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Harmonic morphisms with fibers of dimension one 
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The harmonic morphisms (j) : Mn+1 —> Nn are studied using the 
methods of the moving frame and exterior differential systems and 
three main results are achieved. 
The first result is a local structure theorem for such maps in the 
case that (f) is a submersion, in particular, a normal form is found 
for all such (j) once the metric on the target manifold N is specified. 
The second result is a finiteness theorem, which says, in a certain 
sense, that, when n > 3, the set of harmonic morphisms with a 
given Riemannian domain (Mn+1, #) is a finite dimensional space. 
The third result is the explicit classification when n > 3 of all local 
and global harmonic morphisms with domain (Mn+1,p), a space 
of constant curvature. 

0. Introduction. 

A smooth map <j) : M —> N between Riemannian manifolds is said to be a 
harmonic morphism if, for any harmonic function / on any open set V C iV, 
the pullback / o </> is a harmonic function on (^^(V) C M. 

By a simple argument (see §1), any non-constant harmonic morphism </>: 
M —> N between connected Riemannian manifolds must be a submersion 
away from a set of measure zero in M. Thus, a necessary condition for the 
existence of a non-constant harmonic map 0 : M —* N is that dimM > 
dimN. 

When the dimension of N is 1, so that iV can be regarded, at least 
locally, as R with its standard metric, a map </> : M -* N is a harmonic 
morphism if and only if it is a harmonic function in the usual sense. Thus, 
at least locally, there are many harmonic morphisms from M to N. 

1This research was begun during a visit to IMPA in Rio de Janeiro in July 
1996 and was inspired by questions raised during the International Conference on 
Differential Geometry held at IMPA during that month. The article was written 
during a visit to the Institute for Advanced Study in Princeton. The author would 
like to thank IMPA and the IAS for their hospitality and also to acknowledge 
support from the National Science Foundation through grant DMS-9505125. 
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However, when the dimension of N is greater than 1, the condition of 
being a harmonic morphism turns out to be much more restrictive, being 
essentially equivalent to an overdetermined system of PDE for the map </>. 
Thus, for generic Riemannian metrics on M and AT, one does not expect 
there to be any harmonic morphisms, even locally. Moreover, in the case 
that there do exist harmonic morphisms (j) : M —> N for given M and AT, 
one expects the analysis of the overdetermined system that describes them 
to involve integrability conditions and other features of overdetermined sys- 
tems. 

When both M and N have dimension 2, a harmonic morphism is sim- 
ply a branched conformal mapping between Riemann surfaces and these 
are studied by classical methods of complex analysis and Riemann surface 
theory. 

When both manifolds have the same dimension n > 2, a non-constant 
harmonic morphism is a local homothety, i.e., up to a constant scale factor, 
(j) is a local isometry. 

Thus, the interesting cases are when dimM > dim AT > 2. This article 
concerns the case when dimM = dimN + 1, i.e., when the dimension of the 
generic fiber of (/> is 1. It contains three main results. 

The first, Theorem 1, is a local structure theorem for harmonic mor- 
phisms whose fibers are curves. This result describes the possible Rieman- 
nian metrics g that can be defined on the domain M of a smooth map- 
ping cj) : M —► N where AT is a smooth manifold endowed with a fixed 
Riemannian metric h so that cj) : (M, g) —► (AT, h) will be a harmonic mor- 
phism. 

The second result, Theorem 2, is a general finiteness theorem for har- 
monic morphisms of corank one with a given Riemannian domain (Mn+1, g) 
where n > 3. This result shows that the set of such harmonic morphisms is, 
in a certain sense, finite dimensional. This result is in marked contrast to the 
case n = 2, which has already been analyzed by Baird and Wood with the 
result that the locally defined harmonic morphisms with a given Rieman- 
nian domain (M3,g) of constant sectional curvature depend on arbitrary 
functions (in the sense of exterior differential systems). 

The third result, Theorem 3, is a classification of the harmonic mor- 
phisms of corank one whose domain (Mn+1,^) is a simply-connected, com- 
plete Riemannian manifold of constant curvature and dimension n+1 > 4. It 
will be shown that there are exactly two types of such harmonic morphisms. 

The first type can be thought of as a sort of metric quotient and is 
described as follows: Let X be a Killing vector field on M with zero lo- 
cus Z C M and suppose that the space N of integral curves of X in M\Z can 
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be given the structure of a smooth n-manifold in such a way that the quotient 
map (f): M\Z —>iVisa smooth submersion. Then there exists a metric h 
on N, unique up to a constant scale factor, so that </> : (M \Z,g) —» (iV, h) 
is a harmonic morphism. (Sometimes this map can be extended across Z 
as well after suitably extending AT, see §3.3.) The second type is described 
as follows: Let iV C M be a totally umbilic hypersurface, endowed with 
a constant multiple of the induced metric, denoted h. Let P C M be the 
focal set of AT, which consists of at most two points. There is a canonical 
retraction (j): M\P —> N that retracts M\P back to N along the geodesies 
normal to iV. Then ^ is a harmonic morphism. The examples of this kind 
had already appeared in the work of Gudmundsson [Gul]. 

The methods used are those of exterior differential systems and the mov- 
ing frame, both of which are well-adapted to the study of overdetermined 
systems of PDE. 

Acknowledgments. It is a pleasure to thank John Wood, whose questions 
inspired this article and whose comments and and guide to the literature on 
harmonic morphisms were invaluable. 

1. Harmonic morphisms via moving frames. 

This section is a self-contained treatment by moving frame calculations of 
the the basic structure theory of harmonic morphisms. It is intended to 
be readable by those familiar with either moving frame calculations or the 
fundamentals of harmonic morphisms. 

Its main purpose is to fix notation and to serve as a reference for the 
proofs in the later sections, which employ the moving frame. Such a ref- 
erence is probably needed, as it appears that most of the current workers 
on harmonic morphisms do not use moving frames and so the translation 
of known results into this language may be helpful. For more background 
on the method of the moving frame, see [Sp]. Most of the results about 
harmonic maps and morphisms to be derived in this section can be found 
in the standard references on the subject, such as [ELI], [EL2], or [W2]. 

1.1. Moving frame computations for harmonic morphisms. 

Let M and N be Riemannian manifolds of dimensions m and n, respectively. 
For simplicity, I assume that both M and N are connected throughout 
this article.  The summation convention will be used extensively, with the 
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understood ranges 

1 < a, fe, c < m, 

1 < iijjk < n. 

1.1.1. Coframings, connection forms, and structure equations.    Let 
g be the metric on M and h be the metric on N. Let U C M and V C N 
be open sets with trivial tangent bundles. Then there exist smooth cofram- 
ings u = (a;i,...,a;m) and 77 = (771,... ,ryn) on U and V respectively, so 
that 

h\v = r)i + -- + vl = Vi2- 

Corresponding to the chosen coframings on the respective open sets, there 
exist unique 1-forms u;a& = — c^ and rjij = —rjji that represent the Levi- 
Civita connections of the respective metrics and that are characterized by 
the structure equations 

(2) duja = -u>ab A ujb , drji = —rjij A rjj . 

1.1.2. Mappings and pullbacks. Now suppose that (/> : M —» N is a 
smooth map and that U and V have been chosen so that U C /_1(y). 
Then there exist unique functions fia on £/ so that 

(3) <f)*(Vi) = fiaUa- 

Because the chosen coframings are orthonormal, the energy density of 
the map cj) on U is given by 

E(<t>)\U = /ia/ia |^1 A . . . AU;n| 

This density is globally defined, independent of the local choice of u or TJ. 

When M is compact, integration of this density yields a functional called 
the energy £ : C00(M, AT) -> R, namely 

Adopt the convention that, for any differential form ip on V, its <^- 
pullback </)*('0) on [/ is denoted by an overbar, i.e., ^ = (j)*(ip).   Since 
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the map </> will be fixed in this discussion, this should cause no confusion. 
Thus, (3) becomes 

(S7) rfi = fia Va . 

(The reader of other sources on moving frame calculations should be aware 
that many authors simply drop the pullback notation entirely, writing (3) in 
the even simpler form rji = fia^a- This has caused considerable confusion 
in some cases, a confusion I hope to avoid.) 

Taking the exterior derivative of (3) and using the structure equations (2) 
yields 

(dfia - fib Vba + fja Wj) A ^a = 0. 

By Cartan's Lemma, there exist unique functions /^ = /^a on U so that 

(4) dfia = fib Uba - fja TJij + fiab ^b - 

The tension field offionU is the tensor field 

7"(0) = fiaa      ei0(f> 

(where (ei,... , en) is the dual orthonormal frame field in V to 77) and is a 
section of the ^-pullback to U of the tangent bundle of N. This tensor does 
not depend on the choice of cu or 77 and so is globally defined on M. 

The map (/> is said to be harmonic if it satisfies the Euler-Lagrange 
equations for the energy functional £. A calculation (see [EL2,(2.30)]) shows 
that (f) is harmonic if and only if its tension field vanishes. A function / : 
N —> R is said to be harmonic if it is harmonic as a map to R endowed with 
its standard metric. 

1.1.3. Harmonic morphisms. It is not generally true that the compo- 
sition of harmonic maps is harmonic, so there is no useful category whose 
objects are the Riemannian manifolds and whose morphisms are harmonic 
maps. Nevertheless, some harmonic maps turn out to have useful compo- 
sition properties and these are designated as harmonic morphisms. In this 
subsection, this notion will be explained and the equations for it derived. 

Given a smooth function v on V, there exist functions Vi so that dv = 
Virji. Differentiating this relation gives 0 = (dvi — VkVki) AT/;. By Cartan's 
Lemma, there exist functions Vij = Vji so that dvi = VkVki + vijVj' The 
trace Af = —va is the local expression with respect to the coframing 77 for 
the globally defined /i-Laplacian of v, which is also the tension field of v 
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regarded as a mapping v : V —> R. Thus, t; is harmonic in V if and only if 
A^ vanishes identically in V. 

Locally, there are many harmonic functions. It is known [ELI] that, for 
any q G V, and any collection of real numbers ri and r^ = r^f with ra = 0, 
there is an open g-neighborhood V C V and a harmonic function v on V7 

so that Vi(q) = ri and Vij(g) = rij. This local 'flexibility' will be important 
below. 

Roughly speaking, a map </> : M —> N will be a harmonic 'morphism5 if 
</>-pullback carries harmonic functions on iV to harmonic functions on M. 
The precise definition is as follows: 

Definition 1. A map (j) : M —> N is a harmonic morphism if, for any 
harmonic function v on an open set V C JV, the function TJ = ^(v) is 
harmonic on </>_1(^) in M. 

It is easy to derive the partial differential equations that characterize 
harmonic morphisms in terms of local coframings. Suppose that U and V 
are endowed with orthonormal coframings as above. Suppose, further, that 
v is any harmonic function on V and keep the notation as in the previous 
paragraph. Set u = (j)*(v) = v. Pulling back the relation dv = virn then 
yields 

(5) du = fiaViVa 

so ua = fiaVi- Differentiating this relation and comparing the result with 
the pullback of the relation  dvi = Vk rjki + Vij Vj ^hen yields 

^ab = Jiajjb ^ij   '   Jiab ^i- 

In particular, 

(6) Au = -fiafja Vij - fiaa ^i- 

Now, because of the above-mentioned flexibility in choosing the 2-jet of a 
local harmonic function, it follows that a necessary and sufficient condition 
for (f) : U —> V to be a harmonic morphism is that there exist a function R 
on U so that the right hand side of (6) is of the form —Rvu- In other words, 

(7) fiaa = 0        and        fiafja = R^ij    for some function R > 0 on U. 

The first condition in (7) is just that (/> be a harmonic map. The second 
condition is known in the literature as horizontal weak conformality■, since 
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it says that, for all p E M, the differential (t>r{p) : TpM —> T^^N can be 
geometrically described as orthogonal projection from the kernel of ^'(p) to 
its orthogonal complement followed by an isometry plus a conformal scal- 
ing. This characterization of harmonic morphisms is due, independently, to 
Puglede [Fu] and Ishihara [Is] and can be found in [ELI,(4.12)]. 

