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Twenty years ago, Calabi and Yau each proved that a complete noncom- 
pact Riemannian manifold with nonnegative Ricci curvature must have at 
least linear volume growth [Yau]. This was proven by studying the Buse- 
mann function, b — 67, associated with a ray, 7, 

b{x) =  lim (R-d(x,<y(R)). 

In [So2], the author proved that if such a manifold has linear volume growth 
then its Busemann functions are proper. The simplest examples of manifolds 
with linear volume growth are the metric product manifolds, X x R, whose 
cross sections, X x {r}, are level sets of the Busemann functions. 

In this paper we prove that a complete noncompact manifold with non- 
negative Ricci curvature and linear volume growth must be close to be- 
ing such a metric product manifold asymptotically [Theorem 34]. That 
is, as r —» 00, the set 6~1([r, r + L]) becomes close to fc"1^) x [r, r + L] 
in the Gromov-Hausdorff topology where the closeness depends linearly on 
dzam(6~1(r)). See Section 2. The proof involves a careful analysis of the 
Busemann function using the recently-developed Cheeger-Colding Almost 
Rigidity Theory [ChCo]. We also use this method to prove the following 
theorem. 

Theorem 1. // Mn is a manifold with nonnegative Ricci curvature and 
linear volume growth, then it has sublinear diameter growth, 

lim diam(b-\R)) _0 

R-+00 R 

1This material is based upon work supported under a National Science Founda- 
tion Graduate Fellowship. 
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Examples of manifolds satisfying the hypothesis of this theorem for which 
diam(b~1(R)) grows logarithmicly appeared in [So2]. Applications of this 
theorem to the analysis of harmonic functions on manifolds with nonnegative 
Ricci curvature and linear volume growth will appear in [So3]. 

In addition to studying manifolds with nonnegative Ricci curvature, we 
study manifolds with a quadratically decaying lower bound on Ricci curva- 
ture, 

(0.1) Ric(x) > <<n~1^}~V ' for all x e b^Qro, oo)), 
o{x)z 

where v can take any value in 0, 2(^1)) • ^^s bound is implied by the 
traditional quadratically decaying lower bound on Ricci curvature defined 
using the distance function from a base point [ChGrTa]. 

Such manifolds also have a lower bound on their volume growth, 

(0.2) liminfZ2M)>C>o, 
R—>oo Kp 

where p = (n - l)(l/2 - v) + 1 > 0 [ChGrTa]. If one is given the (n-1) 
Hausdorff volume of a compact set, S C b~1(ri) C 6~1((ro, 00)), then there 
is a precise lower bound, C = C5, depending upon that volume [So2, see 
Corollary 7]. In section 1.1, we review this and a relative volume comparison 
theorem for Busemann functions that is needed for this paper. 

Definition 2. We say that a manifold, M71, has minimal volume growth if 
it has a quadratically decaying lower Ricci curvature bound as in (0.1) and 

R-oo RP 

where p = (^ — v)(n — 1) + 1. 

Note that a manifold with nonnegative Ricci curvature, v = 1/2, has 
minimal volume growth if it has linear volume growth. 

In contrast, we will say that a manifold satisfying (0.1) has strongly 
minimal volume growth with respect to the compact set, S C 6~1(ri), if 

Vol(BX0(R))) 

R-^oo 
(0.3) limsup'"^"'^ 

where p = (^ — v)(n — 1) + 1 [see also Defn 8]. 
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In Section 1.2 we state and prove a rigidity theorem for the end of a man- 
ifold with strongly minimal volume growth [Theorem 9]. First we show that 
the given level set, 6~1(ri), is a compact smoothly embedded submanifold. 
Then we prove the end of the manifold is a warped product, 

b~1([ruoo)) = b-1(ri) x{b/ri)(1/2-v) [ri,oo). 

That is, it has a metric of the form 

k2    .iV*-" (0.4) db> + {-) 9o 

where go is the induced metric on fr-^ri). 
In particular, a manifold with Ricci > 0, v = 1/2 and strongly mini- 

mal volume growth has only one end and that end is an isometric product 
[Cor 10]. 

In [So2], there are examples which demonstrate that the strongly minimal 
volume growth condition in Theorem 9 is necessary. These examples have 
nonnegative Ricci curvature and linear volume growth, 

r—>oo r 

but their ends are not isometric product manifolds. 
In the second section of this paper, we prove the corresponding almost 

rigidity theorem, Theorem 33. Here we add the assumption that Ricci > 0 
everywhere on the manifold along with the quadratically decaying lower 
bound on Ricci curvature, (0.1), with v now in [0,1/2] and minimal volume 
growth. These conditions imply that the Busemann function is proper [So2, 
Theorem 19]. 

Theorem 33 roughly states that such a manifold is asymptotically close in 
the Gromov-Hausdorff sense to a warped product manifold with a metric as 
in (0.4). More precisely, we show that for r sufficiently large, the compact 
region 6~1([r, r + L]) is close to a warped product, Xr X/ [r, r + L] with 
the warping function, f(s) = {s/r)(lt2~v\ where Xr is a length space close 
to 6~1(r), [Theorem 33]. This closeness depends linearly on the diameter 
b-l{r). 

It is important to note that a manifold with minimal volume growth and 
with globally nonnegative and quadratically decaying Ricci curvature is not 
asymptotically close to a unique warped product manifold. In particular 
a manifold with nonnegative Ricci curvature and linear volume growth has 
regions, 6-1((r, r + L)), which approach isometric product manifolds, Xr x 
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(r,r + L), but Xr may change slowly as r approaches infinity. Examples 
where Xr alternates between two different Riemannian manifolds appear in 
[So2]. 

In order to precisely state Theorem 33, we must define localized distance, 
the metric which we will be using on the regions, 6~1([r, r + L]). This defi- 
nition and a definition of the Gromov-Hausdorff distance appear in Section 
2.1. The statement of Theorem 33 and the related Theorem 34, along with 
a discussion of their consequences appears in Section 2.2. The proof appears 
in Section 2.4 after a Section 2.3, which relates Cheeger and Colding's work 
on almost rigidity and maximal volume to our condition of minimal volume 
growth. 

Lastly, in Section 3 we focus on manifolds with globally nonnegative 
Ricci curvature, v — 1/2, and linear volume growth. The same lemmas used 
to prove our almost rigidity theorem in Sections 2.1 and 2.3 are directly 
applied to prove two results on the diameter growth of such manifolds. In 
Theorem 45, we prove that the localized diameter of the level sets of the 
Busemann function grows sublinearly. This theorem is stated in Section 
3 after defining localized diameter in Definition 44. This theorem is then 
employed to prove the Theorem 1 stated above, in which the diameter of 
the level sets are measured in the ambient manifold, M71. 

The author would like to thank Professor Cheeger for suggesting an 
analysis of manifolds with minimal volume growth and for numerous en- 
lightening conversations. She would also like to thank Professor Colding for 
helpful discussions on his work in almost rigidity theory. Finally, she is very 
grateful to the Courant Institute of Mathematical Sciences for its generous 
support in her years as a graduate student. 

Background material can be found in [ChEb], [BiCr] and [Ch]. 

1. Strongly Minimal Volume Growth and Rigidity. 

1.1. Background on Volume Growth. 

We now review some definitions and theorems regarding special sets in 
noncompact manifolds with quadratically decaying lower Ricci curvature 
bounds. See [So2]. This background will be used to study both the rigidity 
and almost rigidity of such manifolds later in this paper. 

All geodesies and rays are parametized by arclength. 

Definition 3. Let 7 be a ray, b^x) be its associated Busemann function 
and x G Mn.   A ray, 7X : [6(a;),oo) »-► M, emanating from x is called a 
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Busemann ray associated with 7 if it is the limit of a sequence of minimal 
geodesies &{ from x to ^(Ri) in the following sense, 

7i(fe(rr)) =   lim  ^(0). 
ile-+oo 

Note that 7x(6(a;)) = x. Note also that 7X need not be unique. 

Definition 4. Given a compact set, K, contained in Mn and a ray, 7, let 

Q,{K) = {x: 3z<EK3t> b(z) s.t. x = jz(t)} 

Let 
nsuS2(K) = Q(K)nb~1([s1,s2}). 

In [So2, Cor 15], the author proved the following volume comparison 
theorem. 

Theorem 5 (So2, Thm 5, Cor 17). Let 

Ric^in-^f^vA/bix)2 

whenever x G fe~1([ro, oo)) where v G   0, 2(^1)) • -^ rl — ro and ^ K be 

a compact set contained in 6~1((—00,7*1]). 
Then there exists a nondecreasing function, V(r), such that 

FoJn_1(£)(tf)n&-1(r)) 
(1.1) V(r) = 

r(£-„)(„-l) 

almost everywhere in [r-i,oo). 
In particular, for almost every S2 > si> ri we have 

(12) X&l < Vom(K)nb-\sus2))      V(s2)) 
P ^-Sl P     ' 

where p = (1/2 — r;)(n — 1) + 1. 

This theorem was proven using the following series of comparison man- 
ifolds which were also employed in [ChGrTa]. 
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Definition 6. The comparison manifold, Mg£, is a warped product mani- 
fold diffeomorphic to Rn, with the metric dt1 + JRi£(t)2go where 

R + s (    {R-t + e\z+v     fR-t + e\^-v\ 

and po is the standard metric on the sphere. Here e := 0 when v > 1/2. 

These manifolds satisfy the following Ricci curvature bound, 

V     J y- (R-d(y,0) + e)'2 

Note also that 

(15) lim  feJA^W"1&
=(r4)p-(rs)y 

R-oo J^ri JRe(t)n-i dt      (r3)P - (ri)P • 

These comparison manifolds, (1.5), and the Relative Volume Comparison 
Theorem [BiCr,GrLaPa] will be used to prove our rigidity theorem. 

The following corollary of Theorem 5, defines the precise constant, Cs, 
mentioned in the introduction and allows us to define strongly minimal vol- 
ume growth for ends. 

Corollary 7. Given Mn as described in (0.1) and given any R > ri > ro 
and any RQ > 0; let S = BXQ{RQ) fl b~l(ri).  Then 

(1.6) Vol(BX0(R + Ro- ro)) > Cs (Rp - rg) 

where p = (i - v) (n - 1) + 1 > 0 and Cs = VroZn_i(5)/(prf"1). 

Definition 8. Given ri > ro, we say that a region, 6_1((ri, oo)), in a man- 
ifold, Mn, has strongly minimal volume growth with respect to a given ball 
Bxo(Ro)i if it has a quadratically decaying lower Ricci curvature bound as 
in (0.1) and 

lim Vo<(Bao(fl)n6-1((ntoo))) = ^ 
R—+oo RP 

where S = Bxo(Ro) (1 b'1^) and p= (i - v)(n - 1) + 1. 
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1.2. Strongly Minimal Volume Growth and Rigidity. 

In this section we prove the following rigidity theorem. 

Theorem 9. Let Mn be a complete noncompact manifold with a ray 7 and 
a Busemann function b : M —> R and a quadratically decaying lower Ricci 
curvature bound as in (0.1). Suppose 6~1((ri,oo)) has strongly minimal 
volume growth with respect to a given ball, BXo(Ro). Then b^iri) is a 
smoothly embedded submanifold contained in JBR0(7(0)) and 

b^ifruoo)) = 6"1(ri) x(6/ri)(i/2-.) [ri,oo). 

Note that we are only prescribing the manifold's properties on one end 
or on a subset of that end, 6~1([ri, 00)), and we only prove that that end is 
rigid. The rest of the manifold can have larger volume growth and any kind 
of curvature. 

