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In this paper, we prove that the image of a (pseudo)-holomorphic 
map from the unit disc with its boundary on a given totally real 
submanifold is represented as a finite union of the images of "sim- 
ple" discs allowing multiplicity with boundaries on the same totally 
real submanifold. This in particular fills a technical gap in relation 
to the Predholm and the intersection theory of Gromov's (pseudo)- 
holomorphic discs, which has been present in the literature on the 
applications of pseudo-holomorphic discs. 

With an appendix by Jean-Pierre Rosay 

1. Introduction. 

In recent papers [03,4], the second author has studied the structure of J- 
holomorphic discs with totally real boundary condition, in relation to the 
Predholm theory of J-holomorphic discs and its application to the problems 
of symplectic topology of Lagrangian submanifolds. We refer the readers to 
[03,4] for some motivation and importance of such a study. We also refer 
to [C] for the study of local structure of the image (near singularities) of 
classical analytic discs with totally real boundary conditions in several com- 
plex variables. This paper [C] in particular contains the examples that show 
how complex can be the local structure of boundary singularities of analytic 
discs with smooth, but not real analytic, totally real boundary conditions 
even in the classical context. 

A general perception in the literature concerning the Gromov theory of 
J-holomorphic discs, misguided by the experience from the results on the J- 
holomorphic spheres, has been that as in the case of J-holomorphic spheres, 
any J-holomorphic disc should satisfy either 
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(i) 

(1.1)   dw{z) 7^ 0 and w~l(w(z)) = {z} for some point z G D2    or 

(ii) it should be a multiple covering of a J-holomorphic disc satisfyinq 
(i.i). 

(See e.g. [P], [02] and [L].) Just as the applications of J-holomorphic 
spheres to the structure of rational symplectic 4-manifolds [M2], to the Floer 
homology of symplectic manifolds [F], [HS] and to the theory of Gromov- 
Witten invariants and quantum cohomology [R], [RT], [MS] have illustrated, 
this structure theorem for the spheres has been an important ingredient 
especially when one studies intersection theory and compactification of the 
moduli space of pseudo-holomorphic spheres. It is natural to believe that 
the corresponding structure theorem for discs will bear similar importance 
in its applications to symplectic topology of Lagrangian submanifolds (see 
[P], [L] and [02]), and to the theory of fillings by (pseudo-)holomorphic 
discs (see e.g., [H], [Y2]). This structure theorem has not been carefully 
addressed in the literature. See [Y2] for some study of structure of the 
image of pseudo-holomorphic discs in symplectic 4-manifolds under the "one 
sidedness" condition, which had been introduced by [BG] in the classical 
context of several complex variables. 

The second author pointed out in [03,4] that the presumed structure 
theorem for discs does not have the same form as mentioned above for 
spheres, and is a theorem to formulate and prove, which should require 
a non-trivial proof. In [04], he also made a first step to this goal by proving 
the following theorem, among other things, which can be considered as the 
J-holomorphic analogue to the more classical theorem in several complex 
variables. (See e.g., [St], [GS]). 

Theorem 1.1 [Theorem I, 04]. Let R C (M, J) be a totally real sub- 
manifold and w : (D2,dD2) —» (M,R) be a non-constant J-holomorphic 
map such that it extends smoothly to the boundary and 

^ 9x ^Int-D2n^~1(6A) is connected and simply connected 
(after adding a discrete set of points)" 

Then we can write 

(1.3) w = wob 

where w : (D2, dD2) —> (M, R) is a J-holomorphic disc with smooth exten- 
sion to the boundary, which is injective away from a discrete set of points 



Structure of the image of (pseudo)-holomorphic discs 33 

in the interior of D2 and b : D2 —> D2 is a finite Blaschke product. In other 
words, b is of the form with s > 1 

^) = eicIIi 
z-ak 

k=i-    akZ 

where c is a real constant and a^ are complex constants with \ak\ < 1. 

Following [St], [04], we call the map like w a simple map. In the above 
theorem, the hypothesis (1.2) cannot be dropped as shown by the following 
example given in [Remark 3.3, 03]: Consider the holomorphic map 

(1.4) w:H^C,    w(z) = zk 

where H C C is the upper half-plane. Identify CU{oo} = S2 and Hu{oo} = 
D2 C C and cffi = R C C. If k is odd and at least 5, this map does not 
satisfy (1.1) but cannot be written as a multiple covering of a simple disc. In 
this example, the set hitD2\w~l(bA) is not connected. See [Example 2.4, 
La] for the case when Int D2\w~l(bA) is connected but not simply connected 
even after adding a discrete set of points. 

These examples show that structure of the images of J-holomorphic discs 
is more complex than that of spheres in general. What makes things more 
complex for the case of discs, unless we impose the condition (1.2), is that 
unlike from the case of spheres, the multiplicity of the image point will not 
be constant but vary as the examples above show. Certainly any map of 
the form in (1.3) has constant multiplicity. In fact, as far as we know, most 
of the results in the classical theory of analytic discs in several complex 
variables escape this unpleasant phenomenon because they usually consider 
proper holomorphic maps of the type 

/rA-^C^r,    A = Int£>2 

where F C C^ is a compact subset of C^ (e.g. F = totally real subman- 
ifolds). In other words, these cases do not allow the boundary image to 
pierce through that of the interior. In respect to this, the main structure 
theorem below may be new even in the classical context of analytic discs in 
several complex variables. 

The above mentioned non-constantness of the multiplicity is due to the 
"piercing" of the boundary into the interior when we do not assume (1.2). 
It has not been a priori clear what would be the correct formulation of the 
structure theorem in general, which question was left open in [04]. However 
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based on the results from [Ml,3,4] and [04], it is not difficult to show that 
the set A\w~1(bA) is a finite disjoint union of open domains in A C C 
(See Corollary 4.3 below.) Each of these domains, after possibly adding a 
discrete set of points in the interior will become an open domain in A with 
genus g possibly bigger than zero. Then the main question to ask is whether 
domains with genus g > 1 will really occur in this union. We denote 

£ 

(1.5) A\w-1(bA)=[JEj 

j=i 

and by Ej the domain obtained by adding a discrete set of points in Ej. 
(See Section 4 for more precise definition of Ej.) 

It turns out that Ej are always simply connected when (M, J) does not 
allow a J-holomorphic sphere but high genus components can occur if (M, J) 
admits a J-holomorphic sphere (see Example and Corollary 4.11 in Section 
4). This gives rise to the following interesting result in Cn. 

Corollary. If J is any almost complex structure tame to the standard 
symplectic structure on Cn (e.g., the standard complex structure on C71), 
Ej defined as above are all simply connected for any J-holomorphic disc 
w'.(D2,dD2)^(Cn,R). 

However even when (M, J) allows a J-holomorphic sphere, we can still 
prove the following theorem which proves that at least the image of Ej under 
w is the same as that of a map from (I}2, dD2) —> (M, R) (see Lemma 4.6 
and its proof for the details). 

Theorem I [Theorem 4.4]. Let {EjY--^ be the connected components in 

the union (1.5) and Ej be as above. Then we can further decompose, if 
necessary, each domain Ej into the finite union UfSj so that w\^i can be 

reduced to a map Wj : (D2,dD2) —> (M, R) with Irnu^- = Imw\gi, and 

(1.6) [w\S]] = J2 K]    in H2(M, R; Z) 
i 

(See Corollary 4.11 for more detailed structure of the image of w when some 
Ej is not simply connected.) 

Since u^-'s satisfy (1.2), combining Theorem 1.1 and Theorem I, we ob- 
tain our main structure theorem. 
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Theorem II (Main Structure Theorem). The image of a J-holomor- 
phic disc with totally real boundary condition can be represented as a finite 
union of simple J-holomorphic discs (with multiplicity) with the same to- 
tally real boundary condition. Furthermore this representation preserves the 
homotopy class in ^(M^R). 

This theorem completes formulation and proof of the structure theorem 
that has been used in the literature. Once we have this structure theorem, 
one can then safely repeat the same kind of arguments as those for the 
sphere case in the generic transversality result, the structure of Gromov 
compactification of the moduli space of J-holomorphic discs and intersection 
theory of J-holomorphic discs that have been needed in the applications (e.g. 
in [P], [L] and [02]). 

The proof of Theorem I turns out to involve quite complicated combina- 
torial arguments, which are originally due to the first author, based on the 
local structure of piercing by the boundary through the interior image. The 
essential tool for the analysis of this piercing phenomenon is Proposition 
3.5. This is a unique continuation principle of the image along the bound- 
ary, which has some independent interest in its own right. Unlike the case of 
interior, the unique continuation fails in general due to "branching off" and 
so requires certain restrictions in its application as imposed in Proposition 
3.5. We include several figures in the course of the proof, which we hope 
helps readers grasp main arguments in the proof. 

We next study a finer structure of the "net" w~1(bA) in A and the image 
oiw:(D2

1dD2)-^(M,R). 
Let (f)1, : A —» Ej (identified with a disc as in (4.16)) be a Riemann map 

and denote 
wj = Mm o ^j : A -> M. 

Since wl^ is continuous up to the boundary and so is the Riemann map 

<^ : A —> Ep w'j is continuous up to boundary with w^dD2) C -R. By the 
standard boundary regularity theorem, wlj is smooth up to boundary. And 

it follows from the definition of Ej that tu*. allows a factorization like (1.3). 
We denote the corresponding simple map by £y*. and the Blaschke product 
by 6}, i.e., 

w1- = w1- o ft. 
3 3        3 

We first quote the following theorem proven in [04], which tells the 
structure of the image of simple maps. 
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Theorem 1.2 [Theorem II, 04]. Let w : (D2,dD2) -> (M,i2) be a sim- 
ple J-holomorphic map.  Then the following alternative holds: 

(i) there is a point z 6 dD2 such that 

tZT1^*)) n dD2 = {z}     and     dw(z) ± 0. 

