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I recently learned that the proof of Lemma 3.1 in [1] contains an error. 
As a result, the proof of Theorem 1.3 in [1] is incomplete. It also affects the 
proof of Theorem 1.2 which states that the pluri-complex Green function g 
for a strongly pseudoconvex domain Q C Cn with a logarithmic pole at a 
point £ G Q belongs to C1'a(Jl — {£}) for any 0 < a < 1. Here we present a 
proof of this result independent of Lemma 3.1 of [1]. 

Theorem 1. Let Cl be a smooth bounded strongly pseudoconvex domain in 
Cn and ( G ft. Let g be the pluri-complex Green function for Q with a 
logarithmic pole at £.  Then g G C1,a(tt — {£}) for any 0 < a < 1. 

Proof. It is known that the pluri-complex Green function g is the unique 
week solution of the problem 

(42) 

u is pluri-subharmonic in Q — {£} 

det(uZjSk) = 0 inft-{C} 

u = 0 on dCt 

u(z) = log \z - C| + O(l) as z -> C- 

We will show that the solution to (42) is in C1'1(n — {£}). Without loss of 
generality, we may assume £ = 0 and Bi = Bi(0) C fi. 

In [1] we proved that, for each positive e < eo (for some fixed eo < \ 
so that B2£0 C fi), there exists a unique strictly pluri-subharmonic solution 
ue e c

00^) to the Dirichlet problem 

(43) det(ujk) = e in Q£ = Cl — B£,    u = u on dVle 

where u = v + Iog|2:| G C00(n — {0}) and v is the unique strictly pluri- 
subharmonic solution in C00(Q) of the Dirichlet problem 

det^-j;) = 1   in fi,     v = — log \z\   on 9fi. 
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By the maximum principle, 

(44) log \z\-Co<u<ue < u£f < log |*| in fte if e* < e. 

Thus the limit 

u(z) = limu£(z) 

exists for all z e H - {0}. We need to show that u € C1'"^ - {0}). 

Lemma 2.  There exists a constant Ci independent of e such that 

(45) |Vtxe| < Ci  on dn and \Vu£\ < — on dBe. 

Proof. Since u < u£ < 0 in Vte and u£ — u — 0 on d£l£, we have 

|Vue| = ul < Uv = \Vu\ on an. 

This proves the first inequality in (45). To prove the second one, let u(z) = 
u£(sz) — logs and u(z) = u(£z) — logs = v(sz) + log \z\ for z G B2 — Bi. 
Note that 

(46) det(ufk)=s2ndet(uj-k) = s2n+1. 

Let h be the harmonic function on §2 — Bi with h = log 2 on <9i?2 and 
h(z) = t;(e*) on dBi. Then S < -S < h on 52 — Bi by the maximum 
principle, since Au > 0 in B2 — 5i, tt < h on 9^2 and i2 = fe on <9i?i. 
Consequently, 

|Vfi| < Ci on dBi. 

This implies the seocnd ineqality in (45) as Vu£(z) = jVfi(|). D 

Lemma 3. Let u be a strictly pluri-subharmonic C3 function with 

detujk = constant 

Let {u^k} = {u-g}"1.  T7ien; /or any constant a > 0; 

Mi?(cati|Vu|2)y > 0. 
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Proof. We verify this by direct calculation. First, 

(|Vu|2)i = ^2(ukUj-)i = 52(ufctUjb + ukHi) 
k k 

k k 

Since detit-g is constant, we see that 

and therefore 

We also note that 

TZy (|Vw|2)tU7 = |V^|2 + U^UkiUHUl. 

By Cauchy-Schwarz inequality, 

2a\ Re{u^UkiU^Uj}\ < a2\Vu\2u%^UiUj + u^UkiU^. 

Finally, 

c-a^(catt|Vix12)y=|Vix|2^(auy + a2iXiTx5) 

+ 2aRe{^(|Vw|2)i^} + ^(|Vu|2)y 

= a(n + 2) | Vw|2 + a2|VTz| V^'w^j 

+ 2a Re^Ufcii^} + ulJukiUty + J^ tz^g 

>a(n + 2)|V^|2 + 5]^>0. 

This proves Lemma 3. ' □ 

It follows from Lemma 2 and Lemma 3 by the maximum principle that 

(47) |Vixe| < Cie-^ onHT. 