When v = 1/2, this theorem combined with [So2, Cor 23] and some 
simple calculations imply the following corollary. 

Corollary 10. Let Mn be a complete noncompact manifold with globally 
nonnegative Ricci curvature such that 

lim Vol(BX0(r)) = ( n ^      ^ 
r—KX> r 

Then Mn has only one end and that end is an isometric product manifold, 
fc-^ri) x [ri,oo) where ^(n) C BXo(Ro). 

It is important to note that the Busemann function, in general, is not 
a smooth function, although its gradient is 1 almost everywhere. In order 
to prove that the level sets are smooth on a manifold with strongly mini- 
mal volume growth, we will show that the Busemann function satisfies the 
following elliptic partial differential equation in the weak sense: 

(1.T) Ab=t^liizA. 
b 

This equation is satisfied by the function b on a manifold with a metric of 
the form 

(1.8) db2 + 
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Recall that we plan to prove that the end, 6~1([ri, oo)) has a metric of this 
form. We can then use elliptic regularity to obtain smoothness. 

We first show that manifolds with strongly minimal volume growth have 
proper Busemann functions and the ratios, Voln-i(b~1([r2,r3]))/(r^ — rf), 
are constant with respect to r2 and rs [Lemmas 11 and 12]. We then com- 
pare these regions to subsets of annuli about ^(R) using the fact that the 
Busemann function's level sets are compact [Defn 13, Lemma 14]. Recall 
that 

b(x) =  lim i? — PR(X) where PR(X) — d{x^{R)). 
R—+oo 

We then employ the Relative Volume Comparison Theorem of [BiCr] and 
[GrLaPa] combined with the volume estimate on these regions, to control 
ApR in a weak sense [Lemma 18]. Then taking R to infinity we show that 
b(x) satisfies the elliptic equation (1.7) in a weak sense [Lemma 20]. Once 
we have proven that the Busemann function is smooth, we use the Bochner- 
Weitzenboch Formula to prove that the metric is rigid [Lemma 1.53]. 

Lemma 11. For Mn as above, let K = Bxo(Ro) H ^((-oo^i]).  Then 

&-1(Koo))cft(iO 

and thus the Busemann function, b, is proper. 

Proof. By [So2, Lemma 4], Q(K) n6"1([ri, oo)) is a closed set. Thus if there 
exists a point in 6_1([ri, oo)) which is not in ^(K) then there exists a a ball 

5<,(<y)c6-1([ri,oo))\fi(A'). 

Let s = b{q) + 8/2 and t = b(q) - 8. 
Let U = b-T-dt, s]) n Bq(8). Thus 

(1.9) Voln-iiQiU) n b'^s)) > Voln-i(Bq(8) n b-^s)) > 0. 

Applying Theorem 5 we have, 

(1.10) Vol(n(U) n b-ifa, r])) > ^^VoZn_i(0(t7) n b-l(s)) 

Let r2 be a real number such that 

BX0(r2) D (to(U) n b-1^)) u (Ci(K) n ir1^)). 
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By the definition of n(K) [Defn 4], for all p 6 n(K) n ft-1 ([s, t]) there exists 
z € K such that 72(6(p)) = p. So, 

d(p, to(K) n ft-^s)) < b(p) - s < t - s. 

Thus, 

Bxo(r + r2 - s) n fe-^h, oo)) D (fi(K) n r^^r))) U (f2(f7) n b-Ha.r))) 

where the union is disjoint. So by Theorem 5 we have, 

d in     lim V°KBX0(r + r2- s)nb-1([rhoo))) > 

>Voi(n(K)nb-1(ro,s))     yok-ifflffinft-iq*))) 

However, by the strongly minimal volume growth, we have 

r     Vol{BX0(r + r2-s)nb-1([ruoo))) _ Voln-i(Bxo(Ro) D b^jn)) 
um — 2j 

r->oo rP — sP pr^ 

and so, 
Voin.1(n(U)nb-l((s))) = o, 

which contradicts (1.9). 
Thus 

b-^lruooVcSliK). 

This implies that 6~1(r) C Bxo(r — ri + Ro) for any r > ri, so it is compact. 
Furthermore, for r < ri, fe~1(r) is a subset of the closed tubular neigh- 

borhood rri_r(6~1(ri)) as can be seen by using Busemann rays to travel 
from 6_1(r) to 6_1(ri). Thus b is a proper function. □ 

Lemma 12.  Given Mn as described above, then the ratio 

(1.13) vw-^'^^'W) 

25 a constant function for all r > ri, and, thus, 

n ,,, Voln-iib-KHrz})) _ Vdn-iib-^r^nB^Ro)) 
(       ' (ri-r® - prr1 

for all rs > r2 > ri. 
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Proof. Let K = Bxo(Ro) n fc-1^!) as in Lemma 11. By the definition of 
tt(K), we know that for all x G £l(K) n b^fri^r) there exists x' € K C 
BX0(RQ) such that x G 7x/([rij^]); so 

(1.15) n{K) H ^-^(ri, r)) C Bxo{r - n + i2o). 

Note also that 

(1.16) if n fe-Hn) = n(iir) n ft"1^), 

for our choice of Jf. Strongly minimal volume growth, Theorem 5, (1.15) 
and (1.16) imply that for any b > a > ri 

Voln^jKob-^n)) =       ^(^(r - r! + JZp)) n b-^h, oo)) 

(1.18) > lim ^QWn^Cn.r)) 

(1.19) > y^.^n^'W). 

Since all the inequalities must be equalities and the limit in (1.18) is mono- 
tone, we get 

for any r > ri. Subtracting (1.20) with r = a from (1.20) with r = 6, and 
reworking the equation gives 

Vcrf(n(^)n6-1(o>fc)) 
'-OP 

is a constant with respect to a and 6. Then applying Lemma 11, we obtain 
the lemma. □ 

The fact that the Busemann function is proper in a manifold with 
strongly minimal volume growth makes it much easier to prove that the 
metric is rigid than if this were not the case. We need not trace through 
the rather involved proof of Theorem 5 with its unions of star-shaped sets 
about points in b~1(R) [So2]. Instead we use the following very simple sets. 

First we fix rs > ri > TQ. We will prove that 6~1([ri,r3]) is isometric 
to the appropriate warped product manifold 6~1(ri) x^ri^i/2-v) [ri^rs] and 

that b is smooth on 6"1([ri, rs]). To do so we fix £o < (rs - ri)/10 and take 
r4 = 2r3. 
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Definition 13. Let R > r^ and ri < a < b < R we define the inner 
annulus, 

(1.22) flj^ = Annn^R-MR)) n 5^ 

where 

5^R)={o-([0,L]): a- is a min geod s.t. a(0) = ^{R),G{L) E 6-1((-oo,r4])} . 

We will often write only Sa^R = ST^hR. 

Recall that b{x) = \im.R-+00(R — PR{X)) where the convergence is uniform 
on compact sets. So given any e > 0 and any compact set like b~l([riJr4])1 

there exists R£ = i^1'7^ such that 

(1.23) b(x) <R- pR{x) + e       \/R> R£. 

On the other hand, by the definition of b(x), we have 

(1.24) b{x) > lim (s - d{x^{R)) - d(j(R)^(s))) = R- d(x^(R)). 
s—+oo 

Thus the inner annuli, SafrR, are close to the compact regions b"'1([a, b]) as 
described precisely in the following lemma. 

Lemma 14. Let ri < a < b < r^.   Then for all e > 0 there exists R£ = 
Rl1^4 as defined in (1.23) such that 

Sa+e,b-e,R C ft""1 ([a, 6]) C Sa-£}b+e,R 

for all R > R£. 

Proof. Fix R>R£. 
Suppose x e b^da.b]) C ^(H,^])- Then by (1.23) and (1.24), we 

have 
Lx = PR{X) € [R - b - e, R - a + e]. 

Thus there exists a minimal geodesic a from cr(0) = 'Y(R) to a^Lx) = x £ 

b-l{[riM)- So 
X G Sa-tzt+e^R' 

On the other hand, if y G 5a+e)6_e:)jR, then there exists L > 0 and a 
minimal geodesic, cr, from a-(O) = 'y(R) to cr(L) G b~l([ri1r4]) and there 
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exists t e [R — b + e, min{i? — a — e, L}] such that y = a(t). Since a(L) € 
&-1([ri>r4])5 we can aPPly (1.23) to get, 

b(a(L))<R-L + s 

Thus 

b(y) < b(<T(L))+d(a(L),y) = b(<T(L))+L-d(yf<y(R)) < R+e-(R-b+e) = b. 

Meanwhile, by (1.24) we have, 

b(y) >R- d(y,~i(R)) >R-(R-a-e)>a 

and we have y G 6~1([a, fe]). □ 

Thus the volumes of the regions between Busemann level sets can be 
compared to the volumes of these inner annuli. On the other hand, the 
volumes of the inner annuli can be controlled using the Relative Volume 
Comparison Theorem on the star-shaped sets, Sri^R about 7(i?) [BiCr, 
GrLaPa, Ch]. We can bound the Ricci curvature from below using the 
following lemma which is a direct consequence of the techniques used in the 
last proof. 

Lemma 15.  Given any e, let £v = s ifv< 1/2 and EV = 0 otherwise. 
There exists Rl1,r4 as defined in (1.23) such that for all x in the star 

shaped set, S^RJI, we have 

(1.25) Ricy>       (-Da-2) 
(R-d(yn(R)) + svy 

for allR> R£. 

Thus we have the same lower Ricci curvature bound as the comparison 
manifolds of Definition 6 if we consider j(R) to be the base point. 

We will now control the mean curvature of the level sets of pn within 
SruR.R using the comparison manifolds, Mg £1 of Definition 6 combined with 
the above lemma regarding Ricci curvature and the Relative Volume Com- 
parison Theorem. To control the mean curvature from below we will employ 
the volume estimates on the regions between Busemann levels and the re- 
lationship between those regions and the inner annuli. We begin with some 
facts and definitions regarding the mean curvature of a distance function. 
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Definition 16. Let mn^x) be the mean curvature with respect to the inward 
normal of the sphere of radius d(x, ^(R)) about 7(-R) evaluated at x. Recall 
that this mean curvature is well defined along minimal geodesies to j(R) and 
is equal to Ap(x) where it is defined. See, for example, [Ch]. 

Given x E M71, let ffiR^x) be the mean curvature with respect to the 
inward normal of the distance sphere of radius PR{X) about the origin in the 
comparison warped product manifold, M^e. 

Lemma 17.  The comparison mean curvature satisfies 

„^ , x -(n-1)      (\ , (T     fR + e- pR(x) 

and as R goes to infinity, we have 

(1.27, itaffiRi,W = zfc_yi) Q+ „(-!)) 

uniformly on compact sets. 

The proof of the lemma is an exercise on warped product manifolds and 
can be found in [Sol]. 

We now need to show that the mean curvature of spheres around 7(iZ), 
mR{x) approaches m£iR(x) as R approaches infinity and e goes to 0. Then, 
in some weak sense we will have 

(1.28) Ab(x) = - lim Ap(x) = - lim mR(x) = ~(n " P/1/2 ~ ^ 
#—►00 R—>oo b(x) 

Since APR(X) and Ab(x) are defined on different subsets of M, we need to 
prove (1.28) very carefully. In the next lemma we will only obtain a weak 
estimate on liniR^oo mR(x) using the strongly minimal volume growth, but 
that will suffice. 

Lemma 18. Let Mn have the properties defined at the beginning of this 
section. Fix rs > 7*1. Then for all S > 0; there exists es > 0 such that for all 
s < £5 there exists Rsis^ri^r^) > 2rs and there exists a constant, Criir3iR+£, 
such that lirnR-^oo Criir3iR+£ = Cri,rz > 0 such that for all R > Rs(^^i^s), 
we have, 

(1.29) 0 < / 3    / (APR{X) - mR,£(x)) dvol dt < —— . 