(ii) the multiplicity of K : bA \ X —► Z+ is too except at a discrete set of 
points where X is the set of critical values. Furthermore, the image 
A := Image w becomes a smooth immersed branched Riemann surface. 

In particular, If (M, J) does not carry any closed J-holomorphic Riemann 
surface (e.g. like Cn), then only the alternative (i) must hold. 

Definition 1.3. We call a simple map satisfying (i) type I and one satisfy- 
ing (ii) type II. 

Examples of type I and II are the maps in (1.4) for k = 1 and fc = 2, 
respectively. 

A priori, both types of the simple map could occur as {yj's in the de- 
composition in Theorem II. Due to Theorem 1.2, we may assume that the 
number of components in the decomposition is greater than 1. It is rather 
surprising that in the decomposition in Theorem II, only one of the two 
types can occur. 

Theorem III. LetU^^E1- be the decomposition in Theorem II, andw^w'1, 
and b1- defined as above, Then we have the alternative: 

(i)  all w1; ;5 are of type I 

(ii) all wl- 's are of type II: In this case, the images of all Wj ;s coincide as 
a set. Furthermore, in this case, the multiplicity of K : A —» Z+ is 
constantfon the open dense set of A \ X where X is the set of critical 
values). 

If J is integrable near R and R is real-analytic, we can strengthen (i) to 

{i') all Wj 's are of type I and the union of the images of any two consecutive 
w1-, w£

k such that j / k, forms a closed branched Riemann surface. 

Examples of the cases (i) and (ii) are provided by maps in (1.4) with k 
odd and with k even, respectively. 
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As the example in the appendix shows, the result (i') fails to hold if we 
just assume that R is smooth (but not real analytic). See Proposition 6.6 
where both integrability of J and real-analyticity of R are essential to apply 
the reflection principle. 

Using Theorem III (z'), one can prove a more precise structure theorem 
than Theorem II for the case of integrable J near R and real-analytic R. 
We refer to Corollary 6.3 below for this. In fact in this case, the whole 
proof of Theorem I can be considerably simplified using Proposition 6.6. It 
rules out the branching phenomenon along the boundary in the real analytic 
case which complicates the image of general smooth cases as the map h± 
illustrate in Rosay's example in the appendix. 

Note that for the map w : (D2,dD2) -> (Cn,i?) with respect to an al- 
most complex structure J tamed with the standard symplectic structure, 
the alternative (ii) was ruled out in Proposition 5.1. Furthermore from The- 
orem III (i7), it also follows that there cannot be more than one connected 
component in the above decomposition, provided J is integrable near R and 
R is real-analytic. In particular, noting that Cn does not allow any closed 
holomorphic Riemann surface, this immediately implies the following result, 
which seems to be a new result even in several complex variables. 

Corollary 6.3. Consider Cn with its standard complex structure JQ and let 
R be a real-analytic totally real submanifold in Cn. Then for any holomor- 
phic disc w : (D2,dD2) —» (Cn,i?); A\w~1(bA) is connected and simply 
connected (after adding a discrete set of points) and so w allows the factor- 
ization (1.3). 

After the first version of this paper was completed, responding to the 
question asked by the second author, J. -P. Rosay has constructed a counter 
example to Corollary 6.3 for a smooth J?, which is included in Appendix 1. 
This example shows that the real-analyticity is essential in Corollary 6.3. 
And while this paper was in submission, Lazzarini sent us his preprint [La] 
that contains a result which is weaker than ours. But we learned from his 
paper [La] that there is some error in the statement of [Theorem I, 04] in 
that the second author overlooked the possibility that l\iX,D2\w~l(bA) is 
connected but not simply connected (after adding a discrete set of points). 

The second author would like to thank Jean-Pierre Rosay for his contri- 
bution to the appendix. We would also like to thank the unknown referee 
for pointing out some error in our formulation of Theorem I in the previ- 
ous version, providing the example in Section 4 and raising the question of 
the homology class which leads us to writing Appendix 3, and Lazzarini for 
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sending his preprint to us. 

2. Preliminaries. 

In this section, we organize various theorems on the local structure of J- 
holomorphic discs which we borrow mainly from [Ml], [FHS] and [04]. 

Let (M, J) be an almost complex manifold and let R C M be a (maxi- 
mally) totally real submanifold with respect to J, i.e., 

dimR = - dimM and TXR rh JTXR for all x e R. 

We denote by D2 C C the closed unit disc and A = D2\dD2 the open unit 
disc. A smooth map 

w\{p2,dD2)^{M,R) 

is called a J-holomorphic disc with the boundary condition R if IU satisfies 

J J o dw = dw o j 
(2,1) \w{dD2) C R 

where j is the standard complex structure on D2 C C. We also denote 
by JB6(0) the open disc centered at 0 with radius e > 0 and by De{Q) the 
semi-disc centered at 0 with radius e > 0 and with boundary 

&De(0) = (-€,€) CM CC. 

Following the notations from [04], we denote 

A = Image of w\D2 

bA = Image of W\QD2 

and introduce the multiplicity function K, : A —> Z+. 

Definition 2.1. We define the integer valued function K, : A —► Z+ by 

Ac(a) = #(^"1(a)))    aeA 

and call it the multiplicity of a. 

We now quote several results on the local structure of J-holomorphic 
discs (with boundary) from [FHS] or [MS], and [04]. 
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Lemma 2.2 [Corollary 2.3, FHS; Corollary 2.2, 04]. Let (M, J) be 
an almost complex manifold and R C M be a totally real submanifold with 
respect to J. Let w : (Z)€(0),<9De(0)) —> (M, R) be a smooth solution of 

{dw      T/   x dw 

wfa 0) € R forxe (-6, e) = dD€(0). 

Then there exists 5 > 0 such that dw(z) ^ 0 for all z with 0 < \z\ < S. The 
corresponding result also holds for J-holomorphic maps u : Be(0) —> M. 

Lemma 2.2 implies that the set of critical points of a non-constant J- 
holomorphic disc is discrete. In the following two lemmas, E denotes either 
the disc or the semi-disc. 

Lemma 2.3 [Proposition 3.1, FHS; Corollary 2.3, 04]. Let (Af, J) 
and R as above and let wi,W2 : Ee —> Cn be non-constant smooth solutions 
of (2.2). If the oo-jets of wi and W2 coincide with 0, then 

Wi = W2. 

Lemma 2.4 [Lemma 2.2.2, MS]. Let w : E —> (M, J) be J-holomorphic 
with dw(0) 7^ 0.  Then there is a local chart a : U —► Cn near w(0) such that 

a ow(z) = (^,0,... ,0) 

da(w(z)) o J(w(z)) = ida(u(z)) 

forzeEC\w-l{U). 

Combining Lemma 2.3 and 2.4, one can deduce the following useful re- 
sults. (See [Lemma 2.2.3, MS] or [Corollary 2.4, 04] for the proof, respec- 
tively.) 

Lemma 2.5 [Lemma 2.2.3, MS]. Let u,v : 2?€(0) -> (M, J) be non- 
constant J-holomorphic maps with 

u(0) = v(0),     ^(0) / 0. 

Assume that there are sequences z^, ^ G 5e(0) such that 

u(zu) = T;(^),    lim Zu = lim ^ = 0,   z^ ^ 0 ^ f». 
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Then there is a holomorphic map $ : I?$(0) —> -Be(0) with 0 < 5 < e, (j)(0) = 0 
and 

V = U O (f) 

onB6(0). 

However we cannot expect the obvious analogoue of this for the semi-disc 
case. One reason for this is that the images can be in "different" sides of 
the totally real submanifold and another is that they can also branch off as 
Rosay's example in Appendix illustrates (see Remark 6.4 and Proposition 
6.6). 

For the semi-disc case, we could expect only the following. The proof 
used for Lemma 2.5 cannot be applied to the boundary point because general 
J-holomorphic disc cannot be extended across its boundary as a smooth J- 
holomorphic map, unless J in integrable and R is real analytic near the 
point. We refer readers to the proof in [04] for this point. 

Lemma 2.6. [Corollary 2.4, 04]. Let wi : (D€i(0),&Dei) -* (Af,i2) be 
J-holomorphic with 

wi(0) = W2(0),     dwi(0)^0. 

Assume that 

Imwi|3Dei(0) =Imw2|dL>e2(o)- 

Then the following alternative holds: 

(i) Im w\ and Im W2 overlap on some open neighborhoods of 0 or 

(ii) Gfa^O) 7^ 0 and Im wiVJlmw2 smoothly matches up along the boundary 
dD€(0) near 0. 

One special case in Lemma 2.6 is worthwhile to separately mention and 
will be very useful for later discussions: Suppose that for i = 1,2, wi : 
(£>€i(0),dDei(0)) -> (M,R) be J-holomorphic with 

m(0) = W2(0)j    dwi(0) ^0^ dw2(0) 

such that there are some neighborhoods Ui and U2 of 0 in De(0) respectively 
and 

Im H0Dei(o)ntfi = Im w*\dD€2(Q)nU2' 
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We assume that Wi : Ui —► M are one-one, which can be always achieved by 
choosing smaller U^s if necessary. Denote 

ai>61(o)n^i = (-*1
1,^)=:Ai 

for some 6j > 0. Now consider the diffeomorphism 

(2.3) (w2\A2y
1ow1\Ai:A1->A2. 

