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General existence of minimal surfaces of genus zero
with catenoidal ends and prescribed flux
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Introduction.
Let z: CU {oo}\ {g1,---,9.} — R® be a complete conformal minimal im-
mersion. For each end ¢; (j = 1,...,n) of z, the fluz vector is defined

by

(0.1) ®j :=/ nds,
g

j

where «; is a positively oriented curve surrounding g;, and 7 is the conormal
such that (v}, 7) is positively oriented. It is well known that the flux vectors
satisfy a “balancing” condition so called the fluz formula

(0.2) > pi=0.
j=1

The minimal immersion 2 is called an n-end catenoid if each end g; is of
catenoid type. The catenoid and the Jorge-Meeks surfaces [JM] are typical
ones. Recently, new examples of n-end catenoids have been found by [Kar],
[L], Xu], [Rossl], [Ross2], [Kat] and [UY]. For any n-end catenoid z, each
flux vector ¢; is proportional to the limit normal vector v(g;) with respect
to the end gj, and the scalar w(g;) := ¢;/4mv(g;) is called the weight of the
end g;. In this case, the flux formula can be rewritten as follows:

(0.3) > 4mw(g;) v(gs) =0.
j=1

It should be remarked that w(g;) may take a negative value.

We consider the inverse problem of the flux formula proposed in [Kat]
and [KUY1] as follows:
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Problem. For given unit vectors v := {v1,... ,v,} in R3, and nonzero real
numbers a := {al,...,a"} satisfying Z;-;l a’v; = 0 (we call such a pair
(v,a) flur data), is there a (non-branched) n-end catenoid x: C U {oo} \
{q1,.-. ,qn} — R® such that v(g;) = v; and a; is the weight at the end g;?

We remark that Kusner also proposed a similar question (see [Rossl]).
Rosenberg and Toubiana [RT] found solutions with branch points in the
class that the Gauss map is of degree 1. But if one wishes a non-branched
solution, the degree of its Gauss map must be n — 1, which is the case just
treated in this paper.

The problem is not exactly affirmative. By the classification of Lopez [L],
we can see that the answer for n < 3 is “Yes” except for the case when two
of {v;}7_; coincide. Moreover, for n > 4, some obstructions exist as closed
conditions in the space of flux data as shown in our previous paper [KUY1].
In spite of these obstructions, the authors also showed in [KUY1] that the
inverse problem is true for almost all flux data (v,a) when n = 4. In this
paper, we treat the case n > 5 and show the following theorem:

Theorem. For each integer n > 3, the problem is solved for almost all fluz
data. ‘

In Section 1, we reduce the inverse problem to seeking a sampling point
satisfying certain non-degeneracy conditions. Two lemmas in Appendix A
are applied to complete the reduction. In Section 2, we shall give a proof
of Theorem. However, required technical calculations are done in Section 3
and Appendix B. ‘

The above general existence theorem does not apply for the case that
all flux vectors lie in the same plane, since such flux data are contained
in a measure zero subset in the set of all flux data. We say that such
minimal surfaces are of Type II. In [KUY2], we show that our approach
in this paper can be modified even for such a specified case and prove the
general existence of n-end catenoids (n < 8) of Type II. Recently, Kusner-
Schmitt [KS] explain the moduli space of minimal surfaces with embedded
planar ends by using the term of spin structure of Riemann surfaces. It
should be remarked that our approach can also be interpreted in terms of
spin structure (see Remark 1.5).

The authors are very grateful to Professors Yusuke Sakane, Ichiro Enoki
and Koji Cho for valuable discussions and encouragement.
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1. Reduction.

The flux vector ¢; (j = 1,...,n) given by (0.1) in Introduction can be
rewritten as follows:

. i:=—Im - P, —10+¢)w, ¢ 29w |,
(R (7j(1 o V04 fg)

where (g,w) is the Weierstrass data of the minimal immersion

z: CU{o}\{g1,... 2} = R®
given by

- o3
9= dzl — /=1 022’

On the other hand, the well-known Weierstrass representation is written as

o[ [ e )

In particular, the monodromy vector of the immersion around the end g;
(resp. the flux vector of g;) is the real part (resp. the imaginary part) of the
residue of the holomorphic vector

w = 0z! — /=102

Oz = % (1= ) w,V=1(1 +¢*) w,2gw)
around the end z = ¢g;. We have shown in fhe previous paper [KUY1] that
the inverse problem of the flux formula reduces to finding solutions of a
system of algebraic equations:
Theorem 1.1 ([KUY1]). Let (v,a) be a pair of unit vectors
v={v1,...,vn}

in R® and nonzero real numbers a = {al,...,a"} satisfying the balancing
condition:

n
(1.2) Z alvj = 0.
j=1
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Then there is an (evenly) branched n-end catenoid

x:CU{OO}\{q1,---,Qn}—’R3 (gj # o0)

such that the induced metric is complete at the end g;, v(g;) = v; and o’
is the weight at the end ¢; (j = 1,... ,n), if and only if there exist complex

numbers bl,... ,b" satisfying the following conditions:
(1.3) (b Z b’° =af
=1
g k35 . G=1,...,n),
(1.4) b’Z b’“p’pk Tl o
( RF5

where p; = o(vj), o : 2 — CU{oo} is the stereographic projection, and
we assume p;j # 0o.

Moreover, the surface  has no branch points if and only if the polyno-
mials

(L5) Q=) = E‘b’ H (2 — a),
= ’::2:

(1.6) P(z) =) _pjt/ H (z — qr)
= kE

are mutually prime and one of them has degree n — 1.

