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infinite coverings of compact Kahler manifolds
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1. Introduction.

In geometry, various notions of hyperbolicity have been introduced, and
the appellation ”hyperbolic” is intended to signify that a space shares
some of the geometric properties that distinguish the standard model
SO(n,1)/SO(n) from the Euclidean space. Thus, typical examples are
manifolds that have negative curvature in a suitable sense.

The starting point for the present investigation is Gromov’s notion of
Kahler hyperbolicity [G1]. Let (X,w) be a compact Kahler manifold with
Kéhler form w. It is called Kahler hyperbolic if the lifting @ of w to some
covering X — X is of the form @ = dB with a 1-form [ that is bounded
w.r.t. the metricon X induced by the Kéhler form @. Of course, this condi-
tion is satisfied on the Poincaré hyperbolic disk, but not on Euclidean space.
More generally, the typical examples of Kéhler hyperbolic manifolds are lo-
cally Hermitian symmetric spaces of noncompact type. Gromov showed that
for a K&hler hyperbolic manifold X with a covering X as above, the L2
cohomology of X vanishes except in the middle dimension dimg X. In the
case of a Kdhler manifold with negatively pinched sectional curvature, this
was independently shown by M. Stern [St].

One of the points of the present note is that in contrast to what one
might expect from Gromov’s work, this vanishing theorem does not dis-
tinguish negatively curved spaces from flat ones. More precisely, we wish
to introduce a condition that is weaker than Gromov’s and includes flat
spaces but that still allows one to deduce such vanishing theorems. Thus,
in a geometric sense, the line of distinction will be drawn not between neg-
atively and nonpositively curved spaces, but rather between nonpositively
and positively curved ones.

In this note we demonstrate a Gromov type vanishing theorem for the
cup product between L2-cohomology on some infinite coverings of X and
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the so called d(linear growth) cohomology classes on X (see the definition
below). This theorem has some interesting applications in algebraic geome-
try. For example, it easily implies the Green-Lazarsfeld vanishing theorem
for cohomology groups of generic flat line bundles over X . Also some new
theorems are proved. We obtain a generalization of the Green-Lazarsfeld
type vanishing theorem in the non abelian case (Theorem 2’) using the
Busemann function technique due to Philippe Eyssidieux (see below) and
theorems of harmonic maps into Bruhat-Tits buildings and Higgs bundles,
and we also verify Kolldr’s conjecture about x(Kx) for large 71(X) in the
representation case (Theorem 4).

Also, we are able to verify the Hopf-Singer conjecture on the sign of
the Euler characteristic of a compact Riemannian manifold of nonpositive
curvature in the Kahler case (see Cor. 1).

Remark 1. Recently, Philippe Eyssidieux [E2] also proved a similar type
vanishing theorem for L2-cohomology and derived the Green-Lazarsfeld
vanishing theorem independently. In his thesis [E1], (June 1994, Orsay)
he proved also this kind of statement for large variations of Hodge struc-
tures. In fact, the existence of a Kahler form of d(linear growth) in the
general case is based partly on his theorem. We thank him for pointing
out an error in the first version of our paper. We also thank the referee for
bringing some inaccuracies in the paper to our attention.

During the preparation of this paper, the second named author was
supported by a Heisenberg fellowship of the DFG. He is also grateful to
the Max Planck Institute for Mathematics in the Sciences in Leipzig for
hospitality.

2. Synopsis.

In order to prepare our definition, let (X,g) be a compact Riemannian
manifold. A closed differential form o on X with coefficients in a metrized
local system (V,h) is called d(linear growth) if for some covering X - X,
the lifting & is of the form dB with

1855 < - distg(z, z0) + ¢,
where ¢ and ¢’ are constants ( that may depend on 8 and zo, but not on

z ), where d is the exterior derivative on X, § is the lift of the Riemannian
metric g to X, and zo is an arbitrary point in X.
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In order to familiarize ourselves with this notion, we present the follow-
ing example of H. Whitney: For a differential g-form w on a Riemannian
manifold (X, g), one puts:

“wIIOO = Sup{w(eh ey eq)}>

where ey,..., eq are unit tangent vectors at some z € X.
For a cohomology class a € H4(X), one puts

lledl* := Infueq [[w]lco-

This infimum is always achieved on a compact X, i.e. there exists some
wp € a with |lwollec = ||e||*, but this wp need not to be unique.

Let X be compact, wp be a closed 1-form and let 7 : X — X be the
Galois covering corresponding to the homomorphism m1(X) — Hi(X, Z).
Then the pull back satisfies 7*(wp) = df, where f: X — R is a Lipschitz
function with Lipschitz constant ||a||*. This shows

Proposition 1. Any closed 1-form on a compact Riemannian manifold is
d (linear growth).

Of course, this may also be verified by integration along geodesic paths,
but the preceding construction yields the optimal constant for the growth
condition.

Remark. The fundamental group strongly influences the growth of primi-
tive forms of the pulled back forms of degree > 2. Some examples in [G2]
show that they may even have exponential growth.

Definition. A compact Kéhler manifold (X,w) is called Kéhler nonelliptic
if w is d(linear growth).

In order to make this notion compatible with morphisms between Kéhler
manifolds we also introduce the following

Definition. A compact Kéhler manifold (X,w) is called singular Kéhler
nonelliptic if there exists a closed 2-form «’ on X of (1,1)-type that is
positive definite on a nonempty Zariski open subset Xy C X, and «’ is
d(linear growth).

A compact Kéhler manifold (X,w) is called semi Kahler nonelliptic if
there exists a nontrivial closed 2-form W' on X of (1,1)-type that is positive
semidefinite and d(linear growth).
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Examples of Kadhler nonelliptic manifolds.
1) Ké&hler hyperbolic implies Kéhler nonelliptic.

2) If X has nonpositive sectional curvature, then X is Kéahler nonellip-
tic.

3) If X admits a holomorphic immersion into a torus 7', then X with
the pull back of the Euclidean metric of 7' is Kahler nonelliptic.

If X admits a generically finite holomorphic map into 7', then X
with the pull back metric is singular Kahler nonelliptic.

If X admits a holomorphic map into T, then X with the pull back
metric is semi Kéahler nonelliptic.