Note that the conformal factor R defined in (7) satisfies nR = WfiW2 

and hence vanishes only at the points where (// vanishes. According 
to [EL2,(2.32)], if R vanishes on an open set, then it vanishes identically 
on M (since M is connected). (This sort of 'unique continuation' principle 
holds more generally for all harmonic maps, see [ELI,(3.16-18)].) Set aside 
this trivial case, in which cf) is constant, and assume from now on that cf) is 
non-constant. Thus, the set where R > 0 is a dense open subset M* in M. 

By (7), the harmonic morphism </> : M* —> N is a submersion, so the 
dimension of M must satisfy m = n + p > n. The number p will be called 
the fiber rank or corank of (/>. 

1.1.4. Horizontal conformality. Now, the conditions (7) form an overde- 
termined system of PDE for the map 0. The first condition, harmonicity, is 
second order and the second condition, horizontal (weak) conformality, is 
first order. The first step in studying this system is to examine the conse- 
quences of the first order conditions. 

Expand the summation convention to let lower case Greek indices run 
over the range n < a, /?, 7 < n+p. (When p = 0, this range is empty, so the 
formulae below have to be modified slightly in various obvious ways, a task 
left to the reader.) 

Assume that the open set V C N has a trivial tangent bundle and that 
the rank p subbundle ker </>' C TU is trivial on the open set U C (j)'1 (V)nM*. 
Let r > 0 be the function on U satisfying nr2 = H^H2. Then the 1-forms 
LJi = r^rfl = r~~l(j?(rji) are g-orthonormal on U and so, because of the 
triviality of the bundle ker^, they can be completed to a g-orthonormal 
coframing by choosing p additional 1-forms a;n+i,..., Un+p so that 

I will say that such a pair of coframings u on U and rj on V is cf)-adapted. 
For a ^-adapted pair of coframings, (3) simplifies to 

(8) fia = rSia. 
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Set r-1 dr — rauja = r;Ui + rOL(jjOL. Differentiating rjl = rLUI yields 

d (rji) = dr A(jUi + r dui 

r-1 (-rfij A rfj) = r~1 drAUi- uJij A U;J - u;^ A a;a 

-T/ij A ujj = (r^ ct;i+ra a;a) A CJ; - a;y A LOJ - LJia A a;a 

0 = [(r*. u;fc+ra a;a) Jy +rjij- ^ij] A CJJ - a;^ A a;a . 

Since u;iaAa;a = 0 mod LJI, ..., a;n, Cartan's Lemma implies that there exist 

functions A^a and  iI;a/3 = ffi^a on ^ so ^hat 

(10) a;ia = Aija Uj + iJi^ o;^ . 

The functions Aija and Hiap are the local components of globally defined 
tensor fields: The expression 

H = Hia/3 UJaO(jJp® Bi 

is independent of choice of frame field and has the defining property that it 
restricts to each fiber of </> to be the second fundamental form of that fiber 
in M*. The ij-skewsymmetrization of the expression 

A = A^a ^i ® UJJ ® eo; 

is the integrability tensor of the n-plane field H^ = (ker (j)') . (The sym- 

metric part will be examined below.) 
Substituting (10) into (9) yields the relation 

0 = [(n. Vk+Va ioa) Sij + riij- wij + Aija cJa] A UJJ 

and applying Cartan's Lemma to this yields that there exist functions Sijk = 

Sikj so that 

(11) (rk ujk+ra uja) S^ + r^j - Uij + A^ a;a = syfc ujk . 

Symmetrizing the a;a-components on both sides of this expression yields 

Avij Ta ~r -^ijcx. "r -^jia. — ^5 

implying that there are functions aya = — a^Q, so that i4ya = — <% ra + aya. 
This gives a sharpened version of (10), which now takes the form 

(10') Uia = -ra Ui + aija Uj + Hiap up , with a^a = -O'jia- 

Note that the skewsymmetric tensor A' = aija^i^cuj^iea is the integrability 
tensor for the n-plane field H^. 

Substituting (107) back into (11) allows one to solve for the  sy^, finally 

yielding the relation 

(12) rfij = UJij + aija Ua + Tj Ui - Ti (Jj . 
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1.1.5. Harmonicity. With this information derived from horizontal con- 
formality, the quantities /ja& can now be computed via the defining for- 
mula (4): 

fiab Ub = dfia - fib Vba + fjJjij = d (r^a) " rSfoUba + r5jar^j 

= r (Sia (rbUJb) - iOia + *iaW) 

In particular, taking a = a > n and using (10'), 

fiab Mb = -TLOiot = rra Ui - rCLija (Jj - rHiap up , 

so that fioip = —rHiap. Next, taking a — j < n, and using (12), 

fijb ^b = r (Sij (rb u)h) - uJij + r^~) 

= r (Sij (n OUb) aija LUa + Tj Ui - n UJj)  . 

so that, in particular,   fijk = r (Sijrk + S^rj - 5kjri). 
The components of the tension field r(0) can now expressed as 

(13)       fiaa = fijj + fictct = (2-n) rri - rHiaa = -r ((n-2)ri + Hiaa). 

Thus, a horizontally conformal submersion (f) is a harmonic morphism if and 
only if it satisfies (n—2)ri + Hiaa = 0. 

1.1.6. Elementary consequences. Note that (13) yields the well-known 
result that, when n = 2, a horizontally conformal map is a harmonic mor- 
phism if and only if the fibers are minimal submanifolds, i.e., the trace of the 
second fundamental form of each fiber vanishes [EL2,(2.34)]. Consequently, 
when n = 2, only the conformal structure on N is involved in determining 
whether or not the map <f> is a harmonic morphism, not the full metric on iV. 

Another consequence involves the case p = 0, for, in this case, (13) has no 
terms Hiaa. Thus, in order for cj) to be a non-constant harmonic morphism 
between two manifolds of equal dimension n ^ 2, the terms r* must all 
vanish, so that the conformal factor r is constant. Thus, when n ^ 2, any 
non-constant harmonic morphism (j> : Mn —» Nn must be a homothety, i.e., 
satisfy (fi*h = r2 g for some constant r > 0. 

On the other hand, when p = 0 and n = 2, equation (13) shows that 
fiaa = 0 is an identity, so that the only condition for a map between Rie- 
mannian surfaces to be a harmonic morphism is that the map be a branched 
conformal map. This is also well-known [ELI]. 
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Finally note that, when n = 1, the condition of horizontal conformality 
is automatic, so that a harmonic morphism is the same thing as a harmonic 
map. 

Remark. One geometric interpretation of (13) is that, for a harmonic mor- 
phism </> : M* —> A/", parallel translation conserves volume in the fibers of (/> 
when it is measured with respect to the p-form r2~n u;n+i A ... Aujn+p. This 
observation will be useful in §2. 

1.2. Moving frame computations for confermal foliations. 

The goal of this subsection is to derive necessary and sufficient conditions 
on the invariants of a foliation of a Riemannian manifold M in order that 
its leaves be locally the fibers of some submersive harmonic morphism. 

It is useful to introduce a bit of terminology about foliations. A foli- 
ation J7 of codimension n on a manifold Mn+P is said to be amenable if 
the leaf space M/J7 can be given the structure of a smooth n-manifold in 
such a way that the leaf projection M —> M/T becomes a smooth submer- 
sion. When a smooth structure on M/J7 does exist with this property, it is 
unique. Every foliation is locally amenable in the sense that, for any smooth 
foliation J7 on M, each point of M has an open neighborhood U on which J7 

is amenable. Such an open set U will be said to be F-amenable. 
Now, suppose that J7 be a foliation of codimension n on a manifold Mn+P 

endowed with a Riemannian metric g. Using the metric g, the tangent 
bundle of M can be split as a ^-orthogonal direct sum 

TM = TJ7®NJ7 

where TJ7 and NJ7 are the tangent and normal bundles of the foliation J7, 
respectively. Correspondingly, the metric g can be split into two terms 

<7 = </ + <7" 

where the quadratic form g' has TJ7 as its null space and g" has NJ7 as its 
null space. 

1.2.1. Conformal foliations. Let U C M be an open set on which 
TJ7 and NJ7 are both trivial. Then there exists a #-orthonormal cofram- 
ing u = (CJI, ..., tJn+p) on U with dual frame field e = (ei,..., en+p) so 
that the equations CJI = 002 = • • • = Wn = 0 define TJ7 while the equa- 
tions a;n+i = ujn+2 = • • * = un+p = 0 define NJ7. In particular, the formula 
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holds on U. The equations duja = —cJaiAUt imply (keeping the previously- 
established index ranges for the summation convention) 

dtJi = -UJiaAUJa = -UJiaAUJa      mod CJi, . . . , UJn . 

Since the Ui are the annihilators of a foliation, dcui = 0 mod a;i,... ,u;n. 
Thus, ujiaAuja = 0 mod a;i,..., un, so by Cartan's Lemma there exist func- 
tions Aija and Hiap = Hipa so that 

(1) Uia = Aija Vj + Hiap Up . 

Now, the discussion from §1.1 shows that a necessary condition that the 
leaves of f in U be the fibers of a submersive harmonic morphism with 
domain U is that there exist functions ra on U so that 

Geometrically, condition (2) can be interpreted as the condition that the 
Lie derivative of g' with respect to any vector field X = xaea (tangent to 
the leaves of J7) should be a multiple of gf. Indeed, calculation yields 

Zxtf) = 2(£xui) 0^i = ZiX-idui) o u>i = -2 (X-i(bJia ALja)) o Ui 

= -2 (WiaiX) CJa - Ua{X) Uia) O UJi 

(3) = -2 (uJia(X) LUa - Xa LUia) O UJi 

= -2 (HiapXp Ua - Xa (Aija Uj + Hiap Up)) O UJi 

= Xa\A-ija + Ajia) UJi O UJj , 

and this final expression is a multiple of g' for any choice of the functions Xa 
if and only if (2) is satisfied for some functions ra on U. 

This local condition can be expressed globally on M. If (2) is satisfied 
for some functions ra, then the 1-form p" = raa;a satisfies 

(20 £x(g') = -2p"(X)g' 

for all vector fields X tangent to the leaves of J7. Now, the 1-form p" is 
independent of the choice of u. Thus, the global version of (2) is that there 
should exist a 1-form p" on M (necessarily unique) that vanishes on Nf 
and so that (2/) is satisfied for all vector fields X tangent to the leaves of T. 

Geometrically, condition (2/) is satisfied if and only if, up to a confor- 
mal factor, the quadratic form g/ can be pushed down onto the local leaf 
space U/F for any ^-amenable U C M. A foliation J7 satisfying (2/) with 
respect to a given metric g is sometimes called a conformal foliation and 
this constitutes a first necessary condition in order for the leaves of J7 to be 
the fibers of a harmonic morphism. 
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1.2.2. Local sufficient conditions. To go further, the analysis must be 
divided into the cases n = 2 and n ^ 2. 

First, consider the case n = 2. In §1.1, it was shown that the non-singular 
fibers of a harmonic morphism (/) : M2JrP —> N2 are minimal submanifolds 
of codimension 2, so it is necessary that the leaves of a codimension 2 fo- 
liation T on M be minimal in order for them to be the fibers of a (local) 
submersive harmonic morphism. Of course, J7 must also be a conformal 
foliation. 

Conversely, as has long been known [Wl] (for example), these two con- 
ditions are locally sufficient. 

Proposition 1. Suppose that T is a codimension 2 conformal foliation 
of M2+p with the property that its leaves are minimal. Then, for every 
open U C M that is J7-amenable, there is a conformal structure on the 2- 
dimensional manifold U/J7 so that the leaf projection (j) : U —> U/J7 is a 
harmonic morphism. 

