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Introduction. 

Let x: C U {00} \ {gi,... , qn} —> R3 be a complete conformal minimal im- 
mersion.   For each end qj (j = 1,... ,n) of x, the flux vector is defined 
by 

(0.1) ^ := / nds, 
ij 

where 7^- is a positively oriented curve surrounding qj, and ft is the conormal 
such that (7J., n) is positively oriented. It is well known that the flux vectors 
satisfy a "balancing" condition so called the flux formula 

n 

(0.2) E^ = 0- 

The minimal immersion x is called an n-end catenoid if each end qj is of 
catenoid type. The catenoid and the Jorge-Meeks surfaces [JM] are typical 
ones. Recently, new examples of n-end catenoids have been found by [Kar], 
[L], [Xu], [Rossi], [Ross2], [Kat] and [UY]. For any n-end catenoid rr, each 
flux vector ipj is proportional to the limit normal vector u(qj) with respect 
to the end qj, and the scalar w(qj) := ipj/Anvfaj) is called the weight of the 
end qj. In this case, the flux formula can be rewritten as follows: 

n 

(0.3) X^faXfcHO. 
i=i 

It should be remarked that w(qj) may take a negative value. 
We consider the inverse problem of the flux formula proposed in [Kat] 

and [KUY1] as follows: 

83 
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Problem. For given unit vectors v := {t^i,... , vn} in R3
; and nonzero real 

numbers a := {a1,... ,an} satisfying Y^j=ia^vj = 0 (we call such a pair 
(v,a) flux data), is there a (non-branched) n-end catenoid x: C U {00} \ 
{^15 • • • 5 Qn} —* R-3 such that v(qj) = Vj and aj is the weight at the end qj ? 

We remark that Kusner also proposed a similar question (see [Rossi]). 
Rosenberg and Toubiana [RT] found solutions with branch points in the 
class that the Gauss map is of degree 1. But if one wishes a non-branched 
solution, the degree of its Gauss map must be n — 1, which is the case just 
treated in this paper. 

The problem is not exactly affirmative. By the classification of Lopez [L], 
we can see that the answer for n < 3 is "Yes" except for the case when two 
of {VJ}^==1 coincide. Moreover, for n > 4, some obstructions exist as closed 
conditions in the space of flux data as shown in our previous paper [KUY1]. 
In spite of these obstructions, the authors also showed in [KUY1] that the 
inverse problem is true for almost all flux data (v, a) when n = 4. In this 
paper, we treat the case n > 5 and show the following theorem: 

Theorem. For each integer n > 3, the problem is solved for almost all flux 
data. 

In Section 1, we reduce the inverse problem to seeking a sampling point 
satisfying certain non-degeneracy conditions. Two lemmas in Appendix A 
are applied to complete the reduction. In Section 2, we shall give a proof 
of Theorem. However, required technical calculations are done in Section 3 
and Appendix B. 

The above general existence theorem does not apply for the case that 
all flux vectors lie in the same plane, since such flux data are contained 
in a measure zero subset in the set of all flux data. We say that such 
minimal surfaces are of Type 11. In [KUY2], we show that our approach 
in this paper can be modified even for such a specified case and prove the 
general existence of n-end catenoids (n < 8) of Type II. Recently, Kusner- 
Schmitt [KS] explain the moduli space of minimal surfaces with embedded 
planar ends by using the term of spin structure of Riemann surfaces. It 
should be remarked that our approach can also be interpreted in terms of 
spin structure (see Remark 1.5). 

The authors are very grateful to Professors Yusuke Sakane, Ichiro Enoki 
and Koji Cho for valuable discussions and encouragement. 
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1. Reduction. 

The flux vector ipj (j = 1, ...,n) given by (0.1) in Introduction can be 
rewritten as follows: 

(1.1) tpj :=-Im( <f (l-g2)oj, I y/=i(\ + g2)u>, I 2gu\ , 

where (5, UJ) is the Weierstrass data of the minimal immersion 

rr:CU{oo}\{gi,... ,gn}->R3 

given by 

dxz 

g := — -==—-,        UJ := dxl — y/^ldx2. 
dxl — yj—ldx1 

On the other hand, the well-known Weierstrass representation is written as 

x = Re I f (1 - g2) u, f v/=T (1 + ^2) w, T 2^) . 

In particular, the monodromy vector of the immersion around the end q^ 
(resp. the flux vector of qj) is the real part (resp. the imaginary part) of the 
residue of the holomorphic vector 

dx = 1 ((1 - g2) a;, y/^1 (1 + g2) a;, 2^) , 

around the end z = qj. We have shown in the previous paper [KUY1] that 
the inverse problem of the flux formula reduces to finding solutions of a 
system of algebraic equations: 

Theorem 1.1 ([KUY1]). Let (v^a) be a pair of unit vectors 

v = {vi,... ,vn} 

in R3 and nonzero real numbers a = {a1,... ,an} satisfying the balancing 
condition: 

n 

(1.2) Eai^ = 0- 
3=1 
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Then there is an (evenly) branched n-end catenoid 

x: CU{oo}\{gi,... ,9n}->R3        fa / oo) 

such that the induced metric is complete at the end qj, v(qj) = Vj and ai 
is the weight at the end qj (j = 1,... , n), if and only if there exist complex 
numbers 61,... , bn satisfying the following conditions: 

(1.3) 

(1.4) 

vYbkPi^Pk=aJ 
^     Qj - % 

kPjPk + 1 
(j = l,...,n), 

yiybkPm^l = o 
*-^        ni — nu 
k = l 

Qj - Qk 

where pj := cr(yj), a : S^ —> C U {oo} is the stereographic projection, and 
we assume pj ^ oo. 

Moreover, the surface x has no branch points if and only if the polyno- 
mials 

(1-5). 

(1.6) 

Q(*):=XVn (*-%), 
7 = 1 k = 1 

fc = i 

are mutually prime and one of them has degree n — 1. 

