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We investigate the combinatorial analogues, in the context of nor- 
mal surfaces, of taut and transversely measured (codimension 1) 
foliations of 3-manifolds. We establish that the existence of certain 
combinatorial structures, a priori weaker than the existence of the 
corresponding foliation, is sufficient to guarantee that the mani- 
fold in question satisfies certain properties, e.g. irreducibility. The 
finiteness of our combinatorial structures allows us to make our 
results quantitative in nature and has (coarse) geometrical con- 
sequences for the manifold. Furthermore, our techniques give a 
straightforward combinatorial proof of Novikov's theorem. 

1. Introduction. 

In this paper we study some of the relationships between normal surfaces and 
foliations. Our general approach is to discuss what combinatorial structure 
on a triangulation of a 3-manifold is sufficient to guarantee the existence of 
a foliation in "normal form" with respect to the triangulation. i.e. we want 
every leaf of the foliation to be a normal surface away from the vertices of 
M. Or, if we cannot guarantee such a foliation, we consider what combina- 
torial structure is sufficient to guarantee properties of M that would be a 
consequence of the existence of a foliation. 

The combinatorial structure we describe consists of a choice of orien- 
tation for each edge of the 1-skeleton M1. That there exists a transverse 
foliation locally amounts to a local condition on the star of each vertex. 
The problem of the global existence of a foliation seems to be a very hard 
problem, and we are not able to treat it effectively except in some special 
cases. In particular, the related problem of when a branched surface carries 
(abstractly) a lamination was shown to be algorithmically unsolvable, by 
Lee Mosher (see [Ga]), although it is not known whether the problem is still 
unsolvable if the branched surface is given together with an embedding in a 
3-manifold. 
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In the first section, we are able to give precise conditions for the existence 
of a transversely measured normal foliation. Our condition says that directed 
loops in the 1-skeleton (with respect to our orientation) must lie in an open 
half-space of homology. As a corollary, we are able to give an elementary 
combinatorial proof that a 3-manifold admitting a taut foliation in which the 
transverse loops lie in an open half-space of homology, is a surface bundle 
over S1. 

In the second section we treat the converse question, of when a folia- 
tion of M by closed surfaces can be put in normal form with respect to a 
triangulation. We show that if one can make the 1-skeleton transverse to 
the foliation and have at least one incoming and one outgoing edge from 
each vertex, then the foliation can be isotoped rel. its intersection with the 
1-skeleton to be in normal form. 

In the next two sections we discuss when a triangulation admits a taut 
foliation in normal form. If a choice of orientations on the 1-skeleton as above 
admits a transverse foliation locally, if every oriented loop is homotopically 
essential, and if in addition the 1-skeleton is recurrent, thought of as a 
directed graph, then we are able to show that the universal cover of M can 
be given a foliation in normal form such that each leaf is incompressible. As 
a corollary, we see that a manifold admitting such a combinatorial structure 
is either irreducible or S2 x S1. This is a generalization of Novikov's theorem, 
and it remains to be seen whether the combinatorial structure so described is 
more general than that of the existence of a taut foliation. Our methods give 
new information even about 3-manifolds admitting taut foliations, showing 
that any deformation of the foliation in the universal cover which is "roughly 
equivariant" (i.e. preserves the normal disk types in each tetrahedron) also 
has incompressible leaves. Moreover, our technique gives an elementary 
(combinatorial) proof that circles transverse to leaves of a taut foliation are 
homotopically essential. 

In fact, we can make our results quantitative, and show that the leaves 
in the universal cover satisfy the same kind of isoperimetric inequalities that 
minimal surfaces in M satisfy. Our argument here uses the finiteness of the 
combinatorial structure, which makes uniform geometric estimates almost 
effortless. 

In the penultimate section, we weaken our hypotheses considerably and 
show that we can still get a strong result. In particular, we weaken the 
condition that oriented loops be homotopically essential to the condition 
that oriented loops of length < ki bound no simplicial disks of simplicial area 
< Afe, for constants fci, £2 depending on the triangulation and the choice of 
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orientation. With this hypothesis, we can nevertheless show that ^(M) = 1 
OTM = S

2
XS

1
. 

This result is interesting insofar that it shows that even the "local" exis- 
tence of a foliation transverse to the 1-skeleton is enough to get topological 
information about the manifold. 

In particular, we expect that this condition is much more general than 
the existence of a foliation in normal form on M compatible with the orien- 
tations. This brings to mind a question of D. Gabai in [Ga], namely: "Do 
there exist useful branched surfaces which do not carry anything" ? Though 
we do not demonstrate the non-existence of foliations compatible with our 
combinatorial structures, nevertheless, we do not need to produce a globally 
compatible foliation to find the combinatorial structure "useful". 

We adhere to the convention, it what follows, even if we do not mention 
it explicitly, that every foliation is oriented, co-oriented, and smooth. For 
simplicity, and to avoid headaches, we have not investigated the extent to 
which these conditions can be dropped. 

I would like to thank Andrew Casson for his patience, his comments, 
and his suggestions regarding the following material. I am also grateful to 
the referee for some excellent observations and comments. 

2, Triangulations and maps to Sl. 

Let M be a compact 3-manifold, and let T be a triangulation of M. A 
positive orientation on T is a choice of orientation on each edge of T1, and 
a choice of a E -H'1(M; R) such that 

• For each loop 7 C T1 with 7 positively oriented, ^([7]) > 0, where [7] 
denotes the image of 7 in i?i(M; R) 

• For every vertex v G T1 let o(v) be the set of vertices w such that there 
is an oriented edge from v to to, and let i(v) be the set of vertices w 
such that there is an oriented edge from w to v. Then there is a 
connected subgraph of link(i;) whose vertices are exactly o(v), and a 
connected subgraph of link^) whose vertices are exactly i(v). 

We call a choice of orientation for each edge of a cell complex C a direc- 
tion on C. Maps between directed CW complexes are orientation-preserving 
if they preserve the orientation on each edge. 

Lemma 2.1. Let C be a complex together with a direction. There is an 
orientation-preserving immersion f : C1 —► S1 which is affine on each edge 
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(with respect to the standard affine structure on Sl), and extends to all ofC 
iff all oriented cycles in C1, considered as elements of Hi(C), are contained 
in an open half-space. 

Proof. An orientation-preserving immersion / : C1 —► Sl is determined by 
a collection of real values xi > 0, one for each edge e*, such that we have 

for each oriented cycle 7. This map extends to C2 iff for each disk D G C2, 
the boundary dD is mapped to S1 null-homotopically. That is, writing the 
boundary dD as a union of positively and negatively oriented edges, 

Ej = ^2 xi ~ 53 Xi = ® 

where our notation is meant to indicate whether the orientation of ei agrees 
or disagrees with the orientation of dD induced by some arbitrary orientation 
on£>. 