Remark 1.2. When p; = rg;, the theorem reduces to the results in the
first author [Kat]. In this case the system (1.3) and (1.4) reduces to

( n
rHZbk=aj
4 k35 G=1,...,n).
b’Zb’“lTl qJQk+1 —0
k=1
\ k#3j

As seen in [Kat], the surface has no branch point if and only if § :=
>7_1 b # 0. By using the relation
P (Z) rﬁ

=Trz—

e I
2
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it is also checked directly from the last condition of the theorem.

Remark 1.3. The position of the ends {qi,...,¢n} in the source domain
C U {00} has the freedom of M&bius transformations. For example, the
following normalization is possible:

q=1, Gn-1+qn-2=0, gn =0.

Remark 1.4. The system of the equations (1.3) and (1.4) has another ex-
pression

1.7 (4 b’c o p’
k#J
< + lp;i]2 — 1
1.8 v b’“p’ Pk =ajpj —
18) kz_:l % — G lpl? + 1
\  k#J

Moreover we may replace (1.7) by

i DPj
1.9 pi?y V= L
19 J kz_:l QJ“‘Ik |p_7|2+1
k#3
In fact, if we set
n 1 n pk
k j k
;= b , 0;:=V b ji=1 ,n),
’ ,CZ=1 gG—a kz::l % — G G=1 )
k#j k#j

then (1.3) and (1.4) are written as
pivi=8=d, 7 +D50;=0.

It is equivalent to the relations

_ P ilpil? -1
;= .7 pivi + d:. =d’ ,
4 P2 +1° 575 T 05 o, E+ 1
that is (1.7) and (1.8). On the other hand,
2 2 j j
o |ps pilf—1 a’ a’
pj')’j’:aj | ]l _ lejl =p_77_7+6_1+|

= qQ -+ —_—,
lp;|2 + 1 lp;l2+1  |pi]2+1 pi|2 +1

which yields (1.9).
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Remark 1.5. The construction of n-end catenoids mentioned above is re-
lated to the spinor representation of minimal surfaces (cf. [KS]);

z = Re (/ (312 - 322),/ V=1 (312 + 322),/ 2s1 32) ,
20 20 20

where (s1, s2) is a pair of meromorphic sections of the half-canonical bundle
on CU {oo}. In fact, s; and so have the following explicit expressions in
this case:

_ Q@) — _ PG —
81 = R(Z) -—d,c, 89 1= R(Z) —-dz,

where we set
R(z) =[] (= - a0)-
k=1

Theorem 1.1 produces many n-end catenoids as seen in [Kat] and
[KUY1]. First, we fix our attention to the equation (1.4). We consider
a matrix

(1.10) A, = (&’f’—) ,
4G5~ /jk=1,.mn

where the diagonal components are interpreted as 0. Then the vector
t(®%,...,b") belongs to the kernel of the matrix A,. As shown in the
later sections, it is reasonable to expect that the rank of the matrix A,
is generically n — 1. In this case, {(b',...,b") should be proportional to
any column vector of the cofactor matrix ;1;, of A,. (By the definition,

A A, = A, A, = (det A,)I holds.) So we set
by(q) =t(b11,(q), .-+ ,by(g)) := the n-th column of the cofactor matrix ;fp(q).

Now we reformulate the problem: For fixed p := (p1,... ,pn) € C", define a
rational map between two complex projective spaces

Ty = [fp,..., fy]: Pt - Pt
by

(L11)  flq---ran) =) Y @22 (j=1,...,n).
[y q; — gk
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We set

18(q) = Aa)® - fi(a),
where A(q) is the difference product defined by

n

(1.12) Alg,- - 90) = [ (@5 — @)
Ji>k
It is easily seen that each fEJ is a homogeneous polynomial in g1, ... ,qn

and FZ, has another expression
Fey = [fl, ..., f07).

This new formulation is reasonable in the following two senses:

e Any homothety of n-end catenoids changes their weights (a,...,a")
only by a constant multiplication. It allows us to projectify the image
of F,.

e Changing coordinates of n-end catenoids by homothetic transforma-
tions corresponds to complex multiplications of (q1,...,¢.) (see Re-
mark 1.3). It allows us to projectify the domain of FZp,.

Since p; is the stereographic image of v;, the balancing condition (1.2) is
rewritten as

|PJ| -1 j
=0, =0.
lel2+1 ZIPJI2+1

We define a subspace Wr—* in P™! by

Wl’}"‘l = [al, ...,a" € P 1,

|p; |2 _ ;
lejlm Ozlp Tri” Ozlp Tri® =0

We will show that for open dense p € C™, the image of the map FZ, is open
dense in Wg“‘, and next show that it covers open dense subset of the totally
real set

WR={[a]€WI’}_4;ajeR,(j:l,--~ ,TL)}
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Then the image of the map F%, contains [a] € Wg for almost all flux data
(p, a), and Theorem in Introduction is obtained. If FE, is a holomorphic map
and there is a point at which the rank of d, is n —4, the surjectivity of the
map follows by the proper mapping theorem (see [GR]) But unfortunately,
the map FZ, is singular on the set [Y;_; Z( f8), where Z(f&3) is the set of
zeros of fé’ As shown below, we will overcome this difficulty by a usual
blowing up process.

From here, assume dim(vy, ... ,v,) = 3, where v; := 07}(p;) and o is
the stereographic projection. Then clearly dim W""4 =n — 4. This implies
that dim Wy~ ~4 = n — 4 holds for open dense p e C™. Now we have the
following lemma

Lemma 1.6. For each p € C", the following relation holds:

Ftp (Z()‘p)\ ﬁ Z(ﬂi)) cWp,
j=1

where A, is the determinant of the matriz A - A, and Z(),) is the set of
zeros of the homogeneous polynomial .