Proof. This follows immediately from the discussion so far. If U C M is an 
^-amenable open set, then (2') implies that U/J7 carries a unique conformal 
structure so that the leaf projection </> is horizontally conformal. Prom the 
discussion in §1.1 after equation (13), the only other condition for (j) to be a 
harmonic morphism is that its fibers be minimal. □ 

Second, consider the case n ^ 2 and restrict to U with a coframing 
as in §1.2.1. Define functions r* on U by (n—2)rj = —Hia0i. The vector 
field R = ri ei is, up to a constant scale factor, the mean curvature normal 
vector field for the leaves of J7. Let p' = nui. This 1-form is locally defined 
with respect to a coframing, but, since it is the g-dual of the mean curvature 
vector field for the leaves of J7, it is, in fact, globally defined on M. According 
to (13) of §1.1, for any harmonic morphism 0 : M —> N whose fibers are the 
leaves of J7, the 1-form 

(4) p = racua = nuJi + rau)OL = p' + p" = —- Hiaaui + rau;a (n   Z) 

must satisfy p = d(logr) where r2 g' = (jfh and where h is the metric on 
the target manifold N. Thus, a necessary condition for the leaves of J7 to 
be the fibers of a harmonic morphism is that 

(5) dp = 0. 

The interesting result is the converse (which appears to be new): 
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Proposition 2. If a foliation T of codimension n ^ 2 on a Riemannian 
manifold (M,g) is conformal and satisfies (5), then for any \-connected, 
T-amenable open set U C M; there is a metric h on U/J7, unique up to 
a constant scale factor, for which the leaf projection (j) : U —» U/F is a 
harmonic morphism cj) : (C/, g) —> (U jT, h). 

Proof. Let U C M be 1-connected and JT-amenable and let (j) : U —> V'jT 
be the leaf projection. Since T is a conformal foliation, p" can be defined 
so that (2/) holds while p" vanishes on NT. Moreover, let p1 be defined as 
above to be the (suitably scaled) dual to the mean curvature vector field 
of T. Finally, use (4) to define the 1-form p. The assumption that (5) holds 
is just that dp — 0. 

By the simple connectivity of £/, there exists a smooth positive function r 
on U so that p = d(logr). Since U is connected, r is unique up to a 
multiplicative constant. 

Let g/ be the leaf normal part of the metric #, as defined above. The 
formula (2/) can be written as 

Cx(g') = -2p(X)g' = -2Cx(logr)g' 

for all vector fields X tangent to the leaves of J7. It follows that Cx(r2 g') = 0 
for all such vector fields X. In particular, there must exist a metric h on U/F 
so that rV = (/>*(/i). 

The leaf projection </> : ([/, g) —► (U/F, h) is horizontally conformal by 
construction and equation (13) of §1.1 now shows that </> is harmonic. Thus, 
0 is a harmonic morphism. 

The uniqueness of h with this property is immediate. □ 

By Propositions 1 and 2, the foliation T alone carries enough information 
to construct any harmonic morphism whose fibers are the leaves of F, locally 
and essentially uniquely, up to a constant scale factor on the range. This 
observation will be important in the remainder of this article. In particular, 
the classification of harmonic morphisms with a given domain Riemannian 
manifold (M, g) can be reduced to the classification of conformal foliations 
on domains in M that either have codimension 2 and minimal leaves or else 
have codimension  n ^ 2 and satisfy (5). 
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2. Harmonic morphisms of corank 1: local theory. 

The first result of this section will be Theorem 1, which says, roughly, 
that the local harmonic morphisms with a specified Riemannian n-mani- 
fold (iV, h) as range depend on one arbitrary function of n+1 variables. 
The second result will be Theorem 2, which says, roughly, that, for a spec- 
ified Riemannian (n+l)-manifold (M,g) with n > 3, the harmonic mor- 
phisms with domain M form a finite dimensional space of dimension at 
most (nJ3) — 1. In §3, this space will be computed explicitly when g is a 
metric of constant sectional curvature on M. 

Since the assumption p = 1 will hold for nearly all of the remainder 
of this article, it seems advisable to introduce a notational simplification: 
Instead of letting the index range run from 1 to n+1, let it run from 0 to n, 
i.e., make c0' an indicial synonym for cn+l'. 

2.1. A local normal form. 

All harmonic morphisms of corank one can be put into a simple local normal 
form. 

Theorem 1. Let TT : Pn+1 —► JVn be a principal G-bundle with G = E or 
S1, let ip be a connection form on P, let h be a Riemannian metric on N, 
and let r be a positive function defined on an open set M C P. Then, 
when M is endowed with the metric g — r~2 TT*(h) + r2n~4 /02; the projection 
TT : M —> N is a harmonic morphism. Moreover, every submersive harmonic 
morphism of corank 1 is locally of this form. 

Proof. That TT : M —> N as described will be a harmonic morphism for any 
choice of the data (h, ^, r) is verified by a local calculation using the formulae 
of §1.1. I leave this to the reader, though the reason that the formula works 
will become clearer after the converse part of the Proposition is argued. 

It remains to prove that the given local normal form holds for all submer- 
sive harmonic morphisms of corank 1. Thus, let </>: (Mn+1, g) -> (AT71, h) be 
a submersion of Riemannian manifolds which is also a harmonic morphism. 
Choose a point x G M and let V C iV be a contractible open neighborhood 
of (j)(x) — y. Let U C <?!>~1(^) C M be an open neighborhood of x on which 
the line bundle ker <// is trivial and for which the fibers of </> : U —> V are 
connected and simply connected. Define r > 0 by the equation nr2 = WfiW2. 



Harmonic morphisms with fibers of dimension one 233 

Let 771,..., rin be an fo-orthonormal coframing on V and let OJQ on U be 
chosen so that 

(1) CJQ, ^l = r'1 <f)*(rii), ..., un = r-1 ^*(77n) 

is a fl'-orthonormal coframing of 17, as was discussed in §1.1. 
Keep the notation of §1.1.3. Since (f> is a harmonic morphism, by (13) of 

that section, 

Hiaa = HiQO = — (n—2) Ti . 

Now, by equation (10') in §1.1, there exist functions a^- = — a^ (which would 
have been written as a^o in §1.1) and ro, ri,..., rn so that 

,2s dr = r(roa;o+ria;i + --- + rna;n) , 

^zO = —ro Ui + ay cjj - (n—2)ri CJQ . 

The structure equations then yield 

d (r2-n a;o) = (2-n)r-1dr A r2"71 CJO + r2"71^ , 

= r2~n((2-n)(rau;a)Att;o -cJoiA^) , 

(3) = r2~n ((2-n)(ncc;i) ACJQ + (-ro^ + ay ^--(n-^ncjo) AO;^ , 

= —r _nay a;i A cjj . 

Set Jl = —r2~naij ojiAouj and note that this is a closed 2-form which is 0- 
semibatsic. Since the fibers of (f) inU are connected, there exists a (closed) 
2-form £1 on V so that Q = </)*£l. Since V is contractible, there exists a 
1-form V'o on V so that dipo = Q. OnP^FxM (with coordinate t on the 
Mr factor), the 1-form ip = dt + ipo represents a connection for P regarded as 
a principal R-bundle over V, with projection onto the first factor TT : P —> V. 

Locally, (U, r2~n ouo) and (P,^) are principal R-bundles over V with 
connection and they have the same curvature, so they are locally gauge 
equivalent. Since P is globally an R-bundle over V and the fibers of </>:U —> 
V are contractible, there exists a unique diffeomorphic embedding r : U —> P 
satisfying 0 = TT O T and r*(^) = r2~nct;o as well as the ('gauge fixing') 
initial condition T(X) = (^(x), 0) G V x R = P. Define s > 0 on r(t/) C P 
so that T*S = r. Then 

^ = r*(5-
27r*(fc) + ^-4^2). 

Thus, the theorem is proved. D 
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Example 1. Isometric Quotients. An important special case of this 
construction is the case where r is constant on the fibers of P. In this case, 
let X be the 7r-vertical vector field that satisfies ^(X) = 1, i.e., X is the 
infinitesimal generator of the G-action. Then, since r is constant on the flow 
lines of X, it follows that X is a Killing vector field for g. 

Conversely, suppose that X is a Killing vector field on (Mn+1,g), i.e., 
that Cxg — 0. Let U C M be any open set on which X is non-vanishing 
and on which the foliation ^x by integral curves of X is amenable, with 
submersive leaf projection TT : U —> Nn. 

Let I/J be the 1-form that is g-dual to X and let r > 0 be defined so 
that ujo = rn~2 ^ is a unit 1-form. Because X is a symmetry vector field 
for #, it follows that £x/0 = £xr = 0? so in particular, £x^o = 0. Moreover, 
since ^(X) = 1, it follows that ^ is a connection form for U regarded as a 
local principal R-bundle over N. 

Set g1 — g — CJQ
2
, as consistent with previous usage. Since C-^g = 0, it 

follows that Cxg/ = 0. In particular, there exists a metric h on Nn so that 
n*(h) = r2*/. (Note the use of £x^ = 0.) Since, by construction, 

g = r-27r*(h)+r2n-4i;21 

it follows from Theorem 1 that the projection TT : (£/, g) —» (AT, h) is a 
harmonic morphism. 

In this way, every non-zero Killing vector field defines a local harmonic 
morphism of corank 1. Note, however, that not every harmonic morphism 
of corank 1 arises in this way. 

Remark: Local generality. With Theorem 1 in hand, it can now be ex- 
plained what is mean by the statement, "Up to local diffeomorphism, the 
harmonic morphisms of corank 1 depend on one arbitrary function of (n+1) 
variables." 

Consider the data (fo, T/J, r) described in Theorem 1. The first two compo- 
nents are locally defined on an n-manifold and thus, up to diffeomorphism, 
are specified by a certain number of functions of n variables. However, r > 0 
is essentially arbitrary on an open set of dimension (n+1). This arbitrary 
function cannot be 'gauged away' by reparametrizing M since </> induces 
on M the local structure of a principal R-bundle over an n-dimensional base, 
and the diffeomorphisms that preserve this local bundle structure depend 
only on functions of n variables. 

This sort of 'dependency' discussion can be made more precise in sev- 
eral ways. One way is through the language of exterior differential sys- 
tems [BCG], but it can also be interpreted in terms of a formula for the 
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dimension of the space of fc-jets of metrics on a neighborhood of 0 6 Rn+1 

that admit a submersive harmonic morphism to some n-manifold, as in the 
theory of Spencer, Goldschmidt, and Malgrange. However, no essential use 
of this notion of dependency or generality will be made in the rest of this 
article, so making it precise does not appear to be important. Rather, this 
notion of local generality will be used in a heuristic way for motivational 
purposes. 

Remark: Morphisms with a given range metric. By Theorem 1, any 
Riemannian n-manifold N can be the range of a submersive harmonic mor- 
phism of corank 1 in infinitely many distinct ways. In fact, by judicious 
choice of r, one can even arrange that the domain (Mn+1, #) be a complete 
Riemannian manifold, regardless of whether (AT, h) is complete or not. 

Remark: Higher corank. There is a local structure theorem similar to 
Theorem 1 for submersive harmonic morphisms of higher corank as well, 
but it is not quite as satisfactory. 

Using the 'volume preserving' characterization mentioned at the end of 
§1.1, one can show that if </) : {Mn+P,g) —> (Nn,h) is a harmonic mor- 
phism and m G M is a point where <l>'(m) ^ 0, then there exists an m- 
neighborhood U C M together with coordinates xi,... ,^n+p on U so that 
the following properties hold: 

(1) The fibers of (/> in U are defined by the equations dxi = 0. 

(2) There exist functions hij = hji of the variables Xi so that 

<l>*(h) = h^ dxi o dxj . 

(3) There exist functions R > 0, Pa;, and gap = gpa of all the variables xa 

satisfying 

/] r,      = 0    for all i,    and      det(gap) = 1 
CJJb/y a 

so that 

g = R-P (hij dxi o dxj) + Rn~2ga(3 {dxa + Pai dxi) o (dxp + Ppj dxj). 

The functions Xi can be regarded as coordinates on a neighborhood 
of (j){rn) G N. In these coordinates, </> is just the natural submersion Rn+P —► 
W1 given by projection on the first n coordinates. 
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Conversely, if /i^-, R > 0, Pa;, and gap are functions on some open 
set U C R71"1"^ that satisfy the conditions in (2) and (3) and, moreover, the 
condition that the symmetric matrices (hij) and (gap) are positive definite 
at every point of [/, then the metrics g on U and h on V = (j^iU) C W1 

defined by the above formulae have the property that </> : ([/, g) —> (V, fo) is 
a harmonic morphism. 