Remark 1.2. When pj = rgy, the theorem reduces to the results in the 
first author [Kat]. In this case the system (1.3) and (1.4) reduces to 

rVj2bk = aj 

k = 1 

n 

& = i 
9j - 9fc 

(j = l,... ,n). 

= 0 

As seen in [Kat], the surface has no branch point if and only if /3 := 

Z)"=l ^ T^ 
0- By using the relation 

Q(z) 
= rz — 

r/3 
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it is also checked directly from the last condition of the theorem. 

Remark 1,3. The position of the ends {gi,... ,gn} in the source domain 
C U {00} has the freedom of Mobius transformations. For example, the 
following normalization is possible: 

qi = 1,        gn_i + gn_2 = 0,        qn = 0. 

Remark 1.4. The system of the equations (1.3) and (1.4) has another ex- 
pression 

(1.7) 

(1.8) 

Moreover we may replace (1.7) by 

(1.9) 

In fact, if we set 

PJ 
N2 + i' 

then (1.3) and (1.4) are written as 

Pilj - 5J = a3 •        7i + P75j = 0. 

It is equivalent to the relations 

lj = oP- Pj 
Pjlj + Sj = a3 ibil 

biP + l' bil2 + l' 
that is (1.7) and (1.8). On the other hand, 

i    \Pj\2 ,bil2-l «j , a? 

which yields (1.9). 
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Remark 1.5. The construction of n-end catenoids mentioned above is re- 
lated to the spinor representation of minimal surfaces (cf. [KS]); 

x = Re( fZ(sl
2-s2

2)JZV^i(s1
2 + s2

2), T 23,82), 
\JZ0 JZQ JZQ / 

where (si, 52) is a pair of meromorphic sections of the half-canonical bundle 
on C U {00}. In fact, si and 52 have the following explicit expressions in 
this case: 

Q(Z)    r-r P(Z)      r— 
R(z) R(z) 

where we set 

n 

R(z):=H(z-qk). 
k=l 

Theorem 1.1 produces many n-end catenoids as seen in [Kat] and 
[KUY1]. First, we fix our attention to the equation (1.4). We consider 
a matrix 

(1.10) W?^) 

where the diagonal components are interpreted as 0. Then the vector 
t(61,... ,6n) belongs to the kernel of the matrix Ap. As shown in the 
later sections, it is reasonable to expect that the rank of the matrix Ap 

is generically n — 1. In this case, t(61,... , fen) should be proportional to 
any column vector of the cofactor matrix Ap of Ap. (By the definition, 
APAP = ApAp = (det AP)I holds.) So we set 

bp(q) ^(bpfa),... ibp(q)) := the n-th column of the cofactor matrix Ap(q). 

Now we reformulate the problem: For fixed p := (pi,... ,pn) G Cn, define a 
rational map between two complex projective spaces 

J?P = [/p
1,...,^]:Pn-1^Pn-1 

by 

(1.11) /ifo, ...,«„):= %(<!) J2bkP^^r     0' = 1. • • • .»»)• 
k& qj     qk 
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We set 

JJSg'fof) := A(g)5 • /*(«), 

where A(q) is the difference product defined by 

n 

(1.12) A(gi,...,gn):= JJC^-gO- 

It is easily seen that each ft?p is a homogeneous polynomial in gi,... , gn 

and J^p has another expression 

^P 
= [j^pi • • • 5 J^pJ* 

This new formulation is reasonable in the following two senses: 

• Any homothety of n-end catenoids changes their weights (a1,... , an) 
only by a constant multiplication. It allows us to projectify the image 
oiMv. 

• Changing coordinates of n-end catenoids by homothetic transforma- 
tions corresponds to complex multiplications of (91,... , qn) (see Re- 
mark 1.3). It allows us to projectify the domain of ,Hp. 

Since pj is the stereographic image of Vj, the balancing condition (1.2) is 
rewritten as 

^biP + i       '     ^biP + i 

We define a subspace W"_4 in pn_1 by 

W^-4 := [^.....aTeP""1; 

_ir-l   .• _ n V-      Vj i _ A V-     . Pi = 0 y; pL^a^ = 0, V r-f—0* = 0, V H^-r^' 

We will show that for open dense p G Cn, the image of the map Ttv is open 
dense in W^ ~4, and next show that it covers open dense subset of the totally 
real set 

>VR = {[a] € W;-4; a? € R, (j = 1, • • • ,n)}. 
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Then the image of the map Hp contains [a] G WR for almost all flux data 
(p, a), and Theorem in Introduction is obtained. If ,Hp is a holomorphic map 
and there is a point at which the rank of dHp is n — 4, the surjectivity of the 
map follows by the proper mapping theorem (see [GR]). But unfortunately, 
the map Mp is singular on the set fj^i Z(/4), where Z(/4) is the set of 

zeros of f{?p. As shown below, we will overcome this difficulty by a usual 
blowing up process. 

From here, assume dim^i,... , vn) = 3, where Vj := CT~
1
(PJ) and a is 

the stereographic projection. Then clearly dimW^"4 = n — 4. This implies 
that dim Wp~4 = n - 4 holds for open dense p e Cn. Now we have the 
following lemma: 

Lemma 1.6. For each p G Cn, the following relation holds: 

^Jz(Ap)\flz(/^)j cw;-4, 

where Xp is the determinant of the matrix A • Ap and Z(Ap) is the set of 
zeros of the homogeneous polynomial \p. 

Proof Let q G Z(Ap) \ fj^i Z(/4)- If A(g) = 0, then it is easy to see that 

q e f]]=1 Z(/4). Hence A(q) ^ 0, and we get (1.3) with V = V{q) (j = 
1,... , n). Recall Remark 1.4. Then the assertion of the lemma immediately 
follows by summing up (1.8), (1.7) and (1.9) for j = 1,... , n. □ 

We define an (n — 1)-matrix Jp by 
o o 

ddetAp   dJl_ddetAp dj^ 
dqn        dqj           dqj dqn 

(j = l,...,n-l). 