Proof. Let q € Z(\p) \ =1 Z( ff{;). If A(q) = 0, then it is easy to see that

q € Nj=1 Z(f%). Hence A(q) # 0, and we get (1.3) with ¥ = bi(q) (j =
1,...,n). Recall Remark 1.4. Then the assertion of the lemma immediately
follows by summing up (1.8), (1.7) and (1.9) for j =1,... ,n. (W

We define an (n — 1)-matrix J, by

8detAp 9 le,c _ 0detAp . 19} lef
a‘In aqj an 8%1

(1.13) J,:= (f;})2
k,j=1,...,n—1

where

;J'-—ﬁi (G=1,...,n—-1)
p.—f;‘ 1=1,..., .

The matrix J, has a direct expression

Jp =

ddet A, 8f’° f" fkaf" _ Odet 4, 8f’° f _ LOfT
Oqn, P 9g; dg; PP og, ket o
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The following proposition plays an important role to prove Theorem in In-
troduction.

Proposition 1.7. Suppose that there exist ug € C™ and a point ¢ =
[c1, ... ,cq) € P71 satisfying the following conditions:

(1) e,...,cn are all distinct;

(2) The rank of the matriz Ayy(c) is n —1;
(3) Odet Ay,/0¢g, does not vanish at g = c;
(4) The rank of the matriz Jy,(c) is n — 4;

(5) Two polynomials P(z) and Q(z) defined in (1.6) and (1.5) associated
with the data (q,p) = (c,u0) and b = byy(c) are mutually prime and
one of them has degree n — 1;

(6) flo(©) #0 (G =1,...,n);
(M) ¢ #0(i=1,...,n—-1).

Then there exists an open dense subset U C C" and an open dense subset
Qp of the totally real set Wr = {[a] € Wy™*; a; € R} such that, for any
p € U and [a] € Qp, there ezists an (non-branched) n-end catenoid with the
fluz data (p,a).

By the proposition, the inverse problem of the flux formula can be solved
for almost all flux data if one succeeds to take such a point ¢. This will be
done in the next section. To prove the proposition, we shall prepare several
lemmas.

By the condition (4), at least one (n — 4)-submatrix Sy, of Jy, is of
rank n — 4. Let 1 < j;1 < j2 < -+ < Jn—g < n be the indices of the
columns of the submatrix S,,, and {m1, mg, m3} their complement, namely
{m1,mg,ms} = {1,... ,n—1}\ {j1,... ,jn—a}. By Remark 1.3, we may
restrict the flux map into the following subspace of P"~! containing the
sampling point c:

yrdi=
{[QI, ooy Qn] € p! ; Cmadmy — Cmidme = 05 Cmalm; — CmyGmg = O} .
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Now we define a homogeneous polynomial in g, ... , g, by

Hy(g) == A(g )2adetA”(q) det (A(q)'Sy(q) ) - Rpla) I1%- qu,

7=1 k=1

where [ is chosen sufficiently large so that det(A(g)!Sp(q)) is a homogeneous
polynomial in qi, ... , gn, and R, is the resultant of the two polynomials P(z)
and Q(z) of degree n — 1 defined by (1.6) and (1.5). (It can be easily shown
that R, is also a homogeneous polynomial with respect to q. ) Then by the
conditions (1)-(7), ¢ € V"3 satisfies Hy,(c) # 0. We prove the following

Lemma 1.8. The subset
={pe C"; Z(\) NV ¢ Z(H,)}

is open dense in C", where \p = det(A - Ap) is the homogeneous polynomial
defined in Lemma 1.6.

Proof. Obviously U is an open subset of C™. Suppose that U is not dense
in C™. Then there exists an open subset V such that

(1.14) ZOplhnes) C Z(Hyln-s) (e V).

Since V=3 = P"~3 by Lemma A.l in Appendix A, (1.14) holds for any
p € C™ such that A\, # 0. But this contradicts the fact that Ayy(c) = 0,
Aup # 0 and Hy,(c) # 0. O

Roughly speaking, if FZ, has no singularities and is of maximal rank, then
it is surjective and we can find a pair (g,by(g)) satisfying (1.3) and (1.4).
But unfortunately, F¢, has singularities on ﬂ;‘zl Z(f%,). For this reason, we
define a new variety V=3 and a map .7-7\;,: yn=3 _, VVZ’,“‘1 instead of Y3



General Existence of Minimal Surfaces 93

and F¢, as follows. First we consider an algebraic set

yr3 = {([ql,... ,qn],[al,... ,a"]) € P lxprt,

CmyQmi — Cm1Qmy = 0, Cm3zqmy — Cm1Qms = 0,

dft=df (G k=1,...,n),

|p . ,
lejl2+1 OZI et Z|p|2+1"°

and define two canonical projections:
w: Y% 3 (g, [a]) = [a] € V"3,
' Y"° 3 ([g], [a]) = [a] € Wy~

These two projections are both well-defined on Y™*3. Let V"3 be the
algebraic closure of the set

(1.15) Vi = am VB () Z(£8)
j=1

We denote the restriction of the first prOJectlon 7 to V"3 also by 7. We
remark that 7T|vn— v;gg?’ — V3 \ (7 Z( #8) is bijective. On the other

hand, we denote the restriction of the second projection 7’ to Y3 by
—— . A _3 _4
Flp : V72 = Wy,

The map F¢, o 7 is well-defined on 17;;;3, and coincides with the map 7@.

Lemma 1.9. For each p € U satisfying dimWp—* = n — 4, there ezists an

irreducible component Xn—4 of the algebraic set Z(\, o ) N V=3 such that
Hy om is not zdentzcally zero on X" 4. In addition, the restriction of the

lifted flux map f£p| fn-4 ' : Xn—4 — Wy~ —4 is surjective.

