to the metric constructed by E. 
Calabi. In fact, These two HCMU metrics in 52 2 2 have different energy 
level. Assuming the area is 27r, then the total energy of the metric given by 
E. Calabi is 327r, while the metrics just constructed has an energy of 527r. 
It remains open if calabi's metric is the real energy minimizer. 

We now proceed to construct a HCMU metric as suggested in case 3. 
Consider a football with angles 2TT and 47r3 respectively. As before, equip this 
football with a rotaionally symmetric HCMU metric. Then the curvature 
function strictly decreses from one pole with bigger angle to the other pole. 



Metrics whose curvature has umbilical Hessian 279 

Consider the double covering of this football. It is a football with angles 
47r and STTS respectively. The HCMU metrics are locally identical in both 
footballs. Now cut both footballs into two identical pieces along two opposite 
meridians. We then obtain four pieces of surfaces. Reglue them together 
as indicated in figure 3: the arc CE in 2nd football piece glue with CE at 
the third football piece, CF in 2nd football piece glue together with CF 
in the 3rd football piece; the arc BE at 3rd football piece with BE at 4th 
football piece; etc- • • . Clearly, the resulting surface is S2, while the resulting 
metric has three singular points with angles 47r, 47r, 47r : point A, E and F 
have singular angles An respectively; point S, C and D are smooth after the 
gluing. This HCMU metric is also different from the one constructed by E. 
Calabi. However, they have same total energy. Furthermore, there is a local 
isometric path from Calabi's metric to this one. 

Figure 3: Example 3 of HCMU metric in Sf 2,2,2 

We could also re-construct Calabi's metric in a similar fashion as sug- 
gested in case 4. We will skip this part. 

4. Killing vector field of a HCMU metric. 

Unless otherwise specified; let g be a HCMU metric whose curvature is not a 
constant function on Af{aija2j... ^any, let {pi,P2, • ■ • ,Pn} be the set of singular 
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points of g. We will define a special Killing vector field, and then prove that 
this Killing vector field has no cluster singular point. 

Recall that the gradient vector field VKg is holomorphic since g is 

HCMU. Hence, the real part of VKg must be a Killing vector field. Let 

V denote this Killing vector field. In a local coordinate chart, we have: 

(4.1) V = li(y=iKf±-yr=lK^). 

Let Sing(V) denote the set of all singular points of vector field V. It is 
evident that Sing(V) must be a subset of the union of the singular set of 
the metric g and the critical points of Kg in M \ {piiP2, • • • jPn}- 

SingV C {all smooth critical   points of Kg} 1) {pi,P2) •••?Pn}- 

We will prove that V has only a finite number of singular points. It will be 
proved first that any cluster point of the set of singular points of V must be 
a singular point of the metric as well. The strategy is to study the behavior 
of V at any non-cluster singular point, and eventually use this information 
to conclude that none of the singular points of V is a cluster point. The 
next proposition gives some fundmental properties of this singular set. 

Proposition 2. Any cluster point of Sing(V) must be a singular point of 
the metric g. 

Proof. Suppose that q £ {pi,P2)*" iPn} is a cluster point of Sing(V). 
There exists a sequence of points {Ai, i G N} C Sing(V) which converges 
to the point q. There is only a finite number of singular points for the metric 
g. The sequence of points {Ai} could then be chosen so that every Ai(\/i) is 
a smooth point of g.  Therefore, Ai (Vi) must be a smooth critical point of 
Ka. Consider a small Euclidean disk B which contains q in its interior. The y  > 
gradient vector field VKg must have an infinite number of zero points in 

B. This implies that VKg is identically zero in B since it is a holomorphic 
vector field. Consequently, Kg is a constant in B. Theorem 4 then implies 
that the scalar curvature must be a constant function in M\{pi,p2j " ■ iPn} 
which contradicts the initial assumption about a HCMU metric. □ 

For any p G M \ Sing(V), there exists a unique integral curve of V 
which passes p. Denote the complete extension of this integral curve as Cp. 
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The central object of this study is this vector field and all of its integral 
curves. Unless otherwised claimed, the term "integral curve" means the 
"integral curve of V. " The next proposition gives some basic facts about 
the integral curves of V. 