4) If some covering of X admits a pluriharmonic map into some sym-
metric space or Bruhat—Tits building, then the Higgs structure or the
multivalued holomorphic 1-forms via this map define a semi Kahler
nonelliptic structure on X. Consequently if X has a generically large
reductive representation p: m1(X) — GL,, then X issingular Kéhler
nonelliptic.

Question. All examples above have always to do with the curvature on X,
or some pluriharmonic maps on X. It would be very interesting to find such
examples only via some properties of the fundamental group. For example,
X with 71(X) of subexponential growth (see Mok’s recent work).

With these notions, one may extend Gromov’s vanishing theorem

Theorem 1. Let (X,g) be a compact Riemannian manifold, and let
H (3‘2) (5( ) denote the j-th reduced L2-de Rham cohomology group on X with

respect to the metric § and H(X,V) denote the i-th de Rham cohomology
group on X valued in a metrized local system (V,h). If a € H{(X,V) is
d(linear growth) then for any n € H(Q) (X), @An is a L*-form valued in

the metrized local system (V,h) and

ann=0 in HZ;')J(X,V)

Remark. Most of the present note extends to noncompact manifolds with
complete Riemannian metrics, but here we shall not explore this point.
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Let (X,w) be a compact Kéhler manifold, and let Hiy) (X) denote the

space of L2-harmonic forms on X. The above vanishing theorem becomes
particularly useful if combined with the Hodge decomposition

X = D "X

pt+g=i

Our first applications are vanishing theorems: Green-Lazarsfeld type
vanishing theorem for L2-cohomology:

Theorem 2. Let ai,...,0; be holomorphic 1-forms on X which are lin-

early independent at generic points of X. Suppose that X — X is a cover-
ing such that the liftings &1,...,8&; are exact. Then

i) (2)(X)—O for p <.

ii) If ’H(2) (X) #0, then there ezists a proper holomorphic map f: X —
Y such that 'H(Q)(X ) factors through f.

Remark. If p, ¢ > 0 then an example in [GL] implies in fact that Hgg()? )
does not need to vanish for p+ g < .

We have the following extension of the Green—Lazarsfeld type vanishing
theorem in the non abelian case

Theorem 2. Suppose X is a projective variety and (E,0) is a Higgs bun-
dle coming from a reductive linear representation of m1(X). Then

(2)(X Q) =0 for i< rank®.
These theorems follows from the Gromov type vanishing theorem:

Theorem 3. i) Let (X,w) be a Kdhler nonelliptic manifold. Then

H’(’ég(X)zO for p+q#dime X.

ii) Suppose (X,w) is a singular Kdhler nonelliptic manifold. Then

(2)(X) =0 for p<dimgX.
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Remark. Again the example in [GL] shows that for singular Kahler nonel-
liptic manifolds 'H%(X ) = 0 does not need to vanish for p, ¢ > 0 and
p+q < dimg X.

Extending a conjecture of Hopf, it has been conjectured by Singer that
the Euler characteristic x(X) of all aspherical (or at least all nonpositively
curved) compact manifolds X of dimension 2n satisfies

either

x(X) =0,

or
sign x(X) = (-1)"

Here, we have a positive answer for the Kdhler manifolds of nonpositive
sectional curvature:

Corollary 1. (Hopf-Singer conjecture on the sign of the Euler char-
acteristic for Kidhler manifolds of nonpositive curvature) Suppose
that X is an n-dimensional compact Kdhler manifold of nonpositive sec-
tional curvature. Then all L2-reduced cohomology groups of X wvanish with
the possible exception of degree m. In particular, the above conjecture is
true.

In order to obtain vanishing theorems in the sense of Green-Lazarsfeld
for compact Kéhler manifolds we must combine the preceding with Kazh-
dan’s theorem [K] on the growth of Betti numbers of coverings.

Consider a sequence of finite index subgroups of m(X)

.CclpCcTpgC--- Ty € m(X).
This corresponds to a sequence of finite coverings of X
o Xy X o X1 o X
The projective limit of this sequence
lEn X=Xo—X
is the covering of X with
m(Xoo) = |T1 € m(X).

Putting 3
d; := degree of the covering map m:X; — X,
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the normalized Betti numbers of X; are defined as
b (X0) = b'(X)/di,
and the normalized Hodge numbers of X, are defined as
rPI( X)) = RPI(X))/d;.
Kazhdan’s theorem [K] says that if
lliglo sup WP4(X;) > 0,

then

hFs) (Xoo) > 0.

On the other hand, some cohomology class on the initial manifold is going
to be exact on Xoo. So, sometimes Theorem 1 gives obstructions to the
existence of L2-cohomology on X. See more details in Cor.2.

A further application of our vanishing theorem is concerned with the
signature of the holomorphic Euler characteristic of the canonical line bundle
of Shafarevich varieties.

Conjecture (Kollar). If m1(X) is generically large, then
x(Kx) > 0.

Roughly speaking, suppose 71(X) is residually finite. Then m(X)
is called generically large if m1(X) does not factor through any rational
surjective map f: X — Y with dimX > dimY. The precise definition of
generically large m1(X) has been given in [Ko, Def. 4.6]. Here we verify his
conjecture in the representation case:

Theorem 4. Suppose that p: m(X) — GLy is a reductive and generically
large representation. Then
x(Kx) > 0.

3. A vanishing theorem for cup products.
We start by reviewing L2-de Rham cohomology groups of an oriented com-

plete Riemannian manifold (X,g). All the formal properties are the same
as in the compact case. Let * denote the Hodge operator with respect to g.
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We consider the Hilbert space A(?) of the completion of square-integrable
t-forms a. Thus, a € A(z) has to satisfy

/a/\*a<oo.
X

One defines two subspaces
Ziy(X) = {a € 4ip(X) | da =0}
£ (X) = d(AL51(X)) 1 Aig) ().
Then Z('2) (X) is a closed subspace of A' y(X) and contains the closure

2)(X ) of B(Q) (X) in A (2)(X). The (reduced) L%-de Rham cohomology
groups of (X, g) are defined by

Hiy)(X) = Z{5)(X)/Bigy(X).
Let A =d*d+dd* be the Laplacian operating on A, (X),
(2)(X) = {a € Aly)(X) | A(e) = 0}
the space of harmonic L?-forms, and
Biy (X) = d* (A;-;)I(X)) N Ay (X).