Proof. Suppose that Z(), o 7) N V"% C Z(H, o 7). Since H,, is identically
zero on the singular set (j_; Z(f¢), it follows that

Z(\p) N V"3 C Z(H,).
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But this contradicts Lemma 1.8. Hence there exists an irreducible compo-
nent X"~ of the algebraic set Z(Ap o m) N V73 such that Hy, o7 is not
identically zero on X4, We set

X4 = (XY,

Now we take a point zg € X" such that Hy,(zo) # 0. Consequently, we
have zo & [7_; Z( %) and so Fep(zo) € Wyp—* is defined. We remark here
that the m;-th component of zg in the homogeneous coordinates is not equal
to zero. Now we take a coordinate of P*~! around zq defined by

. -1 —
p:C" 3z =(21,... ,Tmy—1,Tmy+1y--- ,Tn)
-1
—q=[Z1,. .y Tmi—1, 1, Tmq41,...,Zn] EP" .

Since we chose g so that Hy(zo) # 0, it holds that the derivative ac{%ﬁ:‘lﬂ
does not vanish at xo. So by the implicit function theorem, there exists a

function @, defined on a sufficiently small neighborhood of zg such that

)\p(:cl, oy Tmy—1, 1, Tmy+1y--- 3y Tn—1, Qn(.’l)))
= det Ap(:cl, ey Zmy—1, 1, Ty 41,00 5 T, Qn(x)) =0
Since
Cm Cm -
Ty =1, Ty = —2, Tmy = —2 on V3
cm1 Cmy
(j1--- ,Zjo_q) is considered as a local coordinate system of the variety

X™* around the regular point zo. Since
oQn _ 8detA /BdetA
oz;, 0g;, oqn

holds, one can easily check that the condition det.Sp(zo) # 0 implies that
the matrix

(I=1,...,n—4)

Ay °p) , 9Qn (fy op)
Oz, Oz;, Ozy
k=1,...,n—1;1=1,... ,n—4
is of rank n — 4 at xo. Hence the Jacobi matrix of F¥, is of rank n — 4 at
o, and so is that of .7-'2\ at 7~ %(zo). Thus by the proper mapping theorem,
7, (X "—4) is an analytic subset of d1mens1on n —4 in the same dimensional
complex projective space Wy, Hence T (X4 = Wy, O
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Lemma 1.10. Let Wg = {[a] € W3—*; a; € R}. Then
{w;;-‘* \ L, (Z(H, o ) N Xn-4)} N We

is an open dense subset in WR.

Proof. By the proper mapping theorem and the theorem of Chow, ?E;(Z(Hpo
7)) is an algebraic subset of W74, Thus it is a closed subset in Wi in
the usual topology. Hence

{w;;-‘* \ B (Z(H, o) N Xn-‘*)} N We

is an open subset in Wg. Suppose that it is not dense in Wr. We may
assume that fEP(Z(H om) N X" %) is common zeros of some homogeneous
polynomials [ i1 Z(h;). Then there exists an open subset in Wy~ —4 on which
each h; is identically zero. Since WR is a totally real subset of the complex
projective space W;"‘i, by Lemma A.2 in Appendix A we have

hi=--=h-=0 on W;}"l.
This implies that fﬂ;(Z(Hp om)yNXn4) = Wr—*. So it holds that
n—4 = dimWr* = dim F,(Z(Hp o m) 0 X")
< dimZ(Hpom) NX"4<dimX"*=n-4.

By the irreducibility of X4, we have Z(H, o 7) N X»~* = X", But this
contradicts the fact that Hy(zo) # 0. O

Proof of Proposition 1.7. Let p be a point in U satisfying dim W”_ =n—4.
As we mentioned before, dim W"‘4 = n — 4 holds on an open dense subset
of {p € C"}. Then for any

[a] € (w;}-‘* \ F,(Z(H, o ) N X"—‘*)) N We,

there exists z € X"“f‘ \ Z(H,) such that F,(z) = [a] by Lemma 1.9 and

Lemma 1.10. Since f#(z) # 0 and also the resultant R,(z) does not vanish,
(z,bp(x)) induces an n-end catenoid with the flux data (p,a) by Theorem
1.1. a
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For the later application, the following modification of Proposition 1.7
is needed: Recall here that any elements of the matrices A, and J, are
rational functions in py, ..., pn, P1,.-- ,Pn and q1,... ,qn. Let fip and J;, be
the matrices obtained by replacing p, by p,, namely

(116) AP = P(pla oo apmﬁl, “e ,ﬁn—lapn, q1y--- 1Qn)1
(117) y4 = ']P(pla e ap'naf’la e aﬁn—l,Pn, Qh et ,Qn),

and let Erg (resp. fg , Wz’,“‘l) be the vector (resp. function, set) obtained by
replacing p,, in b} (resp. f3, WI’,““) by pn.

Proposition 1.11. Suppose that there ezist ug € C*! x R and a point
c=c1,...,cn] € P*71 satisfying the following conditions:

(1) c1,...,cn are all distinct;

(2) The rank of the matriz Ay,(c) is n —1;
(3) ddet Ay,/dqy, does not vanish at q = c;
(4) The rank of the matriz Jy,(c) is n — 4;

(5) Two polynomials P(z) and Q(z) defined in (1.6) and (1.5) associated
with the data (q,p) = (c,u0) and b = byy(c) are mutually prime and
one of them has degree n — 1;

(6) fin(c)#0 (j=1,...,n);

() ¢;#0(i=1,...,n—1).

Then there exists an open dense subset U C C"~! x R and an open dense
subset €, of the totally real set Wr = {[a] € W;™*; a; € R} such that,
forp=(p1,...,pn) € Uand [a] € Qp, there exists an (non-branched) n-end
catenoid with the flur data (p, a).