It is a fact that the collection of equalities Ej = 0 has a solution with all 
xi positive iff there is no linear combination of ^ • VjEj such that 

E^ = £ CnXi 

with all ci non-negative, and at least one Q positive. For, let H be the 
subspace of Rn spanned by the vectors Ei. Then the orthogonal subspace 
H1- is precisely the set of solutions to the equations Ei = 0. If K denotes 
the convex cone where all xi > 0, then vectors v G KU—K are characterised 
by the property that v1 does not intersect K. From certain perspectives, 
this is just the finite dimensional version of the Hahn-Banach theorem. 

Notice that, thought of as an element of the set of 1-chains on M, each 
Ej is a boundary. Therefore ]£. VjEj = da for some 2-chain a. But any sum. 
^2i CiXi with all ci non-negative that represents a 1-cycle must consist of a 
non-negative sum of positively oriented cycles 7 G C1. Since such cycles all 
lie in the same open half-space of ill, a positive combination of them cannot 
be a boundary. 

Having found a positive solution, we may find one with rational coeffi- 
cients, and therefore by scaling, with integral coefficients. 

Finally, since Sl is aspherical, any map on C2 extends to C. □ 
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With this lemma we may establish 

Theorem 2.2. IfM admits a triangulation with a positive orientation, then 
M is a surface bundle over Sl and there is a projection map M —* S1 which 
is affine on each simplex. 

Proof. Let M denote a geometric model for M constructed by letting each 
tetrahedron of the triangulation be a regular Euclidean tetrahedron with 
side lengths equal to 1. 

By our lemma, the first condition implies that there is an orientation- 
preserving immersion / : F —> S1 which extends to all of T. By a genericity 
assumption, we insist that the images of all the vertices are sent to distinct 
points of S1. The restriction of / to the 1-skeleton of each tetrahedron A 
therefore lifts to a map / : A1 —> R. We extend / to the entire tetrahedron 
A by requiring it to be affine. It is clear that this can be done compatibly 
to give an piecewise-affine map M —> S1. We claim that this map is the 
projection map from the total space of a surface bundle to the base space. 
To see this, it suffices to show that the foliation of M by the preimages of 
points in 51 is non-singular. 

Notice that there is only one possible orientation for each A1, up to 
isomorphism, and it is clear that this orientation induces a non-singular 
foliation on A. This foliation pieces together compatibly along faces and 
edges. It remains to check that it is non-singular at vertices. 

Let v be a vertex of the triangulation, and star(^) denote the star of 
v. Then / lifts to / : star(f) —> R, since topologically, star^) is a JB

3 

which is simply-connected. link(i>) is a triangulated S2. Then /limk^) is 
non-degenerate away from the vertices, and its level sets away from these 
consist of a disjoint union of circles. 

If A is the leaf containing v, then A H star(t>) is the cone on the set of 
p G link(t;) where f(p) = f(v). We must show that this is a circle. By 
genericity, this set is a disjoint union of circles. Let S be a circle in link(^) 
separating a maximal graph whose vertices are o(v) from a maximal graph 
whose vertices are i(v). Call these two graphs ro and F;. Such a circle exists, 
since the two graphs are disjoint, and any two connected closed subsets of 
S2 are separated by an embedded circle. 

The union of simplices in link(i;) intersecting S non-trivially is an open 
annulus whose boundary is contained in F; U ro, and it is clear that we can 
write the annulus as S1 x / where / is monotonically increasing on each 
p x I. Since the value of / on one boundary component of this annulus is 
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strictly greater than /(f), and strictly less than it on the other component, 
/~1(/(f)) H S1 x / is a single circle. Now for any p in the complement of 
this annulus, f(p) is a convex combination of values strictly larger than, or a 
convex combination of values strictly smaller than f(v) — namely the values 
of / on the vertices on the appropriate side. Hence f~l(f(v)) n link('u) is a 
single circle, and the foliation is nonsingular at v. D 

Corollary 2.3. Let M be a 3-manifold with a taut oriented, co-oriented, 
smooth foliation T and let a 6 -H"1(M;R) be such that for every transverse, 
positively oriented cycle 7 the inequality a ([7]) > 0 is true. Then M is a 
surface bundle over S1. 

Proof To see that M fibers over 51, just take a very fine triangulation of 
M with all edges transverse to F. Orient the edges according to the co- 
orientation on J7, and make the edges "straight" enough that the induced 
orientation on the 1-skeleton of the triangulation is a positive triangulation. 

Essentially, if we restrict to a small I3 foliated by z = const., we want 
the triangulation in that small J3 to be by approximately affine tetrahedra 
with respect to the affine structure on I3. The condition is automatically 
satisfied for affine triangulations, with edges oriented by a co-orientation on 
an affine foliation. 

For, let PJ q be two vertices in o(v). Let TT be the plane spanned by 
p, g, v. This plane intersects link(t;) in a circle, since star(t;) is star-shaped 
with center v. Let 7 be the arc of this circle joining p to q such that the value 
of z on 7 is greater than the value of z(v). Then either 7 is an edge of the 
1-skeleton, in which case ro connects p to g, or it intersects the 1-skeleton at 
some first point m in the interior of an edge e If the latter case, z(m) > ^(v), 
so there is a vertex r on e with z(r) > z{m) > z(v). We "slide" 7 along m 
to r, and continue inductively to produce a path in ro connecting p to g, so 
ro is connected. Similarly, Ti is connected. 

Since Riemannian manifolds are locally almost affine, this can be done 
compatibly over the entire triangulation. More precisely, since J7 is smooth, 
we can cover M with co-ordinate patches such that in each co-ordinate patch, 
J7 is a foliation of R3 by level sets of the form z = const, and the co-ordinate 
transformations are "almost" linear. Here "almost" means sufficiently close 
that the triangulation can be straightened to an affine triangulation in each 
patch without disturbing the local combinatorial structure. Essentially, we 
just need to pick a triangulation by sufficiently "squat" simplices. A rigorous 
proof of this fact can be found in [Be], where it is attributed originally to 
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Thurston. 
Since a smooth foliation locally resembles such an affine foliation to first 

order, this can be done compatibly over the entire manifold. 
The triangulation of M is therefore positively oriented, and M is a sur- 

face bundle over S1, as required. □ 

Remark 2.1. In fact, J7 as above carries a transverse measure /x such that 
^('y) = a([7]) for any transverse, positively oriented cycle 7. Suppose, for 
example, that some leaf A G J- is dense in M. Then for a given transversal 
t, there are points in t fl A arbitrarily near the endpoints of t. These can be 
joined up by a path in A to give a cycle. Evaluating a on this cycle, and 
taking the supremum over all pairs of points which tend toward the ends of 
t, we get /i(t). This is positive, since it is greater than the value of a on 
some positive transverse cycle, which is > 0. A choice of a different path 
in A might give a different cohomology class, but these would differ by a 
cohomology class carried by a loop in A, and a evaluated on this class is 
necessarily 0. If we homotope t, keeping its endpoints on the same leaf, we 
can join it up by a path in A homotopic to the original path, and therefore 
giving the same value when a is evaluated on it. Finally, if we write t as a 
union of two intervals, then a cycle joining up t is homologous to a sum of 
two cycles, each joining up one of the sub-intervals of t. 