Theorem (Hodge decomposition [de Rham]). Let (X,g) be an ori-
ented complete Riemannian manifold. The following orthogonal sum de-
compositions hold:

((X) = Hig)(X) ® Biy)(X) @ Biy)(X),
ZZQ)(X) = (2)(X) &) B(g)(X)-

Now suppose that (X,w) is a complete K&hler manifold. The Laplacian
preserves the Hodge decomposition

() = @ A5X)
ptg=i
Thus, we obtain the decomposition of Hodge type
Hig(X) = P Hip(X) N AL (X) = a5 Hpg (X).-

ptgq=i p+g=i
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We notice that the space H’éo) (X) is nothing but the space of L2-holomor-
phic ¢-forms Hfy (X, Q%) on X.

As the Kahler form w is parallel with respect to the Riemannian connec-
tion on (X,w), the operator wFA : A’é) (X) — AZ;')%(X ) sends harmonic
forms to harmonic forms. We have the following strong L2-Lefschetz theo-
rem for complete Kahler manifolds (for example, see [G1]).

Theorem (Lefschetz). The map wFA : 'H’@) (X)— Hz;—)zk (X) is injective
for i+ k < dimeg X and surjective for i + k > dimg X.

We return to an oriented complete Riemannian manifold (Y, k). Let «
be a closed i-differential form on Y which is g-bounded. Recall that « is
d(linear growth) if o satifies the following condition:

a=d(B8) and |B(z)|4 < c-diste(z,z0) + ¢

for constants ¢, ¢’ and some zo € Y. Typically, we apply this to a Rieman-
nian covering (X ,g) of an oriented compact Riemannian manifold (X, g)
and « the lifting of a closed form on X, that is exact on X. We have
shown in Prop.1 that any closed 1-form is J(linear growth). Suppose now
X is a compact Kéhler manifold, whose Albanese map

alb: X — Alb(X)

is an immersion. Then the lifting of the Euclidean Kahler form to the
covering X’ — X corresponding to the abelian fundamental group of X
is d(linear growth). Hence, the lifting to any covering X — X’ is also
d(linear growth) by Prop.1.

As a slight generalization we have

Proposition 2. Let (X,g) be an oriented compact Riemannian manifold
of nonpositive sectional curvature. Then the lifting of any closed form to the
universal covering (X,§) is d(linear growth).

Proof. Let 2o € X, S a compact submanifold of X of dimension m. Then
the (m + 1)-dimensional volume of the geodesic cone over S with vertex zg
satisfies

Vol t1(Cone  S) < cpy max dist(z,z0) Voln(S)

for some constant c,, depending only on m. Therefore, the conclusion can
be derived as in [G1; 0.1.B]. O
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Theorem 1 (Vanishing theorem for cup products). Let (X,g) be an
oriented complete Riemannian manifold, and let o be a closed differential i-
form on X valued in a metrized local system (V,h) which is (g, h)-bounded.
Suppose that o is d(linear growth). o

Then for any n € I?gQ)(X) we have aAn=0¢€ I?(’;')J(X, V), the L%-de
Rham cohomology valued in the metrized local system (V,h).

Proof. We only prove this for the constant local system case. The argument
for the general case is the same. We write o = d (8) with

18llg < c-distg(z,z0)+¢. Let B, denote the ball in X with center zo and
radius r with respect to g. We may find a smooth function x, : X — Rt
with 0 < xr(z) <1 forall z € X, x-(z) =1 for z € B, x-(z) =0
for z € X \ By, and ||dx,(z)|lg < Constant/ disty(z, zo) for = € Bs, \ B;.
Since d(x-B An) has compact support, d(x.8An) € Bg)j (X). We want to
show that d(x,BAn) L2-converges to a An as r — oo.

We consider

d(Xr/B/\n) =er/\:3/\"7+Xra/\77~

Since « is bounded, o An isin L2, and

2 _ 1 2
Jotenn® = tim [ jena,

and
lim

m [ pollanal?=tm [ aanl?+lin [ pelPlaaql?
r—oo [y r— /g 7= /B, \B,

Since

Lo hePlannPs [ jangl—o
BZr\Br B2'r\B'r

for 7 — oo since aAn € L?, we conclude that xraAn converges to aAn
in L? for r — oo.
Next

/ ldxs A B A 7|2 < const / Inl?
X B2r\Br

by the growth properties of dy, and [, and this expression again converges
to 0 as T — oo, since n € L2. The preceding estimates imply that
d(x-BAn) converges to aAn in L? for r — oo. Ol
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4. Vanishing theorems for L2-cohomology.

The next result derives consequences from the existence of holomorphic 1-
forms and d(linear growth)-semi Kéahler forms on Kéhler manifolds:

Theorem 2 (Green-Lazarsfeld type vanishing theorem). Let X be

a compact Kihler manifold, and ay,...,0; be holomorphic 1-forms on X
that are linearly independent at generic points of X. Suppose that X — X
s a covering for which the liftings &i,...,&; are exact. Then

i) ’H(Q)(X)zO for p<l.

it) If ’H(Q)(X ) # 0, then there ezists a proper rational map f: X — Y
with diim Y =1 such that ’H(2) (X) factors through f.

Proof.
i) Let n € ’H(2)(X ). So, n is an L2-holomorphic p-form on X. Since

@; is bounded, & A 7n is an L?- holomorphic (p + 1)-form, hence
in ’Hp + 0(X ). By Theorem 1 we obtain &; An = 0 as products of

dlfferentlal forms for 1 <7 <. Since [ > p and oy, ..., arelinearly
independent, it follows from elementary linear algebra (c.f. [GL]) that
n=0.

ii) First we show that all sections from ’H(2) (X) generate a rank-1 co-
herent subsheaf [ C Q’X It follows for the same reason as in i) that
any section from 'H @) (X) can be written as fé1 A---Ad. It is clear

that L is invariant under the action of the deck transformation group
I', and all sections from H(z) (X) are L?-holomorphic sections of L.