Proof. The proof of Proposition 1.7 works even if we replace p, by pp.
When p, is real, flp, Jp, f'ﬁp and Wz’,‘_“ coincide with A,, J,,, 7, and Wz?_4
respectively. In fact, by the same proof as Lemma 1.7, we can prove that
U:={peC!IxR;Z(\)NV"3 ¢ Z(H,)} is open dense in C"~! x R,
because we only need the real analyticity with respect to the parameter p
for applying Lemma A.1. a
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Remark 1.12. To solve the inverse problem of the flux formula, we may
assume that p, € R since by a suitable rotation in {(z,y, z) € R3}, we can
choose that v, is in the zz-plane.

2. Finding a regular point of the flux map.

In the previous section, we reduced our inverse problem to finding a regular
point of the flux map. However, the following difficulties arise in this process.

e As seen in [Kat] and [KUY1], n-end catenoids with many symmetries
are easy to construct. But unfortunately, they are not expected to be
a regular point of the flux map because of their symmetries.

o If we take a less symmetric n-end catenoid, the computation of the
rank of the flux map is very complicated and hard to calculate even
by computer.

To avoid these difficulties, we first take an n-end catenoid with many sym-
metries, and next consider a perturbation of it which attains the desired
properties.

Set m :=n — 1. First we consider a 1-parameter family of (m + 1)-end
catenoids given in [Kat];

(2.1)
pji=r¢{I! (G=1-..,m), Pm41:=0,
=T 1) (=1, m), amtes POy
gji= ¢! (G=1,...,m), gmt1:=0,
bi=1, G=1,...,m), b"tl:= m2—1(r2—1),

where 7 > 0, 7 # 1 and ¢ := exp(2mv/—1/m). In fact, they are (m + 1)-end
catenoids without branch points by Remark 1.2, and are invariant under
the action of the cyclic group Z,,. Unfortunately, as we shall see below,
Jo(9) = Jp(g) = 0 holds for any of these examples, namely they all are
singular points of the flux maps. However, we will show that there exists a
regular point near them.
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Note here that the matrix Ap(g) (defined in (1.10)) for the example above
is given by

/ 0 1_'_,,.2(1 1+,,.2<m—-1 1 \
q1—q2 Tt q1—qm A —Gm+1
1+1‘2§_1 0 1+,,.2cm—2 1
92—q1 tU 92—qm 92—qm+1
(22) A9 = : : . : :
1+,,,2¢—-(m—1) 1_'_,,.2(—(111—-2) 0 1
Im—q1 Im—q2 T dm—qdm+1
\ 1 1 1 0
Im+1—q1 dm+1—q2 U gm41—gm

Now, we consider a 1-parameter family of matrices

( 0 14pt 14p¢m-t 1 \
q1—92 T 91—qm 91—gm+1
1+E£_1 0 ].+[.l,('m_2 1
92—q1 e 92—qm 92—Qqm+1
(2.3) Algp) = ; : : : :
14p¢= (M= 14p¢=(m-2) 0 1
gm—q1 dm—q2 e gm—gm+1
\ 1 1 1 0
Im+1—q1 Im+1—92 Y gm+1—9m

By comparing (2.2) with (2.3), we have A(g,7%) = A,(q) for p asin (2.1).
When we evaluate it at ¢ = ¢° := (1,¢%,... ,¢™1,0), we have

[ o L - S R

14+p¢t 14pm—2 —1
0 _C{l—_l 0 zriigm ¢
(24) Alg,p)= : : - : :
—(m-1) Z(m=2) o
1+<',inc—l_1 I-E#-E.l_cl P O C (m 1)
\ -1 ¢t (e 0o/

We remark that the matrix A(q°, 1) has the simplest form when p = —1.
The following lemma holds.

Lemma 2.1. The (m + 1)-matriz A(q°, ) is of rank m except for finite
values of u € R. Moreover A(q°, 1) has a 0-eigenvector given by

t<1,...,1,mT_1(,u—-1)).
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Proof. The second assertion is easily checked. Hence the rank of the matrix
A(q% —1) is at most m. Moreover, it is easy to see that the rank of the
matrix A(q%, —1) is m. Since each component of A(q°, 1) is a polynomial in
i, the first assertion is obtained. a

Remark 2.2. Similarly, a 0-eigenvector of tA(q°, 1) is given by
1
(113 (m= D+ 1))

Proposition 2.3. The following identity holds.

Odet A
9q;

@w=0 (G=1..,m+1).

Proof. We denote the cofactor matrix of A(g, 1) by B(g, ). By Lemma 2.1
and Remark 2.2, it can be easily checked that B(¢°, u) is written in the form

B(¢° 1) = f(1)S(1), where f(u) is a polynomial in p satisfying f(—1) = 1,

1o 1 ()
(2.5) Swe=| T w(fﬂ) ,
o) - () e(p) - P(w)

and op(u) and 9(u) are explicitly given by

o) = 5 =1, 9= {2 = D D),

Note here that
Odet A 0A
yu) =Tr | =—(q, n) - B(q,
3g; (g, 1) ( e (¢,n) - B(g u))

always holds for any j. Denote the (k,!)-component of the matrix A(g, u)
by ari(g, 1). Then we have

( 14 pc¢ti . ;
_(CJT_——W (k=];l=1"'°7m;l¢9)
5 —¢20-1) (k=jl=m+1)
aLl , o _J 14 p¢i-k
- q,K)= 28 = ) 5l=7
8qj( ) m (k-l,...,'ffl,k#], _J)
¢26-1) (k=m+1;l=7j)
L0 elsewhere
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forj=1,...,m, and
¢ (k=1,...,m;l=m+1)
Ookr 0\ _ —2(1-1)
He (4 H) =9 —C (k=m+1l=1,...,m)
dm+1
0 elsewhere
forj=m+1.
For j =1,...,m, by using the formula above, we have
OdetA o | A, 4 0
3a; (q,ﬂ)—Tr<a (¢, 1) B(q,ﬂ)>
= Zf(u) F) == w)
k=1 aq =1 aqf
k#3j L#j]