Furthermore, the integrand is nonnegative. 
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In this lemma dvol is the volume form on Mn. The integral over 
Sa,b,R{K) can be best understood using the following definition. Recall 
Definition 13. 

Definition 19. Let @{R) C TM^) be defined as 

= {cr^O) : a is a min geod s.t. <T(0) = 7(i?),cr(L) G &~1((—oo,r4])}, 

Given any 6 e G^, let AR{t, 6) be the warped product of the Jacobi fields 
along exp^fytO which are 0 when t = 0 and whose first covariant derivatives 
are orthonormal when t = 0. We set A^t, 6) to be continuous up to and 
including the cut point. After a cut point it is set to be 0. 

So dvol = AR(t, 6) VQ dt where UQ is the volume form on the unit sphere. 

Proof of Lemma 18. Let r^ = 2rs > T3. Let Sa^R = S^bR as in Defini- 
tion 13. 

Given any e > 0 and R> r^, let 

(1.30) J(t) = Jev,R(t) 

be the Jacobi field defined in Definition 6 where £v = e if v < 1/2 and 
ev = 0 otherwise. By the Bishop Volume Comparison Theorem [BiCr], the 
lower bound on Ricci curvature in the comparison manifolds, (1.4), and 

the Ricci curvature bound on Sa^R, [Lemma 15], we know that j^n-l is 

nonincreasing for t € [0, R — r{\ and 6 6 OR. We wish to show that this 
ratio is almost constant. 

First we note that, by Definition 19 and (1.24), if a < b < r^ and 9 € QR 

such that exp7(R}(t6) is minimal for t G [0,R — a], then 

b(expy(R)((R - a)6)) <R-{R-a)<r^ 

So by Definition 13, exp^R^tO) e Sa^R for alH E [R — b, R — a) and we 
have 

(1.31) Vol(SaAR)= [    a !   AR(t,e)dve 
JR-b   JQR 

Thus, by the Relative Volume Comparison Theorem, 

Vol(Sri,r3iR)     J^J9RAR(t,9)duedt-J^JRAtr-'dt' 
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By Lemma 14, we know that for any e > 0, there exists Re such that 

n „x Vol(Sr3!r4,R)      V0f(6-i([r3-e,r4 + g])) 
{iM) Vol(Srur3,R) " F0i(6-i([ri+£,r3-£]))        VK-Ks- 

By the strongly minimal volume growth and Lemma 12, we have 

(1 M) Vdib-Hfa-e^ + e])) = (r4 + s)P-(r3-e)P 
{ *    ; Volib-^ln + e,r3- e}))      (r3 - S)P - (n + S)P 

On the other hand, by (1.5), 

(1.35) lim f^^W-1* . (nr-irsT 

Given any 5' > 0, there exists £«$/ > 0 small enough that the right hand 
side of (1.35) is within 5' of the right hand side of (1.34) for all e < £$/, and 
there exists Rs* large enough that the the right hand side of (1.35) is within 
d* of the right hand side of (1.32). Thus the inequalities in (1.32)-(1.35) are 
almost equalities, and we have the following. 

For all 5 > 0, let 5' = 5/(2Vol(Sri^,R))y there exists e$t > 0, such that 
for all e < £$', there exists 

(1.36) Rs(£, ri, r3) = maxl^, Rs>}, 

such that we have 

ri37,   Q<j£rr:SeRMt,°)dvedt /*_-;:^r-1-- Stll IeR Mt, Q) dve dt   /«_-;; JR.£{t)n-1 dt 

Snl^ JeR AR& 9) du6 dt     j£j J^t)^ dt' 

By multiplying both sides of (1.37) by Vol(Sriir3jR) and multiplying both 

sides by /^I^1 JR.sit)71"1 dt, we have, 

R-rs   r rR-ri rU—r3    r rK—ri 

0< / /   AR{t,e)dvedt /        J(t)n-1 

JR-U   JeR JR-rz 
nR—ri     r rR—rz 

- /      / AR{t,e)dvedt /      J^)"-
1 

JR-rz   JeR JR-TA 

(1.38) <<5   f^* (J(t)) 
JR-TA 

As mentioned above, j^n-i is nonincreasing. We wish to show that this 
ratio is almost constant using (1.38). 
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Note that, 

f*R—a    p rR—rs 

/    AR(t,6)dvedt= / 
lQR JR-r     JQR 

By substituting this into (1.38) and by subtracting and adding 

rR—ri pR—rs 

JeRJ{R-rzp
dU6 Lr3 

to (1.38), we get 

rR-rs rR-ri rR-rs 

(1.39)       ^ (   AR(t,6)dvedt= I*'3 [   M^A*)"-1 du6dt. 
JR-b   J@R JR-r     JQR J\Z) 

I M^J>^ p^)-'* pJW-* 
JBR J{R - r3) JR-TZ JR-r 

pR-rz pK-ri pK-rz 
S /       J(t)n-ldt > h /       Jit^dt + h /       J{t)n-ldt, 

JR-TA JR-rz JR-r* -r4 

where 

<-) t-CLm-w^)^- -r4    J®R 

and 

Since J/^li is decreasing, the integrands of Ji and I2 are both positive. 

Thus, 1% < 6 and 

R-^  f   I AR(R-r3,0)       AR(t,0) 
n-l J(t)n-1 due dt < 8. (142)    0<[ [   \

AR
(
R
-^

9
)  -JW (1.42) o<y^ yeJ(J(jR_ r3))n-i    (j(0) 

Thus the ratio, jfiyi-l > is almost constant. 
Given ^ € ©j?, let dg e (R- 7-4,00] be the distance to the cutpoint of 

7(i2) along exp^ltO). Then ^(t,^) is smooth for t G (0,^), continuous 
for t G [0,^0], and 0 for t > dg. Since the mean curvatures are evaluated 
with respect to the inward normal, we also know that 

(1.43) 4^7^ = -mR(exp7(R)m) = -ApR (exp^R)(te)), 

for t e (0,^), where A'R(t70) = §iAR{t,9), See, for example [Ch]. 
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Let VQJ = max{min{t, cfo}, R—r^}. We will use this function to seperate 
off the differentiable part of the integrand of (1.42). 

/■"-" r  (AR(R-n,e)    AR(re,t,e)\     , 

+ Lr, L l">:i(r - -J^W) )J (m) dv' *< *■ 
Since t > rQf, > R — r^ and the ratios are decreasing, both integrands 

are positive. Thus we have, 

J function AR is differentiable in this integral, so 

«<JC.JC.(-JC15(«)*)^*-<* 

/•*-ri y   n*   (A'R(i,9)   (j"-i(i)y\j"-i(t)   ,  .      , 

Recall that SR-t,rz,R on^y consists of points on minimizing geodesies from 
j(R) to ^"^(-oo,^])'. Thus 

SR-t,r3iR = {exp^R)(ie) : 6 e ®R, I e [R - r3, r^t)} 

and exp7(R) is invertible on SR-t,rz,R'   Let Z = ^^(x) and 8 be defined 
such that x = exp^(R)(W) where x  €  SR^T^.R'    Furthermore dvoZ  = 
AR(1, 9) dl due on SR^^R- 

So we have 

CriMiR+ev 

where 

R>£Y )    . 
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Since this integral avoids cut points of 7(i?), we have 

rR-n      n                                                                                    g 
0 < - / / (-ApR(x) + mRi£(x)) dvol dt < — . 

Jt=R-r3 JSR-t,r3,R ^rur3,R+e 

Setting s = R - t, we are done proving (1.29) with <R$(£,ri,r3) defined in 
(1.36). 

Finally, for all v e 10, 2(n-i)\' we know tllat 

hm Cn rq R+£ = hm       mm      —) —-r-— J-—± — 

=        min       777 N T7T7    >    0. 

D 

In Lemma 18, the estimate on &PR{X) involves a double integral. This 
can be studied as a single integral over a region in the isometric product, 
M xR, where we define the extended Busemann function, b{x, s) = 6(rc), and 
the extended distance function, PR(X, S) = p{x). Note that the Laplacians of 
these extended functions on M x R are the same as the original functions' 
Laplacians in M because the extended functions are constant in 5. 

Proposition 20. Let Mn be as defined above. 
Then the Busemann function with respect to that ray, b(x), is smooth 

and 

/1 A^ AL/ N      (n-l)(l/2-T;) (1.45) Ab(x) = V J)J J- 
b{x) 

on b~1((ri,oo)). 

Proof Choose any xi € 6~1((ri, 00)). Let h = -i£liz!l) anci iet 

bi = b(xi) — h, 62 = K^l) + ^ an(^ r3 = K^i) + 2^- 

Define the open set, £/, as follows: 

(1.46) U = {(x, 5) : 5 E (61,62), a? 6 ft'^s, 62)} C M x R. 
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We will prove that 
- (n-l)(l/2-v) 

Ab{x's) = bM  
in the weak sense on U. 

By Lemma 14, there exists Rr^r3 such that 

for all R > Rr
h
1,r3. Thus, since bi-h>ri, 

(1.47) U C {(*, a) : s g (n.rs), x € S^}. 

Let (j) :U —> R be a smooth nonnegative function with compact support. 
By Lemma 18 and (1.47), we know that for all 5 > 0 there exists £$ > 0, 
such that for all € < es, there exists ^(s,ri^rs) and Criir2iR+e as defined 
in Lemma 18, such that 

(1.48) 0 <  /   ^(x, 5) (ApR(x) - mR,£(x)) dvol dt < —  

Here we have used the fact that the integrand of (1.29) is nonnegative and 
the integrand here is still nonnegative. 

Note that APR(X) = — A(R — PR(X)) since R is just a constant. Note 
also that PR(X) = PR(X, S). Using the fact that the cut off function, <f>, is 0 
near the boundary to integrate by parts, we get 

/   </>(x, s) (APR(X)) dvol dt = 
JU 

=  /   (f)(x, s) (—A(R — PR(X, S))) dvoldt 
JU 

(1.49) = /   -A(I>{X,S)(R-PR{X,S)) dvoldt 
JU 

By the uniform convergence of b(x) on U C b~l([ri,rz]), we know there 
exists Rsiri^r3 such that 

(1.50) \R - PR(X, S) - 6(x, 5)| < 6   \/R > i?^,^. 

Furthermore, by Lemma 17, there exists Rs such that 

(1.61) ^-=wr{h *<■-») <8   \/R>R6 
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Substituting (1.49),(1.50) and (1.51) all into (1.48), for 

R > max{i2s,#^^3,^(7-1,^)}, 

we have 

/ -A(t>{x,s)b{x,s) + (j){x,s) (        r/    V^ ) dvoldt< —— + 25Vol{U) 
Ju \       b{x,s)       J Cr0jri 

where the integrand is nonnegative. This equation no longer depends on R 
or £, so it holds for all 5 > 0. Taking 5 to 0 we see that 

Ab(x, s) = =4^-- - 

in the generalized sense on U. 
By elliptic regularity, we know that 6(x, s) is differentiate on U and 

satisfies 

(n-l)(l/2-V) 
(1.52) Ab(x,s) = 

b(x) 

The fact that b(x, s) appears on both sides of (1.52) allows us to pull up its 
differentiability by its bootstraps as high as we want. 