It is known classically (c.f. [G1], [K] and [Ko, Chapter 5]) that given
an L2-holomorphic section s one can construct a Poincare series of

weight k
P(s*(2)) = ) s* ().
vyer

If k > 2 then P(s®) is convergent and defines a Iinvariant holomor-

phic section of f/k, hence a holomorphic section of the corresponding
line bundle L on X. Further, let

Ry = <H P(s")

Zki=k>
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be the subspace of H(X, L*) generated by the Poincare series P( 4.
If k>> 0, then Ry defines a proper rational map f: X — Y. This
statement is due to Gromov [G1], page 285. It is also discussed in
detail in [Ko|, Page 143-147, 13.9 Theorem, Statement 13.9.3. Since
the generic fibre of f is compact and & is exact, the pull back of
¢; to the generic fibre is zero. So, all &; factor through f This
implies that dimY > [. On the other hand, we consider the quotient
map f: X — Y. By the Bogomolov-Sommese Theorem ([EV], Page
58) the Kodaira—dimension of the rank-1 subsheaf L C Q) cannot
be bigger than [. This shows that dim Y < (X, L) < I. So, we get
dimY = 1[. It is easy to see that L descends to the canonlcal line
bundle on Y in the orbifold sense. Hence all elements of H(2) (X) are

pulled back from Y. a

We next wish to derive an extension of Green-Lazarsfeld’s theorem to
the non abelian case: Let (V,h) be a metrized local system, such that h isa
harmonic metric. This is equivalent to saying that V' comes from a reductive
linear representation of 71(X) [S1]. The harmonic metric h, equivalently an
equivariant pluriharmonic map u: X — N to the corresponding symmetric
space NN, gives rise to a new holomorphic structure £ on the vector bundle
V and the (1,0)-part of the differential d'v is a holomorphic section 6 €
H(X,End E ®Q§(), satisfying 6 A0 = 0. The pair (E, §) is called the Higgs
bundle corresponding to V. Suppose V is an abelian local system. Then
6 is nothing new but a collection of holomorphic 1-forms corresponding to
V. So, we are in the Green-Lazarsfeld situation. And by Prop.1 the pull
back of the euclidian metric on the torus via the Albanese map defined by
those forms gives rise to a d( linear growth)-semi Kéhler form on X.

Another extreme case is a local system arising from a variation of Hodge
structures. This kind of local system corresponds to holomorphic maps into
symmetric Hermitian spaces in the special case and horizontal holomorphic
maps into Griffiths period domains (see [GS] for details). The work of Gro-
mov [G1] for the Hermitian case and the recent work of Eyssidieux [El]
for the period domain case show that X does admit a d( bounded) semi
Kahler form.

In general we have the following proposition:

Proposition 3. Suppose that there ezists a Higgs bundle (E,0) coming
from a reductive local system. Then X admits a nonelliptic semi Kdhler
form W'. And the null spaces of w' coincide with the tangent spaces of the
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foliation defined by 6.

The proof of Prop.3 is a combination of Eyssidieux’s construction for
a d( bounded) semi Kéhler form via Busemann functions on symmetric
spaces and pluriharmonic maps into Bruhat-Tits buildings. We postpone it
to Section 6.

The following generalization of the Green-Lazarsfeld type vanishing the-
orem in the non abelian case is derived from a Gromov type vanishing the-
orem, Theorem 3 below.

Theorem 2°’. Suppose X is a projective variety and (E, ) is a Higgs bun-
dle coming from a reductive linear representation of m1(X). Then

H( (X, Q) =0 for i< ranké,

where rank is defined as the rank of the map 6 : End E — Q1.

The proof follows directly from Prop.3 and iii) in Theorem 3 below. O

Our second type vanishing theorem is applicable for so called Kéhler non-
elliptic manifolds (also including singular ones), i.e. there exists a covering
(X,&) — (X,w) such that & = d(linear growth).

The main examples of such manifolds are: manifolds of nonpositive sec-
tional curvature, generically finite maps into holomorphic tori, harmonic
maps with maximal rank at generic points into symmetric spaces and into
Bruhat-Tits buildings (see Section 6).

Theorem 3 (Gromov type vanishing theorem). i) Suppose that

(X,w) is a compact Kihler nonelliptic manifold. Then H: @) (X) van-
ishes except possibly for i = dimg X.

ii) Suppose that (X,w) is compact Kahler manifold, and there ezists a
singular Kdhler nonelliptic form ' on X, i.e. W' is a closed 2-form
on X of (1,1)-type that is posztwe definite on a nonempty Zariski
open subset Xo C X and o' is d(linear growth). Then H? ) (X, 00
vanishes except possibly for i = dime X.

iil) Suppose that the following two conditions hold:

(a) Let X be a projective algebraic mamfold and suppose there

ezists a semi Kahler nonelliptic form o' on X. ie W' is
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a closed 2-form on X of (1,1)-type that is positive semidefi-
nite on a nonempty Zariski open subset Xo C X and o is
d(linear growth).

(b) m(X) C m(X) is a normal subgroup and w1 (X)/m(X) is resid-
ually finite, i.e. there exists a sequence of normal subgroups of
finite index

-~.cr',c..I1 c Tl”l(X)/’ﬂ'l(X)
with ni]-—‘i = {1}

Then H&)(f(, Q) wvanishes for i < rkw’, where tkw' :=rkd/(z) for
generic points ¢ € X.

Remark. We believe that the assumption that X is a projective algebraic
manifold in Condition a) and Condition b) in the statement iii) is only a
technical condition, but we do not know how to get rid of it.

Proof of i). Straightforward: Let & = d(8) such that § has at most linear
growth with respect to the pull back Kéhler metric. So, for any k € N we
have A¥® = d(BAAF"10) and BAAF~1G has again at most linear growth.
Applying Theorem 1 we obtain Afw Anp =0 for k> 1 and n € I:I(*2) (X).
Hence, the hard Lefschetz theorem implies that H ("2)()2' ) =0 for i # dim X.
i) is proved.

