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1. Introduction. 

In geometry, various notions of hyperbolicity have been introduced, and 
the appellation "hyperbolic" is intended to signify that a space shares 
some of the geometric properties that distinguish the standard model 
SO(n, 1)/SO(n) from the Euclidean space. Thus, typical examples are 
manifolds that have negative curvature in a suitable sense. 

The starting point for the present investigation is Gromov's notion of 
Kahler hyperbolicity [G1] . Let (X,w) be a compact Kahler manifold with 
Kahler for:n w. It is called Kahler hyperbolic if the lifting w of w to some 
covering X -> X is of the form w = d/3 with a 1-form f3 that is bounded 
w.r.t. the metric on X induced by the Kahler form w. Of course, this condi­
tion is satisfied on the Poincare hyperbolic disk, but not on Euclidean space. 
More generally, the typical examples of Kahler hyperbolic manifolds are lo­
cally Hermitian symmetric spaces of noncom pact type. Gromov showed that 
for a Kahler hy12_erbolic manifold X with a covering X as above, the L 2 

cohomology of X vanishes except in the middle dimension dime X. In the 
case of a Kahler manifold with negatively pinched sectional curvature, this 
was independently shown by M. Stern [St]. 

One of the points of the present note is that in contrast to what one 
might expect from Gromov's work, this vanishing theorem does not dis­
t inguish negatively curved spaces from fiat ones. More precisely, we wish 
to introduce a condition that is weaker than Gromov's and includes fiat 
spaces but that still allows one to deduce such vanishing theorems. Thus, 
in a geometric sense, the line of distinction will be drawn not between neg­
atively and nonpositively curved spaces, but rather between nonpositively 
and positively curved ones. 

In this note we demonstrate a Gromov type vanishing theorem for the 
cup product between L2-cohomology on some infinite coverings of X and 
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the so called <i(linear growth) cohomology classes on X (see the definition 
below). This theorem has some interesting applications in algebraic geome- 
try. For example, it easily implies the Green-Lazarsfeld vanishing theorem 
for cohomology groups of generic flat line bundles over X . Also some new 
theorems are proved. We obtain a generalization of the Green-Lazarsfeld 
type vanishing theorem in the non abelian case (Theorem 2') using the 
Busemann function technique due to Philippe Eyssidieux (see below) and 
theorems of harmonic maps into Bruhat-Tits buildings and Higgs bundles, 
and we also verify Kollar's conjecture about x(Kx) for large Tri(X) in the 
representation case (Theorem 4). 

Also, we are able to verify the Hopf-Singer conjecture on the sign of 
the Euler characteristic of a compact Riemannian manifold of nonpositive 
curvature in the Kahler case (see Cor. 1). 

Remark 1. Recently, Philippe Eyssidieux [E2] also proved a similar type 
vanishing theorem for L2-cohomology and derived the Green-Lazarsfeld 
vanishing theorem independently. In his thesis [El], (June 1994, Orsay) 
he proved also this kind of statement for large variations of Hodge struc- 
tures. In fact, the existence of a Kahler form of ^(linear growth) in the 
general case is based partly on his theorem. We thank him for pointing 
out an error in the first version of our paper. We also thank the referee for 
bringing some inaccuracies in the paper to our attention. 

During the preparation of this paper, the second named author was 
supported by a Heisenberg fellowship of the DFG. He is also grateful to 
the Max Planck Institute for Mathematics in the Sciences in Leipzig for 
hospitality. 

2. Synopsis. 

In order to prepare our definition, let (X,g) be a compact Riemannian 
manifold. A closed differential form a on X with coefficients in a metrized 
local system (V, h) is called J(linear growth) if for some covering X —» X, 
the lifting a is of the form d/3 with 

||^(x)||^ < c • dist^(x,xo) + c', 

where c and c' are constants (that may depend on /? and XQ , but not on 
x), where d is the exterior derivative on X, g is the lift of the Riemannian 
metric g to X, and XQ is an arbitrary point in X. 
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In order to familiarize ourselves with this notion, we present the follow- 
ing example of H. Whitney: For a differential q-foim a; on a Riemannian 
manifold (X,g), one puts: 

Hloo :=Sup{(i;(ei,...,cg)}, 

where ei,..., eq are unit tangent vectors at some x € X. 
For a cohomology class a G Hq(X), one puts 

IMP := Mega IMIoo. 

This infimum is always achieved on a compact X, i.e. there exists some 
u>o E a with ||u;o||oo = llall*) but this c^o need not to be unique. 