If we pick some fine triangulation, and an associated map to 51, the 
pullback of the angular measure on S1 to M is "approximately" a trans- 
verse measure for J7. It is positive on any monotone path in the 1-skeleton 
of the triangulation. However, monotone paths which are "nearly horizon- 
tal" are not generally approximated by a monotone path in the 1-skeleton. 
By including more and more monotone paths in the 1-skeleton, we can ap- 
proximate // more and more closely. In fact, the more elements of Hi that 
are carried by monotone cycles in the triangulation, the less flexibility we 
have in choosing the homotopy class of our map to 51, and the better the 
pullback measure approximates fj,. 

Remark 2.2. Notice that there is nothing inherently 3-dimensional about 
our theorem. If M is an arbitrary manifold, and J7 a smooth codimension 
one co-oriented foliation such that every transverse cycle lies in a half-space 
of iJi, then if we choose a very fine triangulation transverse to the foliation 
which can be straightened to an affine triangulation in every co-ordinate 
chart without disturbing the combinatorial structure, and we orient the 1- 
skeleton according to J7, then the piecewise affine map to S1 guaranteed 
by the lemma induces a non-singular foliation everywhere, and exhibits the 
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manifold as a bundle over S1. We prove our theorem in the 3-dimensional 
case only because that is our interest for applications. 

Remark 2.3. In [Su], D. Sullivan proves the following conjecture of R. 
Edwards: if M is a foliated manifold with all leaves compact, such that 
the homology classes represented by the leaves lie in an open half-space of 
homology for the appropriate dimension, then M is transversely measured. 
Notice that if the foliation is of codimension 1, then this condition implies 
the condition of the corollary above. Our proof owes something to Sullivan's 
approach - in particular, the key result from linear algebra that we use is a 
finite dimensional version of the Hahn-Banach theorem, which in its general 
form is essential in setting up the machinery for Sullivan's theorem. 

3. Normal Form for Surface Bundles. 

The results of the last section suggest the question of when a triangulation 
of a surface bundle admits a positive orientation. 

Theorem 3.1. Let M be a surface bundle over S1 with projection map 
r : M —> S1. Let T be any triangulation of M such that the star of each 
vertex is an embedded B3 in M, and such that the following two conditions 
are satisfied: 

• each edge is monotone with respect to r and oriented according to the 
orientation in the circle direction 

• there is an outgoing edge and an incoming edge for every vertex 

Assume that the genus of the surface is at least 1. 
Then the induced orientation of the edges is a positive orientation. 

Proof We lift this triangulation to a triangulation of the universal cover, 
which is R3 foliated by planes. Notice that the lift of the triangulation also 
satisfies these two properties. By abuse of notation, we denote by r the map 
r : M —> R whose preimages are the lifts of surfaces. 

By the results of the first section, there is an (equivariant) map / : M —> 
R affine on each simplex, and agreeing with r on the 1-skeleton. 

We can further assume a non-degeneracy condition, namely that for each 
pair of vertices v, w, f(v) ^ f(w). 

Then 
Ci U C2 u. • • u d = f'Hfiv)) n linkO) 
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is a non-empty disjoint collection of circles. Suppose there are at least two 
circles, Ci,C2. 

The union of the simplices intersecting C* is an open annulus, and we 
label its boundary components ui and /;, where f(li) < f(Ci) < f{ui) for 
each i. It is possible that ui fl 112 or l\ fl I2 are non-empty, but they cannot 
both be non-empty, for otherwise Ci would be a non-separating circle in 
link^), an absurdity. WLOG, say that u\ fl 112 is empty. Let Ui be the 
disk consisting of the region of link^) bounded by k and containing C*. We 
assume Ui and U2 are disjoint, for otherwise there is an annulus between Ci 
and C2 and a circle Ci a meridian of this annulus, and we can replace one 
of Ci, C2 by Ci if necessary so that this is satisfied. 

Let Xi be the vertex attaining the maximum value of / on Ui. Since U 
is an unknotted circle, and since /(£;) = r(li) < r(v) = f(v) on this circle, 
there is an embedded disk Di with r(Di) < r(v) whose boundary is k. Since 
Di and Ui are embedded with a common boundary, we can arrange that 
their intersection is a collection of circles. We perform disk exchanges on 
these circles to produce an embedded surface Si made from pieces of Ui and 
Di, and containing nbhd(a;i) fl Ui. (In fact, we do not need to do these 
exchanges - we can simply take as Si the boundary of some complementary 
region containing x^) 

By assumption, there is an infinite increasing ray contained in the 1- 
skeleton emanating from Xi. Call this ray c^. Since the value of / on a^ is 
greater than f{xi), this ray cannot intersect Si except at Xi. For, if it does 
so, it intersects Si in the 1-skeleton. But for every point on S^ either r ox f 
is less than /(XJ), and therefore for the intersection of Si with the 1-skeleton, 
/ is less than /(#;). Hence a is entirely contained in some complementary 
region of Si, and since it is infinite, this region is unbounded. 

Moreover, there is an increasing edge e* from v to Xi. This edge intersects 
Si only at Xi. For, it cannot intersect any piece of Di, since the value of 
r is less than f{v) there. Also, it cannot intersect Ui except at Xi, since e 
intersects link(^) only at Xi. Therefore the union /?; = e* U a; is an infinite 
increasing ray which intersects Si exactly once. Hence v is in the bounded 
complementary region of Si. 

Notice also that ei does not intersect £2 at all, nor does €2 intersect 
Si, since again it can only intersect it in pieces of Di, and there the value 
of r is less than f{v) = r{v). Therefore xi is contained in the bounded 
complementary region of 52, and X2 in the bounded complementary region 
of Si. WLOG, f{xi) > f{x2). But then OL\ cannot intersect S2, since on 
the intersection of S2 with the 1-skeleton, X2 attains the highest value of /. 
Hence ai is bounded by £2, which is a contradiction. 
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Therefore there is exactly one circle Ci, and the leaf Z-1 (/(?;))Dstar^) is 
a non-singular disk, and the orientation on the edges is a positive orientation, 
as required. □ 

Remark 3.1. We may think of this theorem as giving a kind of "normal 
form" for surface bundles with respect to a triangulation. In particular, if the 
bundle can be made "normal" with respect to the 1-skeleton, this theorem 
guarantees it can be made "normal" with respect to the entire triangulation. 