Note that the functions R and g^ = g^ are 'arbitrary', being only 
subject to algebraic inequalities and the single algebraic equation det(^a^) = 
1, while the np functions Pai are subject to n linear, constant coefficient, 
first order PDE, but are otherwise arbitrary. 

Thus, this normal form gives a local recipe for the general harmonic 
morphism  </> : (Mn+P, #) —» (AT71, h) that depends on the choice of 

1+((P21)-1)+',!'-n=C21)+n(f>-1) 

arbitrary functions of n+p variables. However, it can be shown that the 
ambiguity in choosing the 'normal coordinates' xa depends on p— 1 arbitrary 
functions of n+p variables. Thus, this naive counting suggests that, up 
to local diffeomorphism, the general harmonic morphism </> : (Mn+P,p) —> 
(iVn, h) depends on 

'P21)+(n-l)(p-l) 

arbitrary functions of n+p variables. This count can be made rigorous, 
but it will not be necessary to do so in this article. The main point of 
these observations is that they indicate that, since, up to diffeomorphism, 
the general metric in dimension n+p depends on (n^) functions of n+p 
variables rather than (^1) functions of n+p variables, the general metric in 
this dimension will not admit, even locally, a harmonic morphism of corank p 
except when n = 1. 

This normal form also indicates that, while any Riemannian mani- 
fold (iV, h) can be the range of a harmonic morphism of arbitrary corank 
(in fact, in infinitely many ways), the problem of finding the harmonic mor- 
phisms with a given Riemannian domain metric will involve the study of 
overdetermined systems and their integrability conditions. 

2.2. Given domain metric. 

While Theorem 1 does give a local normal form for harmonic morphisms 
of corank 1, it does not give much effective help for solving the problem 
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of determining, for a specific Riemannian manifold (Mn+1,^), what are 
the possible harmonic morphisms of the form <f> : M —> iV, where the n- 
manifold iV and its metric h may or may not be specified in advance. This 
is essentially a question of when a given metric g can be written locally in 
the normal form given by Theorem 1 and, if so, in how many ways. 

2.2.1. The low dimensional cases. The case n = 1 is basically trivial, 
and will not be discussed any further. 

The case n = 2 is more interesting, but has a very different character 
from the cases where n > 3. This is because, using the conformal flatness of 
metrics in dimension 2, the local normal form can be simplified when n = 2 
to the coordinate form 

g = R(xi, X2i xs) (dxi2 + dx22) + (dxs + a(xi, X2) dxi + b(xi, X2) dx2)2 . 

where R > 0 is an arbitrary function of three variables while a and b are ar- 
bitrary functions of two variables and the fibers of the harmonic morphism <f> 
are described by the equations dxi = dx2 = 0. 

Computation using this form shows that, at any point in M, the sectional 
curvatures of the 2-planes passing through that point and containing the 
tangent to the (/>-fiber must all be equal. 

However, elementary algebra shows that, if the sectional curvature is not 
constant on the 2-planes through a point x G M, then there are at most two 
tangent directions v G TXM so that the sectional curvature is constant on 
all the 2-planes containing v. Thus, for a metric g on M3 of non-constant 
sectional curvature, there are at most two distinct foliations by curves which 
could be the fibers of a harmonic morphism of corank 1. 

It then suffices to apply the criteria developed in §1.2 to these two foli- 
ations (or one foliation when there are only two distinct eigenvalues of the 
sectional curvature at every point) to determine whether or not the given 
metric g admits a harmonic morphism of corank 1. This has been carried 
out by Baird and Wood [BW2] in order to explicitly determine the metrics 
for which both of these foliations are the fibers of (possibly local) harmonic 
morphisms. 

Finally, when g has constant sectional curvature, there are many har- 
monic morphisms (/> : U —► N2 of corank 1 with domain an open sub- 
set U C M. The local description is very simple: The fibers of such a map <f> 
must be geodesies (since they are minimal) and so N2 can be identified with 
a surface S^ in the space A (M) of geodesies in M. If M is complete and 
simply connected, this latter space has dimension 4 and carries a canonical 
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complex structure which makes it into a complex surface. The surface E^ 
is then seen to be a complex curve in this complex surface. Conversely, if 
C C A (M) is any complex curve (aside from a few special cases), then the 2- 
parameter family of geodesies that it represents will cover an open set in M. 
By suitably restricting the curve C, one can arrive at an open set U C M 
that is foliated by these geodesies and this foliation will be amenable and 
satisfy the conditions of §1.2, so that it gives rise to a harmonic morphism 
with domain U and of corank 1. For more details and a study of the global 
and singularity issues, see [BW1]. 

2.2.2. The high dimensional cases. The rest of this article concerns 
only the case n > 3. The main result to conclude this section will be a 
general 'finiteness' theorem, showing that the set of harmonic morphisms of 
corank 1 with a given Riemannian domain (Mn+1, #) is a finite dimensional 
space. 

Let (M,g) be a Riemannian (n+l)-manifold. By Proposition 2, for any 
connected open set U C M on which there exists a submersive harmonic 
morphism (f) : (17,g) —> (Nn,h), the n-manifold N and, up to a constant 
scale factor, the metric h are determined by the foliation J7^ defined by the 
fibers of 0. For simplicity, I am going to assume that it is possible smoothly 
to orient the fibers of <£, as can always be arranged by passing to a double 
cover of U if necessary. Then there will exist a unique unit vector field u^ 
on U tangent to the fibers of </> and inducing the given orientation on each 
fiber. 

Conversely, given a unit vector field u on an open set U C M, this 
process can be reversed. Provided that u satisfies certain equations (to 
be spelled out below) and provided that the foliation Fu of U induced by 
the integral curves of u is amenable, then, by Proposition 2, there will be 
a metric /i, unique up to a constant multiple, on U/Tu so that the leaf 
projection </> : U —> U/!FU is a harmonic morphism. 

The conditions on u needed to construct this harmonic morphism are as 
follows: Let UJQ be the 1-form on U that is g-dual to u. Set g/ = g — LJO

2
- 

Then the first condition on u is that the foliation Fu should be conformal, 
i.e., that there should exist a function ro on U so that 

(4) £u(</) = -2ro</. 

Note that (4) is an overdetermined set of first order PDE for u. The 1- 
form p" = ro u;o is the same as the one constructed in §1.2.1. Next, define a 
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1-form p' on U by the equation 

£u^o = {n-2) p'. 

Since n ^ 2, this can always be done. This p' is the same as the one 
constructed in §1.2.2. 

The final condition, corresponding to (5) of §1.2.2, is 

(5) d{rQu0 + p,)=Q. 

Note that (5) is an overdetermined set of second order PDE for u. 
Conversely, by Proposition 2, conditions (4) and (5) are sufficient to 

imply that, locally, the integral curves of u are the fibers of a harmonic 
morphism. 

To state the next theorem precisely requires the use of the language of 
jets. Let SM —> M denote the unit sphere bundle of M. This is a bundle 
of fiber rank n over M. 

Let Jl(M,SM) denote the bundle of 1-jets of sections of ASM, and 
let Ei C Jl{M, SM) denote the subset consisting of those 1-jets of sec- 
tions that satisfy (4). (This makes sense since (4) is a set of first order 
equations for a section u of SM.) Then Ei is a smooth manifold of codi- 
mension (n^ ) — 1 in Jl(M,SM) and the basepoint projection Ei —> M 
makes Ei into a smooth bundle over M with fibers of dimension (n^ ). 

Finally, let J2(M, SM) denote the bundle of 2-jets of sections of SM, 
and let E2 C J2(M, SM) denote the subset consisting of those 2-jets of 
sections that satisfy (4) and (5). As will come out in the proof of Theorem 2 
below, E2 is a smooth manifold and the natural projection E2 —» Ei is a 
smooth submersion with fibers diffeomorphic to Rn+1. Thus, E2 is a smooth 
bundle over M with fibers of dimension 

(n+1)+("-) = ("r)-. 
Theorem 2. The bundle E2 —» M has a horizontal plane field H of dimen- 
sion n+1 with the property that, for every unit vector field u satisfying (4) 
and (5), the section j2\x 0/E2 is tangent to H. 

In particular, if, on a connected open set U C M, there are two unit 
vector fields ui and 112, each of which satisfies (4) and (5), that agree to 
second order at some point of U, then ui = U2 throughout U. 

Remark. Because the following proof is rather long, a few remarks on its 
structure may be in order, especially for the benefit of those readers who are 
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not familiar with the methods of the moving frame and exterior differential 
systems. 

The idea of the proof is simply to differentiate equations (4) and (5) for 
the vector field u, introducing new variables to represent the derivatives at 
each stage, until one reaches the point where the the differentiated equations 
allow one to solve for all higher derivatives of u. One could do this in local 
coordinates, of course, but the resulting equations would be quite unwieldy. 
Instead, I have chosen to work with the g-orthonormal frame bundle of M 
and to use the canonical coframing available there. This has its own apparent 
disadvantage. Namely, one must carry the action of O(n) along through all 
of the calculations. This 'disadvantage' is actually helpful, though, since the 
principle that all constructions must be 0(n)-equivariant serves as a useful 
guide to organizing the calculations. 

In the first few paragraphs of the proof, I recall the basic notation of the 
g-orthonormal frame bundle F. I then use F to construct a bundle X with 
base space J1(M, SM) on which the differential equations (4) and (5) can 
be expressed as the vanishing of a certain differential ideal 1. This move is 
the fundamental first step in converting a differential equation into an exte- 
rior differential system. Once this step is complete, the rest of the proof is 
really a calculation using standard techniques from exteror differential sys- 
tems. I test 1 for 'involutivity' by computing its space of integral elements. 
I find that it is not involutive and then go on to compute its first prolonga- 
tion 1^. (This computation is the exterior differential systems version of 
differentiating the equations (4) and (5) and examining the consequences.) 
I then compute the structure equations of X^ and find that it has at most 
one integral element at each point of the prolonged space Y. Once this is 
done, Theorem 2 follows just by interpreting the structure equations. How- 
ever, the calculation of the integral elements of 1^ yields more information 
than this. In fact, it shows that there are integral elements only at points 
where certain functions Fijki and Sy*. vanish identically. This can be inter- 
preted as saying that only certain 2-jets of sections of SM can correspond to 
actual solutions of (4) and (5). These conditions are rather complicated for 
the general metric and, consequently, I do not bother to write them out in 
terms of covariant derivatives and curvature (although one could certainly 
do this). However, they can be calculated explicitly for metrics with con- 
stant sectional curvature. I do this in §3 so that Theorem 2 can be applied to 
derive the classification results to be found there and that are my ultimate 
goal. 
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Proof. Let F —> M be the g-orthonormal frame bundle of M. The elements 
of F are of the form (m; u) = (m; uo,ui,... , ^n) where m is a point of M 
and u = (no, ^i,... , ^n) is a ^-orthonormal basis of TmM. Then TT : F —> 
M is a principal right 0(n+l)-bundle over M, where TT is the basepoint 
projection and the right action by A = (^4a6) in 0(n+l) is the usual one: 

(m; u) - A= (m] ub Afa )• 

There are canonical l-forms a;a on F that satisfy 

^a(v) = n'(v) 'Ua 

for every vector v in the tangent space to F at (m;iz). There are also the 
Levi-Civita connection forms u)ab = — cj^a that satisfy the first structure 
equations 

duja = -LJabAUJb 

and the second structure equations 

Qab — dbJah + LOac A LQch = -Rabcd ^c A ^ 

where the functions i?a6cc/ = —Rbacd — —Rabdc are well-defined on F and 
represent components of the Riemann curvature tensor in the sense that 

TT* (Riem(#)) = Rabc(iua®(jjh®ujc®ud. 

This use of the symbols (jja and u^ should not be confused with the earlier 
usages. Previously, the forms ua and ujab were defined on an open set U C M 
and relative to a coframing, i.e., a section of F over U. 