Proposition 3. i. Any two integral curves of V will not intersect at 

any point p $ Sing(V). In particular, no integral curve of V has a 

self intersecting point in M\ Sing(v). 

2. In M \ Sing(V), any integral curve of gradient flow of curvature Kg 

can not intersect an integral curve of V more than once. 

This proposition follows readily from the definitions of a Killing vector 
field and a gradient vector field of the scalar curvature function. 

Lemma 1. For anyp G M\Sing(V), if the closure ofCp does not intersect 

Sing(v), i.e., Cp^SingV = 0, then Cp must be a closed curve. 

Proof Since Cpf)Sing(V) = 0, there exists a small number e > 0 and an 
open e neighborhood Be of Sing(V) such that Cp C M \ Be. Suppose that 
Cp is not a closed curve, then Cp must have a cluster point in M \ Be. Let 
Cp : [0, T) —> M \ Be (T < oo) be a parameterization of C such that: 

Cp(0)=p;        C'p{t) = V{Cp{t)),       Vte[0,T). 

Suppose q C M \ Be be a cluster point of Cp. Since q is not a singular point 

of V, a sequence of points {^ —» T, i G N} could be chosen such that: 

limCp(*i) = q, 
i—>oo 

and (see figure 4) 

limC;(^)= Hm V^Cpft)) 

= V(]imCp(ti)) = \?(q). 

The last equality holds true since q is not a singular point of V. Consider 
the integral curve of the gradient flow of curvature Kg at q. This curve is 
perpendicular to Cq, and it will inevitably intersect Cp more than once, 
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c 
p 

VCCA)) 

v(cp (t2 » 

V(q) 

Figure 4: Closed curve 

which contradicts with proposition   3.2.   Therefore, Cp must be a closed 
curve. The lemma holds true. □ 

Let Q,p denote the space of all of the integral curves of V which meets 

p; let |Op| denote the cardinality of Vt. For any point p ^ Sing(V), there 

exists a unique integral curve of V which passes the point p. Hence Vtp is 
well defined, and it contains two elements ( one integral curve enters into p 
and one leaves from p). However, at a singular point p of V, it is not clear 
what "an integral curve of V pass p" means, since either V is not defined 
or V vanishes at the point p. To clarify this point, an integral curve C of 
V is said to be in f2p(p G Sing(V)), if and only if there exists a sequence 
of points in C which converges to p. In other words, if C $. Op, there then 
exists a small disk B€ center at p such that C [\ Be = 0. By this definition, 
an integral curve C E ftp might spiral around p an infinite number of times 
without ever reaching p. However, it will be proved that this is impossible. 

If Op 7^ 0, we want to define a partial relation on the space Op. We 
first define this relation under the assumption that p is not a cluster point 
of Sing(V). Eventually, we will show that Sing(V) does not have any 
cluster point at all. Now choose a small enough Euclidean disk £?, so that p 
is the only singular point of V in B. According to proposition 3, any two 
integral curves of V can never intersect at any point other than the point 
p. Hence, modeling after the orientation of a clock, for any three points 
Ci, C2, C3 G Op, we define the relation Ci -< C2 -< C3 if and only if Ci, C2 
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and Cs are in the anti-clockwise direction (see figure 5). 

Figure 5: Orientation of integral curves 

A point p is said to have a dense distribution of the integral curves 
of V if the following condition holds true: for any two curves Ci, C2 G fip, 
there always exist two additional curves C3, C4 in Qp such that the following 
relation holds true: 

d ^ C3 ^ C2 ^ C4 ^ Ci. 