' k,j=l,... ,n-l 

/P,        fn 
Jp 

The matrix Jp has a direct expression 

jp 
z:= 

(dde^M kdfl\_ddetAE(dfl kdfl 

I      dqn       {dq/P      JP dqj f dqj       \ dqn
J'      Jp dqn 

k,j=l,... ,n-l 
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The following proposition plays an important role to prove Theorem in In- 
troduction. 

Proposition 1.7. Suppose that there exist UQ G Cn and a point c = 
[ci,... , Cn] G P71-1 satisfying the following conditions: 

(1) ci,... jCn are all distinct] 

(2) The rank of the matrix Auo (c) is n — 1 

(3) 9det AUQ/dqn does not vanish at q = c: 

(4) The rank of the matrix Juo(c) is n — 4 

(5) Two polynomials P(z) and Q(z) defined in (1.6) and (1.5) associated 
with the data (q^p) = (C,UQ) and b = buo(c) are mutually prime and 
one of them has degree n — 1; 

(6) /4(c)^0(j = l,...,n); 

(7) c^0(j = l,...,n-l). 

Tfoen t/iere exists an open dense subset U C Cn and an open dense subset 
Qp of the totally real set WR = {[a] G VV^"4; aj G R} such that, for any 
p G U and [a] G fip, there exists an (non-branched) n-end catenoid with the 
flux data (p, a). 

By the proposition, the inverse problem of the flux formula can be solved 
for almost all flux data if one succeeds to take such a point c. This will be 
done in the next section. To prove the proposition, we shall prepare several 
lemmas. 

By the condition (4), at least one (n — 4)-submatrix Suo of Juo is of 
rank n — 4. Let I < ji < J2 < ' — < jn-A < n be the indices of the 
columns of the submatrix 5U0, and {mi, ra2, ma} their complement, namely 
{mi,m2,m3} = {1,... ,n - 1} \ {ju ... , jn_4}. By Remark 1.3, we may 
restrict the flux map into the following subspace of P71-1 containing the 
sampling point c: 

Vn"3*:= 
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Now we define a homogeneous polynomial in gi,... , gn by 

Hp(q) := A(g)2^^(?). det (A(q)lSp(qj) • /^(g) • ff /4(g) • JJ ft, 

where / is chosen sufficiently large so that det (A (q)lSp(q)) is a homogeneous 
polynomial in 51,... , gn, and i?p is the resultant of the two polynomials P(z) 
and Q(^) of degree n — 1 defined by (1.6) and (1.5). (It can be easily shown 
that Rp is also a homogeneous polynomial with respect to q. ) Then by the 
conditions (l)-(7), c G Vn~3 satisfies Huo(c) ^ 0. We prove the following 

Lemma 1.8.  The subset 

U:={peCn; Z(Ap) H Vn-' £ Z(HP)} 

is open dense in Cn
; where Xp = det (A - Ap) is the homogeneous polynomial 

defined in Lemma 1.6. 

Proof. Obviously U is an open subset of Cn. Suppose that U is not dense 
in Cn. Then there exists an open subset V such that 

(1.14) Z(Ap|Vn-3)  C  Z(flp|vn-3) (p G  V). 

Since Vn"3 = Pn~3, by Lemma A.l in Appendix A, (1.14) holds for any 
p G Cn such that Ap ^ 0. But this contradicts the fact that Awo(c) = 0, 
A^^'O and Huo(c)^0. D 

Roughly speaking, if fflp has no singularities and is of maximal rank, then 
it is surjective and we can find a pair (q^bp(q)) satisfying (1.3) and (1.4). 
But unfortunately, J%p has singularities on f)™^ Z(/4)- For this reason, we 

define a new variety V71"3 and a map M^: V71"3 -+ W^"4 instead of V71"3 
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and Fdp as follows. First we consider an algebraic set 

yn-Z = | ([91, • • • , ?n], [a1, • • • , an]) G P""1 x P""1 ; 

aifek = akfei       (j,k = l,...,n), 
n    1      19       ^ n n   

^N2 + i       '^bil2 + i       '^N2 + i 
= 0 

(jf = 1,... ,n) S, 

and define two canonical projections: 

T:r-39(b],[a])^[9]eVn-3, 
7r':^-33(M,H)->[a]€Wp"-4. 

These two projections are both well-defined on yn~*. Let Vn~3 be the 
algebraic closure of the set 

(1.15) Vr"e-
3 := TT-

1
 I V""3 \ fl Z(/4)) • 

We denote the restriction of the first projection TT to Vn~3 also by TT. We 
remark that 7r|^n-3 : Vr

n
eg

3 -* Vn"3 \ 0^=1 Z(/4) is bijective. On the other 

hand, we denote the restriction of the second projection TT
7
 to Vn~3 by 

Hp : V71"3 -► W^-4. 

The map ^^ o TT is well-defined on V^g3, and coincides with the map jFtp. 

Lemma 1.9. For each p G U satisfying dimWp"4 = n — 4, there exists an 

irreducible component Xn_4 of the algebraic set Z(Ap o TT) D Vn~3 such that 
Hp o TT is not identically zero on Xn~^. In addition, the restriction of the 

lifted flux map Mplgn-i : Xn~4 —> VV^-4 is surjective. 

Proof. Suppose that Z(Ap o TT) D V71-3 C Z(jHp o TT). Since Hp is identically 
zero on the singular set PljLi Z(/^p), it follows that 

Z(Ap)nvn-3cZ(tfp). 
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But this contradicts Lemma 1.8. Hence there exists an irreducible compo- 
nent Xn~4 of the algebraic set Z(Xp o TT) n Vn"3 such that Hp o TT is not 
identically zero on Xn~4. We set 

Xn-4:=7r(Xn-4). 