Note that 

so b(x) = fe(:E, 61 + h/A) is smooth on BX1 (s/2) and satisfies the differential 
equation, (1.45). This can be done at each xi e 6~1((ri, 00)), so we have 
proven the proposition. □ 

We can now use this proposition combined with the Bochner Weitzen- 
boch formula to prove that 6_1((ri,oo)) is a warped product and thus the 
Busemann function is smooth on 6~1([ri, 00)). 

Lemma 21. Let Mn satisfy fi.l) with v € [0, (n + l)/2(n - 1)). Suppose 
the Busemann function, b{x), is a solution of 

(1.53) Ab(x) = 
b(x) i-w) 

on some subset, b 1((ri,oo)) C b 1([ro,oo)), 
Then 6~1([ri,oo)) is isomorphic to the warped product, 

6-1([ri,oo)) = b"1(ri) x{b/ri)(1/2-v) [rhoo). 
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Proof. First, we write the Bochner Weitzenboch Formula applied to \/b. 
That is, we substitute v^ = £ into the formula, 

l A(f &) = grSgabZa,rZb,s + 9rS9ab(Za,rs + Zr,ae " Zr,.a)Zb + RlmtlU, 

of [Boc, Lemma 2], to get 

-A| V b\2 = \Hess b\2+ < \/Ab, syb > + < Ric V &, V& > • 

We now use the fact that | y ^| = !> the differential equation (1.53) and the 
Ricci bound to get 

0 > \Eess fe|2 + (1/2 - {v)){n - 1) < V&"1, V^ > +(« - l)(l/4 - 'y2)/fe2. 

Thus, 

0 > \Eess 6|2 + (1/2 - (t;))(n - 1) < -fc"2 V 6, V& > +(n - l)(l/4 -1;2)^-2, 

and 

|Hess fc|2 < (n - l)fo-2(l/2 - t;)(l - (1/2 + v)) = (n - l)fe-2(l/2 - vf. 

On the other hand, 

(1.54) \Eess 6|2 = ^^ + £ftj, > o + -Lj ( ^^ j 

by the Cauchy-Schwartz inequality and the fact that b\,\ = 0. So, 

\Eess 6|2 > -i— ((1/2 - (t;))(n - l)^-1)2 = (n - l)6-2(l/2 - vf. 

Thus the inequalities must be equalities in the Cauchy-Schwartz inequality, 
(1.54), so 

bij = 0 WiJ and bk,k = \i Vfc,/ ^ 1. 

Using the formula for the Laplacian of b once again we get 

6M = (1/2-«)/&, 

and so we can solve for the warping function, /(6), 
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Thus 6~1((ri,oo)) is the desired warped product. 

To complete the proof, note that the boundary, 6~1(ri), must be isomet- 
ric to a rescaled fe~1(r) for any r > ri. So it is smooth and can be included 
in the warped product. □ 

This completes the proof of Theorem 9. 

Note that if we only had the condition of minimal volume growth, then 
we could prove a series of lemmas similar to the ones proven here to show 
that Ab is approximately equal to (n — l)(l/2 — v)/b in a weak sense. We 
could then apply Cheeger and Colding's Almost Rigidity Theory to prove 
the Theorem 33. Rather than imitating their methods from scratch, we will 
adapt one of their key theorems to our situation. However, the reader should 
understand that it is the control on the weak Laplacian of the Busemann 
function that gives us the almost rigidity. 

2. Minimal Volume Growth and Almost Rigidity. 

In this section, we examine the asymptotic properties of a manifold with 
a quadratically decaying lower Ricci curvature bound, (0.1), and minimal 
volume growth. [Recall Definition 2]. We wish to show that compact regions 
in such a manifold are Gromov-Hausdorff close to warped product manifolds 
[Theorem 33]. To do so, we will apply the following theorem proven in [So2]. 

Theorem 22 (So2, Thm 19). Let M be a manifold with nonnegative 
Ricci curvature, a quadratically decaying lower Ricci curvature bound, (0.1) 
with v G [0,1/2], and minimal volume growth. Then the Busemann function, 
b(x), has compact level sets and their diameter grows at most linearly, 

(2.1) diamib'1^)) < CD\r + 1|        Vr > ro. 

In order to apply this theorem, we will assume that all our manifolds 
have globally nonnegative Ricci curvature for the remainder of the paper. 
Thus the regions 6~1([r, r + L]) are compact. These are the compact regions 
which are proven to be close to warped product manifolds in the Gromov- 
Hausdorff sense in Theorem 33. 

The precise statement of the almost rigidity theorems, Theorems 33 
and 34 will appear in 2.2 after the Gromov-Hausdorff distance and related 
concepts are defined. 
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Before going on, it is important to note the following facts from [So2, 
Cor 23] reviewed in Section 1.1. The function, 

(2-2) ^W =     r(l/2-,)(n-l) 

is nondecreasing as a function of r in any manifold with a quadratically 
decaying lower Ricci curvature bound, and, if the manifold also has nonneg- 
ative Ricci curvature and minimal volume growth, then 

(2.3) lim ^V^ = Voo < oo. 

In fact VOQ = VQ of the minimal volume growth definition [Defn 2] unless the 
manifold splits isometrically, in which case V^o = Vo/2. 

Both the constants Cp and V^o will be refered to in the proofs of our 
almost rigidity theorem and our diameter growth estimate. 

2.1. Almost Rigidity and the Gromov-Hausdorff Metric. 

There are a number of equivalent definitions of the Gromov-Hausdorff metric 
on the space of metric spaces. Here we will use the Gromov-Hausdorff map 
to define this metric, since ultimately we will use both the Gromov-Hausdorff 
closeness and the particular Gromov-Hausdorff map to prove our diameter 
theorem. See [GrLaPa] for more details. 

Definition 23. Given s > 0, the Gromov Hausdorff distance , G2<3#(X, Y) 
between two compact metric spaces, X and Y, is less than e if there exists 
a Gromov-Hausdorff map, FQH '• X h-» Y which is e-almost onto, 

(2-4) Te {FGH{X)) D Y, 

and e-almost distance preserving, 

(2.5) | dyiFGHixi), FGH(X2)) - dxfa, X2) \   < E. 

The Gromov-Hausdorff map need not be continuous. 

Note that this definition is not quite symmetric. However, if there exists 
FGH '• X ^ Y with the above properties then the map FQH • Y *-> X, such 
that FoHiy) equal any x G X such that dx(y, i<b#(2;)) < e, is 2£-almost 
distance preserving and 2s-almost onto. 
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Definition 24. Given any subset, [/, of a length space, JV, we can define a 
localized distance function, 

(2.6) dufa y) = inf{L(c([0,1])) : c(0) = x, c(l) = y, c([0,1]) c U}. 

In particular, if we chose any constants a and a! such that 0 < a7 < a < 
(b — a)/2 then we can define 

(2.7) da'(x, y) = dr-i(a+a',&-a')(^ V) 

as a distance function on r~1(a + a'^b — a7) and its restriction da>a' to the 
subset r~1(a + a, & — a). There is a discussion of these two functions in 
[ChCo, Section 3]. 

Note 25. A localized component of r~1((a + a, 6 — a)) is a set of the form 
C/nr~1((a+a, b—a)) where U is a connected component of r~1((a+a, 6—a)). 
Thus da,a (x, y) is finite iff x and y are in the same localized component. 

When we say that two spaces are Gromov-Hausdorff close each of which 
has more than one such component, then we have paired off all the localized 
components and shown that each pair is Gromov-Hausdorff close. In partic- 
ular, there are the same number of localized components [ChCo]. Note tha/fc 
in a warped product manifold localized components are connected compo- 
nents. 

We now present a particular theorem of Cheeger and Colding which is 
especially useful in the study of manifolds with minimal volume growth. 
This theorem states that manifolds with lower Ricci curvature bounds and 
almost maximal volume with respect to a distance function, r, are Gromov- 
Hausdroff close to certain warped product manifolds [ChCo, Thm 4.85]. 
First we provide a definition of almost maximal volume. 

Let mx(r~1(a)) denote the mean curvature of r~1(a) at the point x. We 
will omit the subscript x when it is unimportant. 

Definition 26. Let Nn be a Riemannian manifold and K C Nn compact. 
Let r(x) = d{x,K) be the distance function to K. Fix b > a > 0. 

If the region r~1(a, b) c Nn has the following three properties for some 
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positive smooth function, / and some u; > 0 

(2.8) ^^(^^-(n-ij^M 

(2.9) m(r-i(a))<Cn_i)^M   on r-\a) 

(2-10) Voln^{r-\a))^{l-u)      /n-i(a) 

then we say that the region r~1(a, b) has u;-almost maximal volume with 
respect to the function /. 

Theorem 27 (Cheeger and Colding). [ChCo, Thm 4.85] 
Let Nn have Ricci > A. Let K C Nn be compact and let r(x) = d(x, K).Let 
f be a smooth nonnegative function. 

Suppose a region r~1((a, b)) C Nn has u-almost maximal volume with 
respect to f. 

Then there exists a bound, 

(2.11) *(a;) = *(cj|n, /, a, b, a, a', £, A, diam(r~1(a, b)) 

such that 

lim \I/(u;|n, /, a, 6, a, a', £, A, dmm(r~1(a, b)) = 0. 
a;—>0 

and there exists a length space, X, such that 

dcHir"1^ + a,b- a)),X xf (a + a,b - a)) < *(a;) 

w/iere t/ie region r~1((a, 6)) is endowed with the localized distance functions, 
da>a''. 

Note 28. The length space, X, defined by Cheeger and Colding is a length 
space defined to be arbitrarily close to the set, r~1(a + a'), endowed with a 
localized distance function du with 

(2.12) U = r'^a + a,-Z,a + a'- f). 

See [ChCo, Prop 3.3]. 
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Note 29. More important for our purposes is the fact that the Gromov- 
Hausdorff map for this theorem is defined, 

(2.13) FGH{X) = (7r(x),r(x)). 

Here ^{x) = fxi^i^))-, where fx • r~1(a + a') h-> X is a Gromov-Hausdorff 
map and 7f(a;) is any point in r_1(a + a/) closest to x [ChCo Thm 3.6]. Note 
that FQH is not a uniquely determined function, nor is in continuous. 

Note 30. In the process of proving that FGH is almost onto, see Lemma 
3.38 of [ChCo], Cheeger and Colding prove a formula which implies that for 
any t G (a + a, b — a), the restricted function, 

(2.14) FGH ■ r-l{t) H-f r x/ {t} 

is almost onto. (See [Sol, Section 4.2] for more details). Thus X' and 
X can be best described as being Gromov-Hausdorff close to any given 
level set r~l{t) rescaled by f(t) with the localized distance function du of 
Theorem 27. 

The fact that FQH is a Gromov-Hausdorff map between level sets will 
be crucial to our proof of Theorem 45. 

Note 31. The estimating function 

^(a;|n, /, a, 6, a, a7, £, A, diam(r~1(a, b)) 

of the Cheeger-Colding Theorem depends on the warping function, /, only 
through the following quantities: 

(2.15) Ki  >   sup 
re[a,fc] 

l/(r)| 

(2.16) K2 >   sup 
r€[a,6] 

1 

m 

K3  > supre[aM |/'(r)| 

K4 > supr€[aj6] 
/"(r) 
/(r) 

Note that we normalize /(r) so that /(a) = 1. See [Sol, Sections 4.1-4.2] 
for details. 

Remark 32. Cheeger and Colding do not state this theorem exactly as we 
have written it above. In their statement, the functions \I>, N and D do not 
depend on diam(r~1(a, 6)) but instead on a function V. 