The map a : F —> S'M defined by cr(ra; w) = (ra, ^o) is a submersion and 
makes F into a principal right 0(n)-bundle over SM. 

Let u be a unit vector field on U C M and let Fu = cr-1 (u(C/)) C i*1. 
Then TT : Fu —> C/ is a principal right 0(n)-bundle. On Fu, the 1-form CJQ 

equals TT* (ub), where u17 is the 1-form that is g-dual to u. Therefore, on Fu, 
the closed 2-form dujQ must be 7r-basic. Thus, since 

dUQ =■ -CjQi A Ui = CJiO A CUi , 

there must be functions Aij and r^ on Fu so that 

o;^ = -(n—2)ri CJQ + Ay cjj . 

(The coefficient — (n—2) is introduced to align this formula with previously 
derived ones.) 
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Now g = (ub) +g/ and calculation as in (3) of §1.2.1 shows that C^g') = 
—2ro g1 if and only if the functions  Aij can be written in the form 

A.ij —    rg Oij + dij 

where a^ = —aji. Thus, for any unit vector field u, condition (4) is equiva- 
lent to the condition that equations of the form 

uio = — (ra—2)rj UJQ + (—ro % + a^) UJJ 

hold on Fu for some functions ra and a^- = — a^. 
Because the formula TT* (VU) = ojio ® xxj holds, the functions ra and ay- 

represent the 'undetermined' derivatives of any solution u of (4). This sug- 
gests that the submanifold Si C J1(M, SM) and its canonical contact ideal 
can be described by the following construction: 

Regard Rn as the set of columns of real numbers of height n and so(n) 
as the space of skew-symmetric matrices of size n-by-n. Let 

X = FxRxRn x so(n) 

and let ro : X —> R, r = (r;) : X —■> R72, and a = (a^) : F —* so(n) denote 
the projections onto the second third and fourth factors of this product, 
respectively. 

Define 1-forms 6i on X by the formulae 

Oi = Uio + (n-2)ri OJQ + (ro <% - a^-) Uj . 

Let 2o be the differential ideal on X generated by the 1-forms Oi. 
For vector fields u that satisfy condition (4), the bundle Fu C F can be 

lifted up to X by the mapping 

(ra; u) i-> ((ra; u), ro, (r*), (ay)) 

and, by construction, this lifting Fu <—> X is an integral manifold of Jo on 
which the forms Ua and ^ are linearly independent. 

Conversely, any connected integral manifold in X of the Oi on which the 
forms uja and LJIJ are linearly independent is the lift of an open subset of Fu 

for some unit vector field u satisfying (4) that is defined (though possibly 
multi-valued) on some open subset of M. This can be verified directly, but, 
in any case, is a standard argument in the theory of exterior differential 
systems. For further details, see [BCG]. 
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Let O(n) act freely on the right on X by the formula 

x - A = ((m; it), ro, r, a) • A = ((m; u) • A, ro, ^4_1r, A-1^). 

for all A E O(n). The 0(n)-orbits on X are the Cauchy characteristics of the 
Pfaffian system TQ [BCG,Chapterl]. Writing 0 = (0*), the formula #^0 = 
A~10 holds for A G O(n) and the form 0 is semibasic for the quotient 
projection X —> X/0{n). Thus, there is a well-defined Pfaffian system XQ 

on X/0{n) of rank n that pulls back to X to be 2o- It is important to 
understand the geometric meaning of the quotient X/0(n). 

Recall that, for any smooth bundle B —> M, the space Jl(M, B) of 1-jets 
of sections of B can be identified with the space of pairs of the form (6, P) 
where b is an element of B and P C T^B is an (n+l)-plane transverse to 
the fiber of B —> M containing b. 

Accordingly, a map X —» Jrl(M, SM) can be defined: For every x G X, 
let P^ C TXX be the codimension n subspace annihilated by the components 
of 0. The subspace Px contains the tangents to the 0(n)-orbits and so 
pushes down to define a codimension n plane field P on X/0(n) that is the 
annihilator of the l-forms in TQ. 

Now, Px contains the tangents to the fibers of the submersion CTQ : 
X —> SM defined by <7o ((m;u),ra,aij) = (m,uo), so, for every x e X, 
there is a well-defined subspace cri(x) C T^^SM that is of codimension n 
and is transverse to the fibers of SM —► M. By the above identification, 
this defines a smooth map <TI : X —> Jl{M,SM). Tracing through the 
definitions, one finds that the image of <JI is Ei while the fibers of ai are 
the 0(n)-orbits in X. Thus, 

X/0(n) = Ei CJ^M.SM) 

and, under this identification, TQ is just the pullback of the canonical contact 
system on J1(M, SM) to Ei. This identification explains the significance of 
the system IQ. 

Now, condition (5) on the vector field u corresponds to the condition 

d (ro COQ + n Ui) = 0 

on JPU. This suggests defining a 2-form ©o on X by the formula 

Go = d{YQUJQ + YiUJi) . 

Note that ro^o + YiUJi is semibasic for the projection X —> X/0(n) and 
invariant under the action of O(n). Thus, this 1-form is the cri-pullback of 
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a 1-form on Si = X/0{n). In particular, its exterior derivative Go is the 
cri-pullback of a 2-form on Si. 

Let I be the differential ideal on X generated by the (closed) 2-form Go 
and the 1-forms 0;. As an algebraic ideal, X is generated by the 1-forms Oi 
and the 2-forms Go and dOi. Just as for 2o, the Cauchy characteristics oil 
are the orbits of the O(n) action on X. Thus, X is the cri-pullback of a 
differential ideal X on Si. 

By construction, the integral manifolds of X that satisfy the indepen- 
dence condition Oi = CJQACJIA ... Ac«;n ^ 0 are locally the 1-jet graphs 
in Si C J1(M, ASM) of unit vector fields u on open domains in M that 
satisfy (4) and (5). Thus, it is the exterior differential system (X, fii) that 
must be studied in order to determine the space of solutions to (4) and (5). 

For the rest of the proof, I will be applying the standard exterior dif- 
ferential systems techniques to (X, Vti). The reader who wants to know 
more about these techniques can consult [BCG,Chapter 4]. In particular, 
by these methods, the space S2, i.e., the space of 2-jets of solutions to the 
equations (4) and (5), is seen to be the space of integral elements of (J, fii) 
on Si. (Recall that, given an exterior differential system J on a manifold M 
with an independence condition defined by some p-form fi on M, the integral 
elements of (J, fi) are the p-planes E C TmM on which the elements of J 
vanish but on which O does not.) 

It is more convenient to calculate on X than on X/0(n). Because the 
Cauchy characteristics of X are swept out by the 0(n)-action on X, the 
integral manifolds of (X,fli) on Si are in one-to-one correspondence with 
the integral manifolds of the system (X, O2) on X, where 

ft2 = fll A  (CJ12 A CJia A ... A W(n-i)n) • 

In particular, S2 can be computed from the structure equations of X. 
A routine, albeit tedious, calculation yields structure equations 

(6) Qo= PoAUJo+Pi^^i    mod0, 

and 

(7) dOi = (n-2)pi A u>o + (Sij PQ - ay) A LJJ    mod 0, 

where 

Po = dro, 
(8) pi = dri - Tj Uji - ((n-1) ror; + a^r,) UJQ + (ro ay - ry) Uj , 

otij = dsiij — 8ikj Uki - Siik Ukj — n roSLij vo — bijk ^k 
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and where the expressions r;j = r^ and b^-fc are defined on X by the equa- 
tions 

byfc = (^-2) (ri3.jk + rj&ki + rk&ji) + « (Roijk - Rojik - Rokij) 

and 
-(n-2) nj = Sij ro2 + a^a^- + (n-2)2 rirj + Riojo . 

From (6) and (7), any integral element E C TXX of (X,!^) is defined 
by equations 

0i = O, 

p0 = - (n-2) soCJO -Siuii 

pi= - SiCjQ- SQ Ui, 

ay —   ~ 5i ^ + 5j ^i 

for some unique numbers sa (that depend on E). Conversely, for any choice 
of numbers sa, equations (9) define an integral element of (X, f^) at every 
point of X. 

One can now compute the Cartan characters of X from structure equa- 
tions (6,7) and conclude that X is not involutive. Consequently, it will be 
necessary to examine the first prolongation of (X, f^)? i-e., the space Y of 
integral elements of (X, f^) and its canonical differential ideal 1^. Now, by 
equations (9), the space Y is diffeomorphic to 

Let so : Y —► R and s = (SJ) : Y —► Rn be the projections on the second 
and third factors respectively The first prolongation ideal of X is then the 
ideal X^ on Y generated by the 0i and the 1-forms r)a and T^ • = — 77^ 
defined by 

Vo = Po + (n-2) so ^0 + Si CJ; , 
(10) ^ =Px + Si6Jo + soa;i, 

Vij = a« + si ^j - sj ^i • 

If N C X is any integral manifold of (X, f^)^ there will be unique func- 
tions sa on AT so that equations (9) hold (since the tangent spaces to N 
must be integral elements of (X, f^))- Thus, the lifting N c-^ Y defined 
by x h-> (aj, so(2;), 5*(x)) for x G iV lifts AT to an integral manifold of X^1). 
Conversely, every integral manifold of (X^1), f^) on Y is the lift of a unique 
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integral manifold of (I, f^) on X. Because of this one-to-one correspondence 
of integral manifolds, it suffices to determine the integral manifolds on Y. 

Now, the 0(n)-action on X lifts in the obvious way to an 0(n)-action 
on Y whose orbits are the Cauchy characteristics of the system 1^. The 
quotient space Y/0(n) is naturally identified with the set of integral elements 
of (J, fii), i.e., with £2 C J2(M, SM). By its very construction, the second 
order contact system on J2(M, SM) pulls back to £2 to become an exterior 
differential system jW which, in turn, then pulls back to Y to become 1^. 

The next step is to determine the structure equations of 1^. Now, 
equations (6) and (7) can be written as 

(11) ©0 =^oACJo +TliAUJi    modfl, 

and 

(12) <ffli = (77,-2)77; A LJQ + (5ij r)0 - r/ij) A Ljj    mod 0 . 

Thus, ©0 = Mi = 0 mod O^rj. To complete the structure equations of X^1), 
formulae for drja and drfij must now be computed. 

Since dQo = 0, differentiating (11) and reducing modulo 0,7] yields 

(13) dr)Q ALJQ + dr/i ACJI = 0    mod 0,7]. 

It follows that there exist 1-forms Ca so that 

(14) d7]0 = (n—2)aoAujQ+aiA(jJi    mod 0,7], 

and examination of the definition of 7]Q reveals that 

(15) aa = dsa    mod CJ^, o;^-, 0,7]. 

(A more explicit formula for aa will not be needed in the proof.) Substitut- 
ing (14) into (13) and collecting terms yields 

(drii —CiA UQ) AUJi = 0   mod 0,7], 

which implies that there exist 1-forms Tij = Tji SO that 

(16) drfi = (Ti A OJQ + T^ A ujj    mod 0,7]. 

Now, differentiating (12) and reducing modulo 0 and 7] yields 

(17) 0 = (n—2)d7]i ACJO + (Sy d7]0 — dT]^) A UJJ    mod 0,7]. 
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Substituting (14) and (16) into (17) and rearranging then yields 

(18) 0 = (n-2) (nj - 5ijao) AUJALUQ 

— (drjij — Gi A Uj + Gj A ujj) A u>j    mod d, r). 

Reducing (18) modulo UOQ gives 

0 — {^Oij -Gi^ Vj + Vj A tJi) A u>j    mod 0,77, LJQ . 

Due to the skewsymmetry in i and j of the expression drjij-aiAUj +Gj/\Ui, 
it follows that there are functions F^z with the symmetries of a Riemann 
curvature tensor so that 

dllij =CFiA Uj - Gj AUJi + -Fijki LJk A Ui      mod 0, 77, UJ0 . 

Thus, there exist 1-forms ipij = — ^ so that 

(19) driij -GiA Uj - Gj A uji + (n-2) i/jij ACJO + -Fijki uk A LJI    mod 0, rj. 