We provide the boundary orientation to A; C dDei(0) induced from the 
complex orientation in D€i(0) C C. 

Corollary 2.7. Let wi's, Aj ;5 as above. Then the following alternative 
holds: 

(i)  if the diffeomorphism (2.3) preserves the orientation, then Lemma 2.6 
(i) must hold. 

(ii)  if the diffeomorphism (2.3) reverses the orientation, then Lemma 2.6 
(ii) must hold. 

3. Local structure of piercing. 

As we mentioned in the introduction, it is essential to analyze how bA pierces 
through A for the purpose of understanding structure of the images of J- 
holomorphic discs. We study this piercing by analyzing the "net" on A 
provided by w^1(bA)nA. In this section, we derive several results concerning 
the local structure of this piercing based on the results from Section 2. We 
will always assume that all (local) J-holomorphic maps appearing below 
have a finite number of critical points, and a discrete set of isolated self- 
intersections points (away from the critical values). For example, all the 
results in this section will apply to the maps obtained by restricting the 
domain of any given J-holomorphic map w : (D2, dD2) —> (M, R). 

The following notion of the collar neighborhood turns out to be useful 
for this purpose. 

Definition 3.1. For a point z G D2, we say that U C D2 is a collar neigh- 
borhood of z (or A) if dU = A is an embedded piecewise smooth arc contain- 
ing z. 
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The following lemma tells us that if the boundary of J-holomorphic disc 
is contained in the interior image of another such disc near a regular point 
of it, then images of the two discs should overlap in a collar neighborhood of 
the boundary of the first disc. Because of the branching phenomenon as we 
mentioned before, we cannot expect this if we replace "the interior image" 
by the boundary image of the second disc. 

Lemma 3.2. Let u : (Z)£(0),<9D£) -> (M,R) and v : B€(0) -> M be J- 
holomorphic. Let {z^} C dD^ and {w^} C B£ be sequences with 

u{z^) = v(wy)      and 

lim Za = 0, Za ^ 0,      lim w^ = 0, Wn ^ 0. 

Suppose in addition that dv(0) ^ 0.  Then there exists a collar neighborhood 
U C -De(O) of z with A = dU, an arc contained in dD2 such that 

u(U)cv(B€(0)). 

Proof. Without loss of any generality,  we may assume that  (M, R)   = 
(Cn,Mn) and we are given two J-holomorphic maps 

u : D€(0) -> Cn,   v: Be(0) -> Cn 

such that 
u(zu) = v(wu)j    Hm Zn = 0 = lim ty», 

by restricting the maps to neighborhoods of 0 respectively. By Lemma 2.4, 
we may further assume 

^) = (^,0,...,0),   J(s,0,...,0) = i 

for z 6 S€(0) and 

u(z) = (a(^),6(^)),   a{z) e C, b(z) € C71"1 

for z e De(0) such that u(dDe(0)) C W1) and 6(^) = 0. 
If oo-jet of b(z) at 0 does not vanish, then there is a non-negative integer 

e such that b(z) = 0(\z\e) and b(z) ^ 0(\z\£+1) and hence J(u(z)) = i + 
Odzf). Consider the Taylor expansion up to order £ — 1 of the equation 

du      T/  , ,,du 
_ + J(„(z))_ = 0 
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on JD€(0). Then we have 

& + <£-*     for^(0) 

where ut is the Taylor expansion of u up to order L So, there exists a 
nonzero a such that 

b(z) = az£ + 0(\zf+1)     for z € D€(0) 

and hence b(z) ^ 0 in some open neighborhood of 0. This then implies that 
the images of v and u do not intersect away from 0 in the neighborhood, 
which contradicts the assumption in the lemma. Therefore oo-jet of b(z) at 
0 must vanish. 

Since J(z, 0,... , 0) = i for z E Be(0), b(z) satisfies the equation 

= 1+,,r2((i + jf'A(J(a,6)Mr.v2)^ 

db .*        ,.^,   V 

-s+^ + ^w 
in a neighborhood of dDe(0) in I?6(0) where pr2 : Cn —»> C71-1 is the projec- 
tion and the operator A is defined by 

(A0(z) -W2 ^Db{J{a,Tb)dT)-^ {z). 

Since 6(x, 0) G M71-1 and the oo-jet of 6 at 0 vanishes, By Lemma 2.3, 

b{z) = 0. 

This finishes the proof. □ 

An immediate corollary, when combined with Lemma 4.1 and 4.2 in the 
next section (see especially the remark after Lemma 4.2), is 

Corollary 3.3. Let w : (D2, dD2) -> (M, R) be a J-holomorphic disc with 
dw(zf) ^ 0 for some zf € w~1(w(z)) D A where z G dD2. Suppose that 
AQ C dD2 is an arc with z as one end point and that there exists a collar 
neighborhood V of XQ such that 

w(V)cw(A). 
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Then there exists a collar neighborhood U of an open arc A = dU containing 
z in its interior with 

w(U) C w(A). 

This corollary shows that the following branching picture of the images 
cannot occur. 

•XfrS' 

Figure 1. 
The following objects appear often in later discussions and so we assign 

a special name to them. 

Definition 3.4. We call k-armed asterisk the union of k embedded arcs 
Ai,... , Afc in the plane that share one end point z from each as drawn in 
Figure 2. We call semi-asterisk an asterisk Uj=1\j C D€(z) with 

Ai U Xk C dDe(z) 

as drawn in Figure 2. We call each A^ in the asterisk an arm and the 
shared end point the center of the asterisk. We always order the arms 
either clockwise or counterclockwise in the plane. 
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5-anned asterisk 5-armed semi-asterisk 

Figure 2. 
The following proposition is the crucial tool in the proof of the main 

theorem. Roughly speaking, it shows that as long as the boundary of one 
disc does not intersect with the interior of the other, "overlap" of the images 
of two discs uniquely propagates along the boundary of discs. Recall that it 
is a well-known and an immediate consequence of Lemma 2.3 that overlap 
of the interior images of the two discs uniquely propagates. 

Proposition 3.5.  (Unique continuation of the image). 
Let Wi : (Z)ei(0), dDei(0)) —> (M, R) for i = 1,2 be two J-holomorphic maps 
satisfying the following properties: 

(i) they can be smoothly extended to a neighborhood Z)e/ with e^ > ei of 

D€i(0) in H C C. 

(ii)   W1(0)=W2(0) 

(in) dwi(z) / 0; Wi(z) / w»(0) for any z with 0 < \z\ < e^ respectively for 
i = l,2. 

(iv) Int Asi(O) H wr1 (wj (aD^{G)\\ is discrete in D^\ {0}, for all i,j = 
1,2. 

(v) there exists some d > 0 such that 

dist (p,wi (D^\Dei)) >d>0 
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where p = wi(0) = u^O). 

If there exist collar neighborhoods Ui of (—6^,0) in D€i(0) with dUi = 
(—ei,0) for i = 1,2 and with wi(Ui) = ^2(^2); wi(<9f7i) = W2{dU2), then 
we can find collar neighborhoods Vi of (—6i, 5i) such that Si > 0 and 

wi(Vi) = ^2(^2). 

!/    ui 

-e, 

Figure 3. 

Remark 3.6.     (i) The hypothesis (v) can be always obtained by choosing 
e^s smaller if necessary. 

(ii) This proposition fails to be true if we drop the hypothesis (iv), i.e., 
allow the image of the boundary to pierce through that of the interior. 
For example, consider the two maps 

v>i(z) = z,    W2(z) = z2 : (L>e(0), dD€(0)) -> (C,R) 

and start with the intervals (0,6*) for appropriate 0 < €»  < e for 
i = 1, 2. 

(iii) This proposition rules out the following branching phenomenon un- 
der the hypotheses in the proposition, which otherwise could occur. 
Compare with Figure 1. 
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Figure 4. 

To prove this proposition, we start with two lemmas. The first lemma 
rules out folding of the image (See Figure 5). The second one is a continu- 
ation lemma of the collar neighborhood. 

Figure 5. 

Lemma 3.5.1. Under the hypotheses as in Proposition 3.5, there cannot 
be any pair of collar neighborhoods U of (—5i, 0) and V of (0, #2) for some 
0 < (Ji, $2 < min{ei, €2} such that 

wi(U) = wj(V) 

for any i ± j, 1 < i, j < 2. 

Proof Because of (iii), Wi are immersed on (—€*, e;)\{0} for i = 1,2. Suppose 
the contrary that there exist such neighborhoods U, V and assume without 
loss of any generality that 

W1(U)=W2(V). 
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Since self-intersection points can accumulate only at critical points, there 
exist some 0 < <JJ < Si < Si and 0 < 5'2 < S2 < S2 and collar neighborhoods 
A,B of (-5i, -S^) and (^2^2) in -Dci(O) and D€2(0) respectively such that 
wi \A and W2 \B are one-one and 

wi{A) = W2{B),  wi{-5fi) = W2{5,2),  wi{-'5i,-8fi) = W2{5'2M- 

Then we consider the map (WI\A)~
1
 O W2\B • B —> A. Because (^IU)

-1
 

0 

^2\B • B —> A is holomorphic and so preserves the complex orientations of 
5, A C C, the diffeomorphism 

(Ht-?!,-*!))   0™2U,*2)
: (^2^2) -> Mi,-*!) 

must preserve the induced (boundary) orientations which are nothing but 
the standard orientations on them. However this is impossible by Corollary 
2.7 because we assume wi(—#[) = ^2(^2) from 00 and hence this finishes 
the proof. □ 

Lemma 3.5.2. Under the same hypotheses as in Proposition 3.5, there exist 
some #1,82 > 0 sizc/i £/ia£ 

«>i((0,ai))=^((0,fc)). 