Vol(Bu(q)) 
(2.17) V(ii) =     inf 

fler-i(a,&) VoJ(r-1(a,&)) 
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By examining Prop. 4.50 and Lemmas 3.28 and 3.32 of [ChCo], where the 
dependence on V is introduced, and Prop 2.24 of [ChCo], which describes 
the properties of this function, it is clear that this dependence can be re- 
placed by dependence on the minimum Ricci curvature, A, the dimension, n, 
and the diameter of the set measured with respect to the standard metric, 
diam(r~1(a + a,b — a). The restatement in Theorem 27 is convenient for 
our purposes. 

2.2. The Asymptotic Almost Rigidity of Manifolds 
with Minimal Volume Growth. 

We can now state our asymptotic almost rigidity theorem. Recall the Defi- 
nition 2 of minimal volume growth. Recall the constant V^ of (2.3). 

Theorem 33. Let Mn be a manifold with a ray j, nonnegative Ricci cur- 
vature everywhere, 

(n _ i) (I _ v2) 
(2.18) Ricci(x) > -7^ '- on b'1^ oo)) 

b[x)z 

where v G (0,1/2] and minimal volume growth. 
Then for any given s > 0 and L > e > 0; there exists a sufficiantly large 

constant, V£iL < VQQ, such that if 

(2.19) Vol^Qb-^n)) > ^(n)'"-1^-*) 

then there exists a length space Xri such that 

dcH (b~l ((ri + £, ri + L)), Xri+£ x(6(i/2-W)) (n. + s, n. + L)J < 

< sdiam (fe~1(ri)) . 

This Gromov-Hausdorff closeness is from level set to level set [Note 30], so 
in fact Xri is Gromov-Hausdorff close to any level b~1(s) rescaled by the 
warping function f(s) as long as s G (ri + £, ri + L). 

The distance function on b~1({ri + s, ri + L)) and b~1(s) is the localized 
distance function, db-i(ri+£/2,ri+L+£/2)- 

The following is a corollary of the above or can be proven directly with 
a simplification of the above theorem's proof. 
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Theorem 34. Given a manifold, Mn, with nonnegative Ricci curvature and 
linear volume growth, for any given £ > 0 and L > £ > 0; there exists a 
sufficiantly large constant, 

(2.20) VetL < lim Voln-xib-^R)) = V^ 
R-+oo 

such that if 

(2.21) ^(n_1)(&-1(ri))>K,L>0 

then 

dGH {b~l {{n + s, n + L)), Xri x (ri + £,r1 + L)) < £diam (b"1^)) . 

Here Xri is a length space such that 

dcH (X^.b'1 (ri + e)) < £diam (b"1^)) . 

All spaces in this theorem are endowed with the localized distance function 
djj with U = fe-^ri + e/2, n + L + 6/2). 

Theorem 34 essentially asserts that once a level set has a large enough 
(n — 1)-volume, then the nearby region is almost an isometric product of 
that level with an interval. Note that we are forced to shift our region over 
slightly in order to be able to match the components of the region to that 
of the level. Cheeger and Colding are only able to control the distances of 
a subregion of the original region because the estimates on the Hessian of 
the distance function are only controlled on subregions of the region where 
the volume is controlled. For this reason, all the distance functions are also 
localized inside subsets of the original region. 

Note that these manifolds do not necessarily converge to unique warped 
product manifolds even if the diameter of the Busemann level sets is uni- 
formly bounded. In [So2], there are examples of manifolds satisfying the 
hypothesis of Theorem 33 for which there exist r; —> oo such that 

(2.22) b-\(r2i,r2i + L)) -► X x (0,L), 

and 

(2.23) JTHfcK+i, ra+i + L)) -+ Y x (0, L), 

where X and Y are not isometric. In order to force the manifold to be asymp- 
totically close to a unique isometric product manifold we would have to add 
additional conditions on the speed at which Vro/n_i(6~1(r)) approaches V^©. 
See Remarks 42 and 43 after the proof of Theorem 33. 
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2.3. Minimal Volume Growth and Almost Maximality. 

In this section we begin a proof of both Theorem 33 on asymptotic almost 
rigidity and Theorem 45 on the diameter growth of manifolds with minimal 
volume growth and globally nonnegative Ricci curvature. The key ingredient 
in both proofs is the application of the Cheeger Colding Theorem 27. Here 
we provide a series of lemmas which relate our hypothesis of minimal volume 
growth to their hypothesis of almost maximality. Recall Definitions 2 and 26. 

In order to study noncompact manifolds with minimal volume growth, 
we do not examine standard distance functions, but instead we examine 
Busemann functions. The following lemma asserts that Busemann functions 
are distance functions on certain regions (See [Sol] for the proof). 

Lemma 35. Letr2 be arealnumber. Letr(x) = d(x^b~1(r2)). Thenr(x) = 
r2 — b{x) on the region b~l{—oo,r2]. 

Recall that Theorem 22 states that the Busemann level sets are compact 
on manifolds with minimal volume growth and globally nonnegative Ricci 
curvature. Thus r{x) = d(x, fe-1^)) of the above lemma can be used as our 
distance function in the Cheeger-Colding Theorem [ChCo, 4.85]. 

Cheeger and Colding showed that regions with almost maximal volume 
were almost warped products. Here, we are studying compact regions in 
noncompact manifolds with minimal volume growth. These ideas are re- 
lated because in a manifold with minimal volume growth, annuli about in- 
creasingly distant points, ^{Ri), have almost maximal volume. Such annuli 
converge to regions between level sets of the Busemann function, 67. See 
Lemma 14 and [So2]. 

In the next lemma we show that once a Busemann level set in such 
noncompact manifold has sufficiently large (n-l)-volume, then any region 
beyond that level is a;-almost maximal. Recall, also the definition of the 
^-almost maximal volume property in Definition 26 and of V^ in (2.3). 

Lemma 36. Let Mn be a manifold with a ray 7 and Ricci curvature bounded 
below as in (0.1) with v G [0, (n + l)/2(n — 1)).  Suppose Mn has minimal 
volume growth and that the level sets of the Busemann function are compact. 

If ri is large enough that 

(2.24) 0 < V^ - ^-irHn)) < 



188 Christina Sormani 

then for all r2 > ri, the region, fe~1((ri, r2)) = r-1^, r2 — n), where r(x) = 
r2 — b(x) = d(xj fe-1^)), /ia5 t/ie uj-almost maximal volume property with 
respect to the function f(r) = (r2 — r)^2~,y). 

Proo/. First, it is easy to check that f(r) is the appropriate function for the 
Ricci bound because 

/       ^f"\r(x))        ,       ^ (I       \(   1      A    (-1)2 

f(r{x)) V     , \1       A   2.      / (r2-r)2 

As for the mean curvature bound we know 

(2.25)  (n.1)m.(B.1)-(*-)w(-*H--<"-1H*-'0 
V        ^     V ;/(0)       V / (r2)(^-v) ^2 

Using the Laplacian Comparison Theorem [Ch] and (1.7) which tells us the 
Laplacian of the Busemann function on our comparison warped product 
manifold, we get, 

(2.26) -fo"1)^-*) > _A6 = _m(6-i(r2)) = mCr-^O)). 

Thus we have verified the mean curvature requirement. 
So now we need only show 

(2-27) Vol^r-HO))   *   ^-U)      /-i(0)      ' 

or equivalently, 

(2-28)        VoUiCt-1^)) - ( "w)   (^)(-«(i-)  • 
By Theorem 5 we have 

- Fo/n-iCfe-l^)) 

Fo^^r^ro) z;2 b^-m-*) db (r2\^-^-v 

Foin_i(6-i(r2))      (r2)(n-i)(§-^)      Vn 

») 
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So we need only show 

Now we are given 

v Voln-iib-Hri)) 

(2.30) -^ ± 1-  < u 
Vex Y OO 

Using the monotonicity, 

r2 

we find 

(n-l)(i-.)        I 
(2.32) ^— y i-^ ^—   <   w. 

Cancelling the terms involving r2 and rearranging this equation, we obtain 
(2.29) and we are done. D 

In the Cheeger Colding Theorem 27, the given region has a fixed lower 
Ricci curvature bound, diameter bound and comparison warping function. 
It is shown that the region is almost a warped product if its almost max- 
imal volume estimate, u;, is sufficiently close to 0. The Gromov-Hausdorff 
closeness depends on 

(2.33) *(a;£)L|n,/,a,6, a,a/,^,A,dmm(r~1(a,6))) 

and ^ only approaches 0 when all the other parameters are fixed. 
In our situation, we are examining the asymptotic behavior of a sequence 

of regions contained between Busemann levels, fe~1(ri,r2), where ri and r2 
approach infinity. Thus our set K = fr-1^) will not be a fixed set and the 
diameters of the regions, 6~1(ri, r2), will be changing. Thus we must rescale 
the regions before applying the Cheeger-Colding Theorem. 
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Lemma 37. Let iVJ1 be a Riemannian manifold with a region r]~1(ai,fei) 
that has uj-almost maximal volume with respect to a function fi. Let Ng 
be the manifold N™ with its metric scaled down by D2. Then r2(x) = 
(ri(x)—ai)/D is a distance function on the region ri^1(0, (bi—ai)/D) inN^. 
Furthermore, if we let f2(t) = fi(tD+ai)/D then the region, r^1((0, ^1^i)); 
has cj-almost maximal volume with respect to this function /2. 

The details of this proof can be found in [Sol, Lemma 4.10]. 
Clearly, the rescaling of the manifold will affect other parameters in the 

Cheeger-Colding theorem. In particular, the distance between levels sets, 
r~1(a) and r~1(6) may become very small. This is a problem because the 
Cheeger-Colding Theorem requires that there be fixed constants b—a > a > 
a' > 0. While we cannot employ the Cheeger-Colding Theorem to prove the 
Gromov-Hausdorff closeness in this situation it is easy to see that a thin set 
must be close to a warped product regardless of its volume properties. See 
[Sol, Lemma 4.11] for details. 

Lemma 38.  Given a manifold, Mn, a compact subset, K, and a distance 
function r{x) = d(x, K).  Given any e > 0, if 

(2.34) b - a < 5£ = - 

then 

(2.35) dGuir-^ia.b)^-1^) xf (a,6)) < e. 

where the distance function on r_1(a, b) and r~1(a) can be any localized 
distance function, djj, where U D r~1(a, 6).  (See Defn 24j. 

Before rescaling regions between level sets, we would like to estimate 
their diameter. Three different estimates are obtained in the following lem- 
mas. The first lemma is simple but is used to prove both Theorem 33 and 
Theorem 45. 

Lemma 39. Let Mn be any complete noncompact Riemannian manifold 
with a Busemann function, b.  Then, for all ri <r2, 

(2.36) c?mm(6~1(ri,r2)) < dmra^"1^)) + 2(r2 - n). 

Proof. Given any x in fc-1^!), there exists a Busemann ray, 7^, which is 
parametrized by arclength, such that 7^(7*1) = x and Tz^) £ k"1^)-     Q 
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Thus to control the diameter of a region we need only control the diam- 
eter of the boundary closer to infinity. 

The next lemma gives an explicit bound on the diameter of the boundary 
as a function of the diameter and volume of the first level set. This lemma 
cannot employ the Busemann rays to travel between the levels and thus 
requires minimal volume growth and globally nonnegative Ricci curvature. 
The techniques used to prove this lemma were developed in [So2]. 

Lemma 40. Let Mn be a manifold with Ricci > 0 everywhere. Suppose 
it has Ricci Curvature bounded as in (0.1) with v 6 [0,1/4] and minimal 
volume growth. 