Remark 3.2. The issue is to decide for what triangulations T of a surface 
bundle M the 1-skeleton can be made transverse to the foliation by surfaces 
in such a way that each vertex has an outgoing and an incoming edge, with 
respect to some co-orientation on the foliation. 

Let r : M —► 51 be any map generic with respect to the 1-skeleton of T. 
Then there is a subdivision of the 1-skeleton to a finite graph Y such that 
each edge of T is transverse to foliation (i.e. take as additional vertices of 
F the critical points of rl^-i). There are two issues to be resolved. The first 
is whether r : F —> S1 is homotopic to a map monotone on each edge, and 
with an outgoing and an incoming edge from each vertex. The second is the 
issue of whether such a homotopy of r can be realized by an isotopy of Y in 
M. 

Such a homotopy can be decomposed into a collection of "local" moves, 
which consist of exchanging the order of neighboring vertices and re-orienting 
any edge between the two of them. Let vi, ^2 be the vertices in question, and 
suppose r(vi) <r(v2). Let a be the segment of Sl between r(yi) and r{v2) 
containing the image of no other vertex. Then r~1(a) is homeomorphic to 
surface x /, and rnr_1(a) consists of a collection of monotone arcs from one 
boundary component to the other, together with the set of outgoing arcs 
rooted at i>i, and the set of incoming arcs rooted at i^, which are points on 
opposite boundaries. It is clear that the only obstruction to performing an 
isotopy exchanging the order of vi and i^ is whether or not the outgoing 
edges from v\ "link" the incoming edges to i^. 

4. Partial Orderings. 

Let M be a closed 3-manifold, and let T be a triangulation of M. A direction 
on M is a choice of orientation for each edge in the 1-skeleton T1 of the 
triangulation. A direction is a local orientation if it satisfies the conditions 

1. for each vertex v the maximal subgraphs o{v) and i{v) of link^) whose 
vertices are, respectively, the outgoing and the incoming vertices from 
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and to v, are nonempty and connected 

2. the direction restricts to a total ordering on the vertices of each tetra- 
hedron 

3. the 1-skeleton is recurrent as a directed graph.  That is, there is an 
increasing path from each vertex to each other vertex. 

Example. On S'3, consider the Hopf vector field. This is a volume pre- 
serving flow, so any cone field which supports this vector field is recurrent, 
(for the definition of cone fields, see [Su]) If we take some sufficiently fine 
triangulation supported by such a cone field, the local orientation condi- 
tions will be satisfied, since locally there is a product structure given by the 
flow, which is transverse to our triangulation. Again, if the triangulation is 
sufficiently fine, it can be made recurrent, since the cone field is recurrent. 
However, there is no foliation transverse to this local orientation, for such a 
foliation would be taut by recurrence, which is impossible on 53. 

Since the vertices of each triangle in T2 are totally ordered, we can 
speak unambiguously of the long edge of any triangle, and also of the upper 
and lower short edges. We construct a directed graph F associated to the 
direction whose vertices are edges of T1 and whose directed edges are the 
ordered pairs (e^e^) where ej is the long edge, and e; the upper or lower 
short edge of some triangle in T2. F is expanding if it contains a pair of 
directed loops, one containing the edge (ei,efc), one containing the edge 
{ejjek) where e^e^ are the upper and lower short, and e^ the long edge of 
some triangle. 

A choice of orientation on the edges of a triangulation, or more generally 
a choice of orientation for the edges of a graph, determines a partial ordering 
on the vertices by declaring that x < y iff there is an oriented path in the 
graph or 1-skeleton from x to y. The partial orderings for the 1-skeleta of 
our compact manifolds M will generally not be very interesting: recurrence 
implies that for any two elements x, y both x < y and y < x. However, if we 
pull back these orientations to the universal cover of M, the induced partial 
orderings are more interesting. We pursue this more vigorously in the next 
section. 

Lemma 4.1. If M admits a local orientation in which every oriented loop is 
homotopically essential, and ifT is expanding, then 7ri(M) has exponential 
growth. 
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Proof. By the hypothesis, M has no oriented loops in its 1-skeleton. But 
then the associated graph F has no directed loops. Hence there is an infinite 
dyadic tree (the lift of the directed loops guaranteed by the condition that 
F is expanding) which embeds in T. Hence M, and therefore 7ri(M), has 
exponential growth by the usual reason that the Cayley graph of TTI (M) has 
the quasi-isometry type of M. (See for instance [Gr]). □ 

The reason to introduce these definitions is given by the following lemma: 

Lemma 4.2. A co-oriented tautly foliated 3-manifold admits a triangula- 
tion with a local orientation in which every oriented loop in the 1-skeleton 
is homotopically essential. Conversely, a foliation in normal form relative 
to a local orientation is taut. 

Proof As before, choose a triangulation such that J7 is in normal form with 
respect to the triangulation. Orient the edges of the triangulation according 
to the co-orientation on J7. This triangulation can be refined repeatedly 
until M1 is recurrent. 

The second statement is immediate. □ 

Theorem 4.3. If M admits a local orientation, then the induced orienta- 
tion on any connected finite cover of M is a local orientation. 

Proof. The only non-trivial condition to check is recurrence. Suppose there 
exists a monotone path from p to q in the cover. Then this projects to 
a monotone path in M which can be completed to a monotone loop, by 
recurrence. Then some power of this loop lifts to the cover, so there is a 
monotone path from q to p. Hence M1 breaks up into recurrent components. 
Since it is connected, there is only one such component. □ 

Theorem 4.4. If M admits a local orientation such that every oriented 
loop is homotopically essential, and M has a finite cover with fundamental 
group Z, then M = S2 x S1. 

Proof The finite cover, call it iV, also has the property that every oriented 
loop is homotopically essential, and therefore equal to some power of the 
generator of Hi(N). Suppose there are two oriented loops which represent 
a71 and a~m for some positive integers n, m. Then there is another oriented 
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loop representing ar which connects two points on these loops. By com- 
posing loops, we can find an oriented loop representing ojon-tn+cr for any 
positive integers a, 6, c. But this implies that we can find an oriented loop 
representing the trivial element, a contradiction. Hence all oriented loops lie 
in an open half-space of Hi(N), and by our theorem, AT is a surface bundle 
over 51. Since 7ri(iV) = Z, N = S2 x S1. Project a normal S2 down to 
M. Then the edge weights determined by the (possibly immersed) image 
represent an embedded (possibly disconnected) co-oriented normal surface 
in M. If M = RP3#MP3 then either component is separating and therefore 
violates the recurrence of M. Hence M = S2 x S1, as required. □ 

5. A Generalization of Novikov's Theorem. 

If M admits a local orientation in which each directed loop is essential, then 
M has no oriented loops. The results of our first section show that any 
compact subset K c M admits a transverse measured foliation in normal 
form. 