If, for any two integral curve C3 and C4 such that Ci -< C3 -< C4 -< C2, 
there always exists an integral curve C5 such that 

Ci -< Cs -< C5 ^ C4 ^ C2, 

we call that p has a dense distribution bounded by Ci and C2. Noticed that 
C3 may equal to Ci, while C4 may equal C2. 

Lemma 2. For any poin^ p G Sing(V) which is not a cluster point of 

Sing(V), there exists no dense distribution of the integral curves of V. 
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Proof. Suppose there is a dense distribution of integral curves of V near p 
and we want to draw a contradiction from this assumption. Consider two 
small Euclidean disks B CC Bi satisfying the following three conditions: (i) 
p e B CC JBI; (ii) Bi fl Sing(V) = {p}] (hi) at least two integral curves of 

V initiate from dB are in Qp. We claim that for any point q € 95, then the 
integral curve Cq must be in Qp. Otherwise, suppose that q is such a point 
that Cq £ Qp. Suppose that the parameterization of dB as c : [—T, T] —> Bi 
such that c(0) = q and c([—T,T]) = dB. Suppose further that c(t) move in 
anti-clockwise direction as t increases. Since Cq ^ fip, there exists a small 

neighborhood of q such that any integral curve of V, initiated from any point 
in this neighborhood, will not be in Qp. Suppose that [—Ti,T2] C [—T,T] 
is the biggest interval in [—T, T] such that the following two conditions hold 
true: (1) for any point t 6 (—Ti,T2), Cc^ £ Qp] (2) Both integral curves 
Cc(-Ti) and CC(T2) are in Qp.  (see figure 6). 

Figure 6: Dense distribution of integral curves 

According to the condition (hi), the two points c(—Ti) and c(T2) are 
different points in ftp. However, the dense distribution condition of the 
integral curves can not be held true with respect to these two points Cc(_Ti) 
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and CgpTj). Therefore, our claim must hold true. In other words, all of 
the integral curves initiated from dD must be in Qp. We then adjust the 

curve dB slightly so that dB transects all of the integral curves of V. 
Consider the local maximal point of Kg in this closed circle. There exists 
at least one local maximal point. Suppose that A is such a point. Recall 
that Kg is invariant in any integral curve of V; the point A is then a local 
maximal point of Kg. Therefore, every point in the entire integral curve CA 

is a local maximal point of Kg. This implies that the VKg vanishes in the 

integral curve CA- Vii^ then vanishes everywhere. Consequently, the scalar 
curvature is a constant function, which contradicts the initial assumption of 
a HCMU metric. This proves the lemma. □ 

Lemma 3. For any point p G Sing(V) which is not a cluster point of 

Sing(V), there exists no dense distribution of the integral curves of V 
bounded by two integral curves Ci and C2 

Proof Consider a small open disk B centered at p. Denote the sector 
bounded by Ci and C2 as O. For any point q 6 dBftO, following the 
proof of the previous lemma, the integral curve Cq must be in ftp. Accord- 
ing to theorem 6 in the Appendix, the curvature are asymptotically same 
at any two integral curves which are in Qp. This imples that curvature are 
actually same of any two integral curve of Qp since the curvature is invariant 
at each integral curve. Therefore, the curvature function is constant in O. 
This implies that the curvature is constant everywhere in M. This is a clear 
contradiction with the initial assumption on a HCMU metric. The lemma 
is then proved. □ 

Lemma 4. If p € Sing(V) is not a cluster point of Sing(V), then either 
ftp is an empty set or it has a finite number of points. 

Proof We prove this Lemma by drawing a contradiction. Suppose that this 
Lemma does not hold true for this point p. Then \Ctp\ must have at least a 
countable number of points. According to lemma 2 and 3, there is a sequence 
of curves {Ci, i e N} C ttp such that the following two conditions hold: (1) 
Ci -< Ci -< Ci+i -< Ci, Vi(> 2) e N. (2) For any i > 0, there exists no 
integral curve C! 6 ttp such that C* -< C- -< Cj+i. Any integral curve of V, 
which is closed to Ci and on the positive side of C;, will always follow along 
C^ this curve will then turn before hitting p and go along the negative side 
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of Ci+i. (see figure 7). 