Proof. Suppose the contrary, say, that there exist a sequence of points Xj £ 
(0, ei) with Xj —* 0 such that 

(3.1) wi(xj)gw2((0,e2)). 

By the continuity of wi and by (v) for a sufficiently large jo, we can choose 
a smooth curve CQ : [0,1] —> Dei (0) such that 

co(0) e (-6i,0),        co(l) = xJQ 

(3.2) coO) € Int ^1 (0) \ ^i"1 (M9D^ (0)))     and 

dist(p, wi(co(t))) <-    for 0 < t < 1. 

It follows from (3.2) and (v) that 

(3.3) U>I(CD) n W2{p72\De2) = 0. 
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Define 
to = sup{£ e [0,1] | wi(co(t)) e Im i^}. 

From (iv), the main hypothesis on the collar neighborhoods Ui , U2 and 
hypothesis (3.1), it follows that 

0 < to < 1. 

By the continuity of W2 and from (3.3) we derive that 

w(co(to)) = W2(z)     for some z G D€2(0). 

Prom (3.2), z € Int De/ (0). Since dwi(co(to)) ^ 0 7^ dw2(z) from (hi), we can 
choose a small disc B$(z) C Int JD€2(0) by Lemma 2.5 such that wi ocj) = W2 
on Bs(z) for a holomorphic map (/> : Bs(z) —> Int S€l(0). Therefore we can 
find ti > to such that it;i(co(ti)) C Im W2 which contradicts the definition 
of to- Hence, we have proved Lemma 3.5.2. □ 

Proof of Proposition 3.5. Again by choosing sufficiently small 5j's, we may 
assume that the map 

becomes a diffeomorphism. Since wi{G) = W2(0) from (ii), this diffeomor- 
phism must preserve the orientations on (0, tf^'s. Therefore Proposition 3.5 
immediately follows from Corollary 2.7 (ii) and Lemma 2.5, which finishes 
the proof. □ 

The next proposition shows that even when the boundary image of one 
disc penetrates into the interior image of the other, overlap of the image 
uniquely propagates across the arms of certain asterisk, at least near the 
center of the asterisk. We recommend readers to see Figure 6 before reading 
the statement of this proposition. 

Proposition 3.7. Let w : (D€(0),&D6(0)) -> (M,R) be a J-holomorphic 

map with dw(z)^ 0 on D€(0)\{0}; and let C = (jji? Xj C D€(0) be a (fc+2)- 
armed semi-asterisk in De(0) centered at 0 such that w(C) C R and ^l^v r0i 

is an embedding (away from a discrete set of points). And let u : A —> M 
be a J-holomorphic map such that all the points in (w(C)\w(Q)) nlm'U, if 
any, are regular values of u. 
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Suppose that there exists a collar neighborhood Ui of Ai and an arc 5i C 
A and a collar neighborhood Vi of Si such that 

(3.4) w(Xi) = u(Si)  and w(Ui) = ix(Vi). 

Then there exists a set of arcs 5i, ^ • • • > ^fc+2 ^n ^ ihat share one of end 
points from each, and collar neighborhoods Ui, Vi of X^ C A^ and 5i respec- 
tively such that 

(3.5) ^(A^) = u(Si)  and w(Ui) = u(Vi) 

\k+2 for all 1 < £ < k + 2. Note that in particular the union U/JL fy ^s connected, 
and that some of 5j ;5 could be overlapped with one another. 

Figure 6. 

Proof When k = 0, C = (-€i, 0] U [0,62) for some 0 < e* < e. From (3.4) 
and Corollary 3.3, there exists 0 < €2 < €2 and a collar neighborhood N of 
(-ei, €2) in D€(0) such that 

w(N) C Im u. 

Consider the subset u~1(w(N)) C A. Certainly this contains the collar 
neighborhood V1 fl u~1(w(N)) of Si in A. 

Let zi e Abe one of the end points of Si in A such that w(0) = u(zi). 
It will be enough to prove that the connected component of u^1(w(Cr\ N)) 
containing Si contains a non-trivial connected arc J2 having zi as one end 
point. Then it will follow 
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for some 0 < eJj < ^ and so (3.5) for ^ = 2. However this immediately 
follows from the fact that u : B^{z\)\{z\] —> M is immersed for some b > 0, 
and so u : Bs(zi) —> Im ^x is a branched covering and an open map. This 
finishes the proof of Proposition 3.7 for k = 0. 

Now suppose that we have proven the proposition for 1 < £ < k + 1, 
and consider the case £ = k + 2. Consider the asterisk C = C\{Afc+2} 
and apply the Riemann-mapping theorem to make C" into a (k + l)-armed 
semi-asterisk. Applying the induction hypothesis, there exists a sequence of 
{<^}i<£<fc_t-i consisting of connected arcs sharing one of the end points from 
each such that there exist sub-arcs 0 G A^ C A^ 

w(Xt) = u(5'e) 

and collar neighborhoods Lfy, V^ of A^ and 5e respectively with 

wiUi) = u(Ve). 

Finally consider the 2-armed asterisk C" = A^+i U Afc+2 C De(0). First 
note that the collar neighborhood Uk+i obtained above lie in the side towards 
the arm A^ as drawn in Figure 7. 

^(^k+i) 

Figure 7. 
We extend the collar neighborhoods 17*.+1 and T4+i to bi-collar neigh- 

borhoods of AJ.+1 and ^+i respectively to obtain another collar neighbor- 
hoods E/£+1 and Vr

/c
/
+1 of A,

A._|_1 and 6k+i respectively in the other sides, 
which still satisfy (3.5) but this time £/j(.+1 lie in between the arms A^+i 
and Afc+2. Now we apply the Riemann-mapping theorem to this region and 
denote the corresponding Riemann map by cj) and then the composition 
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w o (j) : (1)^(0), dDs(0)) -^ (M, JR) and u satisfy the hypothesis of Proposi- 
tion 3.5, and so we can choose <5A;+2> Aj^ and £4+2> Vk+2 satisfying all the 
requirements by applying Proposition 3.5. This finishes the proof. □ 

4. Proof of Theorem I and II. 

We analyze structure of the set A\if;~1(6A) in this section. When 
A\^~1(6^4) is connected and simply conncected, Theorem I [04] gives a 
complete answer and so we assume that A\w~1(bA) has more than one 
connected component or has at least one non-smply connected component. 
As a first step, we prove that A\w~1(bA) has only finitely many connected 
components. The following lemma shows that if there is any accumulation 
point of self-intersections, the limit point must be a critical point. The case 
in which the limit point is in the interior was studied in [Ml], and so we will 
consider only the case where the limit point lies in the boundary dD2 of D2. 

Lemma 4.1. Let w : (D2,dD2) —► (M,R) be a J-holomorphic map, z G 
dD2 and A be an open arc in dD2 containing z, in its interior. We fix a 
sufficiently small collar neighborhood UofX. Assume that there is a sequence 
{xjc} C w(dD2) fl w(liit U) such that lim Xk = w(z).  Then we must have 

dw(z) = 0. 

Proof. Suppose the contrary that dw(z) / 0. By applying Lemma 2.4 and 
considering local pieces of w near z) we may assume (M, R) = (C71, Rn) and 

u : D€(0) -> C1, u(z) = (*, 0,... ,0), J(*, 0,... , 0) = i. 

Furthermore, there is a given sequence {z^} C Int De(0) such that 

(4.2) u(za) e Mn,    lim *„ =0,   z, ^ 0. 

But u(z) £ W1 for z £ dD€(0). This gives rise to a contradiction. □ 

Unlike the case of closed curves (see [M4], [Si]), it is unlikely that the 
number of self-intersection points of discs is finite in general. (See some 
examples in [C] from which we believe one can construct a counter example). 

Denote by X c D2 the set of critical points. We recall the multiplicity 
function 

KJ : A -► Z+ 
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and denote 
Ak = {a E A\ K,(a) = k} and 

5 = JD
2\t£;"1(^i)- 

We call 5 the set of self-intersection points of w and denote by SQ C S the 
subset of isolated self-intersection points of at least two different branches 
of the image. 

Lemma 4.1 together with the corresponding results for the interior in 
[Ml] implies that So\X is a discrete subset of D2. We next quote a useful 
result from [04]. 

Lemma 4.2 [Lemma 4.4, 04].  There exists a positive integer M > 0 
such that 

1 < K(a) < M < oo 

for all a 6 bA (and so for all a € A). 

Since the "vertices" of the "net" A\w~1(bA) must be critical points of 
w in A and the number of different branches of A D u>_1(M) at each vertex 
must be finite by Lemma 4.2, we have the following immediate corollary of 
the above discussion 

Corollary 4.3. A\^~1(6A) has only a finite number of connected compo- 
nents. 

We now denote 
k 

A\w~1(bA) = ]lEj 

5=1 

where {£y}^=1 is the set of connected components. Note that the isolated 
points in \Jj=lEj\Ej are exactly 

SQCiw-l{bA)=\S'Q. 

Here we denote by Ej the closure of Ej in D2, not in A. We add the points 
in SQ 

to Ej to define 

Ej = Ej U (SQ n IntEj) c A. 

Then we have 

k 

(4.3) (A\ti;-1(6i4))USS = n4- 
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where Ej are open subsets of D2 which are domains in C without discrete 
holes in its interior. 