Proof of ii). The proof is also quite standard. Let n be an L2-holomorphic
i-form on X with 7 < dimg X =: n. We consider the differential form

1)/\17/\c;'n_Z

of degree 2n, where 7 is the complex conjugation of 7. Since W™ s
d(linear growth), by Theorem 1 7AW’ n_z. is in the L2-closure d(L2)N L2.
Since 7 is closed and in L2, nAfAw™  isin the L'-closure d(ZT) N L.
By Gromov’s L!-Lemma ([G1], 1.1.A.) any 2n-form ¢ that is in d(Z')NL!

has .
/)'(C =0

This implies that any 2n-form ¢ that is in the L!-closure d(L!) N L! has

also
/_C‘—.‘O.
X
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Applying this fact to n A7 A c;’n_i, we obtain
/ nAGTAG" T = 0.
X

On the other hand, let Xo be the open subset of X , Where &' is positive
definite. Since X \ Xy is a zero measure subset,

/_ nAGAG" = 0.
Xo

The following argument can be found in\[GH], page 110. Let ¢1,...,¢, be
the local holomorphic unitary coframe w.r.t. &'; if

n=Y mér
I

then
nAT=Y nrisér Ady.
I,J
Now
- v-1 <
o = —— > i,
so

S"T=Cin-i Y dx Adk;

|K|=n—i
for suitable C; # 0, thus

nAfAS" =Y Il @,
I

where ® is the volume form of &' on Xg. So, the vanishing of the preceding
integral implies that all nr = 0. ii) is done.

Proof of 4i). If rkw’ =dim X then (X,w,w’) is singular Kahler nonellip-
tic. So, iii) follows from ii). In general, suppose rkw’ =r > 0.

Since under Condition b) m1(X)/m1(X) is residually finite, there exists
a sequence of normal subgroups of finite indices

{i}c---cyc--cT cm(X)/m((X)
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with M;T'; = {1}. Letting I, denote the preimage of T, C m(X)/m1(X)
in m(X), we obtain a sequence of normal subgroups of finite indices

mX)c---cl,c.--cT} cm(X)

with NI, = m (5( ). It corresponds to a sequence of coverings of finite

degrees _ 3
XooioX,ooX =X

with m1(X,) =T%. Let d, denote the degree of the covering X,, — X and
hb 0(Xn) denote the dimension of the space of holomorphic i-forms on X,
Since N,mi(X,) = m1(X), by Kazhdan’s and Liick’s theorems [K], [L]

. hi’O(Xn) 1,0
Jim sup —Z - h) (X),
where hz(.’QO) (X) is the von Neumann-dimension (w.r.t.  the group

m1(X)/m1(X)) of the space of L2-holomorphic i-forms on X.

Claim 1.
,0( %
lim sup h—(z(—"—)

n—00 d,

=0.

Proof of Claim 1. Since X is a projective algebraic manifold, there exists a
linear system |D| for some very ample divisor D. An element from |D| is
a hypersurface in X, and a generic one is a smooth hypersurface. If we take
[ generic smooth hypersurfaces Dj,...,D; from |D|, then the intersection

Din---NnD; =Y

is a smooth projective submanifold in X of dimension dim X —I. Since Y is
the intersection of ample divisors, by the Lefschetz hyperplane theorem for
fundamental groups, the homomorphism i, : 71 (Y) — 71(X) is surjective.

For | = dim X — rkw’, we may choose such a Y so that the pull back
1*(w') via the inclusion % : Y < X is positive definite in a nonempty Zariski
open subset of Y. So, i*(w') is a singular Kéhler nonelliptic form on Y
and the pull back z*(w’) on the covering Y is d(linear growth). Applying
ii) we get H(2)(Y ) =0for 0<i<dimY -1=r-1.

Now let ¥, ¢ X,, denote the preimage of Y C X, and we consider the
sequence of coverings

Y—>---—>Yn—>---—>}~’1—>Y
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with N,y (Y,,) = 71(Y) and of the same covering degrees d,, as before. Ap-
plying Kazhdan’s and Liick’s theorems and the vanishing for L2-holomorphic
i-forms on Y we get

1,0(V
h (Y")zo, 0<i<r-—1.

lim sup
n—oo n

So, in order to prove Claim 1 it is enough to show that for any n we have
BO(Yn) = h0(X,) 0<i<dimY-1=r—1

Since Y, = D1N---NDj is the intersection of the ample divisors Dl, e ,Dl
on X,, by applying the Lefschetz hyperplane theroem for cohomology
groups successively we get the the equality. Claim 1 is proved. Hence,
iii) is complete.

Theorem 3 is done. a

Remark. In the preceding argument, we have reduced the situation to
finite coverings of X so that the L? condition is trivially satisfied. In general,
of course, the restriction of an L?-form to a subvariety need no longer be
of class L2, but if we are dealing with the universal covering of a projective
algebraic manifold X, for a given L?-form n € H, (02)(@),2' < 7, we consider
projective subvarieties j : Z — X of dimension 7 in generic position, with
j*n # 0 and rkj*w’ = r. In that case, we have enough flexibility in the
choice of Z, by taking a generic pencil and moving the base locus around, to
be able to assume by Fubini’s theorem that j*n is of class L2. This remark
may be useful for establishing other vanishing theorems in the spirit of iii)
of Thm. 3.
Theorem 3 has the following

Corollary 2. Let (X,w) be a compact Kdhler manifold, and let u : X —
N be a pluriharmonic map into some Riemannian manifold N that is of
mazimal rank dimg X at generic points. Suppose that on the universal cover
N of N, there ezists a strictly convez function ¢ with gradient of at most
linear growth, and with bounded Hessian. Then H?z)(X, Q) = 0 except
possibly for ¢ = dime X.

Proof. We consider

W' 1= 80(p o @),
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where @ : X — N is the lift of u.

Since the composition of a convex function with a pluriharmonic map
is plurisubharmonic, w' is nonnegative. In fact, it is positive definite at
generic points since u is assumed to be generically of maximal rank, and ¢
is strictly convex. Since ¢ has gradient of linear growth, and the derivative of
u is bounded as X is compact, ' is d (linear growth). Altogether, (X,w,w’)
is singular Kéhler nonelliptic and Theorem 3, ii) applies. O

5. Vanishing theorems in algebraic geometry.

Our first application here is to reprove some vanishing or nonvanishing the-
orems in algebraic geometry. The general idea is simple. On one hand, we
use Kazhdan’s theorem [K] to produce some L2-cohomology class on some
infinite covering X.o — X via algebraic cohomology classes on sequences
of algebraic coverings that converge to X, provided the growth of algebraic
cohomology groups is proportional to the growth of degrees of the coverings.
On the other hand, some cohomology class on the initial manifold is going
to be exact X. We may apply this idea to the following interesting prob-
lem, the so called generic vanishing theorem for cohomology groups of local
systems in algebraic geometry. In this paper we only consider the rank-1
case, which has been studied by Green and Lazarsfeld [GL].