Figure 7: Singular angle is finite 

Therefore, we have 

Z(Ci,Ci+i) = 7r,        Vz e N. 

The last equality implies the following equation: 

Angle at   p>Z(Ci,Cm+i) 
771 

= ^ Z(Ci, Ci+i) = rwr —> oo. 
i=i 

This is also impossible because of the initial assumption that all of the 
singular angles are finite. Consequently, this Lemma holds true. 

Lemma 5. Ifp 6 Sing(V) is not a cluster point of Sing(V) and fip 7^ 0, 
then ftp has an even number of points. Moreover, g has an angle of \Qp\ - TT 

at the point p. 
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Proof. Let B be a small Euclidean disk containing p as the only singular 
point of Sing(V). Suppose that {Ci, C2, • • • , Cm}(m = |fip|) are all of the 

integral curves of V in Slp such that: 

Ci-<C2^'"<Cm^Cl. 

For any z(l < i < m), let 0(i) denote the small sector in B bounded by 
Ci and Ci+i in the anti-clockwise direction. (Observe that Cm+i = C\ and 
Om+l = Oi). 

B = Q 0(0,   O; f| Oi+i = Q+i, (90; ^ C, IJ Q+i. 

Any integral curve of V near Ck in O^ will follow along C^; this curve 
will then bend before hitting point p and follow along Cfc+i. Recall that 
the scalar curvature Kg is invariant on each Cfc(V0 < fc < n). If i^ in- 
creases ( resp: decreases) from dOi to the interior of 0;, then Kg decreases 
(resprincreases) from dOi+i to the interior of O^i. (see figure 7). This 
statement holds true for all i = 1, 2, • • • , ra. Without the loss of generality, 
we suppose that Kg increases from dOi to the interior of Oi. Then Kg de- 
creases from 902 to the interior of O2, etc. Finally, if m is an odd number, 
Kg must then decrease from dOm+i to the interior of Om+i. Recalled that 
Om_i_i = Oi. This is a contradiction. Consequently, m = \QP\ must be an 
even number. Following the proof of of Lemma 4, we have: 

Z(Ci,Ci+i)=7r, Vie[l,m]. 

The total angle of g at the point p is: 

> ^2 ^{Cii Ci+i) = mn = \£lp\ • TT. 

i=i 

D 

Corollary 2. //p G Sing(V) andp is not a cluster point of Sing(v); and 
if the prescribed singular angle of the metric g at the point p is not an integer 
multiple of2'K, then flp = 0. Moreover, p must be a local extremal point of 

Kg] and all of the integral curves of V in a small neighborhood of the point 
p are topologically concentric circles which contain p in their interiors. 
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Proof. Since p G Sing(V) and the angle at p is not an integer multiple 
of 27r, lemma 5 implies that Qp = 0. Let 5 be a small Euclidean disk 

which contains p as the only singular point of V. If every integral curve 
of V in B must eventually leave B, there then exists at least one integral 
curve which meets the point p. This is a contradiction since we assume that 
Qp = 0. Therefore, there exists at least one integral curve of V, denoted 
by Co, that never leaves B. Since CQ $ Qp, Co must be a closed curve in 
B. According to Proposition 3, CQ does not have any self intersecting point 
in B. Therefore, CQ must be a topological circle. Let D denote the interior 
of Co, then p € D. (Otherwise there exists another singular point of V 
in D C B). Any integral curve of V in D must be topologically a circle 
since it can not intesect with dD. For the same reason as Co, these circles 
must contain p in their interiors. Therefore, these circles are topologically 
concentric. Thus, g is rotationary symmetric in Z?\{0}. Since the curvature 
Kg is not a constant in D \ {0}, then Kg achieve either local maximum or 
minimum at p, following the theorem below. □ 

Theorem 5. If g is a rotationary symmetric HCMU metric in a punctured 
disk D \ {0} with finite area, then Kg continuous at z = 0. Moreover, if Kg 
is not a constant, then it achieves either local maximum or local minimum 
at z = 0. 