Remark. The boundaries of Ej are not simple closed circles, but finite 
unions of simple closed circles and closed arcs attached in general. Moreover, 
an inner boundary can be a finit union of closed arcs only. 

rsj 

) o     Ej \ / Ei 

o 

Figure 8. 
The following example shows that in general Ej may not be simply 

connected even after adding a discrete set of points. (See [Example 2.4, La]) 

Example. Consider the complex plane C with coordinates z = x + iy. We 
identify 52 = C U {oo}. Let B C S2 be the closed disc with the radius 1/2 
centered at 1 + i and let D be the complement to the interior of B in S2. 

Then we consider a map F : S2 —► 52, F(z) = z4 and let w be its 
restriction to D. Denote by F Image w\dB- Note that F is a smooth embed- 
ded circle in S2 and hence a totally real submanifold in S2. For the map 
w : (£>, dD) -> (M, R) where M = S2 and R = F, it is easy to check that 
D \ ^~1(r) contains a connected component which is non-simply connected 
(even after adding a discrete set of points). 

With this example in mind, we prove the following theorem. We will 
postpone proof of the statement on the homology class to Appendix 3. 

Theorem 4.4. In (4..3), we can further decompose, if necessary, each do- 

main Ej into the finite union UfjEj so that Ej are simply connected and 
so w\gi can be reduced to a map Wj : (D2,dD2) —> (M,R) with Imwj = 
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Imiulu. and 
^3 

i 

Before giving the proof of this theorem, let us give the proof of Theorem 
II. 

Proof of Theorem II (assuming Theorem 4-4)-   Prom Theorem 4.4, it follows 
that 

Image w\A = (J (J (image w\EiJ 

where jEy's can be identified with simply connected domains as in (4.16). 

For each given Ep we choose a Riemann-map 0*. : D2 —> Sj and consider 
the composition tu*- := w o cf)1. : D2 -+ M which is continuous up to the 

boundary. Since the Riemann-map 0*. : D2 —► JSj is proper i.e., maps dD2 

to a^j and ^(aD2) C R, we have ^(ajD2) C R. Then by the boundary 
regularity theorem (see [01] or [Yl]) for J-holomorphic discs with totally 
real boundary condition, Wj : D2 —> M is smooth up to the boundary and 
defines a smooth J-holomorphic map 

w):(D2,dD2)^(M,R). 

Furthermore, D2\(w'j)~1(wj(dD2)) is connected and simply conncected by 

the construction of J5j and Wj. Now we apply Theorem 1.1 to Wj to conclude 
that there exists a Blaschke product bj : D2 —> D2 such that 

with {5] : (D2,dD2) —> (M,R) is a simple map. Combining the above 
discussion, we have finished the proof of Theorem II. □ 

Now, the remaining section will be spent to prove Theorem 4.4 except 
the statement on the homology class. There are two main steps in the proof: 
the first is the step of decomposing the domain Ej into 

Ej = UE] 

so that Ej are simply connected, and the other is the step of reducing the 
image wl^ to that of a map from the disc D2. 
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Suppose that at least one of Ej's is not simply connected. Then we can 
find EjQ, by taking an innermost one, such that its boundary dEj0 is not 
connected. Then it will 

D: 

Figure 9. 
i.e., consist of one outer boundary and a finite number of inner boundaries 
contained in A where each inner boundary contains, if any, only simply 
connected E^s in its interior. Note that some inner boundary may not have 
interior, and not be equal to U^dEk where E^s are the domains contained 
in the inside of the inner boundary. See Figure 9. 

4.1. Step I: Decomposition. 

For the convenience of notation, we assume Ei = Ej0. Denote by Bi the 
outer boundary and {-B^lS:! be the set of connected components of the inner 
boundary. 

In this subsection, we will prove the following result. 

Proposition 4.5. There exist mutually disjoint connected collar neighbor- 
hoods UBI , VBi of Bi and B^ respectively such that 

and 
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for all i. Furthermore we have 

dUB1 =3!JJC! dVBi =Bil[Ci
2, 

where Ci^C^ C Ei are some connected union of piecewise smooth arcs con- 
tained in Ei (See Figure 15). 

We take partitions 

s t 

(4.4) dD2\X = ]JA,, B^X = Y[^ Bi\X = 114 
i=i j=i k 

where A;, fij and 5j[. are connected open arcs without critical points of w 
and the orderings are taken clockwise. By refining the partitions further if 
necessary, we may assume that any pair from n;(A;)'s, u^ys and w(S'l

kys 
is either identical or disjoint except possibly away from a discrete set of 
intersections. We have 

Interior of B^ = JJ (X^B^) (fc; > 0) 

where i?;j's are the domains inside B2 among the set of JE^'s. We denote 

(4.5) F* = Bi U f |J dEij j . 

By the choice of Ei, it follows that each Fl must be connected. 
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B1^ 

p = 

Figure 10. 
Now  consider  a  (collar-)neighborhood  U of dD2  in  D2  and  open 

neighborhoods V1 of Ufci^J suc^ t':iat ^ an<^ ^ are a^ disjoint and 
{U fl ^~1(6A)) \ 5o consists of disjoint open arcs one or both of whose two 
ends lie in dD2. See Figure 11 below. 

Figure 11. 
Since w{Bi

2) CbA = w(dD2), there exist A G {A^=1, 8* G {<%} and collar 
neighborhoods Ui C U and V{ C V* of A and 5l respectively such that they 
satisfy 

(4.6) wiUx) = w(Vt), w(X) = wiS1) C w(Bl
2) C w^F1). 

We would like to note that the collar neighborhood VJ may not be con- 
tained in Ei but in Ei^ for some ji G {1,2, • • • , fc;}. 
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Claim I. bA = w(dD2) = ^(F*). 

Proo/. Obviously, w(Fl) C 6^4 and so it is enough to prove 

bA^widD^CwiF1). 

By cyclically re-ordering {Aj}, {Sj} if necessary, we assume A = Ai and 

The claim immediately follows from the following lemma which proves 
that the overlap in (4.6) propagates along all the components {Aj}^ 
through. 

Lemma 4.6. Let IQ be fixed.   For each A^, there is an arc 5l£ C F10 and 

collar neighborhoods U^ and V^ of A^ and 5l£ respectively such that 

w(Uk)=w(Vi°). 

Proof. We will prove this by induction. For k = 1, it follows from (4.6). 
Suppose we have proven it for any 1 < £ < k and consider the case for 
k + 1. We consider a small collar neighborhood W of A^ U Afc+i in U and 
the neighborhood V10 chosen above. 

\ii=K 

Figure 12. 
In general, W nw~1(bA) becomes an r-armed (semi)-asterisk C with A^ 

and Afc+i as the initial and the final arms respectively (see Figure 12). We 
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order these arms {//j}J=1 counterclockwise with fii = A^, /v = ^fc+i- We 
now apply Proposition 3.7 to the maps 

w\(wfdW)   and   w-V^^M 

and find a sequence of arcs, z/i, • • • , ur C F20, sub-arcs /i^ C /ij and collar 
neighborhoods V! and Uj of i/j and /i^ respectively such that 

wfa) = wi/jfj)   and   w(U'j) = w(yj) 

and z/j's share one of the end points from each and in particular 

r 

I^J Uj is connected. 
J=I 

Since z/i = J^0 C F10 and JP
ZO
 is a connected component of w~1(bA)^ it 

follows that 
r 

Note that due to the way how we partitioned in (4.4), we can extend /xj. and 
i/r correspondingly VJ and U!^ until /i(. becomes a full edge of /ir = A^+i so 
that 

in Fio, we have proven the existence of 7^, Uk+i and T4+i required as in 
Lemma 4.6 by setting VJf = T4+i and C/^ = C/fc+i. □ 

Note that since Ei fl w"1 (bA) and E^j D w^fiA) are at most discrete, 
we can apply the unique continuation for the interior image (Lemma 2.5) to 
w\g  and wlgij to derive the following lemma. 

Lemma 4.7. If there are open sets U C Ei and V C Eij such that w(U) = 
w(y), then _ 

In particular, _ 
w(dEi) = w(dEij). 

Using Claim I and Lemma 4.7, we can choose disjoint collar neighbor- 
hoods of Bi and B^ in Ei with the same image (see Figure 14). 

Claim II. For each i, we can choose disjoint collar neighborhoods UB1 and 
VBi of Bi and B^ respectively such that 

Int UB1 U Int Vgz C Ei      and     w (UB1) = w {V^ J . 
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Proof. First note that w(Bi) C.bA = w(Fl) by Claim I for any z. Therefore 
for any fij € {/XJ}*-^, there exists an arc jj C Fl\X such that there are 

collar neighborhoods Uj C Ei and V? of /ij and jj respectively with 

(4.7) wiU^^wiVJ)   and   w(n)=w{<yj). 

Here IntVj may either be contained in Ei or in E^ for some £j, as we 
mentioned above. But, we now prove that we can choose them so that 

(4.8) TJ C JB£      and     Int VJ C Ei. 

Assume that Vj C E^. 

Figure 13. 
By applying Proposition 3.5 to w\-~- and it;|-=— repeatedly along Bi and 

dEij., we get collar neighborhoods 17 and F of Bi and 9J5i^. respectively 
such that 

Int U C Eu    Int F C Bf^      and     w(U) = w(V). 

In particular, 

(4.9) w(B1)=w(dEijj). 

And, by Lemma 4.7, 

(4.10) ™(i?i) = w(Ei9i.)     and     ^(a^i) = ^(^.)- 
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Since Bl
2 C dEi, from (4.9) and (4.10), 

w(Bl
2) C ti/(Bi). 