Let X be compact, UQ be a closed 1-form and let TT : X —> X be the 
Galois covering corresponding to the homomorphism ^i{X) —> Hi{X,Z). 
Then the pull back satisfies 7r*(u;o)"= d/, where / : X -+ R is a Lipschitz 
function with Lipschitz constant ||a||*. This shows 

Proposition 1. Any closed 1-form on a compact Riemannian manifold is 

d (linear growth). 

Of course, this may also be verified by integration along geodesic paths, 
but the preceding construction yields the optimal constant for the growth 
condition. 

Remark. The fundamental group strongly influences the growth of primi- 
tive forms of the pulled back forms of degree > 2. Some examples in [G2] 
show that they may even have exponential growth. 

Definition. A compact Kahler manifold (X, u) is called Kahler nonelliptic 

if u> is <i(linear growth). 

In order to make this notion compatible with morphisms between Kahler 
manifolds we also introduce the following 

Definition. A compact Kahler manifold (X1 UJ) is called singular Kahler 
nonelliptic if there exists a closed 2-form u/ on X of (1, l)-type that is 
positive definite on a nonempty Zariski open subset XQ c .X, and a/ is 
d(linear growth). 

A compact Kahler manifold (X, LJ) is called semi Kahler nonelliptic if 
there exists a nontrivial closed 2-form u/ on X of (1, l)-type that is positive 
semidefinite and d(lmear growth). 
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Examples of Kahler nonelliptic manifolds. 

1) Kahler hyperbolic implies Kahler nonelliptic. 

2) If X has nonpositive sectional curvature, then X is Kahler nonellip- 
tic. 

3) If X admits a holomorphic immersion into a torus T, then X with 
the pull back of the Euclidean metric of T is Kahler nonelliptic. 

If X admits a generically finite holomorphic map into T, then X 
with the pull back metric is singular Kahler nonelliptic. 

If X admits a holomorphic map into T, then X with the pull back 
metric is semi Kahler nonelliptic. 

4) If some covering of X admits a pluriharmonic map into some sym- 
metric space or Bruhat-Tits building, then the Higgs structure or the 
multivalued holomorphic 1-forms via this map define a semi Kahler 
nonelliptic structure on X. Consequently if X has a generically large 
reductive representation p : ^i{X) —> GLn, then X is singular Kahler 
nonelliptic. 

Question. All examples above have always to do with the curvature on X, 
or some pluriharmonic maps on X. It would be very interesting to find such 
examples only via some properties of the fundamental group. For example, 
X with TTI(X) of subexponential growth (see Mok's recent work). 

With these notions, one may extend Gromov's vanishing theorem 

Theorem 1. Let (X,g) be a compact Riemannian manifold, and let 

HLJX) denote the j-th reduced L2-de Rham cohomology group on X with 

respect to the metric g and H^X, V) denote the i-th de Rham cohomology 
group on X valued in a metrized local system (V,h). If a G ^(X, V) is 
d(linear growth)  then for any 77 € RLJX),   a A 77 is a L2-form valued in 

the metrized local system (V, h) and 

a A 77 = 0    in   Hi+j(X,V) 

Remark. Most of the present note extends to noncompact manifolds with 
complete Riemannian metrics, but here we shall not explore this point. 
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Let (X, to) be a compact Kahler manifold, and let Ti?^ (X) denote the 

space of L2-harmonic forms on X. The above vanishing theorem becomes 
particularly useful if combined with the Hodge decomposition 

p+q=i 

Our first applications are vanishing theorems:   Green-Lazarsfeld type 
vanishing theorem for L2-cohomology: 

Theorem 2. Let ai,...,a/ be holomorphic 1-forms on X which are lin- 

early independent at generic points of X. Suppose that X —> X is a cover- 
ing such that the liftings Si,..., ai  are exact.  Then 

i)   W£°(X) = 0 for p < I. \2) 

ii) // H/2)(X) T^ 0, then there exists a proper holomorphic map f : X 

Y such that Ti^JX) factors through f. 

Remark. If p, q > 0 then an example in [GL] implies in fact that T1?,£(X) 
does not need to vanish for p + q < I. 

We have the following extension of the Green-Lazarsfeld type vanishing 
theorem in the non abelian case 

Theorem 2'.  Suppose X is a projective variety and (E, 6) is a Higgs bun- 
dle coming from a reductive linear representation of TTI (X). Then 

fl{)
2)(-Y,ni) = 0   for   ;<rank0. 