We consider the Picard variety Pic’(X) of X. It is the moduli space of
rank-1 unitary local systems (flat line bundles) on X. Let S% c Pic?(X)
denote the subset defined by

SP = {L € Pic®(X) | H)(X, QP ® L) # 0}.
It is well known that S% is a subvariety (for example see [GL])

Corollary 3. (Generic vanishing theorem of Green—Lazarsfeld) Let
X be a compact Kéihler manifold. Suppose that X has | holomorphic 1-
forms, which are linearly independent at generic points. Then S, is a proper
subvariety of Pic®(X), for p < 1. (That means also that H°(X,QP®L) =0
for a generic L € Pic®(X) and p<1.)

Proof. If the statement were not true, then there would exist some p < I
with HO(X,Q? ® L) # 0 for all L € Pic’(X). The main point here is to
construct a sequence

.._)Xi_)...__)Xl—)X
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of coverings of finite covering degree d;, such that
rPO(X;)/d; > constant.

Let T; denote the subgroup of 2:-torsion points in Pic®(X). (Here in place
of 2%-torsion points one can also take p-torsion points for any prime number
p.) The sequence of groups

:)Tz :)Ti—l BEEE :){1}
corresponds to a sequence of abelian coverings
...-—)Xi—.)..._)Xl__)X

such that _
Gal(X;/X)~T, and mOg =P L.
LeT;

Denote 5
I'; = kernel(m(X) — Gal(X;/X)),

and let 7: Xoo — X be the covering such that m (Xoo) = M;;. One sees

easily that _
Im{m, : Hi(X,Z) — Hi1(X,Z)} =0.

This means that the liftings of all holomorphic 1-forms from X to X are
exact. _

It is straightforward to see that the finite covering map m; : X; — X
induces an isomorphism

HO(X;, 0% ) = HO(X, 1 ) = H(X, %5 @miOx,) = P = (X, 9% L)
LeT;

As WP9(X,L) > 1 for L € T}, we obtain

WX = WX, L) > |Ti| = di.
LeT;

So, by Kazhdan’s theorem ([K], Theorem 2) there exists a non zero L2-holo-
morphic p-form on X. On the other hand, since the liftings of all holomor-
phic 1-forms from X to X are exact and ! of them are linearly independent
at the generic point of X, hence, by Theorem 2 all Lo-holomorphic p-forms
on Xo for p <! must be vanishing. A contradiction. O

Using the same argument we also reprove a Nakano—type generic vanish-
ing theorem, which is again due to Green-Lazarsfeld. The statement here is
weaker than the original one (c.f.[GL]).
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Corollary 4. (Nakano-type generic vanishing theorem of Green-
Lazarsfeld) Suppose that X is a compact Kdhler manifold that admits an
immersion X — T into a holomorphic torus. Then hP4(X,L) = 0 for
generic L € Pic®(X) and p+ ¢ < dim X.

Proof. Let w = ) .dz; A dZ; be the flat Kéhler metric on T. The pull
back of w to X via the immersion is a Kahler metric on X. Further,
let -+ = X; » X;_y = -+ = X1 — X be the sequence of coverings
constructed in the proof of Cor.3. One checks easily that the lifting @ is
d(linear growth). Hence, from Theorem 3 H (iQ) (X) is zero for i < dim X.
If there were some p 4+ ¢ < dim X such that AP9(X,L) > 1 for all
Le PicO(X ), then by applying Kazhdan’s theorem as above, we would get
a non zero class in ’H’(’ég(Xoo). A contradiction. O

In fact, Arapura [Ar] and Simpson [S2] have the following description of
the subvariety

S(X) := {L € {1-dim. local systems|H'(X, L) # 0};

they have shown that S?(X) is a union of translates of subtori of C*01(X).
Simpson shows further that these translates of subtori are translations by
torsion points. As a consequence, they reproved a theorem of Green-
Lazarsfeld, namely that the subvariety

Si(X) = {L € Pic(X) | H'(X, L) # 0 };

is a union of translates of subtori of Pic’(X).

Combining those descriptions and the same argument as above, we may
also reprove the general form of Green-Lazarsfeld’s vanishing theorem. We
omit the details.

6. Further examples of singular Kihler nonelliptic manifolds
and x(Kx) of Shafarevich varieties.

A special and important class of Shafarevich varieties are locally symmetric
Hermitian spaces X = X /T. In this case the Shavarevich map is the identity
map. Gromov [G1] showed that the invariant Kahler form is d(bounded).
And using the metric he proved a vanishing theorem for L?-cohomology
except in the middle dimension dime X.
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An important generalization along this direction was obtained by P.
Eyssidieux [E1l]. He considered the Griffiths—period map f : X — D/T’
corresponding to a variation of Hodge—structures. Suppose that f is an
immersion (this means that the corresponding representation m1(X) — I’
is large). Then X admits a Kahler hyperbolic metric. We will discuss his
argument below.

However, in the most general case there is no hope to get a Kéhler
hyperbolic metric. A typical example is in the Green-Lazarsfeld vanishing—
theorem where we have holomorphic maps into tori. We can only get some
Kéhler nonelliptic metrics. So, we must replace Kahler hyperbolic metrics
by Kahler nonelliptic ones in the general case. We have seen in Section 4 that
the existence of this kind of metrics is strong enough to deduce vanishing
theorems.

We start with a compact Kahler manifold (X,w) that admits a reductive
representation p : m1(X) — GL,(C). This means that the Zariski closure
pm1(X) is a reductive algebraic group and decomposes into an almost direct
product of a torus Gy and some almost simple groups G;, 7> 1,

pmi(X) = Go x [ Gs.

By [C] there exists an equivariant pluriharmonic map

u: X >N
corresponding to p into the symmetric space N of noncompact type with
isometry group GL,(C). Let Ts(x) (N) denote the complexified tangent
space of N. Then by [Sa] the image d'u(T,(X)) C T2y (V) is contained

in an abelian subspace W C Ti (N) of maximal dimension. W is decom-
posed into a direct sum of the nifpotent and semisimple subspaces

W=W,+W,.

The semisimple part Wy is just the complexified tangent space of a flat
A C N of maximal dimension passing through u(z).