We now show that we can foliate M globally. 

Theorem 5.1. If M admits a (not necessarily recurrent) local orientation 
in which each directed loop is essential, then M admits a transverse measured 
foliation in normal form. 

Proof The idea is to collapse the partial ordering on the vertices of the 
1-skeleton of M to a total ordering, with some kind of geometric control, 
in order to construct a map M —> R which is an orientation-preserving 
embedding on each edge. 

The proof is by induction. At stage i we will have an infinite CW 2- 
complex Ki where Ki is obtained from Ki-i by collapsing an interval, and 
where KQ = M2, the 2-skeleton of the universal cover. Each 2-cell D of Ki 
will have the property that the attaching map dD -+ Ki is an embedding 
away from possibly finitely many points, and the induced orientation on dD 
will have exactly one maximum and one minimum. Call the two oriented 
subarcs of D the sides. We can arbitrarily call one the left side, and one the 
right side. 

Let vi and vr be the two highest (with respect to the partial ordering) 
vertices in dD other than the unique maximum vertex v. They are on 
opposite sides of dD, and are thus incomparable in dD, but not necessarily 
in Ki.  If vi and vr are the same vertex in Ki, we join them by an arc in 
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D and then collapse this arc to produce Ki+i. Otherwise, assume they are 
different in Ki. 

It is possible that a directed path a/ exists from vr to vi in K}, or a path 
ar from vi to TV, but not both, since K} contains no directed loops, and the 
vertices are distinct. Suppose without loss of generality that ai does not 
exist. 

Then if we choose a point p in the midpoint of the directed arc from vi 
to f, join p to vr by an arc in D, and collapse this arc to produce iiQ+i, 
the resulting oriented 1-skeleton will still be partially ordered. For, if such 
a directed loop a exists, then there is a directed path in K} from vT to 
p or from p to vr. A directed outgoing arc from p must pass through i>, 
so in the second case we would have a directed path from v to vr. But 
there is a directed path from vr to i>, which gives a directed loop in K}, 
a contradiction. Similarly, an incoming loop to p must pass through vi, so 
in the first case we would have a directed path from vr to vi. But by our 
assumption, no such ai exists. Hence K}^ is partially ordered, and the 
induction step is complete. Of course, if no such ar existed, we could have 
chosen p as the midpoint of the arc from vr to v. 

We see that there is a great deal of geometric control in this process: 
we get to choose the 2-cell we want to subdivide, and subdivide it by a 
definite amount, dividing it into a small bigon and another cell with one 
fewer vertices (of course, bigons can be completely collapsed!). Therefore it 
only takes a finite number of steps to collapse any compact region to a stage 
where the edges are all of length < any e. 

We take an exhaustion of M by compact sets Ci C C2 C Then we 
shorten every edge of Ci to length 2~1, then every edge of C2 to length 2~2, 
and so on until we eventually shorten any given edge to less than e in finite 
time. By uniformity of this collapse we can pass to a limit. In this limit every 
2-cell has been collapsed, and the limiting object is an infinite 1-manifold. It 
is clear from the construction that each edge is embedded by an orientation- 
preserving embedding. The associated embeddings of the upper and lower 
edge of every triangle in the long edge of the triangle are compatible across 
every tetrahedron, and the induced foliation of M2 therefore extends to a 
transverse foliation of M. The local condition at vertices implies that this 
foliation is non-singular. 

By construction, this foliation has no holonomy, so it admits a transverse 
measure. D 

Remark 5.1. Suppose that M is hyperbolic, and suppose that it is trian- 
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gulated by geodesic simplices. There is an e and a c such that if one can 
show that every edge has length > c and the angle defect at an oriented 
angle (i.e. between an incoming and an outgoing edge to a vertex) is < €, 
then every oriented loop is homotopically essential. To see this, observe 
that a piecewise geodesic in H2 whose edges are all length c and whose angle 
defects are all e is an embedded quasigeodesic when 

TT — € 
> siri -1 

cosh c/2 

Any choice of e, c satisfying the inequality above will work, by a comparison 
argument. 

More generally, given geometric control on M, it is possible in certain 
circumstances to verify that every oriented loop is homotopically essential 
by showing that every oriented subarc of length < K for some sufficiently 
large constant is quasi-geodesic with a sufficiently small coefficient of quasi- 
geodicity. Since such conditions are merely sufficient but not necessary, we 
do not pursue this point. 

The previous theorem did not require the local orientation on M to be 
recurrent. However, that condition is critical for the next theorem. 

Theorem 5.2. Let M admit a recurrent local orientation in which every 

oriented loop is homotopically essential Suppose M is transversely measured 
by f : M —> R normal on every tetrahedron, and non-singular everywhere. 
Suppose i : D —► M has boundary contained in a leaf. Then i can be 
homotoped rel. dD to map D entirely into that leaf. 

Remark 5.2. This somewhat technical theorem is essential to what follows, 
and constitutes the analogue in our context to the "main step" of the proof 
of Novikov's theorem; see [No]. 

Remark 5.3. Since a normal foliation is determined up to normal isotopy 
by its intersection with the 1-skeleton, we can straighten this foliation on 
each simplex in such a way that each normal disk is a flat triangle or a 
quadrilateral made up of 4 flat triangles, with respect to some equivariant 
affine structure on each tetrahedron pulled back from M. We assume below 
that this has been done. 

Remark 5.4. A posteriori, using Rosenberg's theorem, it will be shown 
that the disk D can be isotoped into a leaf, and not merely homotoped. 
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Proof. Since the homotopy property described above is open, it suffices to 
show that a limit of disks which can be homotoped can itself be homotoped. 

First observe that since each leaf is a normal surface, any sufficiently 
small disk with boundary on a leaf can be isotoped into that leaf. 

Assume that f\D has the following form. 