Now we take a point XQ G X71-4 such that HP(XQ) ^ 0.  Consequently, we 

have XQ £ fXj^i Z($P) 
an(l so ^p(xo) € W^-4 is defined. We remark here 

that the rai-th component of XQ in the homogeneous coordinates is not equal 
to zero. Now we take a coordinate of Pn~1 around XQ defined by 

(f l O 3 X = (Xl, . . .  , Xmi — i) XTOI+I} • • • ? "^^J 

Since we chose a;o so that Hp(xo) i=- 0, it holds that the derivative t :g- 
does not vanish at #0. So by the implicit function theorem, there exists a 
function Qn defined on a sufficiently small neighborhood of XQ such that 

= det i4.p(Xij . . . , Xrni — i^ 1, Zmi+l; • • • yxn—li VnV^JJ == ^, 

Since 

ffi 7711 
-1        r       _^2 _£m3 yn-3 
—   1, ^7712   — ) ^7713   — ^Al ^ ? 

^mi ^mi 

(XJ^... ,£7^-4) is considered as a local coordinate system of the variety 
X71-4 around the regular point XQ. Since 

dQn _    ^det^  Sdet^p . 
9^ dqjt dqn 

holds, one can easily check that the condition det5p(xo) ^ 0 implies that 
the matrix 

0(/)°y) | dQnd(f}ov) 
OX j, CJX n, CJXfi 

k=l,... ,n— 1; Z=l,... ,n—4 

is of rank n — 4 at XQ. Hence the Jacobi matrix of Mp is of rank n — 4 at 

xo, and so is that of Hp at 7r~1(a;o). Thus by the proper mapping theorem, 
M^(Xn~4) is an analytic subset of dimension n — 4 in the same dimensional 

complex projective space W^"4. Hence ^(X71"4) = W^"4. □ 
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Lemma 1.10. Let WR = {[a] G W^"4 ; a,- G R}. Then 

{w;-4 \ FtpiZiHp o TT) n xn-A)} n WR 

is an open dense subset in WR. 

Proof. By the proper mapping theorem and the theorem of Chow, Mp{Ti{Hvo 
i^-4. Thus it is a closed subset in W^" TT)) is an algebraic subset of WI1 4. Thus it is a closed subset in W^  4 in 

the usual topology. Hence 

{w;-4 \ Mp^Hp o TT) n ln-4)} n WR 

is an open subset in WR. Suppose that it is not dense in WR. We may 
assume that Mp^Hp o TT) H Xn~4) is common zeros of some homogeneous 
polynomials fYf=i ^hj). Then there exists an open subset in W^ _4 on which 
each hj is identically zero. Since WR is a totally real subset of the complex 
projective space W^'~4, by Lemma A.2 in Appendix A we have 

/>! = ... = ^ = 0    on w;r4. 

This implies that M^(Z(Hp o TT) n X71"4) = W£~4. So it holds that 

n - 4 = dim W;r4 = dimM^(Z(Hp o TT) n X71'4) 

< dimZ(Hp o TT) n Xn-4 < diml71"4 = n - 4. 

By the irreducibility of X71"4, we have Z^ o TT) n X71"4 = X71"4. But this 
contradicts the fact that Hp(xo) ^ 0. □ 

jProo/ o/ Proposition 1.7. Let p be a point in f7 satisfying dim W^ 4 = n—4. 
As we mentioned before, dim W^ ~4 = n — 4 holds on an open dense subset 
of {p G C71}. Then for any 

[o] e (w;-4 \ ^(Z(jyp o TT) n ln-4)) n WR, 

there exists x G X71"4 \ 7J(HP) such that Mp(x) = [a] by Lemma 1.9 and 
Lemma 1.10. Since f£p(x) / 0 and also the resultant Rp(x) does not vanish, 
(x,bp(x)) induces an n-end catenoid with the flux data (p, a) by Theorem 
1.1. D 
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For the later application, the following modification of Proposition 1.7 
is needed: Recall here that any elements of the matrices Ap and Jp are 
rational functions in pi, •.. ,pn, pi,... ,Pn and gi,... , gn. Let Ap and Jp be 
the matrices obtained by replacing pn by pn, namely 

(1.16) ip := Ap(pi,... ,Pn,Pl,... ,Pn-l,Pn5?l,-.- ^n), 

(1.17) Jp := Jp(pi,... ,pn,pi,... ,pn_i,pn,gi,... ,gn), 

and let 6p (resp. /^, Wp"4) be the vector (resp. function, set) obtained by 

replacing pn in tfp (resp. $, W^"4) by pn. 

Proposition 1.11. Suppose that there exist UQ € C71"1 x R and a point 
c = [ci,... , cn] 6 P72-1 satisfying the following conditions: 

(1) ci,... , cn are aZZ distinct; 

(2) TTie ranA; o/ the matrix Auo(c) is n — 1; 

(3) <9det AWo/<9gn does not vanish at q = c; 

(4) XTie ran& o/ the matrix Juo (c) is n — 4; 

(5) TW polynomials P(z) and Q(z) defined in (1.6) and (1.5) associated 
with the data (q^p) — (c,uo) and b = 6W0(c) are mutually prime and 
one of them has degree n — 1; 

(6) /4(c)^0(7 = l,.•.,«); 

(7) Cj±Q<J = l,...,n-l). 

Then there exists an open dense subset U C C71-1 x R and an open dense 
subset Sip of the totally real set WR = {[a] G Wp~4; a>j € R} such that, 
forp = (pi,... ,pn) G f/and [a] 6 fip; tfiere exi^s an (non-branched) n-end 
catenoid with the flux data (p, a). 

Proof. The proof of Proposition 1.7 works even if we replace pn by pn. 
When pn is real, Ap, Jp, ,Hp and VV^ _4 coincide with ^4p, Jp, Mp and Wp _4 

respectively. In fact, by the same proof as Lemma 1.7, we can prove that 
U :={pe C71-1 x R; Z(XP) n V71"3 £ Z(iJp)} is open dense in C71"1 x R, 
because we only need the real analyticity with respect to the parameter p 
for applying Lemma A.l. □ 



General Existence of Minimal Surfaces 97 

Remark 1.12. To solve the inverse problem of the flux formula, we may- 
assume that pn G R since by a suitable rotation in {(x, y, z) G R3}, we can 
choose that vn is in the zz-plane. 

2. Finding a regular point of the flux map. 

In the previous section, we reduced our inverse problem to finding a regular 
point of the flux map. However, the following difficulties arise in this process. 