The main idea here is that we shall construct a Kahler form as a sum
of a Kahler form that is non degenerate in the W,-direction, and a Kahler
form that is non degenerate in the W;-direction.

For the nilpotent part, we have the argument of Eyssidieux [E1]:

We consider the equivariant pluriharmonic map

u: X—=N
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into the symmetric space corresponding to p, and we would like to utilize u
in order to construct a semi Kahler form on X that is d (linear growth). We
start with the construction of Eyssidieux [E1]. The idea is to pull back a
suitable convex function from N, and the natural starting point here is the
distance function d(-, p) from some point p € N (or rather /1 + d(p, -)2, in
order to have a smooth function). The problem is that the Hessian of d(-, p)
does not have a positive lower bound in those directions that correspond
to flats in N. If the map is holomorphic, then the image of T; X under
du cannot be contained in the tangent space to a flat, unless du(z) = 0,
because these flats are totally real. However, there exist so-called singular
directions in TX that are contained in more than one maximal flat going
through p. Eyssidieux overcomes this problem by considering in place of the
distance function from an interior point the normalized distance function
from a suitable point g at infinity, the so-called Busemann function of q.

One fixes a point p € N, and ¢ then can be considered as the tangent
direction of a geodesic ray (t) starting at p. The Busemann function ¢, :
N — R then is defined as

q() := lim (d(z,7(t)) — d(p,7(1)))-

By a proper choice of g, each tangent vector in N is contained in a unique
maximal flat going through g. Consequently, pulling back the Hessian of
such a Busemann function under a holomorphic map yields the desired form
on X.

However, if the map is only pluriharmonic instead of holomorphic, then
35(goq o u) does not necessarily have a positive lower bound anymore as in
the third inequality in Prop. 4.5.1 of [E1]. It is still nonnegative, because the
composition of a convex function with a pluriharmonic map is plurisubhar-
monic, and it is not identically zero, because even if the image of u should be
contained in a flat, we may choose g not contained in this flat. (One might
also take sums of Busemann functions.) Since we have a stronger vanishing
theorem at our disposal (see Thm. 1 and Thm. 3 (ii) and Cor. 2) than [E1],
we may get by below with those weaker properties.

We return to the general case.

Let p; : m1(X) — G; denote the representation induced by the i-th
projection. It is clear that for the abelian representation pg : m1(X) — Go,
we have a factor map

m(X) — ¢ X Gy,

where ply : m(X) — C*1(X) s the standard discrete representation. By
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enlarging the representation we may simply assume that pgp = pf. This
makes the new representation even bigger.

Now we consider p; : m1(X) — G;, i > 1, a Zariski dense representation
into an almost simple algebraic group G;, 1 <.

We now summarize some general properties of such representations for
which details and references can be found in [JZ2] Page 499 and [Z] Pages
- 142-143. Since m1(X) is finitely presented, the moduli space of representa-
tions of m1(X) — G; is defined over some number field.

If p; is rigid, then p; is defined over some number field K (see [S1] for
details). By Simpson’s theorem on VHS [S1] p; is a complex component
of a @-variation of Hodge—structures 7;. We have two possibilities for this
kind of representations.

1) p; is bounded w.r.t. every prime ideal p C Ok, the ring of alge-
braic integers of K. By taking the diagonal embedding into the direct
product of different field embeddings K «— C, we see that 7; is a
complex component of a Z-variation of Hodge-structures (see [Z]). By
enlarging the representation we may assume that 7; itself is a Z-VHS.

2) p; is unbounded w.r.t. some prime ideal p C Ok.

If p; is nonrigid, then p; can be deformed to a p;; such that p;; is
defined over some number field L and is unbounded w.r.t. a prime ideal
pC Or.

Summing up the above discussion we obtain a new representation

p' = po X Hn X H.Di,t :my(X) — Cr) x HH’? X HGi’

i>1 i>1 i>1 i>1

such that
po: m(X) — c*1X)

is the standard representation,
T . 7T1(X) — Hi, 1 Z 1,

is a Z-VHS and
pirt: m(X) - Gi(Kp),i>1

is a Zariski dense and p-adically unbounded representation into an almost
simple p-adic algebraic group G;(K,) over some p-adic number field K.
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Definition. (see [Ko, Chapter 4.1] for the general case)

Let 7 :m(X) — GL, be a representation, and X, — X be the covering
such that m(X,) = Kerr. We call 7 large if all compact and positive
dimensional subvarieties in X, are contained in a proper subvariety of X;.

Campana and Kollér ([C], [Ko, Chapter 3]) have proven that if 7 is not
large then there exists a surjective rational map, the so called Shafarevich

map
shr: X — Sh(X)

such that 7 factors through sh..

We come back to our situation. If the original p is large then p’ is
again large. Consider the family of representations {p}}ter such that pj =
p = po X I;>17 x Mi>1p1, p = po X i>17; x Ii>1pi¢ and pj is large by the
assumption. We claim that p is again large for generic ¢t € T. Otherwise
we would get a family of the Shafarevich maps {sh: : X — Shi(z)}ier.
With positive fibre dimension for the family {p}}tc, where Tp C T is a
Zariski open dense subset. Since the generic fibres sh; 1(y),y € shy(X) are
homotopic to each other and pj| shil(y) = Id, t € Ty we may fix some fibre

sh];;,1 (y) such that p¢| shl(y) = Id for t € Ty. Consider the holomorphic map

T, - Hom(I1(sh;;' (y),G)/G
t = Peloniw):

Since m(Tp) = Id and Tj is Zariski open dense, pj = m(0) = Id. By applying
the exact sequence of the homotopy groups

— mi(shy (¥)) — m1(X) = T (Sheo (X)) — 1,

we show that pf, factors through shg, : X — shy(X). A contradiction to pj
being large. In general we may use the Shafarevich map

shp: X — Sh(X).

The representation p factors through sh,, and is large on Sh(X). So, we
may work on Sh(X) to obtain such a representation p’.

For the standard representation pg : m1(X) — Cc*1X) let fo: X = Y,
be the Stein-factorisation of the Albanese map of X. Then po factors
through fo up to some etale covering of X.