Given any 0 < £ < 1/2, we can find a level set with a sufficiently large 
volume 

(2.37) y°'"-1t1'
(ri))>^M prf"1 ^V       2\2 + 2e 

such for any L > 0 and any rs > ri the level sets fr-1^) and b"1^ + L) 
are Hausdorff close as subsets of Mn 

du (&~V3), b'1^ + L)) < £diam (b-l(r3 + L)) + L 

and the difference between their diameters is controlled 

(2.38) |diam(6~1(r3)) - diam^fo + L))| < ed2am(6"1(r3 + L)) + 2L. 

Proof. By the last lemma, we know that 

(2.39) fe-1(r3)cT5(6-1(r3 + I)). 

Thus the diameter of the first level set can be no larger than that of the 
second level set plus 2L, 

(2.40) diam{b-l{rz)) < diamib'1^ + L)) + 2L. 

So now we must bound dmm(6~1(r3 + L)) from above and show that it 
is contained in the appropriate tubular neighborhood of b"1^). We will do 
this proof by contradiction. 

Let D = diam(fe~1(r3 + L)). Suppose that 

(2.41) b-l(r3 + L)<t TieD/2) (nr3,r3+L+£D/2(b-l(r3))) . 
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Then there is a point x eb~1{r^ + L) such that 

(2.42) Bx{eD/2) n JWa+L+^M^fo))) = 0. 

Thus, by Theorem 5, we have 

Vol{Bx{eD/2)) < 

< Vol(b-l(rz + L- eD/2, rz + L + eD/2)) 

-        VroZ(fir3+L_££,/2)r3+i,+e£)/2(b_ (ra))) 

<((Tt+L+^y.(r,+L. iRY) U - Volib'1{r3)i 
RJ    V"        RJJ\ P4-'    )' 

On the other hand, by the Relative Volume Comparison Theorem [Bi] [Gr- 
LaPa] and Ricci > 0 everywhere, we know 

(2.43) Vol{Bx{eD/2)) > Vol(Bx(R)) (^V 

We set R = diamib-1^ + L)) + 2(eD/2) = D + 2{eD/2) to insure that the 
ball of radius R contains 6~1(r3 + L - sD/2, rz + L). Thus 

Vol{Bx{eD/2))  > V(rf(6-1(r3 + I-eI>/2,r3 + L))f 
eDfiY 

R 

eJO/2 
D + 2(eD/2) 

This last line employs Theorem 5 once again. 
Using these two bounds for Vol(Bx(eD/2)), we have 

I>(1 + e) 
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which we can rewrite as 

Voln^{b-\rz)) \0- + e) 

Now we take ra large enough for our volume estimate given by our choice of 
ri in (2.37) and get 

(2.45) l(    £    V   >    ^o^"1-^^-!^"1^!)) 
2 \2 + 2eJ Voo 

(^ooPri-'-yoin-!^-1^))) 
VoZn_i(6-1(r3)) 

e/2   \nl 

(2.46) > 

(2'47) >    W+O)   2 
which is a contradiction. 

Thus our assumption in (2.41) does not hold and instead we have 

(2.48) b-\n + L)C T{£D/2) (^rs+L+si^" Vs))). 

Since all points in ^3^3+L+eD/2(^~1(r3)) are on segments of Busemann rays 
running from fo-1^) of length less than or equal to L + eD/2, we have 

(2.49) nr3ir3+L+£D/2(b-l(r3))) C TiL+eD/2) (b-'irz)) . 

So, combining (2.48) and (2.49) we get 

(2.50) b-\r3 + L)C T(L+£D/2+eD/2) (fe-1^)), 

where D = diam{b~l{r^ + L)). 
The lemma then follows. □ 

We end this section with an easy rough estimate for a lower bound on the 
diameter of a Busemann level set as a function of its (n-l)-volume. Once 
again we restrict ourselves to manifolds with nonnegative Ricci curvature 
everywhere. However, we do not assume that we have minimal volume 
growth. 

Lemma 41. In a complete noncompact manifold with nonnegative Ricci 
curvature such that 6~1(r) is compact, we have 

(2.5i)       dtanrvw > (1/°'',;^1(r))) 
(l/(n-l)) 
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Proof. Let d = diam(6_1(r)). 
For any x e b'1^), Bx(2d) D b-1(r,r + d), so 

(2.52) ^0/(5^(2^)) > Vol{b-l{r,r + d)) 

By the Bishop Volume Comparison Theorem [Bi, BiCr], 

(2.53) wn{2d)n > Vol(Bx(2d)). 

Since b is Lipschitz we can employ the Coarea formula [Fed 3.2.11] and 
Lemma 5 to get, 

(2.54) Vd(b-1(r,r + d)) > (d)V^o/^^ft"1-(r)). 

Thus 

(2.55) wn(2d)n > (QVoln-^b-^r)) 

and 

(2.56) *-• > y<*-tr*(r)) 
wn2n 

D 

2.4. The Proof of the Asymptotic Almost Rigidity Theorem. 

We now prove Theorem 33.  Throughout this section Mn satisfies the hy- 
potheses of this theorem. See Section 2.2. 

We will begin by rescaling the region, b~1(ri,ri + L + e), so that the 
diameter of the rescaled region is bounded above. Then we can apply the 
Cheeger Colding Theorem. Since, 

(2.57) diam(b~l(ri, n + L + e) < 2(L + e) + diam(b~l(ri + e) 

by Lemma 39, we divide the metric by D2 where 

(2.58) D = diamib"1^! + L + e)). 

We will first prove that given any s > 0 and any L > e > 0 there exists Veii 
sufficiently large that if 

(2.59) Vol^ib-'in)) > y£,L(n)(n-1)(1/2-,;) 
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then 

(2.60) 

dcH (fc-1 ((n + e, n + L)), Xri+e x (6(i/2-«)) (ri + e, n + L)J < e' I>, 

where 

-    / V^ Nl/(n-l) 
(2.61) s'  < ^^TT;  

2(^r)1/(n-1) + 4L + 4s' 

This strange choice of s' has been made so that later we can replace the 
dependence on diam (6_1(ri + L + e)) by diam (b_1(ri)) using Lemma 40. 

We let r(x) = d(x^b~1(ri + L+£)) = (ri + L+e — b(x))/D in this rescaled 
region. Note that r(x) increases as b(x) decreases and that this region is 
thus r-1^, b) where 

(2.62) 6=^±£. 

When b < 2s', the region is "thin" and we know 

(2.63) dGH(r-1(a>6),r-1(a) x, (a, 6)) < s'. 

for any warping function / by Lemma 38. Thus (2.60) holds when we rescale 
back to the original region. 

So we will assume b > 2s and apply the Cheeger-Colding Theorem to 
obtain (2.63). First we must bound all the parameters in 

(2.64) *(u;|n, /, a, 6, a, a', f, A, diam{r~l{a, b))), 

of the Cheeger-Colding theorem for our rescaled region. We set n = n, the 
dimension of our manifold. Since Ricci > 0 globally, we have A = 0. We 
have a = 0 and 

(2.65) 6=i±£< i + £ 

D / Votn_1(6-i(n+L+e)\ (Vfr-1) 

by Lemma 41 which provides a lower bound on the diameter in terms of the 
volume. If we take 

(2.66) Voln^b^in + L + e))> Ve,L > V^/2, 
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we can bound b from above by a constant 

L + s 
(2.67) b < 

/^(VM)' 

The other parameters can be set a7 = a/2 and x = a'/Z where 

(2-68) °=^/,.-i/f   ,   r   ,  ^>       ^ diam{b-l{ri + L + e))      {L + e)' 

so they are all bounded from below and above as well. 
The warping function, /, normalized such that /(0) = 1, is 

To employ the Cheeger-Colding Theorem, we must bound this warping func- 
tion as described in Remark 31. More specifically, to bound the constants, 
Ki, uniformly for all values of ri since we will have to vary ri to obtain 
the u;-almost maximality required by the Cheeger-Colding Theorem. This 
is especially troublesome because D = diam(b~l(ri + L + e)) depends on ri 
and may approach infinity. 

To bound the constants Ki which depend on /, we will use the fact that 
the diameter of the Busemann levels grows at most linearly [Theorem 22]. 
We must chose 

'ri + Db^-*) 
(2.70) Kr = sup |/(r)| = ( f^J = 1. 

We need 

(2.71) K2> sup 
re [0,6] f{r) 

n    ,-(M 
ri + Db 

Now b is bounded above and below so we need only worry about ri and D 
as ri approaches infinity. By the at most linear diameter growth, we have 
Dri < Cri; so 

/    n    \-^-v)    (    i    \-(M 
(2.72) lim      i— < — v       ; n^oo Vrx+Db) \\ + Cb 
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and K2 exists. We must chose K3 such that 

K3 >  sup |/'(r)| 
r€[0,6] 

= sup 
r€[0,6] 

1       \ fn + Db-Dr^-*-^ f   -D 
n + Db     ) \ri + Db 2-V 

= ,--« 
D ri 

ri + Db) Kn + Db 

(-*-) 

Once again we verify that the right hand side is bounded as ri goes to 
infinity, 

n1-^ I 2     V) \ri + Db) In + Db 
< 

1 

.2   Miyvi+cb 
(-1-) 

Finally we need to chose K4 such that 

/"(r) 

m 
1 

^4 >  sup 
re[0,6] 

=   sup   ( - — V 
re[0,b] 

1 
-2-V 

D 

D 

ri + Db 

2 

2 'n + Db-Dr^ ~2 

ri 
[2    V){2+VJ yn + DbJ   yn + Db 

rx + Db 

-2 

Once again we check if this is bounded as ri approaches infinity 

D    \ -1   ■ n 
n^oU     V)\2+VJ\r1 + Dbl   \ri + Db 

< 

<-(H(^m(^) -2 

Thus we have uniformly fixed our constants Ki. 
For fixed s and L and keeping all our parameters bounded as above, we 

can find an CJ^X,, depending only on s and L such that 

(2.73) ^{(^e^ln.f.a.b.a.a^^A.diam^ 1(a,b))) < ef, 
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where e1 is defined in (2.61). 
If we can show that r~1(a, 6) is a^-almost maximal, then by the 

Cheeger-Colding Theorem we have 

(2.74) dcu (^"1(o + a, h - a), Y x/ (a + a, b - a)) < e7, 

where F is a length space and each level fr-1^) is in fact mapped by the 
Gromov-Hausdorff equivalence map almost onto f(s)Y [Note 30]. The dis- 
tance function on the metric product and the region are the localized dis- 
tance functions da,a = dr-^a+a'^-o/) defined in Definition 24. 

By the Lemma 37 we need only show that 6~1(ri, i?i + L + s) has u^- 
almost maximal volume to show that the rescaled region r~'1(a, 6) is uje,L- 
almost maximal as well. By Lemma 36, we know that if we take ri large 
enough that yo/n_i(6~1(ri)) > T4,L where 

(2.75) V£,L>(1-UJ£IL)V00 

then b~1(ri^ Ri + L+s) has u^-almost maximal volume. Thus (2.74) holds. 
If we rescale the region r~1(a + a, b — a) back up to the original region 

fr-1^! + £iri + ■£)> then we can rescale (2.74) to get 

(2.76) 

doH (b'1 ((ri + s, n + L)), Xri+£ x(6(i/2-V)) (n + e, ri + L)) < £* D, 

where the distance function on these spaces is the localized distance function, 
^6-1(ri+6/2^1+L+e/2)- The distance function rescales in this manner because 
a' = a/2 = e/(2D). Since this closeness holds on each level set, Xri+£r is 
close to ^(ri + £). 

Thus we have obtained (2.60). To complete the proof of our theorem we 
need to show that (2.76) holds if we replace the s/diam(6_1(ri + L + e)) by 
£diam{b~l(rij). 