Moreover, from (4.10), we can choose an arc jj c B2 ailcl a coUar neighbor- 

hood Vj C Ei of 7j such that 

w(7i) = ^(7i) = ^(Mi)     and     ^(^/) = ^(^Z) = W
(
U

J)' 

Hence comes the proof of (4.8). 
Now, we apply Proposition 3.5 to w\-~- repeatedly along Bi and B^ then 

we get collar neighborhoods t/^ and VBi of Bi and B2 respectively such 
that 

Int UB1 U Int Vgi C Ei     and     ty (t/^J = w (VB*) • 

By taking C/^ and Vg* smaller if necessary, we may assume that they are 
disjoint from one another. This finishes the proof of Claim II. □ 

By applying Claim II for each i, we can choose disjoint collar neighbor- 
hoods UB1 and VBi of Bi and B2 in Ei respectively such that 

w(UBl) = w(vBi) 

Int UBX U Int VBi c Ei 

HiJHft^i^^u^y^) 

Here the last condition is possible because the multiplicity of K,^ : w(Ei) —> 

Z is constant (on an open dense subset of Ei \ X) from the construction of 

Denote by [/^i be the closure of UB1 in Ei.  If ?7BI U (UiV^*) ^ Ei, 

there exists ZQ € UB1 with diy^o) 7^ 0 such that J5€(2:o) n (U^y^) = 0 for 

some small e > 0. (Note that ^(t/^i) = ^(^sOO 
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Figure 14. 
Then for any z G vr\w{z^) with z G {JJBX U (UiVBi))\(C/B1 U (UiV^*)) 
there exists some 5 = bz > 0 such that Bsz (z) has intersection with only one 
of the elements in {UBH VBi}. Therefore, we can analytically continue UBX 

and VBi across ZQ G UBX and each z G w~l
(W{ZQ)) in UiVBi so that 

(i) there exists some e > 0, B€(^o) fl (Uiy^z 1=0. 

(ii) UBH VBi are still mutually disjoint 

(iii) wiUBx) = w(yBi) for all i 

(iv) «;-1K^B1)) = ^B1u(ui^). 

By taking a maximal such extension of UBl and VBi, we may conclude that 
there are mutually disjoint connected collar neighborhoods UBl, Vgi of Bi 

and ££ respectively such that 

and   
ti;(^Bl)=«;(7^)=u;(Ei) 

for all i. Moreover, we have 
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where Ci^C^ C Ei are some connected union of closed piecewise smooth 
arcs contained in Ei (See the following example). This finishes the proof of 
Proposition 4.5. 

Figure 15. 

4.2. Step II: Reduction. 

For the notational convenience, we denote 

C° = ChB0
2=BhVBo = UBl 

and 
ci\(xuSo) = l[x). 

3 

Note that since C2 is a compact subset of A = Int I?2, 63 fl {X U So) is finite 
by the result in [M4], the above union is a finite union. 

Lemma 4.8. Leti be fixed. For each A*-, there is AJ.. which is different from 

Xj such that 

(4.11) w(\i)=w(\i.) 

and ( w\xi   )      o tyl ^ : A*- —> AJ.. reverses the induced orientations. 
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Proof. Note that A^- is shared by VBi and Vg*/ for some i' ^ i. Let V1 c 

VBif C Ei \VBi be a collar neighborhood of A*.. Since w(VBi) = w(VBit) and 

so ^(C^) = ^(C^), there exist some fcj and a collar neighborhood C/^' C VBi 

of A^.. such that wCV1) = w(Uki). By the local injectivity of w applied to 

a regular point zi G AJ-, it follows that from Corollary 2.7 that the map 

(w\Xi )_1 o w\^i : A*- —> \%
k. must reverse the induced orientation. □ 

Note that Xl
k, may not be unique in general. We now fix £ and denote 

by 5} an arc AJ. corresponding to A^ as in Lemma 4.6. Due to (4.11) and to 
the choice of (J|, for a given collar neighborhood £/| C VBi of A^, there must 

exist a collar neighborhood Vj C T^^^/ for some i7 ^ z such that 

(4.12) «;(£/?) =«;(V?). 

By continuing w\yi across Sl
e into Bl,, we can find a (bi-collar) neighborhood 

W} of 5j so that 
w}\vicvBi 

and the images of w\ui and ^l^ivyi match smoothly along w(AJ) = ^(5|). 

We call a sequence A^, • • • A^ a chain, provided that 

(1) each consecutive pair AJ., AJ.+1 have a common boundary point x\k,k 

(2) {5\, • • • , 5g} are as in Lemma 4.6 and and each consecutive pair 5^ 5^^ 
share a common boundary point xsk, k = 1, • • • ,£ — 1 

(3) the set {[/}, • • • , C/^, T^, • • ■• , V^} can be chosen to be pairwise disjoint. 

We denote by x\o (respectively xso) the other end point of X\ (respectively 
5|), by x\£ (respectively xse) the other end point of Xl

e (respectively Sfy. 
Since there are only finite number of AJ-'s, there exists a maximal chain. 

Lemma 4.9. // {A|, • • • , A^} is a maximal chain, then 

(4.13) (uAj) U (utfj) = & 

and 

(4.14) XAO = XSQ,     x\i = x^. 
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Proof. First note that if (4.14) holds, then it follows from the connectedness 
of Cl that (4.13) must also hold. Suppose the contrary that at least one of 
the identities in (4.14) does not hold, say 

(4.15) xxi 7^ xu. 

It follows from (4.15) that there exists an arc A^+1 C Cl\ Let A^+1 be the arc 
attached to rr^ and 5\+l be the corresponding arc chosen as in Lemma 4.6. 
We will show that 5\+1 can be attached to rr^. If only two edges of {C^} 
meet at XM we can choose collar neighborhoods t/^, Vl+i of ^+i? <^+i such 
that 

w{U\+l) = w(yi+l),    lr&Ui+l<zVBi     and     Int^Vi<=V 
^ 2 

for some i' by a similar argument as in the proof of Proposition 3.5 (See 
Lemma 3.5.2). When more than two edges meet at rr^, we can still apply 
Proposition 3.5 to the domain containing V^+1 and prove that there is an 

arc 8\+l attached to 5\ such that 

and collar neighborhoods C^+1, V^+1 of A£+1, ^+1 such that 

™{Uhi) = wW+J,    Int Ul+1 C VBi     and     Int V^ C VB,. 

(See Figure 16.) Since ^(C^) = ^(Q'), there is an arc <5J+1 C C2 attached, 

to JJ such that 

and collar neighborhood V^+1 of JJ+1 such that 

It is easy to check that Int V}+1 C Ei\VBi. It follows that {Aj, • • • , AJ, A^+1} 

and {^i,*" )^1J^|+I} satisfy (1) and (2). We now show (3), which will 
contradict to maximality of the chain {Ai,--- ,AJ}. If (3) fails, i.e., Ul+1 

and V^+1 cannot be chosen to be disjoint, we must have 

A£+1 = ^+1. 

Because of the definition of <£*• in Lemma 4.6, this implies that the image 
of w must "fold" along this arc and so there must exist a critical point on 
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this arc which contradicts that the arcs are free of critical points (See the 
beginning of Step II: Reduction). This-finishes the proof. □ 

Figure 16. 
We now define an equivalence relation ~ on VBi: for x E U*.=1A^ and 

y e U<=15j by 

(4.16) x ~ y     iff     x E A}, y G £!•, w(x) = w(y). 

We may assume without loss of generality that dVBi is a piecewise smooth 

simple closed circle. It follows from Lemma 4.9 that DBi := VBi/ ~ has 

a topological boundary B^ and its interior is topologically a disc. Recall 
that for some neighborhoods Wj of 5j such that Wj \ Vj C VBi, w(Uj) and 

w(Wj\IntVj) matches smoothly along w(\lj) and that (u;|(5i)~
1o'u;|Ai : \l. —> 

3 3 

5lj reverses the orientation. Therefore Int DBi has a complex structure away 

from at most finite possible singularities, which is induced from Int VBi. We 
extend the complex structure across the finite points and find a Riemann 
map 

(j)i : A -> Int DBi 

which extends continuously up to the boundary. 
We define a continuous map w1 : Int VBi / ~ —> M by 

it;1 ([re]) = w(x) 
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which is J-holomorphie with respect to the induced complex structure on 
Int VBi / ~ away from the finite points, and which is continuous up to the 
boundary whose boundary image is contained in R. Finally we define the 
map w1 : A —> M by the composition 

w* = wl o </?. 

This map is continuous up the boundary whose boundary image is con- 
tained in the totally real submanifold R, and J-holomorphic away from at 
most finite points. By the boundary regularity theorem and the removable 
singularity theorem [01, Yl], w1 becomes J-holomorphic everywhere on A 
and is smooth up to boundary. This finishes the proof of the following 

Proposition 4.10. wljj     wljr     can be reduced to maps from (D2,dD2) 

to (M, R) and in particular their images are the same as the images of J- 
holomorphic discs with boundary in R. 

So far we have shown that by further decomposing the innermost non- 

simply connected component E\ into 

(4-17) UBl U \\JVBA , 

W\JJ and w\y . 's can be reduced to maps from the unit disc according to 

the above equivalence relation (4.13). We note that 

dDBi = Bi = the outer boundary of Ei. 

We glue JD
2\JBi and DBl along J5i and form the union (D2

\EI)UDB1. This 
union has a naturally induced complex structure and is again topologically 
a disc. Hence it is biholomorphic to the standard disc. Since the above 
arguments applied Ex depends only on the fact that dEi consists of one 
outer boundary and a finite number of inner boundaries such that each inner 
boundary only contains simply connected Ek 's in its inside, we can repeat 
the whole process to an innermost non-simply connected component, if any 
of the union (4.14). This finally finishes the proof of Theorem 4.4 by setting 
Ej to be the discs we have obtained in (4.16). 