Similarly, for the Z-VHS 7; we consider the corresponding Griffiths pe-
riod map

gi:X'—>D,~.
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Since the action of 7;7m1(X) on the period domain D; is discrete, we obtain
a quotient map (take again the Stein-factorisation)

g : X — Z,' C Di/TiTrl(X).

As before, 7; factors through g; up to some etale covering of X.
Finally, for the p-unbounded Zariski dense representation p; ¢ : m1(X) —
G(Kp) one may construct an equivariant pluriharmonic map

u X = 0

into the Bruhat-Tits building of G(K}) (see [GSch]). Since p;; is p-un-
bounded, u; is not constant. Considering the complexified differential

duf = (duf)" + (duf)™,

the (1,0)-part (du¢):? is a collection of holomorphic 1-forms on X. By
Theorem 2 in [JZ1] these 1-forms define a surjective morphism f; : X — Y}
of connected fibres, such that dim Y is equal to the dimension of the linear
space spanned by (du®)? at the generic points, and pit factors through
fi-

Taking the product of all the preceding morphisms

h:=f0XHgiXHfi3X’_’Y;)XHZZ'XHY;')

i>1 i>1 i>1 i>1

p' factors through h. Now we want to construct a positive semidefinite
Kahler metric «’ on X, such that «' is d(linear growth) and the null
spaces of w’ coincide with the tangent spaces of the fibres of h.

Let Bi,...,Bi,... be the holomorphic 1-forms on X defining the map fo
and 90¢1,...,00¢;, ... be the Hessian of Busemann functions on the sym-
metric spaces corresponding to the VHS g¢,...,9;,... as explained above.
Then from Prop.1 and the Prop. 4.5.1 of Eyssidieux [E1] the sum

Zﬁi/\5¢+z:35¢i

is a positive semi definite K&hler form on X and is d(linear growth).
Further, let dsa, be the Euclidean metric on the building and let

(ufdspa,)b! be the (1,1)-part of the pull back metric. Then it is posi-

tive semidefinite, and Ké&hler, since w; is pluriharmonic. The null spaces

of (u;-"dsAJ.)I’1 at the generic points are vertical tangent vectors along the
fibres of f;.
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The semi Kahler metric @ on X is now defined as

O = BiABi+ D 00+ (uidsa,)tl.

We have to check that &' is positive definite on some open subset. From the
above discussion we see that the null spaces of &' at the generic points are
the vertical tangent vectors along fibres of the map h. Since h is generically
finite, & is positive definite on a non empty Zariski open subset Xy C X.
It is clear that &' is m;(X)-invariant, and we conclude that it descends to
a singular K&hler metric o’ on X.

Lemma 1. «' is d(linear growth).

Proof. Recalling Prop. 1 and observing that 8dy; is even d (bounded) as the
gradient of a Busemann function is bounded, it only needs to be checked that
> (utdsa,)b! is d(linear growth). We start by reviewing the pluriharmonic
map u into the building
u: X = A.
The general properties of buildings that will be used below can be found in
[B]. The properties of harmonic maps into buildings and forms on buildings
can be found in [GSch] and [JZ1] and [JZ2], Page 491.
The building A is covered by apartments

A=]JA

On each apartment A there is a natural choice of a collection of real linear
functions {z1,...,z;}4 (they are essentially the root system on R" of the
group G up to some translations on R"), such that on the intersection of
two apartments A and A’ the two collections of differentials coincide

{dz1,...,dzi} alana = {dz1,. .., dzi} ar|ana,

the elements will be permuted by the Weyl group W of G.
Consider now the complexified pull back 1-forms

u*dz; = o; + &;.

The harmonicity of « implies that «;, 1 < ¢ <[ are holomorphic. The sum

l
Z a; N\ @;
i=1
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is then W-invariant. Hence, they piece together and give rise to a 2-form on
X, the exterior 2-form corresponding to the semi Kéhler form (u}dsa,)b?!.

Claim. ZLI a; A\ ay is J(linear growth).

Proof. 1t is clear that on the preimage u~!(A4) of each apartment A we

may write
l l ‘
(Z a; N\ 5[,’) = (Z (Ofi + C—Vi) A ai)
i=1 u=1(A) i=1 u~1(4)
l
=d (Z u*(z;) A 5{,')
\i=1

The main point here is that we can piece all of these primitive forms on
u~1(A) together to obtain a global primitive form on X

u~1(4)

l
> o Aa =d(B).
=1

The following discussion of affine coordinates can be found in [B]. Fixing
a vertex po € A, then for any point p € A we may find an apartment
A containing pp and p (not unique). We choose those. linear functions
{z1,...,2z1}4 on A that vanish on pp, and define (3 restricted on the
preimage of A as

!
Blu-1(4) = (ZU*(fvi) Aéi)
im1

B is well defined on X, which can be seen as follows: On the intersection
of two apartments A and A’ containing py and p the two collections of
linear functions coincide

u~1(4)

{z1,.. i} alana = {z1, .. i} arlanars

since all z; vanish at pg, and the Weyl group W just permutes them. So,
the above sum does not depend on which A we have chosen. Thus, 8 is
well defined.

We now show that § has linear growth. It is clear that all linear func-
tions z; have linear growth w.r.t. the metric on A. Since u is equivariant
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and Lipschitz, all u*z; are linear growth w.r.t. a fixed chosen Kahler metric
w pulled back from X.

We still need to show that all {@;,...,8} are bounded w.r.t ©. This
is equivalent to showing that the sum of their norms

l
> llaslls

=1

is bounded. Since this function is well defined, continuous on X, and is
m1(X)-invariant, it is bounded. Thus, we show that 3 is linear growth. The
claim is proved. Hence, Lemma 1 is proved. |

Lemma 1 implies Prop.3 in Section 4. In particular, if p is large then
w' is a singular nonelliptic Kéhler form on X. Hence, from ii) in Theorem
3 we get

Corollary 5. Let X be a compact Kéahler manifold, suppose that X admits
a generically large and reductive linear representation p : m(X) — GL,.
Then

Hppy(X, Q) =0 for i< dimeX.

Combining this corollary with Atiyah’s L2-index theorem [A] we verify
Kolldr’s conjecture in the representation case

Theorem 4. Let X be a compact Kihler manifold, suppose that X admits
a generically large and reductive linear representation p : m (X) — GLy.
Then

x(Kx) > 0.
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