+aa]m+1(q D (o) + aaa";”(qo,u)f(u)df(u)

S TSR S W & S
= f(w) Z (5 #CJ -T2 Z o1 fcl—l)2
g =
= ¢ V() + ¢ Dy(p)
o [~ 14 #C_ 1 + NCk
= f(u)¢ 207D { —(m—2)u
m—1
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On the other hand, for j = m + 1, we have

Odet A 0A
et 2 ) = T (o) B, 1))
= ¢PED (e = YD f(wv(p)
k=1 =1
= f(W)(e(p) = (W) D¢ =0.
k=1
This completes the proof. O

By Lemma 2.1 and Proposition 2.3, it follows that J,qo(qo) =0 (r e R).
Therefore, we try to perturb a sampling point. To do this, we consider an
m-matrix I'pm41(p) by

Pdetd o .
0910qm+1
_SdetA a(fk/fm+1) )

3004, ———(q°% p) - . (%) .

k / pm+1
T (k) = ( —(%”(q",m

where we denote the (j, k)-component of the cofactor matrix B(g, p) by
Bik(g, 1), and set

(2.6)

fk(qa ,'L) = /Bk m+l(q7 ,U,)

CJ 1 k—1

+ Bm+1m+1(q, u)—~—-
— g — Qm+1

(k=1,...,m),

Z Bim+1(a, u)

;e

j—1
™ g 1) = Brnrimaa (g, p Zﬂymﬂ(q, )————
(Compare with the definition of the matrix J,(g) and fz’f(q).) We prove the
following
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Theorem 2.4. Suppose that there exists a positive number p such that the
matriz Tpyp1(p) (n=m+ 1> 5) is of rank m — 3(=n —4) and

02det A

0
- (¢, 0.
80:00mm (¢°, 1) #

(2.7)

Then, for each of almost all fluz data, there ezists an n-end catenoid with
the fluz data.

Till now, we fix the parameter p,,+1 at

Pm+1 =0.

Let us now move p,,+1 as a complex parameter.

Lemma 2.5. Let p1 # 1 be a positive real number such that f(x) # 0, where
f(n) is a polynomial given by (2.5). Then

ddet Ay(q)
— =2 £0
OPm+1 7

at the point ¢ = ¢° = (1,¢Y,...,¢™7L,0) for p = \/fig°, where Ay(q) is
defined in (1.16).

Proof. We denote the cofactor matrix of A,(g) by B,(q). Since A Vi (d) =
A W—qu(q) for any p > 0, it holds that B VB (99 =B VB (¢) and in particular,
we have B ﬁqo(qo) =B ﬁqo(qo) = B(q% p). Then we have

c’) det A 0 aA qo
______p..(il =Tr —6 p( ) 'B\/ﬁqo(qo) )
apm+l p=\/l—jqo pm+1 p=ﬁq0
Since
dA,(q°
the (4, k)-component of ap—(‘])
Pl lp=/mg®
€—2(j—1) (G=1,.... m;k=m+1)

={-1 (G=m+Lk=1,..,m)

0 elsewhere,
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by (2.5), we have

8Ap(q°) . 0
Tr ( St Iy Bl(g ,,U))
= f(u) {w(u) > ¢ — (m - 1)¢(M)}
k=1
= ~(m =05 = = - #0.
Now the assertion is clear. a

Proof of Theorem 2.4. Since f(u) is a polynomial in p and f(u) # 0, by
our assumptions and Lemmas 2.1 and 2.5, we can choose a positive number
p such that f(u) # 0, rank A 00 (¢®) = m, rank Ty 1 (p) = m — 3,

8%det A i (0
VEL () #0  and 9det Ay(q7) £0.
aql 8q'm.+1 apm+1 p=+/Bq°

Throughout this proof, we fix the parameters except for ¢; and p,,+1 to the
same values as ¢ = ¢° and p = \/ig":

pj=\/ﬁcj_1 (.7=1a 7m)a
q; =CJ_1 (.7 =21 7m)1 dm+1 =0.

Regard det fip(q) as a function with respect to only ¢; and p,,+1, and apply
the implicit function theorem to the point (g1, pm+1) = (1,0). Then there
exist an open neighborhood U C C of 1 € C and a complex analytic function
Pm+1 = Pm+1(q1) : U — C such that pp41(1) = 0 and

det /ip =0 (g1 €U).
Pm+1=Pm+1(q1)

m holds also for ¢ near

Since rank A N (¢°) = m, rank AP‘Pm+1=Pm+1(‘11) =

Since A=A atp= Vg, by Lemma 2.3, we have

ddet A o
o) =0 (G=1,...,m )
q;
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On the other hand, the assumption (2.7) yields

Odet Ap
Oqm+1

£0

Pm+1=Pm+1(q1)

for any ¢; # 1 enough close to 1. Therefore we have

o ddet A ik ) F
i [ {2005 _ SR oty
P dg; ddet A Ogm+1
\ mt1 Pmt1=Pm+1(91)/ jk=1,...m
o 82det A ks %
_ / a(f;?/f:ﬁl) _ 3q15qu . 6(fz?/fz:n+1)
g, 82 det A, Ogm+1
\ 0910gm+1 p=y/fg%q=4" Jik=1,....,m
02det A o\
vEd® , o
= —_— Fm )
( P e )) (k)
and hence
rank J, I Pm+1=Pm+1(q1)
5k ) Fmrl ddet A £k 7 Frm41
=rank oS/ 1) _ _WB . OUp/fp"")
Bgm+1 Pmt1=Pm+1(91)/ jk=1,....m

for any q; as above.
Since the initial sampling point ¢ = ¢°, p = \/ﬁqo is chosen from the
data which realizes a non-branched n-end catenoid (n = m + 1), A(¢°) # 0

and q? #0 (j=1,...,m), the other conditions in Proposition 1.11 are also
satisfied for ¢; near 1 such that p,,4+1 € R. Now, by Remark 1.12, we have
proved the theorem. a

Thus we will get our main theorem in Introduction, if the matrix I'y, 41 (1)
is of rank m — 3(= n — 4) and (2.7) holds for some p > 0, which will be
shown in the next section.