• As seen in [Kat] and [KUY1], n-end catenoids with many symmetries 
are easy to construct. But unfortunately, they are not expected to be 
a regular point of the flux map because of their symmetries. 

• If we take a less symmetric n-end catenoid, the computation of the 
rank of the flux map is very complicated and hard to calculate even 
by computer. 

To avoid these difficulties, we first take an n-end catenoid with many sym- 
metries, and next consider a perturbation of it which attains the desired 
properties. 

Set m := n — 1. First we consider a 1-parameter family of (m + l)-end 
catenoids given in [Kat]; 

(2-1) 

Pj 

a? 

V 

= 'rC,i 1 (j = l)... ,m), pm+l 

= 1^-r(r2 + 1) (j = 1, • • • , m), a^1 

= CJ_1 (j = l,...,m), qm+1 

= 1, 0- = l,...,m), bm+l 

= 0, 
m(m~ 1)      o     -,\ 

= -L-2 Mr2 - 1), 
= 0, 

= ^V-i), 

where r > 0, r ^ 1 and £ := exp(27rv/—T/ra). In fact, they are (m + l)-end 
catenoids without branch points by Remark 1.2, and are invariant under 
the action of the cyclic group Zm. Unfortunately, as we shall see below, 
Jp{q) = Jpio) — 0 holds for any of these examples, namely they all are 
singular points of the flux maps. However, we will show that there exists a 
regular point near them. 
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Note here that the matrix Ap(q) (defined in (1.10)) for the example above 
is given by 

/ 

(2.2)    4,(g) = 

0 

92-91 

91-92 

0 

l+r2C 2/-m-l 

qi-qm        qi-qm+i 

i+r^C 

\ 
2/-m-2 

l+r2^-(m-l)        1+r2^-(m-2) 

qm—qi qm-q2 

1 1 

q2 -q™ q2-qm+i 

0 

1 
qm+l— qi qm+i—q2 qm+i—q™ 

qm—qm+1 

0     / 

Now, we consider a 1-parameter family of matrices 

(2.3)     A(qtfi):= 

(       0 

92-91 

91-92 
i±e£ ■m— 1 

91—9m 91—9m+l 

1±HC 

\ 
•m-2 

q2—qm        q2—qm+i 

i±K -(m-1) 

v 
qm—qi 

1 
qm+i— qi 

I+MC -(m-2) 

qTn-q2 

1 
qm+i—q2 

0 

l 

i 

qm+i—qm 

qm—qm+1 

o   7 

By comparing (2.2) with (2.3), we have A(q, r2) = Ap(q) for p as in (2.1). 
When we evaluate it at q = q0 := (1, C1, • • • , Cm-1> 0), we have 

(2.4)   A(q0,fi) = 

(        0 

C1-! 0 

■m—1 

/m-l_l ""Tm-TTITI 

\   -i -c -i 

l-C™"1 

i+MCm"2 

(['l—^m—1 

1     \ 

C"1 

0 ^-(^-i) 

_^-(m-l) o        J 

We remark that the matrix A(q0, ji) has the simplest form when fi — — 1. 
The following lemma holds. 

Lemma 2.1.   Tfoe (m + l)-matrix A(q0
1fi) is of rank m except for finite 

values of fi E R. Moreover A(q0, /x) /ia5 a 0-eigenvector given by 

(i,...,1,^(^-1)). 
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Proof. The second assertion is easily checked. Hence the rank of the matrix 
A(q0,— 1) is at most m. Moreover, it is easy to see that the rank of the 
matrix A(q0, —1) is m. Since each component of A(q0, //) is a polynomial in 
/x, the first assertion is obtained. □ 

Remark 2.2. Similarly, a O-eigenvector of tA(q0^iJb) is given by 

i(l,...,l,i{2Ai-(m-l)(M + l)}). 

Proposition 2.3.  The following identity holds. 

ddetA, 

dQj 
-(q0,IJ,) = 0       (j = l,...,m + l). 

Proof. We denote the cofactor matrix of A(q, fi) by B(g, ji). By Lemma 2.1 
and Remark 2.2, it can be easily checked that 5(g0, /i) is written in the form 
S(q0, n) = /(/x)S'(/x), where /(//) is a polynomial in /JL satisfying /(—I) = 1, 

/ i   ...    i      VM   \ 

(2.5) S(J*) := 
i     ...     1        V(^) 

\(p(fi)  ■ ■ ■   <p(n)  ^(/i) • v(^)/ 

and i^(/i) and ip(fi) are explicitly given by 

y(A*):=—o—(A*-l)i        V'(^) -H 2/i-(m-l)(At + l) }• 
Note here that 

<9det,4 
dq. 

~(q,^=Tr(^-(q,^-B(q,tJ,)Sj 

always holds for any j. Denote the (k, Z)-component of the matrix A(q, /z) 
by aki(q,fj.). Then we have 

dqj (q0^) = { 

(Ci-i _ ^-1)2 
_^-20-l) 

1 + MCi~fe 

(C*-l - Ci-1)2 
£-2(i-l) 

0 

(A; = j;Z = l,... ,m;l^j) 

(k = j; I = m + 1) 

(fc = l,... ,m;fc^ j;l = j) 

(k = m + l;l=j) 

elsewhere 
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for j = 1,... ,771, and 

dotki , o    \ 
'C-2(fc-l) (ife=l)...>m;|=m+l) 

_^-2(l-i)    (k = m + l;l = l,...,m) 

0 elsewhere 

for j = m + 1. 

