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I recently learned that the proof of Lemma 3.1 in [1] contains an error.
As a result, the proof of Theorem 1.3 in [1] is incomplete. It also affects the
proof of Theorem 1.2 which states that the pluri-complex Green function g
for a strongly pseudoconvex domain 2 C C™ with a logarithmic pole at a
point ¢ € Q belongs to C1*(Q — {¢}) for any 0 < o < 1. Here we present a
proof of this result independent of Lemma 3.1 of [1].

Theorem 1. Let Q be a smooth bounded strongly pseudoconvex domain in
C" and ¢ € Q. Let g be the plurz'-c_o_mplea: Green function for Q with a
logarithmic pole at (. Then g € C1*(Q — {¢}) for any 0 < o < 1.

Proof. 1t is known that the pluri-complex Green function g is the unique
week solution of the problem

u is pluri-subharmonic ~ in @ — {¢}
det(uz;z,) =0 in Q- {¢}
u=0 on 90
u(z) =log|z —¢|+0(1) asz—C.

(42)

We will show that the solution to (42) is in CY}(Q — {¢}). Without loss of
generality, we may assume ¢ =0 and B; = B;(0) C Q.
In [1] we proved that, for each positive € < gy (for some fixed g9 <

so that By, C ), there exists a unique strictly pluri-subharmonic solutio
u® € C*(£,) to the Dirichlet problem

(43) det(u,;z) =¢ in Qe =Q ~B.,, u=u ondQ,

1
2
n

where u = v + log |z| € C“@ — {0}) and v is the unique strictly pluri-
subharmonic solution in C*°(2) of the Dirichlet problem

det(v;z) =1 inQ, v=—log|z| on Q.
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By the maximum principle,
(44) log|z| - Co<u<u® < uf < log|z| in Q. if e’ <e.
Thus the limit
=] €
u(z) = 21_1}1(1)u (2)
exists for all z €  — {0}. We need to show that u € C1*(Q2 — {0}).

Lemma 2. There exists a constant C; independent of € such that

(45) [Vu®| < Cy on 89 and |Vuf| < 98—1— on 0B.

Proof. Since u < u® < 0in 2, and u®* = u = 0 on 052, we have

|Vu®| = uf, < u, =|Vu| on o9.
This proves the first inequality in (45). To prove the second one, let 4(2) =
uf(ez) — loge and @(z) = u(ez) — loge = v(ez) + log|2| for z € By — By.
Note that
(46) det(ii;z) = €7 det(ujz) = 2"+

Let A be the harmonic function on By — - B with h = log2 on 8B, and
h(z) = v(ez) on 8B;. Then & < @ < h on B; — By by the maximum
principle, since A% > 0 in By — By, @ < h on 8By and @ = h on 8B.
Consequently,

|Vii| < C; on 0B,
This implies the seocnd ineqality in (45) as Vuf(z) = 1Vi(Z). O
Lemma 3. Let u be a strictly pluri-subharmonic C® function with
detu;; = constant. |
Let {ui*} = {u;z}~1. Then, for any constant a > 0,

U (e Vul?);5 > 0.
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Proof. We verify this by direct calculation. First,

(Vul?)i = (upug)i = Y (upiug + ugug;)
k k

(IVuP)g =D (uriug + wgugs); = D (Upijuf + uktgsg + ukites + ujuz)-
k k

Since det u;j, is constant, we see that
u (upgzug + uktgg) =0
and therefore

w9 (|Vul?) 5 = uugug; + Y wge
p

We also note that
(| Vul)iuy = [Vul? + uugugu;.
By Cauchy-Schwarz inequality,
20| Re{uuiuzuz}| < a?|VulPudus; + uupug;.
Finally,

eyl (e‘“‘|Vu|2)i3 = |Vu|2ui3 (au; + a2uiU3
+2a Re{uij(|Vu|2)iU3} -+ uij(|Vu|2)i3
=a(n + 2)|Vul® + a2|Vu|2uijuiU3

+ 2a Re{u? Uk URU; } + u ukiuE; + E Ugf
k
>a(n+ 2)|Vul? + Zuk; > 0.
k

This proves Lemma 3. a

It follows from Lemma 2 and Lemma 3 by the maximum principle that
(47) |Vuf| < C1e™ on Q..