3. Computation of I',,1;(p).

In this section, we compute the matrix I';y4+1(p) defined in the previous
section, and show that it is of rank m — 3 for almost all x € (0,1) U (1, +00).
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Computation of (0f*/8¢;)(q° 1). As before, we write

A(g, 1) = (0k)ki=1,... m+1

and

B(gq, 1) =t (Brt)k,i=1,... m+1-
By (2.6), (2.5) and straightforward calculations, we have, for any k =
1,...,m,

0 k 0 m m+13 m j
(3.1) 6—;=f¢ (m—1+¢)—%i+ziéq7ﬂ+f¢cl”n1
J =1

1%k

at (¢°, i), where

-1
T —e) G=F)
— 1
m(p) = T G=1,...,m;5 #k)
¢iFp(p) (j=m+1),
and for k=m+ 1,
3fm+1
3.2
(3.2) 0g;
_ OBm+1m+1 S OB m+1 _ f(pwcl—j (G=1,... )m)
A +¢§ 0g; {0 (G=m+1)

Hence we have only to compute f(x) and 98k m+1/94;(¢° 1). Denote
the first m x m-submatrix of A(q°, u) by A%(w). Clearly

fo = Bmtims1 = det A°.
Take the diagonal matrix
Cy := diag[1, ¢, ..., ¢

Since C1A° is a cyclic matrix whose (4, k)-component is equal to (1 +
u¢k=9)/(1 — ¢*=9), and whose diagonal components vanish, it can be di-
agonalized as

02‘101A002 = diag[’gbl, e ,¢m],
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where
1 1 1
oo e
Cm:—l C2(7;1—1) o

and the eigenvalues 1, ... , ¥, of C1A9 are given by

T 14 pckl
T AT
= 1<

Yi(p) = (¢hEt

Now we have

fov = (=)™ [

=1

Note here that ¥; = ¢ and ¥, = —¢ and that ¥;(1) # 0 holds for any
pe (0,1)uU(l,4o00) (I =1,...,m).

To compute the derivatives 8B/8g;(¢°, p) of the cofactor matrix B(g, u),
we apply the formula (B.2) in Appendix B by putting X := E,, 1, where
En11 is the (m + 1)-matrix given by

Em+1 = O 0
0 01

For At(q, p) = A(g, 1) + tEm+1, We have already shown that

Odet A

0
) =0
3g; Cuy)

det A(¢%, p) =

in Lemma 2.1 and Proposition 2.3. Moreover we have

Tr(Em+1 - B(¢% 1) = F(1)e(u)d(u) # 0.
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Thus we may apply (B.2), and get the following identity

0B 1 0A 98Y; )
(3:3) 9g; f<p¢{ (3% At =0
LS| oy on o) )
ot =0 qu an ot +=0

at (¢°, u), where Y;(u) is the cofactor matrix of A(q°, p) + tEm+1. The first
m X m-components of dY;(u)/8t|i=o is given as the cofactor matrix of the
first m x m-components of A(q°, u), that is

det A% - (A°)~! = foy - Cadiaglr ™Y, ... ,%m 11C21Ch
_ fedyo
m )

here, we put

=1

0._ (Ck_l ZC(J—IC)IQI)[_-].)
jk=1,....m

The other components of 8Y;(u)/0t|t=0 vanish. Namely

fe ;
®
g vw=| W
0 00
Therefore we have
1
(3.4) (6ﬁkm+1) fib{ ( YO) I—YO. BA} :
9g; k=1,.,m+1 T 0g; 0g; 1
7

at (¢°, ). Recall here the values of (8ax;/9g;)(¢°, 1) computed in the proof
of Proposition 2.3. Now, by direct computation, we have

aﬂk YPkm+1

(3.5) —=m2(q0 p) = —F(p)(p)¢t

<1 - %m(u))

(
x { p(K) (k=m+1j=1,...,m)
R o(u)pm-r(w)t (
0 (
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where
na(p) =
m—1
m(mz_ 2 ilfrﬂl) {m =1+ (m+e(w) ; wz(#)‘l} (k = j)

¢ m—1 » ~ .
Ck—T_l-'- #liﬂl) {—1+(m+ w(u));c(’“ Mapy () 1} (k # 7).

Putting it into (3.1) and (3.2), we get

k
(3.6) Z—;(q",u) P ()P

2(m — 1+ () - 2B ) () (kG =1, m)
XY (2m+ 1p(r) (k=m+1;5=1,...,m)
0 (k=1,... m+1;j=m+1).

In particular, we have

g BdetA [, OfF afmH
Do) = (™) 2——-( w0 _ 01 )
k,j=1,...,m

0910qm+1 9q; 9g;

at (¢° p)-

Computation of (8% det A/8q10gm+1)(q%, 1). First we compute

8%det A
0910¢m+1

524 A 0B
—mr (22 (0 —1)- B(¢%, -1) + 22 (¢, -1) - 0,—1).
(3Q13€Im+1 (4 )- Bla ) on (¢, -1) Ogm+1 (¢ )

(qO, _1)

It is easy to see that,

-2 (k=1Ll=m+1)
@ -)={2 (k=m+1l=1)
0 elsewhere.

Fay
0910qm+1
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On the other hand, we have

2—-m ¢t ¢m-1 0

5 1 @-m¢t gm0
5| Y(-D= L i :
= 1 ¢ 2-mmt 0
0 0 0 0

By putting these values into (3.3), we have

(3.7)

—(m =1k (ki=1,...,m)
iﬁﬂ—(o—l)— (m —1)¢1*k (k=1,... ml=m+1)
Bame1 L T ) —(m — 1)1 (k=m+1;l=1,...,m)

0 (k=l=m+1).