In the above, we have used the connected region D2 \ Ei to glue with 
DBI to produce a topological disc. 
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Now let us choose, if any, the connected regions in D2 which are inside 
of B2 and have their boundaries in JS^ (see Figure 10)- Consider Dl that 
is the union of these regions and VBi.   This is a topologically disc with 

boundary dVBi fl Ei. Hence, if we quotient Dl by the equivalence relation 

(4.16), D1/ rsj becomes a sphere S2, which has a naturally induced complex 
structure. Moreover w naturally induces a J-holomorphic map from the 
union, u : S2 —> M. Since W(UBI) and w(yBiys coincide as a set, the 
unique continuation theorem implies that the image of w and u coincide, 
i.e., 

u(S2) = w{D2). 

Hence, we get 

Corollary 4.11. // one of Ej ;s is not simply connected, then we can reduce 
w to a map u : S2 —> M such that Image-u = Image u>. In particular, if 
(M, J) (e.g., Cn) does not admit a J-holomorphic sphere, all Ej becomes 
simply connected. In particular, when (M, J) = Cn, all Ej are simply con- 
nected. 

5. Proof of Theorem III. 

By Theorem 4.4, we now know that each connected component Ej in (A \ 

if;~1(6A)) US'o can be decomposed to U;i£j. We will abuse our notation to 

denote by Ej the discs we obtain in (4.16). In this section, we further study 
the finer structure of the "net" w^ibA) and the image of w : (JD

2
, dD2) —> 

(M,R). 
Let 0J. : A —► Ej be a Riemann map and denote 

wj = w\jjji o ftj : A -► M 

Since w^i is continuous up to boundary and so the Riemann map 0*. : A —> 

Elj, Wj is continuous up to boundary with wlj(dD2) C R. By the boundary 
regularity theorem, Wj is smooth up to boundary and by the definition of 

Ej, w^ allows a factorization like (1.3). We denote the corresponding simple 
map by Wj and the Blaschke product by 6J., i.e., 

(5.1) w^ = w)oU 
j' 

We first quote the following theorem proved in [04], which describes 
structure of the images of simple maps. 
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Proposition 5.1 [Theorem II, 04]. Let w : (D2
JdD2) -+ (M,/2) be a 

simple J-holomorphic map.  Then the following alternative holds: 

(i) there is a point z G dD2 such that 

(5.2) fiT1 (£(*)) H dD2 = {z}     and     Dfi;(^) ^ 0. 

(ii) t/ie multiplicity of K, : bA\X —> Z+ is ^o except at a discrete set of 
points where X is the set of critical values. Furthermore, the image 
A=Image w becomes a smooth immersed branched Riemann surface. 

In particular, If (M, J) does not carry any closed J-holomorphic Riemann 
surface (e.g. like Cn), then only the alternative (i) must hold. 

Definition 5.2. We call a simple map satisfying (i) type I and one satisfy- 
ing (ii) type II. 

This is the main theorem we prove in this section. 

Theorem 5.3. LetU^^Ej be the decomposition in Theorem4-4) andw^w1- 
and b%- defined as above, Then we have the alternative: 

(i)  all Wj 's are of type I 

(ii) all Wj 's are of type II: In this case, the images of all Wj 's coincide as 
a set. Furthermore, in this case, the multiplicity of K : A —> Z_j_ is 
constant(on the open dense set of A \ X). 

Proof. Prom Proposition 5.1, each w^ is either type I or type II. Suppose 
that there is at least one iK- of type II. Then since w^ is simple, we can 
decompose 

(5.3) dAV\ X = (UkXk) U (Uk6k) 

so that (wj^y1 o Wj\xk : Xk —> Sk is orientation reversing, where A*. = 

((^)~1(£,j) and X is the set of critical points. 

The domains Ej which also come from of the decomposition of -Ej, satisfy 

w(dEJ) = w(dEij). 

It implies that A^'s can be decomposed as (5.3) and hence tu*- 's are of type 
II. 
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Assume that El
k is adjacent to Ej. Let dA^ = U^ such that u;]^ 

is smooth. Prom the assumption that El is adjacent to Ej, in particular 
Ej0 with the decomposition (5.3), there is some t^ such that ^(tm) = 

^}0(Am/) = ttf}0(<Jm')-   Since fe0|6m,J     o'55}0|Arn, is orientation reversing, 

either (^|tm)     o/^}0|Am/ or (^|tm)     o^j0|<5m/ must be orientation pre- 

serving. Without loss of any generality, we may assume (u^ltm) 0 ^fl^t 
is orientation preserving, i.e., there are collar neighborhoods Umt of Xmt in 
A^0 and V^ of tm in A^ such that 

wf(Uml) = {vi(Vm). 

Applying Proposition 3.5 inductively along 9A^0 and 9A^, we have 

i^(aA*p) = t3i(aAt). 

So, we find an arc sm in 9A^ such that 

(4k)_1°^0k- 
is orientation preserving. This implies that 

w3U*m) = ^lb(5m). 

Clearly, tm is not equal to sm. Since ^(^A^0) = ii;J.(9AJ.),'for each arc 
component ti of 9A^ \ X, there is an arc component S£ ^ tt such that 
^jb(^):= tiki8*-)- So we can conclude that wl

k is also of type II. 
By repeating this for each pair of adjacent domains, we have proven that 

all wj must be of type II if there is one Wj of type 11. The other statement 
in (ii) can be proven by similar arguments and hence the proof of Theorem 
5.3. □ 

6. The case of integrable J and real-analytic R. 

In this section we restrict to the classical case in which the almost complex 
structure J is integrable (at least near R) and the totally real submanifold 
i? is real-analytic, unless otherwise stated. 

For the integrable J and real-analytic i?, we can refine Theorem 5.3 (i) 
as follows: 
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Theorem 6.1. Suppose that J is integrable near R and R is real-analytic. 
Then in the case of Theorem 5.3 (i), the union of the images of any two 
consecutive Wj^wf. such that j ^ k can be reduced to the image of a J- 
holomorphic sphere. 

We first state several immediate corollaries of Theorem 5.3 and 6.1. 

Corollary 6.2. We assume the same for R and J as in Theorem 6.1. For 
any J-holomorphic disc w : (D2, dD2) -^ (M, R), there always exist a simple 
disc w : (JD

2
, dD2) —> (M, R) such that the image w is the same as that of 

w as a set (without counting multiplicity). 

Proof If w is already simple or the number of components in the decompo- 
sition (4.3) is 1, then there is nothing to prove and so we assume that w is 
not simple and the number of components is greater than 1. In this case, w 
must belong to one of the two cases in Theorem 5.3. 

In the case of (ii), the image of w coincide with the image of any Wj. By 

composing this with the Riemann map from A to £#, we are done. 
In the case of £i), we apply Theorem 6.1. ^Then for any two consecutive 

wj^w^i jt k, let E be a domain containing El, E^ and some open arcs in 

dE? D dE^ so that E is simply connected. Since wJ
i(dE{) = w^dEl), we 

may consider w\^ as a map wr : S2 —> M which is J-holomorphic map. So, 
there is a map w' : 52 —► M which is injective away from a set of points 
which is discrete in S2 \ {critical points} and has the same image with w'. 
Let A be a connected arc in S2 such that it;'(A) C R. Now </> be a Riemann 
map A —► 52\A. Then wf o (j) will be such a required map. □ 

Note that for the map w : (D2,dD2) —> (Cn,R) with respect to an 
almost complex structure J tamed with the standard symplectic structure, 
the alternative (ii) was ruled out in Proposition 5.1. Furthermore from 
Theorem 6.1, it also follows that there cannot be more than one connected 
component in the above decomposition, provided J is integrable and R is 
real-analytic. This immediately implies the following result which seems to 
be new in the classical context of several complex variables. 

Corollary 6.3. Consider Cn with its standard complex structure JQ and 
let R be a real-analytic totally real submanifold in Cn. Then for any J-- 
holomorphic disc w : (D2,dD2) —> (Cn,i?); A \w~1(bA) is connected and 
simply connected (after adding a discrete set of points) and so allows the 
factorization (1-3). 
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Remark 6.4. It follows from the example in the appendix that the result 
Theorem 6.1 fails to hold (and so Corollary 6.3, 6.5 and 6.7 below) for the 
smooth cases. The main obstruction comes from the fact that one cannot 
perform the reflection argument for non-integrable J or not real-analytic 
i?. This reflection principle is needed to prove Proposition 6.6 below. The 
example in the appendix also shows that Proposition 6.6 does not hold for 
the smooth cases. 

Another interesting corollary of Theorem 6.1 is the structure of the "net" 
in the case of (i). 

Corollary 6.5. Assume that w : (D2,dD2) —> (M,R) satisfies (i) in The- 
orem 5.3. Then the "net" w^fiA) allows a black-and-white coloring on A 
such that the images of Wj from Ej ;s with the same color are all the same as 
a set. In particular, all the interior nodes have even number of edges coming 
out. 

Figure 17. 
The remaining section will be spent to prove Theorem 6.1. 
Let .De(O) be the semi-disk centered at 0 with boundary (—e, e) in the 

lower half plane of C. We will need to prove an analogue to Lemma 3.5.2 
for the maps 

^i:(De(0),9D€(0))^(M,i?) 