Lemma 4. There exists a constant Cy independent of € such that

(48) |V2uf| < Oy on 09 and |V2uf| < %2 on 8B;.
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Proof. The first estimate in (48) may be proved as in [1]. We only prove the
second one here. Let @, & and h be as in the proof of Lemma 2. It suffices
to show that

(49) |V24| < Cy on 8B;.

For a fixed point 2° € &B;, we may assume 2° = (0,...,1), i.e., the coor-
dinates of 20 are zj=y;=0,1<j<n-1 2, =1and y, = 0. Since
u(z) = v(ez) on 0By and |Vu| < C4, it is trivial to obtain a bound for the
pure tangential seocnd order derivatives at 2°

(50) |ﬂ$i$k|7 |'&Tz’yjl7 l'&yjyll S O’ 1 S i’ k S n— 1; 1 S J’l S n.

To estimate the mixed tangential normal derivatives we need the following
analogue of Lemma 2.1 of [1].

Lemma 5. Let Us = (B2—B;1)N Bg(zo) and w= (4 —u)+ t(iL —a)— Nd2,
where d is the distance function from 0Bi, and t, N are positive constants.
For N sufficiently large and t,d sufficiently small, we have

(51) '&j’-“wﬂ; < —% (1 + Z&k’—“) in Us, v>0 on OUj.

Proof. We first note that this does not follow from Lemma 2.1 of [1] as
{&;z} is not uniformly positive definite in €. In order to prove (51) we have
to make use of a special property of @&. Since %(z) = v(ez) + log|z| and v is
plurisubharmonic, we see that

. ; 1 AN :
ik~ ik ~ ik k ~kk

for ¢ sufficiently small. It follows that
- 1 n-1
~ikr~ o~y ~kE -
7% (u—g)jkgn—ﬁkz_lu in Us

when ¢ is sufficiently small. The rest of the proof is similar to that of
Lemma 2.1 in [1] and therefore omitted. O

Returning to the proof of Lemma 4, as in [1] we may derive a bound for
the mixed tangential normal derivatives at 2° with the aid of Lemma 5

(52) fizyenls lnyy] <G, 1<k <n=1,1<j<n
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It remains to establish an estimate for the pure normal second order
derivative
(53) |,z (2°)] < C.
Because of (50) and (52) it suffices to prove
(54) |ima(2%)] < C.
Since © — @ = 0 on 0By,

i55(2%) = () + 50— D ()6
and therefore
(55) > w68 2 D ar()gd = 167
Jik<n jk<n

for any &€ = (£1,...,&—1) € C*L. Finally, solving equation (46) for .5 we
see that (54) follows from (50), (52) and (55). This completes the proof of
(49) and therfore that of Lemma 4. O

Lemma 6. There exists a constant C3 independent of € such that

(56) [uizl < Cze™2" in Q.

Proof. 1t suffice to derive an upper bound

57 M =max max e** usz(2)€;€; < C  independent of €.
&) 2€0 l¢l=1¢eC 2 G < i

We claim that M is achieved on 0f).. Suppose M is achieved at an interior
point 29 for some ¢ € C". We may assume ¢ = (1,0,...,0) and {ujl—c(zo)}
is diagonal. Thus the function ¢ = 2u® + logu}; attains a maximum value
at 20 where, therefore

> 8k <o
Ukk

On the other hand, differentiating equation (42) twice, we obtain

U1k UT5KY%5E
(58) Z 11kk _Z J I 0

£ £ 1>
Uk U5 Uik
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and hence

€ € €
Prk _ 1 Uik Y1ik%ik
Z ut- 2n+ ue- Z uE - - wE-uE- 2 2n.
kk 11 kk 11 "kk

This contradiction shows that M is achieved on 8Q.. By Lemma 4, we
obtain (57). a

We are now in a position to finish the proof of Theorem 1. Let K be a
compact subset of 2 — {0}. We show that, for ¢ sufficiently small so that
KcQ,,

(59) [ufllcrexy < C = C(K) independent of e.
First, by (44) and (47) we have
(60) lu¥llcixy < C = C(K) independent of e.
Next, from Lemma 6 we see that
n n
(61) Au®= z(uijzj + ) = 421&% < C in K independent of e.
Jj=1 j=1

Now, (59) follows from (60) and (61) with the aid of the standard regularity
theory. This proves that u € C1%(Q — {0}) and therefore completes the
proof of Theorem 1. d
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