Substituting (19) into (18) yields 

0 = (rc—2) (Tij — 5ijGQ + i/jij) ACJJ Acuo    mod ^,17. 

By Cartan's Lemma, there must exist functions Tijk = T^j so that 

(20) ru - %^o + ^y = 22ijib uk    mod 0,77, CJQ . 

Symmetrizing (20) in i and j yields 

Ty - SijGo = (T^fc + Tjiib) a;/,    mod 5,77, a;o, 

so that there exist functions Sij = S^i so that 

T^ - SijGo = Sij UJQ + (Tijk + Tjik) ujk    mod 0,77. 

Thus, (16) becomes 

drii = (Gi—Sij tuj) A CJQ + 0"o A a;^ + T^fc a;^ A O;^    mod 0,77. 

Replacing ^ by Gi-Sij ujj will not affect (14) (because of the symmetry 5y = 
Syi) and will, after a modification of the functions Fijki that preserves their 
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symmetries, also preserve (19). However, this substitution will simplify the 
above equation to 

drii =<TiAUJo + (ToAUJi + TjikujkAujj    mod 0,7/. 

On the other hand, skewsymmetrizing (20) in i and j yields 

faj - (Tijk - Tjik) uk    mod 0, r/, u;o , 

so (19) becomes 

drjij =(TiA CJj — (Tj A CJi 

+ (n-2) (Tijk-Tjik) iJk/\^o + -zFijki uk AUI    mod 0,77. 

Writing S^ — -Sikj = Tjik - Tkij and using the fact that  Tijk = Tjjy. 
the structure equations for the ideal 1^ take the form 

d0o = O 

dri0 = (n-2) ao A UJQ + ai A cji 

J 10 (21) d^ = (7^ A a;o + ^"0 A ^ - -oyfc CJJ A a;^ 

d^^- =(TiA UJj — (Tj A UJi 

>     mod 0,7/ 

+ (n-2) Skij Uk A a;o + -F^-/,/ a;*; A U;Z 

where the 1-forms aa pull back to each fibers of Y —> X to be the 1-forms dsa. 
Now, equations (21) do not uniquely determine the (Ta. For any func- 

tions pa on y, replacing CTQ by ao+Pa ^a and a; by <T; + (n—2) ^ CJQ+PO ^ will 
keep the form of (21) but will modify the functions 5^ and Fijki- In par- 
ticular, the traced functions SUJ and Fijij will be replaced by Siij+(n—\)pj 
and Fijij+2n(n— l)po respectively. It follows that there is a unique choice 
of the aa so that the torsion functions satisfy the trace conditions 

(22) &iij — 0 and ■Fijij — u. 

Henceforth, I assume that the aa have been chosen so that (21) and (22) 
hold. 

Now, I claim that there is at most one integral element of (X^1),^) at 
each point of Y. In fact, any such integral element E C TyY will be defined 
by equations of the form 

Oi = Va = Vij =<rO-PaUa= Oi - Pia^a = 0 
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for some unique numbers pai and pia. By (21), in order that dr/o vanish on 
such an E, it is necessary and sufficient that 

Pio = (™-2) Pi        and       py = pji. 

Moreover, again by (21), in order that drji also vanish on such an £", it is 
necessary and sufficient that 

Pij = Sij po       and       S^k (y) = Sij Vk - hk Pj • 

However, the trace condition (22) implies that this last condition can only 
hold if 

Pi = 0        and       Sijk(y) = 0. 

Thus, the defining relations for the integral element E take the form 

0i='na= Vij = CTQ-PO^O = <Ti -PO^i = 0 

and these can only define an integral element at points y G Y where 
Sijk(y) = 0. Finally, for drj^ to vanish on E, it is necessary and suffi- 
cient that Sijk(y) = 0 and 

Fijki{y) - Po(8ik$ji - SuSjk) = 0. 

Again, using the trace condition (22), this implies po = 0 and Fijki(y) = 0. 
Thus, the subspace Qy C TyY defined by the equations 

(23) 0i=7]a= rjij =ao=ai = 0 

is the only possible integral element of (X^, f^) at y G Y and this really is 
an integral element if and only if y satisfies 

(24) Sijk(y) = Fijkl(y) - 0. 

Since, at each y G Y, the space Q^ contains the tangents to the O(n)- 
orbit through y, there is a unique (n+l)-plane field H C TS2 that pulls 
back via the projection Y —> £2 to be Q C TY. 

Finally, a unit vector field u on U C M satisfies (4) and (5) if and only 
if the bundle Fu lifts to Y to be an integral manifold of (l^,^), i-e.? so 
that it is tangent to the plane field Q. Since the image of this lifting under 
the projection Y —> £2 is the image of the section j2u of £25 it follows that 
u satisfies (4) and (5) if and only if the image of j2u is tangent to H.      □ 



250 Robert Bryant 

Remark: Interpretation. One way of interpreting Theorem 2 is as fol- 
lows: All vector fields u that satisfy (4) and (5) satisfy a certain total 
differential equation of the form 

V3u = R (u, Vu, V2u) 

where R is a certain nonlinear bundle map from J2(M,SM) to TM ® 
T*M ® T*M <g) r*M. The formula for R in terms of the metric g can be 
written out, but it is unenlightening and, moreover, not of much use for 
doing calculations, so I will not write it out here. 

Remark: Integrability. When n is sufficiently large, for the generic met- 
ric #, the equations Sy*. = Fijki = 0 on Y will have no solution in Y. In this 
case, there will be no harmonic morphism of corank 1 whose domain is an 
open subset of M. 

Even when the locus Z C Y defined by Sijk = F^ki = 0 is non-empty 
and smooth, it can well happen that there is no point z 6 Z so that Q^ is a 
subspace of TZZ. Again, in this case, there will be no harmonic morphism 
of corank 1 whose domain is an open subset of M. 

Even when there is a smooth submanifold Z C Y that lies in the locus 
defined by S^k = Fijki = 0 with the property that Qz is a subspace of TZZ 
for all z G Z, it can still happen that Q is not an integrable plane field 
on Z. 

Finally, when there is a smooth submanifold Z C Y that lies in the locus 
defined by S^k = Fijki — 0 with the property that Q^ is a subspace of TZZ 
for all z G Z and that Q is an integrable plane field on Z, then Z will 
be foliated by integral manifolds of l^. Each such integral manifold will 
correspond to a locally defined harmonic morphism on some domain in M. 

Now, the functions 5^ and Fijki on Y can be expressed explicitly in 
terms of the functions ra, ay, sa, and the Riemann curvature tensor com- 
ponents Rijki and their first covariant derivatives on F. These formulae are 
very messy in general and it is difficult to tell much about them. However, in 
the case that g hats constant sectional curvature, these formulae simplify and 
constructive use can be made of them. In the next section, the system 1^ 
will be examined for such metrics, resulting in a complete classification of 
the harmonic morphisms of corank one with Riemannian domain having 
constant sectional curvature. 
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3. Harmonic morphisms of corank 1 from space forms. 

In this section, M will always denote a manifold of dimension (n+1) > 4 
that is endowed with a metric g with constant sectional curvature K. In this 
case, the structure equations on the orthonormal frame bundle TT : F —> M 
simplify to 

diUa = -UJab A UJb , 

dWab = — Mac A CJC6 + K UJa A CJfc , 

i.e., Rabcd = -K" (SacSbd - fiadfibc)- 

3.1. Analysis of the exterior differential system. 

As in the proof of Theorem 2, define the manifold 

X = FxRxWl x fio(n) 

and let ro : X —> R, r = (r^) : X —> Mn, and a = (ay) : F —> so(n) denote 
the projections onto the second third and fourth factors of this product, 
respectively. As before define 1-forms 0; on X by the formulae 

Oi = Vio + (n-2)rj UJQ + (ro % - ay) a;^ . 

Next, define 
y = X x E x Rn 

and let SQ : Y —> M and s = (SJ) : y —> Rn be the projections on the second 
and third factors respectively. 

Define 1-forms r]a and i^ • via the equations (8) and (10) of §2.2. Note, 
however, that the defining equations for  r^- and bijk simplify to 

bijk = (^-2) (ri&jk + Yj&ki + Yk&ji) 

-(n-2) Tij = Sij (ro2 + K) + ^k^kj + (™-2)2 r^r^ . 

3.1.1. First torsion equations. With great effort, 1-forms (Ta and func- 
tions Sijk and Fijki can be explicitly computed on Y so that equations (21) 
and (22) hold. In particular, this computation yields 

(n-2) S^k = (ra—1) (pj afci — p/c a^ - 2p; a^) - 3 (Sij pi a^ - 5^ pi a^) 

where 

(2i) Pi = Si — (n-2) rorf. 
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The formula for Fijki is much more complicated. Thankfully, it will not be 
needed. 

Let Z C Y be the locus defined by the equations Sijk = 0. It is clear 
from equation (1) that Z contains the two loci Zi and Z2 where 

Zi = {z e Y I aijiz) = 0 for all ij}, 

Z2 = {zeY\ pi(z) = 0 for all i }. 

I claim that, in fact, Z = Zi U Z2. To prove this, it is enough to show, 
for any p = (pi) G Rn and any skew-symmetric matrix a = (a^), that the 
equations 

0-ijk)        0 = (P-1) (Pj aki - Pk a>ji - 2Pi Q>jk) - 3 (Sij Pi aki - Sik pi dji) 

hold for all z, j, and k only if either pi = 0 for all i or else ay = 0 for 
all i and j. To show this, set qi = dijpj. Note that, because of the skew- 
symmetry of a, it follows that qipi = aijPjpi = 0. Multiplying (1^) by p^ 

and summing over fc yields 

0 = (n-1) (-pj qi - (pk)2 dji -2pi qj) + 3 qj pi 

which can be rearranged to give 

(3^) (n-1) (pk)2 dji = -(n-1) pj qi - (2n-5) pi qj 

Symmetrizing (3^) in i and j yields the relation 0 = piqj + pjQi, valid 
for all i and j. Multiplying this last relation by pi and summing over i 
yields (p^2 qj = 0. Thus, unless Pi = 0 for all i, then qj = 0 for all j, and, 
thence, by the equations (3^), it would follow that a^ = 0 for all i and j. 
Thus, the claim is proved. 

Now, from the proof of Theorem 2, any integral manifold of (X^1),^) 
in Y must lie in the locus Z = Zi U Z2. Since all of the connected integral 
manifolds of the system 1^ are derived from solutions of the harmonic 
morphism equations and hence must be real analytic, it follows that any 
connected integral manifold of 1^ must lie in either Zi or Z2 (or possibly, 
both). Thus, there are two types of solutions to be studied: The first type 
are the integral manifolds that lie in Zi and the second type are the integral 

manifolds that lie in Z2. 

3.1.2. Integral manifolds of the first type. Since Zi is defined by the 
equations ay = 0, it follows from the definitions and the simplified formula 
for bijk that, on Zi, the formula for t^ • simplifies to 

Tfij = Si LJj - Sj Ui . 
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In particular, any integral manifold of (X^, ^2) in Zi must lie in the sublo- 
cus Zn C Zi defined by the equations a^- = sj = 0. 

Now, on Zn, the ideal X^ is generated by the 1-forms 

0i = ^io + (n-2)Ti UQ + ro Ui, 

r/o = dro + (ra-2) so a;o , 

fli = dVi - Tj UJji - (n-1) YoYi (JQ 

+ (n-2) r^r^ ^ + f SQ + ^— (FQ
2
 + if) J ^ 

and their exterior derivatives. With a slight notation change, this becomes 

0i = Wio + (n-2)Yi UJQ + YQ uji, 

(4) ^ - dro + ((n-2) SQ - YQ
2
 - K) UQ , 

r/^ = dYi - Yj Uji - (n-1) YQYi UJQ + (n-2) YiYj OJJ + SQ Ui. 