W2:(De(0),dDe(0))-*(M,R) 

satisfying all the hypothesis on Proposition 3.5. 
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Proposition 6.6. Let 

ti;i:(I>ei(O),30ei(O))-(M,i2) 

w2:(De2(0),dDe2(0))^(M,R) 

be J-holomorphic maps satisfying (i) — (v) in Proposition 3.5. Suppose 
that there exist collar neighborhoods Ui of (—ei,0) in D€i(0) with dUi = 
(—e^O) for 1=1,2 and Wi\dUi ^s an embedding, and that the diffeomorphism 

(wi|(_eijo)) 0 W2|(-€2,0) : (—62,0) —» (—€i,0) preserves the orientations 
induced from the complex orientations on Dei (0) and D€2 (0) respectively. 
Then we can find collar neighborhoods Vi of (—€j, 8i) such that Si > 0 and 

W1(dV1)=W2(dV2). 

In particular, by Corollary 2.7 (ii), the union ^(Vi) 1^2(^2) forms a smooth 
surface possibly with a branched point at 0. 

Proof. Since we assume that J is integrable, R is real-analytic and 
W2(dD€2) C i?, we can apply the classical reflection principle to W2 to get 
a map W2 : (Z}e2(0),dD€2(0)) —> (M,R). We can check that wi and W2 
satisfy the assumptions in Proposition 3.5. So, from Proposition 3.5, there 
are Si G (0, e;) and collar neighborhoods Wi of (—e*, Si) for i = 1, 2 such that 

Wi(Wi) = W2(W2). 

Since ^2 (-^2 ^2) = ^2 (-^2 ^2), This finishes the proof. □ 

Prom this proposition together with the argument used in the proof of 
(4.8) or (4,10), we get the following. 

Corollary 6.7. Let wj : JK —> M and Wj, : Ej, —> M be two restriction of 

w such that dE1- and dE^ share at least one edge.  Then 

(i) •     - *     ~k 

In particular, the union B := Wj(dEj) = w^,{dE^f) becomes a compact 
closed branched Riemann surface. 

(ii)  The multiplicity of B becomes one for the case of type I and two for 
the case of type II. 

Now, the proof of Theorem 6.1 can be achieved by applying Corollary 
6.7 inductively with respect to an ordering of JSj by a connected chain of 

Ey&. This finishes the proof of Theorem 6.1. 
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Appendix 1 (by Jean-Pierre Rosay). 

We show that the hypothesis of real analyticity of R is needed in Proposition 
6.6 (and so in Theorem 6.1, and Corollaries 6.3, 6.5, and 6.7.) The results 
do not generalize to the case when R is only smooth. It is not completely 
clear whether the real analyticity of R is needed for Corollary 6.2. 

By A we denote the open unit disk, 6A is the unit circle and A = AUbA. 
A (smooth) holomorphic disk in C2 is a smooth map from A into C2, whose 
restriction to A is holomorphic. 

Proposition A.l. There exists a non-constant (smooth) holomorphic dick 
in C2

; and M2 a 2-dimensional totally real manifold in C2 such that f(bA) C 
M2 and /_1(/(6A)) disconnects A. 

Remark A.2.   This cannot happen, by Corollary 6.3, if M2 is real analytic. 

Construction of / and M2. 

1) Let D+ and fi"1" be smooth by bounded, simply connected, regions in 
{Qz > 0} (in C) such that 

(bD+nR =[-!,+!] 

\bft+nR= [-1/2,+1/2] 

Let h+ be a conformal map from D+ to fi+, normalized so that 
/i+[-l/2,1/2] = [-1/2, +1/2], (h+ extending smoothly to 6D+). 

The main fact is that Sh+ = 0 on [-1/2,+1/2] and Q/i+ > 0 on 
([-l,+l]-[-l/2,+l/2]). 
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Figure 18. 

2) Define D_,£)~ by symmetry with respect to the real axis and /~ by 
Schwartz reflection: 

zr = {zeC,-zeD+} 
ft- = {zeC,zen~} 

h- : D' Q- h-(z)  =  h+(z). 

3) Let D = D+ U Z)" U (-1/2,+1/2). By Schwartz reflection, there 
exists h holomorphic on D such that hlD^1 = /rK For later use, set 
also h{±l/2) = /i+(±l/2) = h-(±l/2). 

4) Construction of M2. 

Claim. T/iere 6x25^5 a smooth totally real manifold M2 in C2 5wc/i 
t/iat (z,/rh)(&JD+) and (^fe-)(62?-) C M2. fWTiere (^/i^) denotes 
t/ie maps z H-» (^, /i:t(^)). 

The only difficulty is at the points x = ±1/2, where (x, h+(x)) and 
(x,/i-(x)) "bifurcate". Let M§ = {(x,/i+(x)) + z(0,t), -1 < x < 
+1, t G M}. This is a smooth totally real manifold. Taking t = 0, 
we see that it contains (z, h+)([—1,+1]). Taking t = —2$sh(x), we 
see that it contains (z, /i~(^))([—1, +1]), since h+(x) — h~(x) is purely 
imaginary, for —1 < x < +1. 
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Extending M$ to a totally real manifold containing (2:,/i±)(feJD
±) is 

now "soft". One can, for example, set, for e small enough: M2 = 
M2

0UM2
+UM2-. 

M± = {(*, h^z)) + i(0, t),  zebD±- (-1, +1),   -e < t < 6}. 

Note. The above construction shows that the real analyticity of R 
is needed in Proposition 6.6. 

5) End of construction. 

Let G be a conformal map from A into D. For simplicity impose 
G(0) = 0,^(0) > 0. This yields G([0,1)) = [0,1/2), by symmetry. 
Let F be the holomorphic map from A into C2 defined by 

F(z) = (G(z2)1h(G(z2))). 

Notice that F extends continuously to 6A by 

F(z) = (G(z%h±(G(z2))l 

± depending whether $sG(z%) > 0 or < 0 for zi G A, zi close to z 
(if G(z2) = ±1/2, F(z) = (±1/2, h(±l/2)). Since z G 6A implies that 
G(z2) G bD,F(bA) C M2. But also 

F([-l, +1]) = {(x,h(x)),0<x< 1/2} C M2. 

Let Ai = A - [0,1]. It follows from the above that F(bAi) = 
F{bAU [0,1]) C M2. but since F is even F^FQO,!]) D [-1,+!]. 
So F~1(F([0,1])) disconnects Ai. Let I/J be a conformal map from A 
onto Ai. Set / = F o ip. The pair (/, M2) gives the desired example. 

Note. Although the smoothness of / could be checked by following 
the construction, it also follows immediately from the continuity of / 
and the fact that f(bA) C M2 (M2 totally real, and smooth). 

Appendix 2. 

Rosay's example in Appendix 1 however still has constant multiplicity 2 and 
allows the factorization. In this appendix, we provide an example that has 
points of two different multiplicities and so does not allow the factorization. 
We will follow the same notations as in Appendix 1. 
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We consider the map 

X : A+ -> A,    x{z) = ^3 

where A+ = {z 6 A | $sz > 0}, the upper semi-disc. Note that 

X(&A+) = &AU[-1,1]. 

Let M2 be the totally real submanifold and G be the map from A into D in 
Appendix 1. Define the map F(z) : A+ —> C2 by 

l!(z) = (G(xW),fc(GOc(«)))). 

Since x(&A+) = 6Au[—1,1], we have correct boundary condition F(bA+) C 
M2. Then it follows thatj^ has points of two different multiplicities (in fact, 
1 and 2). Composing F with a^onformal map </> : A —»> A+, we have 
obtained the seeked example g = F o </>: A —> C2 with ^(feA) C M2. 

Appendix 3. 

Since the decomposition in Theorem 4.4 uses cutting and pasting, it is not 
apriori clear that the homology class is preserved under decomposition. In 
this appendix, we prove that this is indeed the case. 

Theorem A.3. The homology class is preserved under the decomposition 
in Theorem 4-4- (Theorem II). 

Let E be the (innermost) non-simply connected component used in 4.1 
(Decomposition). Let Bi be the outer boundary and ufi?2 be the inner 
boundaries of E. Then uf JB^'S bound simply connected domains Gi such 
that dGi = i?2- As in 4.1 (decomposition), we decompose 

E = uffi 

and denote by wl : (D2, dD2) —> (M, R) the reduction of w]^ defined as in 
4.2 (Reduction). 

By the way how we obtain the decomposition in Theorem 4.4, Theorem 
A.3 will be an immediate consequence of 

Proposition A.4. Let E and wl be as above. Then we have 

£ 

HE>] = EM 
0 

inH2(M,R;Z). 
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Proof. As in 4.1 (decomposition) and 4.2 (reduction), we decompose 

dE^B^C1 

where C1 C & and B% = Bi (See figure 15.) 
Recall that in 4.2 (reduction), we have decomposed each Cl into the 

union of two connected piecewise smooth arcs 

c1 = ci U C| 

such that 

wici) = w(ci). 
Furthermore we also have 

w(Ci) = w(C^)     foralU,fc. 

More precisely, we have 

Ci = UfcAi    CJ = Ufc4 

for a maximal chain {A^,--- ,A^} chosen 4.2 (Reduction). Since both Cl
x 

and Cl are arcs (and so contractible to points) with the same images under 
w and by the way how the maximal chain is defined, we can continuously 
deform w into w : (£?, dE) —» (M, R) so that 

u>(UCf) = { one point} 

and 

[w] = [w]     inil2(M,i?;Z). 

Obviously we also have 

[<%] = [<%]     in H2(MiR]Z). 

Now it is immediate to check that 

H^] = [«;*]     in H2(M,R;Z). 

Hence the proof of Proposition A.4. D 
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