For j = 1,... , m, by using the formula above, we have 

ddetA 
dqj (<A^)=Tr(^(<A/x) •£(?%)) 

\dakj r  0 dc^z    0 
= E/0')!S1(9O./')+E/(M)^(«O.M) 

fc = 1 

+ 

dqj 

d<Xjrn+l,   0 

( = 1 
1*3 

dqj 

dqj WtiMM + ^^(^/(MMAO 

= /(/*) < 

■ r^-'VM+r20-"^) 

= /we-*-' < E ^S - E 7^7& - (-»- »)/■. is*1-^)2  fca-w 
r7n—1 

i + C* (m-2) = MM)c-20'-1)|Ecfc(1_cfc) 

{ra—1   1 m—1        ^ 

E^ + ET^-(—2) 
/C—J. AC—X > 

= HMC**-* {"I + (m - 1) - (m - 2)} = 0. 
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On the other hand, for j = m + 1, we have 

&*>=-(^>-M 
k=i i=\ 

m 

k=l 

This completes the proof. □ 

By Lemma 2.1 and Proposition 2.3, it follows that Jrqo(q0) = 0 (r E R). 
Therefore, we try to perturb a sampling point. To do this, we consider an 
m-matrix rm4-i()u) by 

rm+l(M) •= l^^^(9 '"> a^-(9 '^ 
.^(Alo.a^(A,, 

i,fc=l,... ,m 

where we denote the (j, fc)-component of the cofactor matrix B(q,n) by 
PjkiqilJ), and set 

(2.6) 

/fc(^M) := Pkm+l(q,IJ>) 

i = i *     ^ 

/■fc-l 

^fc  - #771+1 

(fc = 1,... ,m), 

.C,--i 
/m+1 (?, /^) ':= Pm+i m+i (g, M) yi ^ m+1 (g, M) 

^ #771+1  - ^j 

(Compare with the definition of the matrix Jp(q) and fp(q).) We prove the 
following 
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Theorem 2.4. Suppose that there exists a positive number ji such that the 
matrix rm+i(/^) (n = m + 1 > 5) is of rank m — 3(= n — 4) and 

/n ~N 52 det ^4 , n    x   , ^ (2-7) assssr^"''10- 
Then, for each of almost all flux data, there exists an n-end catenoid with 
the flux data. 

Till now, we fix the parameter pm+i at 

Pm+i = 0. 

Let us now move pm+i as a complex parameter. 

Lemma 2.5. Let /i ^ 1 be a positive real number such that f(/j) ^ 0, where 
/(/i) is a polynomial given by (2.5).  Then 

ddetAp(q) 

dpm+l 

at the point q = q0 = (l,^1,... ,Cm_1)0) for P — -y/J^Q^*, where Ap(q) is 
defined in (1.16). 

Proof We denote the cofactor matrix of Ap(q) by Bp(q). Since A/jIqo(q) = 

A^qo(q) for any fi > 0, it holds that B^jIqo(q) = B^j2qo(q) and in particular., 

we have B/jjqofa0) = B/jIqo(q0) = B(q0,fj,). Then we have 

ddetAp(q0) 
= Tr(

dM<P) 
p=^rilq0 dpm+l dpm+l 

Since 

the (j, fe)-component oi -^  

p=y/Jiq0 j 

(,7 = 1,... , ra; fc = 7n + 1) 

(j = m + l;fe = 1,:.. ,m) 

elsewhere, 
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by (2.5), we have 

'dAp(q0) Tr 
dpm+i P=\/M90 

B(q0,n)j 

{m 

fc=l 

(m - I)2 

= -(m-l)/0*MA*) = (/i-!)/(//) ^0. 

Now the assertion is clear. D 

Proof of Theorem 2.4. Since /(^) is a polynomial in // and /(/i) ^ 0, by 
our assumptions and Lemmas 2.1 and 2.5, we can choose a positive number 
H such that /(//) ^ 0, rank A /j2qo(q0) = m, rankrm+i(/i) = m — 3, 

a2deti 
<9<7i<9# 

^(^^o and 
adetip(g0) 

m+l dp, 'm+l p^V&v0 
#o. 

Throughout this proof, we fix the parameters except for gi and pm-t-i to the 
same values as q = q0 and p = y/Jiq0'. 

Pj = \/MC'7"1        (i = l,... ,m), 

9j = C*7"1 (j = 2,... ,m),        gm+i = 0. 

Regard det Ap(q) as a function with respect to only qi and pm+i, and apply 
the implicit function theorem to the point (gi,pm+i) = (1,0). Then there 
exist an open neighborhood U C C of 1 G C and a complex analytic function 
Pm+i = Pm+i(qi) :U -^C such that Pm+i(l) = 0 and 

det A 
Pm+l^Prn+liqi) 

= 0        (qiEU). 

Since rankiv7Igo(g0) = m, rank ^|pm+1=pm+1(g1) = m holds also for qi near 
1. 

Since A = A at p = y/jlq0, by Lemma 2.3, we have 

9 det A /770o    n 
^ (q0) = 0        (j = l,...,m + l). 
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On the other hand, the assumption (2.7) yields 

d det Av 

dqm+i Pm+l=Pm+l(gi) 

^0 

for any qi =£ 1 enough close to 1. Therefore we have 

d(%/f?+1)   ^^ ^(/pV/r1) 
dqj ddetAp 

dqm+i 

d2detAv 

dq fm+l 

dut/fr1)  TST otit/ti*1) 
dqj d2 det Ap 

dqidqm+l 

-1 

dqm+i 

Pm+l=Pm+l(qi)/   jfi=l,... 

p=V^Q0]q=q0/ j,k=i,..., 

<92 det A /T70o    n   . 

y   dqidqm+i 

and hence 

rank X P'PmH-l=Pm+l(9l) 

= rank 
% 

— m — 3 = n — 4 

g(/PV/pm+1)   ^ ^(/pV/r+1) 
^ det Ap 
dqm+l Prn+l=Pm+l(qi)) j^l, . ,771 

for any ^i as above. 
Since the initial sampling point q = q0, p = yfjlcf* is chosen from the 

data which realizes a non-branched n-end catenoid (n = m + 1), A(g0) / 0 
and g? ^ 0 (j = 1,... , ra), the other conditions in Proposition 1.11 are also 
satisfied for qi near 1 such that pm+i G R. Now, by Remark 1.12, we have 
proved the theorem. D 

Thus we will get our main theorem in Introduction, if the matrix rm+i(//) 
is of rank m — 3(= n — 4) and (2.7) holds for some // > 0, which will be 
shown in the next section. 