Now, by a straightforward calculation, we have

8% det A

3.8 —
(38) 0q10¢m+1

(¢°—1) = m(m 1) #0.

Since (8% det A/8q10gm+1)(¢% 1) is a polynomial in p, it does not vanish for
any p except for finite values. O

Computation of the rank of T'pyy1(p). For any p € (0,1) U (1, +400) such
that

8%det A

0
b O’
501001 (g, 1) #

define a cyclic matrix

o1 <8f’°_ f* afm“) c
(f)2 \9q;  fmt1 Og; kj=1,...,m

where C; = diag[1,¢?,...,¢{™ !]. Then it is clear that the rank of I'mmy1 is
equal to the rank of I'?, +1- The (k, j)-component ~yx; of ro, 41 is given by

m—1l+¢ m—24¢
m 2m

Vej = — 2 —m,
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and the eigenvalues x1,... ,Xm of T, 41 are given by
m .
xi(w) =71 (w) (¢H7?
j=1
p+D{m-1p+m+1}1-1)(l-m+1)
- I=1,..., m—-1
= 4ahi(p) ( m=1)
0 (I =m).

Now it is clear that x;(u) # 0 for I = 2,... ,m — 2, and I'? my1 is of rank
m — 3. Consequently, I, is of rank m — 3 for any p € (0,1) U (1,400)
except for finite values. a

Now, by Theorem 2.4, we get the following theorem:

Theorem 3.1. For almost all given unit vectors v = {v1,...,vn} (n > 5)
in R3, and nonzero real numbers a = {al,... ,a™} satisfying Z;?:l afv; =0,
there is a (non-branched) n-end catenoid z: C\{qi,... ,q.} — R3 such that
v(g;) = v; and a; is the weight at the end g;.

This theorem and the results for n < 4 ([L] [KUY1]) imply our main
theorem in Introduction.

Appendix A.

In this appendix, we give two lemmas on real analytic families of algebraic
equations which are applied in the proof of Proposition 1.7.

Lemma A.1. Let {fp(q1,.-- ,qn)}pert and{gp(q1,--- ,qn)}per: be two real
analytic families of polynomials on C of degree bounded by m. Suppose that
there exists a non-empty open subset U such that

(A1) Z(fr) € Z(gp) (peU).
Then (A.1) holds for all p € R! such that f, # 0.

Proof. For each p € R', since the degree of f, is bounded by m, Z(f,) C
Z(gp) if and only if (g,)™ is divided by f,. We operate a differential operator

olal

o . 7
D= g og
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into the rational function ¢, := (gp)™/fp. Let N*(pp) be a polynomial
formally defined as

Na(‘Pp) = (fp)m'-*-1 -D%p

which is the numerator part of D%p.

Now we fix an element py € R! such that f, # 0, and choose an element
go € C" such that fp,(qo) # 0. Since f, is real analytic with respect to the
parameter p, we can take a subdomain V of U such that f,(qo) # 0 for all
p € V, and ¢, is a polynomial on C of degree bounded by m?foranype V.

Hence for any multi-index |a| > m?2, we have N*(p,)(q) = 0 for
p € V. By the real analyticity with respect to the parameter p, we have
N%(py)(g0) = 0 for |a| > m?. Since fp,(go0) # 0, we get D%p(qo) = 0 for
|a| > m?. Thus ¢, is also a polynomial on C. O

The following lemma is easily proved vby using the Cauchy-Riemann equa-
tion.

Lemma A.2. Let Wy be a totally real subset of P*~! defined by
Wo:={[a},...,a" e P, eR(j=1,...,n)}.

Let h be a homogeneous polynomial on C. If h is identically zero on a
non-empty open subset in Wy, then h =0 on P*~L,

Appendix B.

Let A be an nxn matrix. The cofactor matrix B of A is the matrix satisfying
the identity BA = AB = det A - I. In this appendix, we give an identity
which is useful to compute a differential of the cofactor matrix of a singular
matrix.

Let © be a domain in C containing the origin, and A(q) : @ — M(n, C)
a smooth map into the set of all n x n matrices. Let B(q) be the cofactor
matrix of A(g). We set A := A(0) and B := B(0). Suppose that

(B.1) det A= 2| detA(g)=o0.
9q|,—o

Then the following lemma holds.
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Lemma B.1. Let X be an n X n matriz such that Tr(XB) # 0. Then the
following identity holds:
) >
t=0

oB, . 1 8A . Y,

B2 50 = 55 (> (30 5
oY, 0A 6Yt

-S| 50-5-8-F0-F

where Y; is the cofactor matriz of A +tX.

o

Proof. We set Ai(q) := A(q) +tX, and denote by By(q) its cofactor matrix.
We have the following Taylor expansions:

A(q) = (A+tX) + q%m) +o(g),
Big) = Yi+ q%‘f’]—tm) +o(g).

Since A;(q)B:(q) = det Ai(q) - I, we have by taking the first degree terms
that

det Ay(q) - 1———(0) Y + (A +tX)- ﬂ31(0)

q=0

Oq

Since

det(4 +tX) = Tr(XB) #0,
t=0

A +tX is non-singular around ¢ = 0. Hence we have

0B;

5= <A+tX)-1<§5 detAt<q)-f—‘Z—‘;‘<o>-m)

q=0

0A
detAt(‘])'Yt—Yt'a_q(O)'Yt}

_ 1 9
~ det(A+tX) | 9q

q=0
Apply de L’Hospital rule to the right-hand side of
7]
—(0) = lim —= Bt (0)

Then we get the equality (B.2). O
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