Proof Let u = — In |z|, then any rotationary symmetric metric g in D \ {0} 
can be expressed as a metric in S1 x [6, oo) for some b > 0: 

g = e2^u\du2 + de2). 

The metric has finite area if 
poo 

e^Mdu < oo. f 
The metric is HCMU if 

PK,    2   dKg   fly>(t*)rz0> 

du2 du       du 
or 

ou \ ou 

Therefore, K^u) = c • e2ip for some constant c.   If c = 0, then Kg = 0 and 
Kg is a constant for all u. If c > 0, then Kg strictly increased when u -» oo. 
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Thus, Kg achieves local maximum at z = 0. Similarly, if c < 0, Kg achieves 
local minimum at z = 0. 

We can define 
poo POO 

Kg{u = oo) = Kg{b) + I    K'g(u)du = Kg(b) + c-        e2(p^du. 

Clearly, Kg is then finite and continuous at z = 0. '       □ 

Corollary 3. Every critical point of the scalar curvature Kg on M \ 
{pi,P2? •••jPn} must be a local extremal point of Kg. 

Proof. We prove this corollary by drawing a contradiction. Suppose that p 
is a smooth saddle point of Kg. Then p is a singular point of V. If Sip = 0, 
corollary 2 then implies that p must be a local extremal point of Kg. This 
contradicts the initial assumption about p. Therefore, Jlp ^ 0. According 
to Lemma 5, |fip| must be a even number. If \Vtp\ = 2, then p is not a saddle 
point of Kg. Hence \Vlp\ > 4 and the metric g has an angle of \£lp\ -TT > An at 
p, However, p is a smooth point of g. This is a contradiction. Consequently, 
this corollary must hold true. □ 

Proposition 4. // C is an integral curve of V which bounds a topological 

disk D in M\ {pi,P25 * * * iVn}-, and if C contains no singular point of V , 
there then exists exactly one singular point of V in D which is a smooth, 
local extremal point of Kg. Moreover, for any Euclidean disk Di which 
contains D in its interior, there exists a maximal topological disk D C Di 
such that the following two statements hold true: (1) dD is an integral curve 
of V, it either tangents with dDi or passes a singular point of V in Di. 
(2) All of the integral curves of V in the interior of D are topologically 
concentric circles 

Proof Since D C M\{pi,p2j • * • ?Pn}, there is no cluster point of Sing( V) in 
D. There are at most a finite number of singular points of V inD. Suppose 
that there are m such points and suppose that they are {<Zi,#2> * * 'Qm} C 
Sing(v)f)D. According to corollary 3, any $(1 < i < m) must be a 
local extremal point of Kg] all of the integral curves of V near qi must be 

topologically concentric circles. Consider the index of the the vector field V 
in D. Since V agrees with the tangential direction of dD, the total index 
of V in D must be 1. However, the index of V at each singular point is 1. 



290 Xiuxiong Chen 

Therefore, there is exactly one and only one singular point in D. The proof 
for the rest of this proposition is clear. □ 

Now proposition 3.1 could be restated as following: 

Proposition 3.1. Any two integral curves of V will not intersect at any 
point pg {pi,P2,--- ,Pn}> 

Proof. Let Ci and C2 be two integral curves of V. Suppose that they 
intersect at a point q ^ {pi,P2j * * • iPn}- Then q is a smooth critical point 
of Kg. Therefore, all of the integral curves of V near q must be topologically 
concentric circles. This is an apparent contradiction. Hence this proposition 
holds true. 

Lemma 6. Any point p € {pi,P2i'" iPn} is not a cluster point of 

Sing{V). 