3. Computation of rm+i(/i). 

In this section, we compute the matrix rm+i(/i) defined in the previous 
section, and show that it is of rank m — 3 for almost all /i £ (0,1) U (1, -foo). 
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(m -1 + ip)—^-— + 2^ —HI— + tvC   m 
dqj i = i 

l ^ k 

dqj 

Computation of (d/V^jX*?0, A4)-   As before, we write 

^(^M) =: (^Ow=i,...,m+i 

and 
5(g,/i) =: (/?/CZ)M=I5...^+I- 

By (2.6),  (2.5) and straightforward calculations, we have, for any fc = 
1,... ,m, 

dfk 

(3.1)       ^-/* 

at (q0,^), where 

»?i(/*) := 

and for A; = m + 1, 

r   m- 1 
- vO*)     0' = fc) 

Cfc-i _ 1 
(j = l,... ,m;j^k) 

(j = m+l), 

(3.2) 
So,- 

= /V' m 
QAiH-im+i      Y^gAm+i    //y^Cw   (J = I,...,«) 

fi© S     a* 1° (J = m + l) 

Hence we have only to compute /(//) and df3krn+i/dqj(q0, fi).   Denote 
the first m x m-submatrix of A(g0, fi) by A0(//). Clearly 

/^ = Pm+im+i = detA0. 

Take the diagonal matrix 

Ci^diag^C1,...,^"1]. 

Since CiA0 is a cyclic matrix whose (j, fc)-component is equal to (1 + 
MCA;~,7)/(1 ~ C^-"7)? and whose diagonal components vanish, it can be di- 
agonalized as 

C2-1C1A
0C2 = diag^i,... , ^m], 
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where 

C2:= 

/   1 
c1 

1 

c2 
• 1\ 
• 1 

,^m-l     £2(m-l)     ...     j/ 

and the eigenvalues ifri,... , ipm of Ci^40 are given by 

h=2 S 

m —1\ /_     m+l\     /7      . HX 

772—1 m — 1 
-M + (/ = m). 

Now we have 

/^=(-i)m-in^. 
i=i 

Note here that ipi = ip and ^m = — <p and that ipi(fj.) j^ 0 holds for any 
H € (0,1) U (1, +oo) (/ = 1,... , m). 

To compute the derivatives dB/dqj(q0, /J,) of the cofactor matrix B(q, /J,), 

we apply the formula (B.2) in Appendix B by putting X := Em+i, where 
Em+i is the (m + l)-matrix given by 

/0   •••    0   0\ 

Em+1 '■— 
0 

V0 

0   0 
0   1J 

For At(q, M) = A(q, fi) + tEm+i, we have already shown that 

A, n    x      SdetA, n    x det^(g0,/i) = -^—(g
0,//) = 0 

in Lemma 2.1 and Proposition 2.3. Moreover we have 

TY(£m+l • B{q*rn)) = /(AIMMWOO T^ 0. 
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Thus we may apply (B.2), and get the following identity 

B (3-3)    dqj- M\i):{dqj-  dt t=0 

m 
dt t=o   d<lj d(lj     dt t=o) 

at (^0, /x), where Yt(fi) is the cofactor matrix of A(q0
J /J,) + tEm+i. The first 

m x m-components of dYt(ii)/dt\t=o is given as the cofactor matrix of the 
first m x m-components of A(q0, /x), that is 

det A0 • (^r1 = ftptl; • Cadiag^r1,. • • ^m"1]^-1^ 
fvty0 

m 
here, we put 

\ 1=1 I j,k=lt...,m 

The other components of dYt(ij)/dt\t=o vanish. Namely 

d_ 
at t=Q 

Ytfa) = m 

\o 
0 

0   0/ 

Therefore we have 

(3.4)    (Wj?*) .S/^fld.yoVj.yO.ldl 
/1\ 

1 

at (g0, //). Recall here the values of (daki/dqj)(q0, fi) computed in the proof 
of Proposition 2.3. Now, by direct computation, we have 

(3-5)    0^^ ^ 
dqj 

x < 

1~ 2^772^V (fc,J = l,--.-,m) 

^(//) (fc = m + l;j = 1,... ,m) 

C1"^^^)^-!^)-1 (fc = 1,... ,m;j = m + l) 
0 (^ = ^ = 772+1), 
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where 

mifj) := 

m(m — 1)  | tpi (/i) + ^T {m -1 + (m + ^)) E ^^)'1} 

Putting it into (3.1) and (3.2), we get 

(3.6)    ^((iD
>/») = -/(M)V0*)2C1-i 

(fc = i) 

e^n + ^T i"1 + ("»+ ^)) E C^'^O*)-1}   (* ^ i). 

x < 

9qj 

2(m - 1 + v?(A*)) - m-^+^)7?2(/x) _ j^)    (fc, j = l,... , m) 

(2m + i)ip(fi) 
I 0 

In particular, we have 

2m 
(fc = ra + 1;j = 1,... ,ra) 

(k = 1,... ,m+ Ijj = m + 1). 

dqtfqm+x    \ dqj dqj    / kJ=1 m 

at (90,/i). □ 

Computation of (d2 det A/dqidqm+i)(q0, fj).   First we compute 

52de^(.0,-l) dqidqm+i 

= Tr ^.tf..,,.^,-^^.-,,.^,-,, 

It is easy to see that, 

d2otki 
dqidqm+i 

f-2    (k = l;l = m + l) 

(q0,-l)=l2      (k = m + l;l = l) 

0      elsewhere. 
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On the other hand, we have 

d_ 

dt 

By putting these values into (3.3), we have 

(3.7) 

(2-m         C1 

1        (2-m)C1    • 

/-m—1 

/■m—1 
0\ 
0 

Yt(-l) = 

1         c1 

\    0              0 
•    (2-m)r-1 

0 
0 

dhl  (9°, -1) = < dq, fm+l 

-(m-lJC^ + C1-* (fc,/ = l,...,m) 
(m-lJC1"* (fc = l,... 5m;Z = m+l) 
-(m -IJC1"' (fc = m + 1; Z = 1,... , m) 
0 (fc = Z = m + l). 