• / o i(dD) = 1 and / o i(D) < 1 on the interior 

• / has exactly one critical point, a minimum, on i(D) 

• the preimages f~1(p)ni(D) foliate i(D) by concentric circles, nesting 
about this minimum 

• the minimum of / on i(D) is 0 

If we can show that the theorem holds for D with fin of this form, then 
we can show that it holds inductively for all 22, by successively pushing in 
innermost disks foliated as above, and reducing the number of critical points 
of /ID- Such a sequence of moves might involve self-intersections of i(D) 
with itself (i.e. it might be a homotopy rather than an isotopy) but it will 
be a homotopy through immersions, since it restricts either to an isotopy or 
to the identity on each piece, at each time. 

We denote 

Ct = i(D) n r1^), Dt = i(D) n /" Hto, *]) 

and we let Et be the disk, a subset of /~1(t), whose boundary is Ct, for 
t < 1. The existence of Et is guaranteed by hypothesis. 

If the Et lie in a compact subset of M, then their limit E exists and 
is a disk, since each Et is a normal surface. Since by hypothesis, no such 
disk E exists, we must suppose that the Et go off to infinity and the leaf £, 
the subset of /~1(1) bounded by i(dD), is noncompact. (In case i(dD) is 
non-separating, we can consider instead Et for t extremely large, so that Et 
can be assumed to leave any compact neighborhood of i(D) that we choose.) 

We establish the following lemma 

Lemma 5.3. In the above context there is a K such that for every normal 
subdisk D of a leaf whose boundary bounds another normal disk D' in M, 
such that D and D' are homologous, if \D\ denotes the number of normal 
disks in D, we have an inequality 

\D\ < KID1] 
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Proof. Let a be a loop in the 1-skeleton of M which passes through every 
edge. We can find such an a by the assumption that the 1-skeleton of 
M is recurrent. Since D^D/ were assumed to be homologous, the surface 
DUJD' is null-homologous in M and it therefore projects to a null-homologous 
surface in M, whose algebraic intersection number with a is therefore zero. 
Now, there is some constant ci > 0 such that the geometric intersection 
|a fl D'l < CIIJD'I, since a passes only finitely many times through each edge 
in M1. Moreover, since D is a subdisk of a leaf, the geometric intersection 
of a with D is equal to their algebraic intersection, which is at least C2\D\ 
for some C2 > 0 depending on the maximal order of an edge in M1. From 
ci and C2 we can find our constant K. D 

Now, each leaf Et in homologous to some subdisk of i(D). By simplicial 
approximation, these subdisks of i(D) are all approximated by normal disks 
of bounded size. By our lemma, therefore, there is a bound on the number 
of normal disks in Et, contradicting our assumption that the Et went off to 
infinity. This contradiction establishes the theorem. D 

Corollary 5.4. Every leaf in M as above is incompressible. 

Proof This is immediate by the loop theorem. □ 

Corollary 5.5. M as above is irreducible or S2 x S1. 

Proof If M 7^ S2 x S1 and it is reducible, then there is an embedded 
separating sphere in M. This lifts to an embedded sphere in M. Then 
our result follows word for word the proof of Rosenberg's Theorem [Ro], 
after remarking that every leaf in M is a possibly disjoint union of R2's and 
S2's. If any leaf contains an S2, the Reeb stability theorem, together with 
our result, shows that M is S2 x R (since, inductively, no "first" leaf can 
become non-compact). Since M is compact and orientable, it is S2 x S1 

or RP3#MP3. But if M = RP3#RP3 then as in the previous section the 
image of an S2 separates M and contradicts recurrence. If M is foliated by 
R2's it is irreducible. □ 

Corollary 5.6. // M is S-hyperbolic with respect to (any) complete metric 

pulled back from M, then each leaf in M foliated as above by incompressible 
leaves is 5f-hyperbolic, where 5' depends only on 5 and the combinatorics of 
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M. 

Proof. Prom the proof and the statement of theorem 5.2 we can deduce that 
for every normal subdisk D of a leaf whose boundary bounds another normal 
disk D' in M, we have an inequality \D\ < K\Df\ for some K depending 
only on the triangulation of M. For, ^(M) = H2(M) = 1, and therefore 
any two disks in M with the same boundary are homologous. 

Now, we know that 5-hyperbolic Riemannian manifolds are characterized 
by the fact that minimal spanning disks satisfy linear isoperimetric inequali- 
ties (see, for instance, [Gr]). Our comparison lemma allows us to establish a 
similar isoperimetric inequality for subdisks of a leaf, and therefore each leaf 
is also ^-hyperbolic. One can see that 6* depends only on the combinatorics 
of M and on 5. □ 

Remark 5.5. Note that Rosenberg's theorem shows that disks can be iso- 
toped into leaves, rel. boundary. For if Di c^ D2 rel. boundary, we can 
consider intersections Di fl 1)2, which will be a collection of circles. But 
innermost circles in the intersection will define 52's in Di U D2 which must 
bound S3's. Pushing Di across this B3 we can isotope it to reduce the 
number of components of Di fl D2- Inductively, this shows we can isotope 
Di to D2 rel. boundary. 

Remark 5.6. Notice that the hypothesis that every oriented loop in M be 
homotopically essential is used only to establish the existence of a foliation 
on M in normal form, transverse to the orientations pulled back from M. 
If we are given this foliation on M as a hypothesis, say if the orientation 
on M was inherited from a foliation in the first place, then the proof of the 
theorem still goes through, and we can show that every oriented loop in M 
is homotopically essential as a consequence of the existence of the foliation 
on M. Thus, our technique gives a new proof (conceptually similar, though 
perhaps technically easier) of the theorem of Novikov that circles transverse 
to taut foliations are homotopically essential. 

More explicitly, given a taut foliation on M, we can take a sufficiently 
fine triangulation and orientations on the edges to obtain a local orientation. 
Lifting this foliation to the universal cover, our theorem applies to show that 
every leaf in M is incompressible and is therefore a disk or a sphere. Such a 
foliation has no holonomy, so it admits a transverse measure. Since we are 
on M, a transverse measure is given by integrating an exact 1-form df. A 
homotopically inessential transverse circle in M lifts to a transverse circle in 
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M. But df is positive everywhere on the tangent vector to this circle which 
is absurd. 

Remark 5.7. Our result shows that the foliations on the universal cover 
are, roughly speaking, minimal surfaces with respect to the weights on edges 
determined by an oriented cycle in M passing through every edge. This is in 
some sense a combinatorial (non-deterministic) volume-preserving flow on 
M. This flow is used by Gabai in [Ga2] to prove a refinement of a theorem 
of Roussarie and Thurston: if S is an immersed incompressible surface in 
M admitting a taut foliation, then S can either be homotoped into a leaf, 
or can be homotoped to have only saddle-type tangencies with the foliation. 

We can produce a qualitative topological refinement of theorem 5.2 by 
a more delicate argument. 