This may require us to take ri a little further out so that the volume of 
its level set is close enough to VQQ to employ Lemma 40. That is, we take 

(277)  ^^^^(i)")^, 

which implies that 

r278. Voln-,{b-\n))        (    1/2    y 
(2.78) Voo —p <^ ^ + 2(1/2);   • 
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So we by Lemma 40, we know that 

(2.79) diam (fc-Vi + L + e)) < 2 diam(b-1 (n)) + 4(L + e). 

Using this information, we can rewrite our estimate in (2.60) as 

doH (b-1 (0*1 + e,n + L)),Xri+e Xji/a-v (ri + e, n + L)) < 

. / Voo/2 \<l/<"-l» 
fc \<t(;-n2ny 

2(;&§)'*-«»+4(i+£) 

diam{b 1(ri + L + s)) 

< /  / v /2 X-i)) \ (2d^r Hn)) + 4(L + s)). 

By (2.77), we have yoZn_i(6~"1(ri)) > ^00/2; so by Lemma 41 we know that 

Since D/(2D + 4(L + s)) is a decreasing function of D, we can substitute 
this diameter estimate in the Gromov-Hausdorff estimate to get 

dcH {b~l (n + e, ri + L), ft-1 (ri + e) x (n + e, n + L)) < 

= sdiam(b 1(ri)). 

and we have completed the proof of Theorem 33. 
Note that in V^x, was chosen in (2.75) and (2.77). □ 

We could also consider manifolds in which the function, 

Voln.^b-^r)) 
(2.81) S(r) := V^ - 

rp -1 

decreases at given rate. This would give us results which are stronger than 
those implied by minimal volume growth but weaker than those implied by 
stongly minimal volume growth. 
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Remark 42. If we assume that 5(r) decreases sufficiently fast, regions of 
increasing length, like fr-1^, 2r), could be shown to be Gromov-Hausdorff 
close to warped product manifolds. This can be seen because we know 
that for any fixed set of parameters, we can choose 5(r) such that Gromov 
Hausdorff estimating function satisfies 

(2.82) #(<$(f)|n, /, r, 2r, a, a7, £, 0, Dr) < e. 

Note that we are using at most linear diameter growth here to say that the 
diameter of fc"""1^, 2r) is less than Dr, for some constant, D. Note also that 
we do not bother to rescale the manifold. Such a theorem would tell us that 

(2.83) dGH(b-l(r, 2r), ft"1^) x/ (r, 2r)) < e. 

In particular, we would truely see the warping of such a manifold. 

Remark 43. If we were to take a function, 5(r), that decreased even faster, 
the manifold could be shown to be close to a unique warped product mani- 
fold. That is, if we choose 8{r) such that for all r > ro we have 

(2.84) tt(<J(r) |n, /, a = r, b = 2r, a, a', £, 0, Dr) < £ Q-} , 

then 

(2.85) dctf (fe-V, 2r), fr-V) x, (r, 2r)) < e (1) . 

Since our Gromov-Hausdorff map is from level set to level set, if we let -JT 

denote a level set with a localized metric rescaled by the warping function 
/(r), then 

(2.86) doH    - 
\ 

i-i(r) 6-1(2r)\ 

/(2r) ; GY 
Then, for all k, 

(2.87) doH 
(b-Hro) 
V Hro) ' /(2^ro) j <    ^ 

(   1   ^ 
\2krQ) 

< 
e 
ro 

Thus, 

(2.88) donib-H ro, oo), 6 ^ro) xj (n ,,oo)) <e 

and the manifold is close to a unique warped product manifold. 
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3. Linear Volume Growth and Sublinear Diameter Growth. 

In this section, we show that a manifold with nonnegative Ricci curvature 
everywhere and linear volume growth has sublinear diameter growth [Theo- 
rems 45 and 1]. We prove this both for diameters measured in the ambient 
manifold and for localized diameters as defined below in Definition 44. 

In the previous section, we proved that in such a manifold, the region 
b~1((r, r + L)) is almost an isometric product after rescaling by the diameter 
and taking r large. Thus the "diameters" of 6~1(r) and 6~1(r + L) are 
close but only after rescaling by the diameter of 6~1(r). To get sublinear 
diameter growth, we need to control increasingly long regions, 6~1((r/2,2r)) 
which allows us to compare b~1(r/2) to 6~1(2r). Here we will rescale by 
dividing out by r and we use the fact that diam(b~l(r)) < CDT where CD is 
the constant from Theorem 22, before applying Theorem 27 of [ChCo] and 
Lemmas  36, 37, and 38 from Section 2.3. 

Recall the definitions of localized distance and localized component from 
the Section 2.1 [Defn 24, [Note 25]] . 

Throughout this chapter, "diameter" and diam, stated alone, refer to 
the diameter measured in the ambient manifold. We will now define the 
localized diameter or, more precisely, the s-almost intrinsic diameter. 

Definition 44. Given any 5 > 0, let U = 6~1(i? — 5, R + s). The s-almost 
intrinsic diameter or localized diameter of a level set of a Busemann function 
is 

(3.1) 
diams(b 1(R)) = msx{diamv(V n b 1{R))) : V is a conn comp of £/}, 

where 

(3.2) diamv(Vnb-l(R)) = sup inf        Length(c). 
xvevnb-HR)    <M)cV 

c(o)=x,c(i)=y 

This kind of diameter has been analyzed by Abresch and Gromoll [AbGl]. 
They proved that the almost intrinsic diameters of distance spheres in a man- 
ifold with nonnegative Ricci curvature grow linearly. This almost intrinsic 
diameter of the sphere of radius R was defined to be the diameter of the 
largest component of the sphere measured with respect to a localized dis- 
tance function du where U = Ann^(1_£) ^(1+£:). Thus the almost intrinsic 
diameter was measured in terms of increasingly thick annuli. 
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In Theorem 45 below, our almost intrinsic diameter of Busemann levels 
is also measured in this way. However, we prove that the diameter of the 
Busemann levels grows sublinearly and we assume that the manifold has 
linear volume growth. 

Theorem 45. Let Mn be a manifold with nonnegative Ricci curvature and 
linear volume growth. Then given any 5 G (0,1), we have sublinear almost 
intrinsic diameter growth, 

(3.3) lim ti^rt-HR)) = 0. 

After proving this theorem, we conclude the paper by showing that man- 
ifolds with linear volume growth and nonnegative Ricci curvature have sub- 
linear diameter growth as well [Theorem 1]. This final theorem does not 
follow directly from the sublinear almost intrinsic diameter growth because 
of the lack of control on the number of localized components of the level 
sets. 

Lemma 46. Given any I/J > 0 there exists R^ > 0 such that for all r > R^, 
there exists a length space, Xr, such that 

(3.4) dcHib^dr^Sr^Xr x [r/2,3r]) < ^r 

where the localized distance function on &~1([r/2, 3r]) is dw where 

(3.5) W = fc-^/S - ^r/2,3r + #/2)). 

Furthermore the Gromov Hausdorff Equivalence map from 6~1([r/2,3r]) to 
Xr x [r/2,3r] is (7r(x),b(x)) where TT : b'"1(s) i-> Xr is a Gromov-Hausdorff 
equivalence map itself for all s E [r/2,3r] with respect to dw- 

Before proving this lemma, we make a few remarks pointing out some 
useful implications. Note that we are strongly using the fact that Xr x 
[r/2,3r] is an isometric product. 

Remark 47. Since FQH is almost onto, for all (x, s) G Xr x [r/2,3r] there 
exists xs e b^Qrfa 3r]) C Mn such that dXrX[r/2^r](FGH(xs), (z, 5)) < rpr. 
In particular, dxr(^(xs), x) < ipr and \b(xs) — s\ < V>r. Furthermore, for all 
Vulto e ft^Qr^Sr]), djrr(7r(i/i),7r(ife)) < dw(j/i,I/2) +#- 
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Remark 48. In Lemma 46 we have implicitly stated that the region, W = 
6_1((r/2 — ^r, 3r + ^r)), has the same number of connected components 
as Xr x (r/2,3r), which is the same number of componenets as Xr itself. 
[Note 25] So if x and y are in the same connected component of W, TT(X) 

and 7r(y) are in the same connected component of Xr. 
On the other hand, as mentioned in [ChCo], if x and y are in the same 

connected component of Xr, then the points a;5,ys 6 &-1(5 — ^r, s + tpr) 
mentioned in Remark 47, are in the same connected component of b~1(s — 
4^r, s + 4/0r,). This follows by dividing up any curve, C, between x and y 
in Xr into points, x1 of distance less than ipr apart. Then there exist points 
xl e b~1(s — ipr, s + ^r) as in Remark 47, such that 

dw(xi,xi+1) < dXrX[r/2M {FGH(xi),FGH(xi+1))+i;r 

< dXr(ir(xi)Mxi+1)) + \b(xi) - &(4+1)l + </>r 

< dxrMxi),x*) + dxr(x\x^1) + dxr(a:i+1,TTC^
1
)) + 3^r 

< 3'0r + S^r = Gipr 

Thus a piecewise geodesic from xs to 2/s can be drawn through these points 
and will remain in the set 6~1(5 — Aipr, s + 4/0r). 

Proof of Lemma 46. Fix any ip e (0,1/2). Let u; > 0. We will choose the 
value of u later. Let R^iU be large enough that 

(3.6) Vdn-! (b-1 (R^(l/2 - f/,))) > (1 - u>) Voo 

where V^ = lim^-.oo VoZn_i(6~1(i?)) as in (2.3). Thus, by Lemma 36, we 
have for any r > R^^, 

(3.7) U = ft-1 (r/2 - ^r, 3r + ^r) 

has u;-almost maximal volume [Defn 26] with the distance function 

(3.8) p(x) = d (ar, b"1 (3r + ^r)) 

and /(p) = 1. By Lemma 35, p(x) = 3r + ^r - 6(x). If we rescale this 
region by dividing the metric by r2, it still has a;-almost maximal volume 
by Lemma 37. 

The rescaled region, C7, can be described as the region between two level 
sets of a distance function, p{x) which is the rescaling of p(x), as follows: 

(3.9) [/ = p-1(0,5/2 + 2V>). 
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By Lemma 39, we have 

diam(b~1(r/2 — ^r, 3r + ^r) 
diamrescaied{U) = —  

r 
< 2(5/2 + 2y0r + (W(6-1(3r + y>r)) ^ 5 |        | ^ 

where Cp is the diameter growth bound in Note 22. Now set the parameters 
a = 0, b = (5/2+2^), /(p) = 1, A = 0, D = (5+4^+CD), a = il>,a! = ^/2, 
and x = -0/4 and apply the Cheeger-Colding Theorem 27. 

Thus there exists a function, 

(3.10) *(LJ) = *{<j\n, 1, a, 6, a, a7, x, A, I>), 

which converges to 0 as a; converges to 0, such that there exists a length 
space X^if, depending on a7 = ^/2, and x = ^/^ and C/, such that 

(3.11) CfOT(p-1(^,5/2 + ^),X x (^,5/2 + ^)) < *H 

where the metric on r~1('0, 5/2+ip) is c?^ where VF = r~1('0/2,5/2 + 3^/2). 
By Remark 29, the Gromov-Hausdorff map has the form FGH{

X
) = 

(7r(a;),p(a;)) and by Remark 30, TT : p~1(t) H^ X^U is also a Gromov- 
Hausdorff map. 

We now choose u^ small enough that ^(o;^) < ^ Rescaling the infor- 
mation back up to full size, we know there exists R^ = R^^^ of (3.6) such 
that for all r > R^ there exists Xr such that 

(3.12) dGH (p'H^ (5/2)r + #), Xr x (^r, (5/2) r + ^r)) < ^r. 