Lemma 4.  There exists a constant C2 independent of e such that 

(48) |VV| < C2  on dQ and |VV| < ^  on dB£. 
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Proof. The first estimate in (48) may be proved as in [1]. We only prove the 
second one here. Let w, u and h be as in the proof of Lemma 2. It suffices 
to show that 

(49) |V2u| < C2 on dBi. 

For a fixed point z0 G dBi, we may assume z® = (0,... , 1), i.e., the coor- 
dinates of 20 are Xj = yj — 0, 1 < j < n — 1, rrn = 1 and 2/n = 0. Since 
1/(2:) = v{ez) on 95i and |Vii| < Ci, it is trivial to obtain a bound for the 
pure tangential seocnd order derivatives at z0 

(50) \uXiXk I, (iia.^ I, liiy^, I < C,   1 < i, fc < n - 1,1 < j, Z < n. 

To estimate the mixed tangential normal derivatives we need the following 
analogue of Lemma 2.1 of [1]. 

Lemma 5. Let Us == (£2 - #1) n Bs{z0) and w = (u - u) + t(h - u) - ATd2, 
where d is the distance function from dBi, and t, N are positive constants. 
For N sufficiently large and t, S sufficiently small, we have 

(51) u&wfl < ~ (l + $3fi**)    in U5,    v>Q on dUs. 

Proof. We first note that this does not follow from Lemma 2.1 of [1] as 
{iLjk} is not uniformly positive definite in e. In order to prove (51) we have 
to make use of a special property of u. Since u{z) = v{ez) + log \z\ and v is 
plurisubharmonic, we see that 

n-l 

ujku, 
k=l 

for 5 sufficiently small. It follows that 

when 5 is sufficiently small.   The rest of the proof is similar to that of 
Lemma 2.1 in [1] and therefore omitted. □ 

Returning to the proof of Lemma 4, as in [1] we may derive a bound for 
the mixed tangential normal derivatives at z0 with the aid of Lemma 5 

(52) \uxkxnl luxnvj] <C,   1 < k < n - 1,1 < j < n. 
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It remains to establish an estimate for the pure normal second order 
derivative 

(53) \uXnXn(z
0)\ < C 

Because of (50) and (52) it suffices to prove 

(54) \unn(z0)\<a 

Since u — u = 0 on dB^ 

ujk(z
0) = m(z0) + l(u-u)Xn(z

0)5jk 

and therefore 

(55) £ ufk(z0)^k > J2 mi^^k = KI
2 

j,k<n 3,k<n 

for any £ = (£i,... ,£n-i) ^ Cn_1. Finally, solving equation (46) for unn we 
see that (54) follows from (50), (52) and (55). This completes the proof of 
(49) and therfore that of Lemma 4. □ 

Lemma 6.  There exists a constant C3 independent of e such that 

(56) \u£,\<Cze-2ue  infi, 

Proof. It suffice to derive an upper bound 

(57)        M = max    max    e2u£ ^S^U^TIZ)^^ < C   independent of e. 

We claim that M is achieved on dQ£. Suppose M is achieved at an interior 
point z0 for some £ E Cn. We may assume £ = (1,0,... ,0) and {ue^(z0)} 
is diagonal. Thus the function ip = 2u£ + logu^ attains a maximum value 
at z0 where, therefore 

On the other hand, differentiating equation (42) twice, we obtain 

(58) Y^lM-Y   ^ ^=o 
v    ' £-~i  ufr       ^>  ue.-.ue,T KK JJ     KK 
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and hence 

J2^ = 2n+±Y(^-^!^)>2n. 
^ u£

lT uU z—' \   u£
lT uUu£

T   / ~~ 

This contradiction shows that M is achieved on dft£. By Lemma 4, we 
obtain (57). □ 

We are now in a position to finish the proof of Theorem 1. Let K be a 
compact subset of Q - {0}. We show that, for e sufficiently small so that 
K cns, 
(59) \\ue\\ci'"(K) <C = C(K)    independent of e. 

First, by (44) and (47) we have 

(60) IKIIci(X) < C = C(K)    independent of e. 

Next, from Lemma 6 we see that 

n n 

(61) A^ = ^2(ue
XjXj + ue

yjyj) = AJ2 Ufj < C   in K independent of e. 

Now, (59) follows from (60) and (61) with the aid of the standard regularity 
theory. This proves that u e C1,a(ft — {0}) and therefore completes the 
proof of Theorem 1. □ 
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