Proof. Suppose that p is a cluster point of Sing(V).   Choose a small Eu- 
clidean ball B such that the following two statements hold true: (1) B con- 
tains p as the only singular point of the metric <?; (2) dBf^Sing^V) = 0. 

Suppose that {$, i G N} is a sequence of points in Sing( V )\{pi,P2, * * • 5Pn} 
such that the following holds true: 

lim qi = p;        {$, i G N} C B C] Sing(V). 

For any i G N, ft is a smooth critical point of Kg. Therefore, all of the 
integral curves of V near ft are topologically concentric circles. According 
to proposition 4, there exists a maximal disk A C B such that ft G A and 
all of the integral curves of V are topologically concentric circles. Consider 
the sequence of maximal disks {Di,i G N} in B. For any i ^ j, A and 
Dj can not intersect at any point other than p. Therefore, we have either 
Di fl Dj = {p} or Di PI Dj = 0. Either there is an infinite number of pairs 
(i, j) so that AH A = {p}> or there is an infinite number of pairs (i,j) so 
that Dif)Dj = (/). In the first case, (see figure 8), without loss of generality, 
we may assume that A fl Dj ~ {^K ^ ¥" 3- 
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Figure 8: No cluster point 

For any i > 1, consider the section bounded by Di at p. The interior 
angle at p bounded dDi (towards the interior of Di) is TT. However, there is 
an infinite number of such interior angles at p. Therefore, the singular angle 
at p must surpass oo, which contradicts the initial assumption that all of 
the singular angles are finite. Therefore, the first case is not true. Consider 
the second case now. We may assume that Di D Dj = 0,Vi 7^ j. Since 
A(Vi > 1) is a maximal disk in B, there then exists a point <# G dDi f] dB. 
Since {#;, i G N} is a sequence of points in a Euclidean circle dB, there must 
exist a cluster point q G dB such that qi —> q. The integral curves of V 
at {<ft} must converge to the integral curve of V at q since {g, (ft, i G N} 
are smooth points of V. On the other hand, all of the disks Di are in B. 
Therefore, the Euclidean area of Di must converge to 0. let pio denote the 
unique singular point of V in the interior of Di. Observe that any point 
other than p is not a cluster point of Sing( V). Passing to a subsequence if 
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necessary, we may assume that pw —> p. Consequently,the disk Di converges 
to a double curve from q to p. Thus the geodesic curvature of dDi at qi must 
converge to oo as qi —> q. This is a contradiction since q is not a singular 
point of v. Therefore, p is not a cluster point. Thus, the Lemma is proved. 
□ 

5. Proof of Theorem 1 and Theorem 2. 

For reader's convenience, we copy the statements of Theorem 1 and Theorem 
2 here. 

Theorem 1. Let g be a HCMU metric in a K-surface M\{ai, 0*2, •• • , an}- 
Then the Euler-Lagrange character of the underlying surface should be de- 
termined by 

3 

x(M) = ^(l-ai) + (n-j) + 5 
i=i 

where s is the mumber of critical points of the curvaure Kg (excluding the 
singular points of g). Here we assume that ai, #2, ....afc (0 < k < n) are the 
only integers in the set of prescribed angles {OLI, OLI, ' •m j^n}; and assume 
that {pj+i,--- ,p/c} are the only local extremal points of Kg in the set of 
singular points {p^, 0 < j < k}. 

Theorem 2. // none of the prescribed angles in a K-surface is an integer 
multiple of 2^, this surface supports a HCMU metric if and only it is a 
football with two different angles at the two poles. Furthermore, any HCMU 
metric in these footballs must be rotationally symmetric and uniquely deter- 
mined by the area. 

Proof of theorem 1. We first decompose Sing(V) into two parts: 

Sing( V) = Si (J £2 where 

S1 
d=f {p e sing(V) : np = 0}, S2 d= {p G Sing(V) : fip ^ 0}. 