Here the metric is rescaled to dw where VF = p~1(ifj/2r, 5r/2 + 3rip/2). The 
Gromov-Hausdorff map has the form (7r(x),p(x)) and TT : p~l{t) »-»• Xr is 
also a Gromov-Hausdorff map. This easily implies the lemma using the fact 
that b{x) = 3r + V^ - p{x). □ 

Using the above lemma, we can now compare the localized diameters of 
nearby level sets. 

Lemma 49. Let Mn have nonnegative Ricci curvature and linear volume 
growth. Fix S G (0,1/2]. Given any ip G (0,5/10), if r > R^ of Lemma 46 
then for any rj., r2 G [r, 2r] we have, 

(3.13) |dzamjri(6"1(ri))-diamtfr2(6"1(r2)| < SipNsr 
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where N$ is a uniform upper bound on the number of points Xi E Xr such 
that d(xi, Xj) > (5 — 4/0)r. In particular, 

(3.14) Ne=lV>CD(l+6)Y 
s 

where Co is the constant bounding diameter growth of Theorem 22. 

Proof. By Lemma 46 we know that 

(3.15) dcH(b-1 ([r-A 3r]), Xr x [r/2,3r]) < i>r. 

We first prove that Ns is a uniform upper bound on the number of points 
xi G Xr such that d(xi, Xj) > (5 — 4/0)r. 

Let XI1X2..>XN be a maximal set of such points in Xr. By Remark 47, 
there exists yi £ fe_1((r — ipr^r + i/jr)) such that dxr(7r(yi)1Xi) < i/jr. In 
particular, 

(3.16) dwiy^yj) > dx^r^M^H^)^0^)) " ^r 

(3.17) >dxr{<yi)Myj))-^ 
(3.18) > dxr{xi, Xj) - dxriniyi), xi) - dxr{xj, ^{yj)) - ^r 

(3.19) > (5 - 4V>)r - 3^r  =  (35/10)r. 

Thus By^Sr/lQ) are disjoint balls in b~l(r — Sr/5,r + (5r/5). 
Recall the linear diameter growth constant, Cp > 1, of Theorem 22. 

Since yi are in 6_1 (r — Jr/5, r + 5r/5), which has diameter less than or equal 
to 2(<5r/5) + Cr)(r + Sr/5) by Lemma 39, we can apply the Relative Volume 
Comparison Theorem to bound the volumes of the balls from below. 

- {coir + l))" V0"-b'lir - Sr^r + Srlb))- 
Since the balls are all disjoint, 

AT 

Vol (^((r - (fr/5, r + <Sr/5))) > ^ v°l (BVi(sr/5)) 
i=l 

(SyVoljb-1^ - 5r/5,r + Sr/5)) 
(10 CC(1+ <*))" 
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and we have the uniform estimate for Ns- 
We now prove that for all s € [r, 2r], 

(3.20) diamss(b~1(s)) < diam(Xr) + SipNsr, 

where diam(Xr) is the diameter of the largest connected component of Xr. 
Recall Definition 44 of the almost intrinsic diameter. Let U = b~1(s — 

5s, s — Ss) and let V be the largest pathwise connected component of U] so 

(3.21) diamvib^is) D V) = diamsaQr1^)). 

Let x and y be any pair of points in fc"1 (s) n V. We claim that for all e > 0, 
there exists a curve, c, contained in V from x to y such that 

(3.22) L(c) < diam(Xr) + SNsipr + e. 

Once we have proven the claim, (3.20) is proven. 
Fix e. To find a curve, c, we first note that x and y are in the same 

connected component of 6~1(r/2,3r). Thus 7r(x) and 7T(y) are in the same 
connected componenet of Xr. So there exists a curve, C£, in the length 
space Xr between 7r(x) and 7r(y) such that 

(3.23) dxr(n(x),ir(y)) < L(Cx) < dxMx),ir(y)) + e. 

Let po = 7r(a;),pi,p2?—PiV = ^"(y) be equally spaced points along C£ such 
that N = Ns + l. Thus d(pi,Pt+i) < (6 - ^r and 

iV-l 

(3.24) J]dXr(pf,pi+1)<L(C£). 

By Remark 47, there exists rr* G b"1^ — ^r, 5 + ^r)) such that XQ = x, 
xN = y and dxr(^(^i)jP*) < #• Thus, 

d(a:i,a:»+i) < d^^i^t+i)   <  dxr(7r(a;i),7r(xi+i))+^r 

<3^r + dxr(p«,Pi+i)  <  Sr-ipr  < Ss, 

where W = fe~1(r/2 — ^r/2,3r + ^r/2) as in Lemma 46. So a minimal 
geodesic from a;* to Xi+i is contained in ft"1 ((5—^5, s+Js)) C W. So there is a 
piecewise minimal geodesic curve from x to y contained in b~1((s—5s, s+5s)) 
of length, 

N-i N-i 

^2 dw(xi,Xi+1) < ^2 dXr(Pi,Pi+i) + Nstyr 
i=0 i=0 

< L(Ce) + SNs^r 

< diam(Xr) + e + SNs^r. 
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This piecewise geodesic satisfies our claim, (3.22), and (3.20) follows. 
We now prove that for all s € [r, 2r], 

(3.25) diam(Xr) < (imm(5s(6"1(s)) + S^r. 

First recall that diam(Xr) is the diameter of its largest connected com- 
ponent, Zr C Xr. Let x and y be any pair of points in Zr. There exists 
p, q E b~l((s — ?/>r, 5 + ipr)) such that 

(3.26) d(7r(p), x) < ipr and d(7r(g), y) < ipr, 

as mentioned in Remark 47. 
Now, p and q are in the same connected component of 6"1((5—5s, s+5s)) 

by Remark 48 and by the fact that 6"1((5 — 5s, s + 6s)) contains the region 
6~1((s — 4^r, 5 + Aipr)). So for all £ > 0, there exists a curve C^ € 6"1((5— 
5s, s + 5s)) C W which almost achieves the sJ-almost intrinsic distance 
between p and q and 

(3.27) dw(p, q) < L{C£) < ds8{p, q) + e< diamssib"1 (s)) + e. 

On the other hand, by (3.15),(3.26) and the triangle inequality, 

(3.28) dwfa q) > dxrx[r/2,3r](FGH(p), FQH («)) - # 

> dxr^{p), n(q)) -il>r> dxr(x, y) - Sipr. 

Combining (3.27) and (3.28), taking e —> 0 and then maximizing over all x 
and y in Zr, we have (3.25). 

It is easy to see that (3.20) and (3.25) applied to 5 = ri and s = r2 
alternatively, imply the lemma. □ 

We can now prove the sublinear almost intrinsic diameter growth theo- 
rem. 

Proof of Theorem 45.   We need to show that given any 5 G (0,1/2), we have 
sublinear almost intrinsic diameter growth, 

(3.29) lim diamSR(b-HR)) = 0m 

Given any e > 0, let 

(3.30) ^ = min{5/10,£/3iV<5}. 
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Thus by Lemmas 46 and 49, there exists R^ such that for all r > R^ and 
for all rf G [r,2r], 

(3.31) diamsrf^1^')) < sr + diam$r(b~l(r)). 

Thus, applying this repeatedly to r = 2^SR£ and r7 = 2r, we have 

diam2k6R£ (b-1(2kR£) < e2k-lR£ + diamS2k-iR£ (b-^^Re)) 

< s2k-1R£ + s2k-2R£ + diam62k-2R£(b^1(2k-2R£)) 

< e(2k-1 + ... + 2 + 1)/^ + diamsRAb'HRs)) 

< s2kR£ + diamsR£ (6"1 (i^)) 

For all R > R£ there exists k such that i? G p^e^^+^Jso by (3.31), we 
have 

diam5R{b-\R))     _   ,  0 diam2fc^e(b-1(2fci?g)) 
(3.32) _ <  e.+ 2 ^- 

Combining this with the above estimate and taking R to infinity, we get 

diamSR{)r\R))    .    _i_or      g2fc
JRg + ^am^g(b-1(J?g)) hmsup =r < e + 2 hm  -775 = 3s. 

Since this is true for all e > 0 we have sublinear diameter growth. □ 

We now prove our final theorem, Theorem 1, that 

(3.33) lim*-<^'W)-0. 

Proof of Theorem 1.   By Theorem 22 of [So2], we already know that 

(3.34) dJ^m<cD<o, 
R 

If we assume that the diameter growth is not sublinear, then there exists a 
sequence, r;, approaching infinity such that 

(3.35) diam(b-Hri)) > CL > 0       v. 
n 

So there exist x^, yi G fe"1^), and there exists, 0*, a minimal geodesic from 
Xi to 2/i such that L(<7;) = ^n where hi G [CL, CD]. 
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Suppose there is a subsequence, ij, such that 

(3.36) ^cb-HKASr^]). 

Then we have a minimal geodesic of length h^r^ contained in this region, 
so 

(3.37) diami^.^b"1^)) > /i^.r^. > CLrir 

This contradicts the sublinear 1/2-almost intrinsic diameter growth of the 
manifold [Theorem 45]. Thus there exists AT such that for all i > N, ai is 
not a subset of &-1(r;/2,3r;/2). 

Let 

(3.38) Si =    min    b(<Ti(t)). 
te[0thiri] 

and let 

(3.39) Ti=   max   b(ai(t)). 
te[0,hiri] 

For alH > N either 2Si < n or 2^/3 > n.   ■ 
Suppose there is a subsequence, Zj, such that 2^-/3 > r^.. Then cr^. is a 

minimal geodesic which starts at x^ in fc-1^.), passes through a point, a^. 

in b~l(2Tt./3), passes through a point in b-1^.), continues back through 
a point, y^. in 6"1(2Ti://3), before returning to yij in b~l{rij). Thus there 

are points x^. and y^. in b-1 (21^/3) with a minimal geodesic between them 

of length at least 22^/3 which remains in ft"1 (2^/3,71,). So 

(3.40) dzami(2ri./3)(6-1(2rii/3))>2Tii/3. 

As rij goes to infinity, T^. approaches infinity, and then (3.40) contradicts 
Theorem 45 with 5 = 1/2. Thus there exists N' such that 2Ti/3 < n for all 
i > N'; so 2Si < n for all i > N'. 

We would like to use the same trick with the Si "of (3.38). but first we 
must show that Si diverge to infinity. 

Suppose there exists i?, and there exists a subsequence ij such that 
Sij < R. Thus there exists t^ such that a^ (i*.) e 6_1(i?). Since this level set 
is compact, a subsequence of the a^ must converge. Since Z^cr^.) > C^r^., 
this subsequence must converge to a line. So by the Splitting Theorem of 
Cheeger and Gromoll, the manifold is split [ChGl]. However, this implies 
that 6~1(ri) is totally geodesic and so 5; = n, which contradicts 2Si < r*. 
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Thus Si diverges to infinity and Si <ri/2. Then <7; is a minimal geodesic 
which starts at xi in fc-1^), passes through a point, x^ in b~1(2Si), passes 
through a point in b~1(Si)J continues back through a point, yz' in b~1(2Si), 
before returning to yi in b"1^). Thus there are points #• and y^ in b~1(2Si) 
with a minimal geodesic between them of length at least 2Si which remains 
in6-1(^,25i). So 

(3.41) ^ami(25.)(6-1(25i)) > 25^, 

which contradicts Theorem 22 for 5 = 1/2 as Si approaches infinity. 
Thus CL of (3.35) cannot exist, and the manifold has sublinear diameter 

growth. □ 

Similar theorems may be provable for manifolds with a quadratically 
decaying lower bound on Ricci curvature, but one must be careful to rescale 
Xr as it is compared to each level set. 
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