A short computation yields 

Mi = 0 

(5) di70 = (TOAUJQ >     mod d, r;, 

drji = aoAuJi - 2(n-l)(n-2) YoYiYkUk ACJQ, 

where 

ao = dso - ro (nso + (n-2)rfc
2) LOQ + ((n-2)so - ro2 - K) Yk ujk 

From (5) and the real analyticity mentioned before, it follows that any con- 
nected integral manifold of (l^,^) that lies in Zn must lie in either 
the sublocus Zm  C Zn defined by the equation ro = 0 or the sublo- 
cus Z112 C Zn defined by the equations r* = 0 for all z = 1,... ra. 

Now, pulled back to Zm, the 1-form r/0 simplifies to 

r)0 = ((n-2)so-K) CJQ, 

so any integral manifold of (T^, ^2) that lies in Zm must lie in the sublo- 
cus Zim c Zm defined by the equation SQ = K/(n - 2). Now, on Zim, 
the generators of 1^ simplify to 

0i =^0 + (n-2)Yi(jJo, 

(6) 1 
ffi = dYi - rj ujji + (n-2) YiYj uj + — K uji. 

[n     Z) 
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and these have structure equations 

(7) C^EEC^EEO    mod 0,77. 

Thus, the system 1^ on Zun is a Frobenius Pfaffian system, so that Zim 

is foliated by integral manifolds of (X^, ^2) • I will call the foliations of M 
corresponding to these integral manifolds, foliations of Type 0. They will 
be analyzed below. 

Now examine the system (X^,^) on the sublocus Z112 C Zu. On 
this sublocus, the l-forms rji simplify to rji = SQU;;, SO all of the integral 
manifolds of (X^1), ^2) in ^112 must, in fact, lie in the sublocus Z1121 C Z112 

defined by the equation SQ = 0. On Zim, the system X^ has generators 

r/o = dro - (ro2 + K) UJQ , 

and these satisfy the structure equations 

dOi = drj0 = 0    mod 0, r/o • 

In particular, the system 1^ is a Frobenius Pfaffian system on Z1121 and 
so it is foliated by integral manifolds of (Z^, ^2)' I will call the foliations 
of M corresponding to these integral manifolds, foliations of Type 1. They 
will be analyzed below. 

3.1.3. Integral manifolds of the second type. Now consider the lo- 
cus Z2 C Z defined by the equations s* = (n—2) ror;. Calculation now shows 

that on Z2, the relation 

dri0 = (n—2) <To A LUQ — (n — 2) (so - ro2)aij Ui A a;^    mod d, 17. 

holds, where CTQ = dso mod a;. It follows that any integral manifold 
of (J^1),^) in Z2 must lie in either the sublocus Z21 C Z2 defined by 
the equation s — ro2 = 0 or else in the sublocus Zi Pi Z2 C Z2 defined by 
the equations a^- = 0. Since all of the integral manifolds of (Z^1),^) that 
lie in Zi have already been found, this second case will be discarded. 

Thus, consider the system (J^),^) on Z21. The 1-form generators of 
this system are 

0i = cj^ + {n-2)Yi CJQ + (ro <% - ^ij) Uj , 

T/O = dro + {n-2) ro (ro a;o + r* ui) , 

(9)        rji = rfr* - rj cjji - (ror^ - a^-r^) UQ + (ro a^ - ry + ro2 (Jy) ^ , 

7/^ = da^- - a/y cj/ci - a^fc CJ^ 

— n YQSLij UJQ — (n—2) (bijk — ror^ Sjk + ror^ 8ik) ^k , 
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where, for simplicity, byfc has been redefined to be 

On Z21, the congruences d0i = dr)0 = 0  mod 0,77 hold, but 

drii = 2(n-l)ro2Ui A (r^^)    mod ^0,6,7). 

It follows that any connected integral manifold of (l^, ^2) that lies in Z21 

must lie in either the sublocus Z211 C Z21 defined by the equation ro = 0 or 
the sublocus Z212 C Z21 defined by the equations r* = 0. 

On Z211, the generators of X^ simplify to 

0i = ujio + (n-2)ri CUQ - ay a;^ , 

(10) ^ = dri - Yj Uji + diijYj CJO - ry UJJ , 

t/y = day - ajy CJ^ - a^A; ^ - (^-2) (ria^fc+rjajfei+rfca^) a;fc , 

where 

-(n-2) Yij = KSij + SLikSLkj + (^-2)2 r^ . 

Now computation yields 

dOi = drii = di/y = 0    mod 0, r/. 

Thus, on Z211, the system J^1) is a Frobenius Pfaffian system. It follows 
that Z211 is foliated by integral manifolds of (l^1),^)- I will call the foli- 
ations of M corresponding to these integral manifolds, foliations of Type 2. 
Note that Zun is a submanifold of Z211 and that the integral manifolds of 
Type 0 are special cases of those of Type 2. They will be analyzed below. 

Finally, consider the system 1^ on the locus ^212- On this submanifold, 
the formula for rji simplifies to 

Vi = Oo ay - Y^ + ro2 Sij) UJJ 

Since ry = rj^ the vanishing of 77^ on a connected integral manifold 
of (Z^1),^) that lies in Z212 implies that the functions roay must also 
vanish on such an integral manifold. Thus, such an integral manifold must 
either satisfy ro = 0, in which case, it lies in Z211 and so has already been 
accounted for, or else satisfy ay = 0, in which case, it lies in Zi and so has 
already been accounted for. 
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3.1.4. Conclusions. In summary, there are two types of integral manifolds 

of (Z^, f^)- When T^ is pulled back to either Z1121 or Z21U ^ becomes a 

Frobenius system whose leaves are maximal integral manifolds of (X^, f^)- 

Moreover every connected integral manifold of (l^,^) is an open subset 
of one of these leaves. 

3.2. The local classification. 

Finally, the main result can be stated and proved. Note that this theo- 
rem does not require any assumption of compactness or completeness. The 
reader is reminded that the assumption n > 3 remains in force, here and for 
the remainder of the article. 

Theorem 3. Let (Mn+1,g) be a 1-connected manifold of constant sectional 
curvature K and suppose that <p : (Mn+1,^) —► (Nn,h) be a submersive 
harmonic morphism with connected fibers. Then either there exists a Killing 
field X tangent to the fibers of (j) or else the fibers of 4> are geodesies and M 
is foliated by totally umbilic hypersurfaces that are orthogonal to the fibers 

of*. 

Proof. Since M is 1-connected and the fibers of (j) are connected, it follows 
that the fibers are orientable, i.e., that there exists a unit vector field u on M 
whose integral curves are the fibers of </>. Using the notation established in 
the proof of Theorem 2, let Fu C F be the subbundle of the g-orthonormal 
frame bundle of M consisting of those frames (ra; u) so that UQ = u(m). 

Then there exist functions ro, r;, and a^ = — a^ on Fu so that 

ViQ = -(n-2)r; u>o - (ro Sij - aij) CUJ . 

Moreover, these functions satisfy 

d(rouJo + riUi) = 0. 

By the analysis in §3.1, there are two possibilities. Either r* = a^ = 0 
and dro = (ro2 + K) LUQ (if the corresponding integral manifold is of Type 1) 
or else ro = 0 and the functions ri and a^ satisfy the equations 

du = rj ujji - aijrj UJQ + r^ Uj , 

daij = akj ujki + aik uJkj + fa—2) (riajk+rjaki+rkaji) uk , 

where 
-fa-2) nj = K5ij + aikakj + (n-2)2 rpj , 
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(if the corresponding integral manifold is of Type 2). 
Suppose that the first possibility holds. Then, since ri = 0, it follows 

from the discussion in §1.1.3 that the fibers of (f> are geodesies (since they 
have vanishing mean curvature vector). Moreover, now the identity Uio = 
—rouji holds, so it follows that duo = 0, i.e., the leaves of CUQ = 0 are the 
frame bundles of hypersurfaces in M that are orthogonal to the fibers of </>. 
By the structure equations, the second fundamental form H of each such 
leaf is the restriction to that leaf of the tensor 

H = Uio o oji = —ro uJiOuji = —ro g1 

where g1 is the usual orthogonal projection of the metric g. Since H is a 
scalar multiple of </, the induced metric on these orthogonal hypersurface 
leaves, it follows that each such hypersurface is totally umbilic. 

Suppose now that the second possibility holds. Since ro = 0, it follows 
that p — p' = ri Ui is a closed 1-form that is well-defined on M. Since M is 
connected and simply connected, there exists a smooth positive function r 
on M, unique up to a constant scalar multiple, so that r~l dr = p. Set 
X = rn~2 u. Now a calculation using the equation u^o = — (n—2)ri ujQ+aij Uj 
yields 

Cxg = 0. 

Thus X is a Killing vector field for #, as desired. □ 

Remark 1. Remark The two possibilities are not quite mutually exclusive. 
There is essentially one local example that falls under both Types. This is 
when TQ = ^ = a^ = 0. By the structure equation dro = (ro2 + K) CJQ, this 
can only happen when K = 0. Then the foliation of 0-fibers is by parallel 
geodesies and the orthogonal hypersurfaces are totally geodesic. In this 
case, the morphism (j) is locally equivalent to the standard linear orthogonal 
projection </>: Mn+1 -> Rn. 

3.3. Examples and further results. 

Theorem 3 forms the basis of a classification of the harmonic morphisms of 
corank 1 for which the domain hats constant sectional curvature. 

3.3.1. Umbilic morphisms. Because of the nature of the orthogonal fo- 
liation, I will say that a harmonic morphism (f): (Mn+1, g) —> (iVn, h) whose 
corresponding integral manifold is of Type 1 is an umbilic morphism. Thus, 
in this case, the fibers of </> are the geodesies orthogonal to a foliation of M 
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by parallel totally umbilic hypersurfaces. To specify the map (j) up to ob- 
vious equivalences, it is evidently enough to specify a single totally umbilic 
hypersurface in M. The number of possible cases depends on the sign of the 
sectional curvature K. For simplicity, I will only treat the cases K = 1,0, —1. 

If K = 1 and M = Sn+1 with its standard metric, then every totally 
umbilic hypersurface is an n-sphere of radius at most 1. The family of 
parallel hypersurfaces consist of the parallel hyperspheres, one of which is a 
great n-sphere. Using the standard inclusions of Sp into Rn+1, the formula 
for the map (f> becomes 

i / \ {x07 - • • 5 xn) 
</>{XQ,...,Xn+l) = 

1/1 - xn+l2' 

which is undefined at the 'poles', xn+i = ±1. 
If K = 0 and M = Rn+1, there are two types of umbilic foliations. The 

first type is by parallel planes, leading to the harmonic morphism 

(/> (xo,.. •, xn+i) = (XQ, ..., xn) , 

and the second is the radial projection </>: M71"1"1 \ 0 —> Sn given by 

{Xli • • • 5 Xn) 
(f)(xi,...,Xn+i) = 

y/xi2 H + Zn+l2 

If K = -1, and M = Dn+l C Rn+1, the hyperbolic ball, then there 
are three types of umbilic foliations, leading to three types of umbilic mor- 
phisms. The first type is when one of the umbilic hypersurfaces is totally 
geodesic. Then the parallel hypersurfaces are all totally umbilic with prin- 
cipal curvatures less than 1 in absolute value. The parallel mapping iden- 
tifying any two such hypersurfaces is a homothety and the quotient metric 
is of constant negative sectional curvature. Thus, the corresponding (/> is 
a harmonic morphism from jDn+1 to Dn. The second type is when all of 
the parallel umbilic hypersurfaces have principal curvature equal to +1 or 
—1. Of course, in this case, the hypersurfaces are all horocycles tangent at 
a unique common point on the ideal boundary of Dn+1. The metric on such 
a horocycle is the flat metric, so this gives rise to a harmonic morphism 
cj) : L)n+1 —> R71. (This example is more simply seen in coordinates as the 
linear projection from the upper half space model of hyperbolic space to the 
boundary plane.) Finally, the third type is when all of the parallel umbilic 
hypersurfaces have principal curvatures of absolute value greater than 1. In 
this case, the hypersurfaces are the level sets of the distance function from 
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some fixed point z G Dn+1 and hence are isometric to standard spheres Sn 

of varying radii. The corresponding harmonic morphism is well-defined as a 
map<£: D\{z)-*Sn. 