For any point p 6 c>2, then \Q,p\ = 2 • I > 4.   Lemma 5 implies that g has 
a singular angle of 27r • I at the point p.  Therefore, p is a singular point of 
g and p G {pi,P2j • * * ,Pk}>   Consequently, we have: S2 C {pi,P2, * * * iPk}- 
For convenience, suppose that £2 = {pi,P2, • * * ,Pj} (j ^ &)•   For any  1 < 
i <j, 9 has a singular angle of 27r ai at pi. Since Qp. ^ 0, Lemma 5 then 
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implies that (flpj = 2ai. The indexes of vector field V at these points must 
then be: 

indexpi (V) = 1 — a^, V 1 < i < j. 

Recall that 

{pi,P2,-' ,Pn} C Sing(V) =5i|j52, 

and 

<S2 = {PhP2,-' iPj}- 

Therefore, {pi,j<i<n}cSi. According to the definition of «Si, the 
indexes of vector field V at these points are: 

indexPi (V) = +1, V j < i < n. 

Observe that {$, V 1 < i < s} are all smooth critical points of Kg. Thus we 
have: 

5i = {Pj+ir- ,Pn}[J{quq2,-' iQs}- 

According to Corollary 3, all of these points {quq2, — m J9S} 
are ^ocdl ex- 

tremal points of Kg. The indexes of the vector field V at these points must 
then be 

indexqi(V) = +1, V 1 < i < s. 

The total index of vector field V must equal with Euler-Lagrange character 
of M, thus 

s n j 

y^indexqi(v) +  Y^ indexPi(v) + y^indexPi(v) = xC^")? 

or 

5 + (n-j) + ^(l-ai) = x(M). 

This proves the theorem. D 



294 Xiuxiong Chen 

Proof. Now we want to prove the corollary 1 of this theorem.  Recall that 
for any i (1 < i < fe), we have c^ > 2. The above equation then implies: 

^(1 - ai) + (n - fc) < YM - <*) + (^ " J) 
i=l 

3 

<Y,(l-ai) + (n-j) + s = x(M). 
2=1 

corollary 1.4 is then proved. Corollary 1.1 and 1.2 follow from Corollary 2, 
Corollary 1.3 follows from Corollary 3. □ 

Proof of theorem 2. Let g be a HCMU metric in M \ {ai, 0^2, •• • , 0^}- We 
will follow the notations of theorem 1. Observe that none of the prescribed 
singular angles is an integer multiple of 27r.  Corollary 1 then implies: 

0 + (n-0) <x(M). 

Thus, x(M) = 2, or M = S2, and n < 2. The K-surface must be one of 
the following three surfaces: (1) a 2-sphere S2 if n = 0; (2) a tear drop 
Si, a > 0, a 7^ 1 if n = 1; (3) a football S^^} if n = 2. Theorem 2 then 
implies: 

0 + (n-0) + 5 = x(M) = 2, 

or 5 + n = 2. The following two statements hold true: (1) g has exactly 
two singular points of V; (2) both of these two singular points are local 
extremal point of Kg : one is a local maximal point and the other is a 
local minimal point. According to corollary 3, all of the integral curves of 
the V must be topologically concentric circles near each extremal point. 
This consequently forces all of the integral curves of V to be concentric 
circles as well. Therefore, the metric g is rotationally symmetric. The scalar 
curvature function of g must be a constant function if M = S2 and M = 
Sou (^(^i = a^)' That contradicts the initial assumption about a HCMU 
metric. Consequently, M = Sl(a ± 1) and M = 52

1?a2(ai ^ c^). In [15], 
it is shown that a HCMU metric in S%(a ^ 1) or M = S2

uct2(ai ^ c^) 
must be uniquely determined by the area. These HCMu metrics had been 
explicitly constructed in [15]. □ 
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6. Appendix. 

In this section, we consider the oscillation of metrics and its scalar curvature 
near a singular point in a sequence of concentric circles centered at the 
singular point. For any function (p(x) in an open set of x = 0, define the 
oscillation function as: 

£}(V(X)) = .   max    \<p(z) - <p(y)\. 
\z\=\y\=\x\ 

Suppose z = 0 is a singular point of metrics with a conical singular angle, 
and suppose the metric can be expressed locally as: 

9 = e^\dz\2. 