Theorem 5.7. Suppose M is not prime, and suppose its 1-skeleton is or- 
dered in such a way that all the conditions of the above theorem except re- 
currence are satisfied. Then there exists an embedded null-homologous co- 
oriented (not necessarily connected) normal surface in M such that every 
transverse arc is outgoing. 

Proof. As in theorem 5.1 we can produce a measured foliation on M. If 
every leaf were incompressible, M would be prime. Therefore some leaf is 
compressible, and by the loop theorem, there is an embedded disk D in M 
whose boundary lies on a leaf, such that there is no disk in that leaf with 
the same boundary. We adopt the notation from the proof of theorem 5.2. 
and assume the restriction of the foliation to D is by concentric circles, by 
induction. 

Recall that D is a disk whose boundary lies in a leaf of the foliation of M, 
that E is the subset of this leaf bounded by dD, and that E is a "limit" of 
the Et - disks contained in the foliation whose boundaries are circles making 
up a concentric foliation of JD. 

If R is the region in M bounded by D and E then every increasing arc 
that passes through E must leave R. Now, E is made up of normal triangles 
and quadrilaterals, so there are outgoing arcs within bounded distance of 
any point on E. Since the only incoming arcs to R pass through D, and 
since every vertex is the endpoint of some arc, there are arbitrarily long 
paths contained in M1 passing through D and contained entirely within R. 
Since each sufficiently long arc eventually passes through each Et, and since 
each Et bounds a compact region of i?, we can extract a subsequence of 
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these paths which converge on compact sets (since they are all simplicial!), 
and find an infinite increasing path 7 G M1 whose initial point is in D and 
which is contained entirely inside R. Notice that 7 intersects each Et exactly 
once for all t > to, the value of / at the initial point of 7. Let 7$ denote the 
initial segment of 7 from 0 to t. 

Since the Dt converge to J9, there is some t after which all the Ct are 
normally isotopic to dD. If we truncate R by only considering the region 
above this £, we can replace D by a slight perturbation of Et, and therefore 
we can assume, without loss of generality, that every increasing simplicial 
arc passing through D is incoming to R. 

By the compactness of M, we can assume there is some p e M0 such 
that 7 passes through infinitely many lifts of p which we call po,Pi, Let 
oii G 7ri(M) be such that ai(pi) = po. After passing to a subsequence and 
re-ordering if necessary, we can assume that the translates ai(D) are disjoint 
and the collection is embedded. 

Since our foliation of M is not necessarily 7ri(M) equivariant, the image 
of subsets of the leaves can intersect. We need to investigate these inter- 
sections more closely. We have the following lemma, which controls the 
orientations on ai(Et),aj(E3) when they intersect in an isolated point of 
tangency. 

Lemma 5.8. If some normal subsurfaces of ai{Et)^aj{Es) intersect in an 
isolated point of tangency for some i,j, s,£ then the transverse orientations 
to ai(Et),0£j(E3) agree at this point. 

Proof. If the intersection is at a vertex, then a neighborhood of the inter- 
section in either surface separates the star of the vertex. By the definition 
of the foliation on M, the outgoing and the incoming edges to the vertex 
lie in different components of the star. Since both these collections are non- 
empty, there is a monotone arc transverse to both surfaces at the point of 
intersection, whose orientation agrees with the transverse orientations on 
both surfaces at this point. 

If the intersection is in some tetrahedron A, then there are a pair of 
normal disks in ai(Et) D A, aj(Es) n A which intersect in an isolated point 
of tangency. Since any two normal disks in a tetrahedron intersect a com- 
mon edge, this edge is transverse to both surfaces at this point and their 
transverse orientations therefore agree. □ 

Since each a* (7*) must pass through po for some t, and since a* (7$) 
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lies outside R for sufficiently small t, there is some increasing sequence ti 
such that a*(7^) intersects D. As we increase t past U, the surface ai(Et) 
intersects a collar neighborhood of D in an annulus insulating 0^(7) from dD, 
and expanding concentrically with t. Let Bi^t) be the circle of intersection 
with Dt for t near £;. Then as t increases, we may push part of Bi^t) over 
the edge of Dt and up into Et. That is, we think of Bifi(t) as the appropriate 
component of ai(Et) n (Et U Dt). 

Lemma 5.9. T/iere is some /inite n sizc/i t/iat t/iere are at most n embedded 
circles and properly embedded arcs made from pieces o/a^D^flD extending 
normally to a simplicial collar of D such that no two of the collection are 
normally isotopic in a neighborhood of D. 

Proof These circles and arc are the meridians of embedded normal annuli 
and arcs x J transverse to D. Therefore they bound embedded subdisks of 
D, and since they are normal, the length of the circles and arcs is bounded. 
Hence each annulus and arc xl is composed of a bounded number of pieces, 
and since the simplicial neighborhood is finite, there are only finitely many 
normal surface types represented by them. □ 

Notice that since tj < U for j < i, the surface made up from OLj{Et) U 
OLJ(P) for appropriate t separates a;(D) from po for i > j- In particular, 
ai(jt) must pass through each OLJ(P) for j < i before passing through D. 
Suppose ai(jt) exits otj(Et) for some j < i and t < t^. Then again it can 
never reach po- We denote the circles of intersection of the ai(Et) with 
aj(Et U Dt) by Bij(t). Notice that 

Bi^t) = aiidDt) 

which is normally isotopic to a;(<9D) for large t. 
The Bij(t), with i < k divide otj(D) for fixed j into a collection of 

regions. By our previous comment, each Bij(t) bounds the region containing 
afc(7) H OLJ(D) for i < k. Let Bht) be the boundary of the subregion of D 
containing 0^(7) n otj(D). This is a circle contained entirely within aj(D). 
Call Bj(t) din. innermost circle. 

Since there are only finitely many possibilities for the Bj(t) for each j, 
up to normal isotopy, by choosing i very large we can find Bj(t) such that 

ajc o aJ1(Bj(t)) is normally isotopic to Bffi). We know that the innermost 
circle B/ made up of Bi^(t) with j < I < i lies outside Bl

k(t), since it is 
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the innermost of fewer circles. By definition, there is an annulus made up 
of pieces of ai(Et) interpolating between Bj(t) and Bf. This annulus is 
embedded, since it bounds some image of 7, and we can take an innermost 
such. In more detail, this annulus is the boundary of the connected region 
in the complement of the relevant Q>i(Et) which bounds the relevant image 
of 7. Since each ai(Et) bounds this image of 7, such a region exists. Our 
orientation lemma implies it is an annulus. 