Now, by a straightforward calculation, we have 

(3.8) 
d2 det A , 0     _ ,        - x   , n (gu,-l) = m(m- 1) ^0. 

#91 #4 Wfl 

Since (92 det A/dqidqm+i)(q0, fi) is a polynomial in //, it does not vanish for 
any fi except for finite values. □ 

Computation of the rank o/rm+i(/i).    For any /i E (0,1) U (1,-t-oo) such 
that 

a2 det A     o    x/n -(q ,/i)^0, 
5gi5^ m+l 

define a cyclic matrix 

1      fdfk        fk   df 
■m+l 

k     f) fm+l 

(fWKdqi   fm+l dqj ;M=1_ 
Ci, 

where Ci = diag[l, C1, • • •, Cm 1]- Then it is clear that the rank of rm+i is 
equal to the rank of r^+1. The (k, j)-coinponent 7^ of r^l+1 is given by 

Ikj 
m — l + <p     m — 2 + ip 

m 2m m - m, 
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and the eigenvalues Xh • • • , Xm of r^+1 are given by 

m 

(    {11 + l){(m - l.)^ + m + 1}(Z - 1)(Z - m + 1) 
4^) (/ = !,... .m-l) 

0 (Z = m). 

Now it is clear that XKAO ^ 0 for Z = 2,... , m — 2, and r^l+1 is of rank 
m - 3. Consequently, rm+i is of rank m - 3 for any ^ 6 (0,1) U (1, +oo) 
except for finite values. □ 

Now, by Theorem 2.4, we get the following theorem: 

Theorem 3.1. For almost all given unit vectors v = {^i,... , vn} (n > 5) 
in R3

; and nonzero real numbers a = {a1,... , an} satisfying Y^Jj-i a^vj = 0; 
there is a (non-branched) n-end catenoidx: C\{gi,... , qn} —> R3 such that 
v(qj) = Vj and aj is the weight at the end qj. 

This theorem and the results for n < 4 ([L], [KUY1]) imply our main 
theorem in Introduction. 

Appendix A. 

In this appendix, we give two lemmas on real analytic families of algebraic 
equations which are applied in the proof of Proposition 1.7. 

Lemma A.l. Let {/p(<?i,... , qn)}penl and {ffpfaij • • • > 9n)}pGR* be two real 
analytic families of polynomials on C of degree bounded by m. Suppose that 
there exists a non-empty open subset U such that 

(A.1) Z(/p) C Z{gp)        (p e U). 

Then (A.l) holds for all p G Rz such that fp E£ 0. 

Proof. For each p £ R*, since the degree of fp is bounded by m, Z(fp) C 
Z(gp) if and only if (5p)m is divided by fp. We operate a differential operator 

Da •=  
Oq^-'-dq^ 
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into the rational function ipv := (5p)m//p. Let A/^^p) be a polynomial 
formally defined as 

AH^P) := (/P)
|a|+1 • £"</> 

which is the numerator part of D^ip. 
Now we fix an element po € Rz such that /p ^ 0, and choose an element 

go € C72 such that fp0(qo) ¥" 0- Since /p is real analytic with respect to the 
parameter p, we can take a subdomain V of U such that fp(qo) ^ 0 for all 
p e V, and (pp is a polynomial on C of degree bounded by m2 for any p e V. 

Hence for any multi-index |'a| > ra2, we have J^'a((Pp)(qo) = 0 for 
p G V. By the real analyticity with respect to the parameter p, we have 
•Afa(Ppo)(9o) = 0 for |a| > ra2. Since /p0(go) ¥" 0

? 
we get Da(p(qo) = 0 for 

|a| > ra2. Thus (pp0 is also a polynomial on C. □ 

The following lemma is easily proved by using the Cauchy-Riemann equa- 
tion. 

Lemma A.2. Let Wo be a totally real subset o/P71-1 defined by 

Wo := {[a1, ...,an}e P71"1; o> 6 R (j = 1,... ,n)}. 

Let h be a homogeneous polynomial on C. If h is identically zero on a 
non-empty open subset in Wo; t/ien fo = 0 on Pn_1. 

Appendix B. 

Let ^4 be an n x n matrix. The cofactor matrix B of A is the matrix satisfying 
the identity BA = AB = det A • /. In this appendix, we give an identity 
which is useful to compute a differential of the cofactor matrix of a singular 
matrix. 

Let Q, be a domain in C containing the origin, and A(q) : Q -* M(n, C) 
a smooth map into the set of all n x n matrices. Let B(q) be the cofactor 
matrix of A(q). We set A := A(0) and B := 5(0). Suppose that 

(B.l) detA=^- 
dq 

Then the following lemma holds. 

detA(q) = 0. 
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Lemma B.l. Let X be an n x n matrix such that Tr(XB) ^ 0.  Then the 
following identity holds: 

<-) >=raW>-§ t=o 

dt J>°-°>% }. 
t=oJ 

where Yt is the cofactor matrix of A + tX. 

Proof We set At(q) := A(q) + tX, and denote by Bt^q) its cofactor matrix. 
We have the following Taylor expansions: 

8A 
At(q) = (A + tX) + q—(0) + o(q), 

BB 
Bt(q)=Yt + q-^(0) + o(q). 

Since At(q)Bt(q) = detAt(q) ■ I, we have by taking the first degree terms 
that 

d_ 
dq 

_ detAt(q) ■ I = |£(0) ■Yt + (A + tX) ■ ^(0). 

Since 

d_ 
det(^ + tX) = T^iXB) ± 0, 

t=o 

A + tX is non-singular around t = 0. Hence we have 

£<»-<*♦» r*U 
l± 

det(A + tX) \ dq 

Apply de L'Hospital rule to the right-hand side of 

dq t-*o dq 

Then we get the equality (B.2). 

BA \ 
^detMq).I-—(0)-Yt\ 

dA 
detAt(q)-Yt-Yf—(0)-Yt 

D 
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