By passing to quotients and covers and so forth, every example with M 
complete or compact can be constructed from these examples. Note that 
by taking appropriate quotients by discrete subgroups, one can construct 
compact examples only by starting with the harmonic morphisms from M71"1"1 

or Dn+1 to Rn since these are the only ones for which ro can satisfy the 
equation dr§ = (ro2 + K) u>o on a compact fiber of </>. 

All of these examples of umbilic morphisms are due to Gudmundsson, 
who also proved a characterization theorem [Gul,Theorem 3.6] asserting 
that a non-constant harmonic morphism (j) : (Mn+1,#) -» (N,h) where 
both g and h have constant sectional curvature that has the additional prop- 
erty that the conformal factor r is constant on curves in M perpendicular to 
the fibers of (f> must be one of these examples or else r is actually constant. 

3.3.2. Isometric quotient morphisms. Finally, consider the case where 
there exists a non-zero Killing field X on M whose integral curves are 
the fibers of the harmonic morphism </>. From the discussion of this exam- 
ple in §2.1, the metric h on the target manifold iV must satisfy </>*(h) = 
c |X|2/(n"~2) gf for some constant c > 0, where, as usual, g' denotes the part 
of the metric g that is orthogonal to the fibers of </>. If M is oriented 
and *gl denotes the volume form of #, then a computation shows that the 
pulled-back volume form for h must have the form 

0*(^1) = cn/2 |X|2/(n-2) (XJ^I) . 

Note that the n-form on the right hand side of this equation is smooth away 
from the zero locus Z C M of X. 

Because X is a non-zero Killing field, Z must be a smooth, proper 
submanifold of even codimension, say, 2q < n+1. In fact, in a neigh- 
borhood of any z G Z, there exists a geodesic normal coordinate system 
2/i,..., yn+i on a ^-neighborhood U so that Z n U is defined by the equa- 
tions 7/i = • • • = y2q = 0 and X has the form 

/    d d \ (        d d 
X = mi h/i 2/2 ^— 1 H + mq[ ^-i ^- y2q dyi    "dnj '      ' ' qV'q-Ldy2q    ^dy2q.1 

where rrti > 0. (To derive this normal form, note that since the flow of X 
is an isometry fixing z G Z, it induces a one-parameter group of rotations 
on TZM.   This one-parameter subgroup of 0(TzM) is then generated by 
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a linear vector field X2 on TZM. Taking the usual normal form of such 
a linear vector field with respect to an orthogonal basis of TZM and then 
using the fact that the exponential map expz : TZM —> M, which is a local 
diffeomorphism on a neighborhood of 2, must carry X2 to X then yields the 
above normal form. Note that, by this constuction, the submanifold Z near z 
is the image under expz of a linear subspace of TZM of even codimension.) 

It follows that the expression |X|2/(n~2) (XJ*^!) cannot be smooth on 
a neighborhood of z unless n = 3. Of course, when n — 3, this expression 
actually is smooth, a fact that will be used below. Moreover, when n = 3, 
the formula for the 'push-down' metric simplifies to 

r(h) = c(\X\2g-(Xb)2), 

where Xb represents the g-dual 1-form to X. 
When Mn+1 is a simply connected manifold and g is complete with 

constant sectional curvature K, there are many Killing vector fields, each 
leading to a different harmonic quotient. Of course, these quotients will 
usually have singularities, since the space of integral curves of a general 
Killing vector field on M will not, in general, carry the structure of a smooth 
manifold. Thus, it will usually be necessary to restrict to an open set U C M 
on which the integral curves of X form an amenable foliation before one can 
construct the target manifold. 

Example 2. Spherical quotients. Consider the case K = 1, so that M = 
gn+i c ]g>n+2 (embedded as the standard unit sphere XQ

2
 -\ h^n+i2 = 1). 

Then, in order for the integral curves of X to be closed (so that the space of 
integral curves endowed with the quotient topology is at least Hausdorff), 
it must be conjugate in the rotation group to a multiple of a vector field of 
the form 

f       d d \ ( d d 

V     dxi dxoj \      dx2k+i 0x2k 

for some integer k satisfying 2k <n and some positive integers mo < • • • < 
mk with greatest common divisor equal to 1. Take X to have this form. 

The generic integral curve of X is of period 27r and there will be ramified 
integral curves (that are not fixed points) unless rrii = 1 for all i. The fixed 
point set Z C S71*1 will be empty unless 2k < n, in which case Z = Sn~2k~l 

is defined by the equations XQ = xi = • • • — #2fc+i — 0- Note that, away 
from Z, the X-orthogonal part g' of the induced metric g is smooth, as is 
the tensor \X\2^n-^ g'. 
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If R C 5n+1 denotes the closed subset of SnJrl consisting of the ramified 
integral curves of X plus the fixed points, then setting N = (Sn+1 \ i2)/X, 
with quotient projection (/) : Sn+1 \ R —► iV, defines a smooth n-manifold 
on which there exists a unique Riemannian metric h that satisfies 0*(/i) = 
|X|2/(n-2) g! With respect to this metric, (f) : (Sn+1 \Z,g) -> (N,h) is a 

harmonic morphism. 
Note that since |X|2/(n~2) g' does not vanish on R \ Z, it is not possible 

to extend TV as a smooth manifold in such a way that </> can be extended 
over any part of R\Z as a smooth mapping. Thus, if (f) is to extend globally 
to iS'n+1 as a harmonic morphism to a smooth n-manifold, then R = Z, i.e., 
mi = 1 for all i. Assume this from now on, so that R = Z. 

Now, if Z is empty, i.e., if n = 2k, then X generates the standard circle 
action on S2k+1 and the quotient manifold is iV = CP^, with the Fubini- 
Study metric. 

On the other hand, if Z = S71"2^1 is non-empty, it consists of either 
1 or 2 components. Since the expression |X|2/(n~2) (Xj*pl) is not smooth 
along Z unless n = 3, it follows that there are at most two cases to con- 
sider: The cases (n,fc) = (3,0) and (n,fc) = (3,1). In the first case, N can 
be completed to a topological manifold N by adding a single point corre- 
sponding to the fixed point set Z = S2 and, in the second case, TV can be 
completed to a topological manifold N by adding two points, correspond- 
ing to the two points of Z = S0. However, in neither case can the smooth 
structure on N be extended across the extra point (s) so that the metric h 
extends as a smooth metric on N. In fact, in each case, the metric on N is 
invariant under an action of SO(3), so that in a neighborhood of one of the 
extra points, 'polar coordinates' can be introduced so that s represents the 
distance from the singular point and a neighborhood of the extra point can 
be written in the form (0, e) x S2 with the metric taking the form 

ds2 + f(s)a 

where a is the standard metric of curvature 1 on 52. In the case that k = 0, 
the function / has the form f(s) = s(s + l)2(s + 2) near 5 = 0 (the extra 
point) while in the case that k = 1, the function / has the form f(s) = 
s2(l — s/2)2 near s = 0. In neither case is / the square of a smooth, odd 
function of s whose derivative at s = 0 equals 1, a necessary and sufficient 
condition for such a metric to represent a smooth, rotationally invariant 
metric in polar coordinates. 

The conclusion of all this discussion is that the only non-constant 
harmonic morphism whose domain is the entire S'n+1 with its standard 



262 Robert Bryant 

metric and whose range is a smooth n-manifold is the standard fibering 
<f) : 52/c+1 —> CPk. Note that this analysis gives a more comprehensive 
solution to the problem discussed in [Do]. 

Remark: Other examples. Using the above discussion as a guide, it is 
possible to write down an SO(4)-invariant metric g on S4 C M5 that admits 
a Killing field X with two isolated fixed points so that the quotient space N 
carries the structure of a smooth manifold diffeomorphic to S3 endowed 
with a smooth metric h, so that the leaf projection (/>: (54, g) —> (53

) h) is a 
harmonic morphism with exactly two singular points. However, the metric g 
cannot have constant sectional curvature. 

Example 3. Euclidean quotients. 
The non-zero Killing vector fields on Rn+1 can be divided into two types, 

those without fixed points and those with fixed points. 
If X is a Killing field on Mn+1 without fixed points, then, up to a constant 

multiple, it it conjugate by an Euclidean motion to the vector field 

d (      d d \ f 9 d 
X = ^T + ™l K Tir: " ^ -5—    + * *' + mq[ x2q.1 —— - x2q dxo "    L V     dx2     ^ dxj  ' '     q V   "     dx2q     "«dx^-i 

for some positive real numbers mi,... ,m9 where q < n/2. Prom now on, 
assume that X has this form. Note that all of the integral curves of X 
intersect the hyperplane XQ = 0 exactly once, and do so transversely, so that 
this hyperplane can be taken as the model space for the quotient manifold N. 
It is not difficult to see that the metric honN (canonically determined up to 
a constant scalar factor) that makes the leaf projection (j): Rn+1 -» N = R71 

a harmonic morphism is never of constant sectional curvature unless q = 0, 
in which case </> is simply the linear orthogonal projection </>: R71"1"1 —> Rn. 

If X is a Killing field on Rn+1 with fixed points, then, it is conjugate by 
an Euclidean motion to the vector field 

X 
f    d        a \ (        d d   \ 

for some positive real numbers mi,..., mq where q < (n+l)/2. (For sim- 
plicity, I am taking zi,... ,a:n+i as an orthogonal linear set of coordinates 
on Rn+1.) 

By the same analysis as in the previous example, the quotient space N 
cannot be defined as a Hausdorff space unless the ratios of the m; are ratio- 
nal, in which case, they can be taken to be integers with greatest common 
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divisor equal to 1. Then, the ramification set R will be larger than the zero 
set Z unless ra; = 1 for all i and it will not be possible to define a smooth 
structure on any extension of N so that the leaf quotient cj) : Mn+1 \ R —> N 
extends as a smooth map to any part of R \ Z. Thus, if the harmonic mor- 
phism is to be globally defined, one must have R = Z, i.e., all of the ra* = 1. 

Now, as has already been noted, the map <f> cannot be extended smoothly 
across Z unless n = 3, so that either q = 1 or q = 2. With some effort, it 
can be shown that the first case leads to a singular quotient that cannot be 
smoothed. However, for q = 2, the Killing field 

d d d d 

0x2 ox 1 OX4 OX3 

does lead to a smooth quotient, for setting 

1 /    2 ,      2 2 2\ 
2/1=2 vXl   + X2   ~ ^   ~ ^ ) 

y2 = X1X4 - X2X3 

Vs = X1X3 + X2X4 

yields a map cj) = (yi, y2, ys) : M4 —> R3 that satisfies 

.2 
^(fc) = |X|2(/-(xb)- 

where g and ft, are the standard metrics on E4 and R3, respectively. Thus, 
this defines a smooth harmonic morphism, globally defined on R4. Note 
that this is an example of a harmonic morphism defined by quadratic maps, 
as studied in [OW]. In [Ba], it was shown that this is essentially the only 
harmonic map from R4 to R3 given by quadratic polynomials. 

Example 4. Hyperbolic quotients. 
The discussion in this last example will be more cursory than in the 

previous examples since the results are very like the first two and proved by 
the same methods. 

Again, just as in the Euclidean case, if (Mn+1, p) is the hyperbolic ball, 
there are two kinds of non-zero Killing vector fields. The first kind have 
no fixed points, while the second have a fixed submanifold which is totally 
geodesic. 

If X is a Killing field on M without fixed points, then, just as in the 
Euclidean case, one can choose a hypersurface N in M that is transverse to 
the vector field X and so that each integral curve of X in M meets N in 
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exactly one point. This iV is diffeomorphic to R71, of course, and there will 
be a unique induced metric on N so that the leaf projection is a harmonic 
morphism. 

If X is a Killing field on M that has a non-empty fixed point set Z, then, 
again, unless n = 3, the harmonic morphism defined on X \ Z cannot be 
extended smoothly across the fixed point set. However, even when n = 3, 
the two cases that arise do not yield a smooth quotient, being more like the 
two cases that arose in the study of S4 than the two cases that arose in the 
study of R4. Thus, none of these give rise to global harmonic morphisms on 
hyperbolic 4-space. 
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