Since each B^k{t) bounds some subdisk of a^Et), we can cut and paste 
an innermost disk which bounds Bf. Together with the subdisk Df of ay (A) 
bounded by BlAt) this gives a (topological) sphere S bounding a B3 in M 

such that Bl
k(t) and the subdisk a^ o a~ (D') of ak(Dt) that it bounds is 

entirely contained inside the region bounded by S. One should be careful 
to note that the sphere in question bounds a B3 because it is contained in 
the region R whose interior is foliated with disks, and therefore irreducible. 

Let /3 = ak o aj1, and let N = Mj < (3 >. Then since S bounds a ball 

in M, its image under the projection to N is some compact submanifold on 
N. Its boundary cannot contain any piece of D7, since Df is interior to some 
translate of the ball bounded by S. If N is non-compact, this boundary is 
non-empty and by construction is a null-homologous normal surface in N 
made up entirely of projections of pieces of Et. Call this surface H and 
consider its projection 7r(H) to M. 

If the boundary is empty, then N is compact, and M is S2 x S1 by an 
earlier result. 

Since ir(H) C M is made up entirely of pieces of the image of Et under 
the projection M —► M, it is represented by an embedded (possibly discon- 
nected) normal surface G = Gi U G2 U • • • U Gn. By our orientation lemma, 
each Gi is co-oriented such that every transverse arc in the 1-skeleton is 
outgoing. □ 

Remark 5.8. This theorem slightly weakens the condition of recurrence to 
prove irreducibility. 

Notice that such a surface G is a finite Haken sum of fundamental nor- 
mal surfaces co-oriented compatibly with the orientation on the 1-skeleton. 
One can check algorithmically whether some Z-linear combination of such 
fundamental surfaces can be trivial in #2- 
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6. Is Homotopically Essential Essential? 

In this section we show that, at least to prove irreducibility, the condition 
that every oriented loop in the 1-skeleton be homotopically essential can be 
substantially weakened, and even weakened to an easily checkable condition. 

Definition 1. Let M be a triangulated 3-manifold. For any m G Z, the 

simple combinatorial m-germ at a vertex p, denoted Mm(p), is the simplicial 
complex obtained in the following way: 

• Let Nm(p) be the disjoint union of the simplicial neighborhoods of 
simplicial paths of length m in M with initial vertex p. 

• Obtain Mm(p) as the quotient space of N^p) by identifying endpoints 
of two distinct paths which have the same endpoint in M, and which 
bound an (immersed) simplicial disk in M of simplicial area < m. 

Remark 6.1. It is clear from the definition that the complex Mm(p) can be 
algorithmically constructed. Note that we could fine-tune the relative sizes 
of paths and disks in the definition to more accurately capture approxima- 
tions to the germ of M at p using estimates of an isoperimetric inequality 
for M. 

Theorem 6.1. Let M admit a local orientation such that for an appropri- 
ate, explicitly computable constant k depending only on the triangulation 
and the orientation of M, the complex Mk(p) with the induced orientations 
on the 1-skeleton has no oriented loops. Then ^(M) = 1 or M = S2 x S1. 

Proof If M is not S2 x S1 and is reducible, then there exists a separating 
normal S2. This S*2 lifts to Mk(p) for sufficiently large k. If Mk(p) has no 
oriented loops, it admits a transverse co-oriented foliation in normal form. 

As in the proof of our earlier theorem, we consider the intersection of the 
S2 with this foliation, and start to push innermost disks into the leaves. Our 
earlier estimates for the simplicial size of these disks still holds, since M1 is 
recurrent. Every subdisk of the homotopy is within an (easily computable) 
distance from some fixed p e S2, and all the disks that we are pushing are 
of simplicial size bounded by some computable constant times the simplicial 
size of the 52, so this homotopy can be carried out within Mk(p) (i-e. we 
never push over the boundary). 
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If this S2 can be pushed entirely into an S2 leaf, then there is a separating 
S2 in M oriented compatibly with the 1-skeleton, which contradicts recur- 
rence. Otherwise, the S2 can be pushed entirely into a disk, and therefore 
was null-homotopic in M. 

The theorem is proved once we observe that we can bound the simplicial 
size of the smallest separating embedded normal homotopically essential S2 

in terms of the triangulation of M. □ 

7. Questions. 

It is natural to ask to what extent some of the technical hypotheses in 
this paper can be removed. In particular, the following questions seem 
outstanding: 

1. Is there an algorithm to check whether every oriented loop in a local 
orientation is homotopically essential? 

2. To what extent is our combinatorial structure weaker than the exis- 
tence of a taut foliation in normal form? 

Remark 7.1. The referee has pointed out that good candidates 
for local orientations with homotopically essential loops which do 
not admit transverse foliations might be found by investigating cer- 
tain graph manifolds, in particular those obtained from products 
(punctured surface) x S1 by appropriate glueings along the boundary 
tori. Work of Brittenham, Naimi and Roberts [BNR] shows that many 
such graph manifolds do not admit any taut foliations whatsoever. On 
the other hand, such manifolds certainly admit local orientations, and 
one expects that the condition that oriented loops be homotopically 
essential can be satisfied in many cases. 

3. If a triangulation of M admits a local orientation in which every ori- 
ented loop is homotopically essential, to what extent can this combi- 
natorial structure be extended over a refinement of the triangulation? 

4. Is there some (computable) bound on the number of subdivisions of 
a triangulation necessary to put it in normal form with respect to an 
existing (C1) foliation on M? 

5. Can the finiteness of the combinatorial structure be used to advantage 
in addressing questions of the virtual existence of such a structure - 
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i.e., when does there exist a finite cover of M which admits a local 
orientation in which each loop is homotopically essential? or lies in an 
open half-space of Hi? 

Remark 7.2. This question is intimately related to Thurston's fa- 
mous conjecture that every hyperbolic 3-manifold has a finite cover 
which fibers over the circle. In fact, this question was our main orig- 
inal motivation for studying the interaction of foliations with finite 
combinatorial structures. 

6. If a is an oriented embedded loop in M1 which has a local orientation 
in which each oriented loop is homotopically essential, is it true that 
all Dehn surgeries on a with slope sufficiently close to (1,0) give man- 
ifolds whose 1-skeleton can be similarly oriented without changing the 
triangulation or the orientation on M — nbhd(a)? 

7. To what extent can the geometry of leaves in M be controlled? 

8. Can one extend the results of the last few sections to triangulations 
with local orientations on subgraphs of the 1-skeleton? 

Remark 7.3. Our local orientations are dual to branched surfaces 
such that complementary domains are sutured balls. More generally, 
branched surfaces whose complementary domains are sutured mani- 
folds admitting taut foliations can (with certain technical hypotheses) 
carry only incompressible surfaces (see [Oe]). It seems plausible that if 
one controls the complementary regions, homotopically essential local 
orientations on subsets of M1 might have many nice properties. 
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