Follow the definition of a conical singular angle, then lim G((p(x)) = 0. We 
x—>-0 

want to show that the scalar curvature function K = —^ has the same 
property near the singular point: 

Theorem 6. For any HCMU metric, the curvature function is also asym- 
topically equal along every direction.    In other words,  lim 0(K(z))  = 0, 

z—>0 
where z = 0 is a singular point of the metric g with a conical angle. 

Let D be an open unit disk centered at z = 0. Let u = — Inr = 
— In A/X

2
 + y2 and 9 = tan~1yx. The domain D \ {0} becomes an infinite 

cylinder {(u, 0)\O < u < oo, —TT < 6 < TT} via this transformation. Let 
^(u, 6) = (p(e~u cos 0, e~u sin 9) — u. Then i/; satisfies the following inequal- 
ities: 

(6.1) 
27r 

VfJ+dOdu   < C2, 

^dOdu < Ci, 

where A^ = -^ + f^. According to theroem 2.2 in [16], ^{u) —> —oo 
uniformly. Consider D — (—1,1) x (0,27r). For any sequence of numbers 
ui —> oo, we define 

tpiiu, 9) = ^{u + uu 9), V i e N 

A^n, 0) = A (u + TXi, 0) = '■  
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Lemma 7. For any Ui  —►  ex),   then H^ill/p^/m   —>  0.     /n particularly, 

II^HL^D) -^ 0, /or any p > 1. 

Proof. Consider the curvature equation: 

Observe that J^ if? e2^ dud6 < C and cpi -* —oo, we have: 

||AU}0<^||L2(£>) -* 0. 

Since the oscillation of tpi approaches 0 as i —> oo, 

11^*11^2,2(5) ->0. 

This in turn implies that: 

IIV^II^D)-^0' VP>1- 

Lemma 8. Near the singular point, the curvature function satisfyies 

\^2Ki\\L2(£)) - 0. 

Proof For any sub-domain [1*1,1/2] x S1, integrate both sides of the Euler- 
Lagrange-Lagrange equation: 

AufK + K^eW^C-e^ 

over this domain, we obtain: 

r27r ATS /•27r r27r dK r27T dK 

= /    {-K2-eW + C-eW)dude. 
JO      Ju2 

The right side is stictly bounded for all ui and 1*2, and goes to zero if both 
ui and U2 approach 00. Thus, 

/'27r dK 
lim /   -—{ui,e)de = 

u-+oo j0     au 
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for some constants c. Let us define 

Then, 

Clearly, 

Therefore, 

and 

=SM{u'>)iu 

lim Ci = c. 
i—+oo 

U. 

/,£<-" 0du = O 

I^IIL^^C-IIV2^!!^), 

for some constants C independent of i. 
On the other hand, we have: 

_ <92 IQ _ ^d Kj    d<pi(w,w) _ 
a wz aw aw 

where w = u + y/^19. Therefore, 

12 - ) (6-2) <4-ei.(C + C.||V2Ki||
12
fiJ, 

for some e^ —> 0 as z —> oo. 
From the Euler-Lagrange equation, since the conformal parameter func- 

tion (pi is asymptotically rotationally symmetric, we can show that 

limi^(u,0).e^^=O. 
i—>oo 

Following from this estimate, then we have || Ai^||L2(m —► 0. Equation (6.2) 
then implies 

||v2^||L20)<€: 



298 Xiuxiong Chen 

for some e^ —> 0.  That implies that 

liv^ll^^-o 
as i —► oo. D 

Proof of Theorem 6.   The previous Lemma implies 

86 
0 

L2(D) 

and 

dKi 

89 
0,        Vp>l. 

LP(D) 

Thus theorem 6 readily follows from here. □ 
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