These theorems follows from the Gromov type vanishing theorem: 

Theorem 3.       i) Let (X, a;)  be a Kahler nonelliptic manifold.  Then 

Wg;(X) = 0    for   p + q^&imcX. 

ii) Suppose {X, w)  is a singular Kahler nonelliptic manifold.  Then 

Hp$(X) = 0   for   p<dimcX. 
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Remark. Again the example in [GL] shows that for singular Kahler nonel- 
liptic manifolds H^dX) = 0 does not need to vanish for p, q > 0 and 
p + q < dimc^". 

Extending a conjecture of Hopf, it has been conjectured by Singer that 
the Euler characteristic x(^0 of aU aspherical (or at least all nonpositively 
curved) compact manifolds X of dimension 2n satisfies 

either 
x(X) = o, 

or 
signX(X) = (-1)" 

Here, we have a positive answer for the Kahler manifolds of nonpositive 
sectional curvature: 

Corollary 1. (Hopf-Singer conjecture on the sign of the Euler char- 
acteristic for Kahler manifolds of nonpositive curvature) Suppose 
that X is an n-dimensional compact Kahler manifold of nonpositive sec- 
tional curvature. Then all L2-reduced cohomology groups of X vanish with 
the possible exception of degree n. In particular, the above conjecture is 
true. 

In order to obtain vanishing theorems in the sense of Green-Lazarsfeld 
for compact Kahler manifolds we must combine the preceding with Kazh- 
dan's theorem [K] on the growth of Betti numbers of coverings. 

Consider a sequence of finite index subgroups of TTI (X) 

...crricrn_ic---criC7ri(X). 

This corresponds to a sequence of finite coverings of X 

• • • —> Xn —> Xn-i —►•••—» Xi_—► X. 

The projective limit of this sequence 

limXz=:X00-+X <— 

is the covering of X with 

^i(^oo)=nr'c7ri(x)- 
Putting 

di := degree of the covering map   TTJ : Xi —> X, 
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the normalized Betti numbers of Xi are defined as 

ViXi) := b'iXM, 

and the normalized Hodge numbers of Xi are defined as 

U,«(Xl) = h^(Xi)/di. 

Kazhdan's theorem [K] says that if 

lim sup hp'q(Xi) > 0, 
I—XX) 

then 
hffiiXo,) > 0. 

On the other hand, some cohomology class on the initial manifold is going 
to be exact on X^. So, sometimes Theorem 1 gives obstructions to the 
existence of L2-cohomology on XOQ. See more details in Cor.2. 

A further application of our vanishing theorem is concerned with the 
signature of the holomorphic Euler characteristic of the canonical line bundle 
of Shafarevich varieties. 

Conjecture (Kollar). // Tri(X) is generically large, then 

x(Kx) > 0. 

Roughly speaking, suppose  Tri(X)  is residually finite.   Then  7ri(X) 
is called generically large if 7Ti(X)  does not factor through any rational 
surjective map / : X —> Y with dimX > dimF. The precise definition of 
generically large 7ri(X) has been given in [Ko, Def. 4.6]. Here we verify his 
conjecture in the representation case: 

Theorem 4. Suppose that p : ^i{X) —> GLn is a reductive and generically 
large representation.  Then 

x(Kx) > 0. 

3. A vanishing theorem for cup products. 

We start by reviewing L2-de Rham cohomology groups of an oriented com- 
plete Riemannian manifold (X, g). All the formal properties are the same 
as in the compact case. Let * denote the Hodge operator with respect to g. 
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We consider the Hilbert space Afy of the completion of square-integrable 

i-forms a. Thus, a e Afa has to satisfy 

/   a A *a < oo. 
Jx 

One defines two subspaces 

Zi2)(X) = {aeAi
{2)(X)\da = 0} 

Bi2)(X) = d(Ai
i-)\X))nAi2)(X). 

Then ZLJX) is a closed subspace of Al2JX) and contains the closure 

Bi2)(X) of BfaiX) in A\2)(X). The (reduced) L2-de Rham cohomology 
groups of (X, g) are defined by 

Hi2)(X) = Zi2)(X)/Bi2)(X). 

Let A = d*d + dd* be the Laplacian operating on A^JX), 

Hl2)(X) = {aeAl2)(X)\&(a) = 0} 

the space of harmonic L2-forms, and 

Blq(X):=dr(A${XJ)nJlfa(X). 

Theorem (Hodge decomposition [de Rham]). Let (X,g) be an ori- 
ented complete Riemannian manifold. The following orthogonal sum de- 
compositions hold: 

"(2) W = «(2)(*) © 5(2)(^) © %(*)> 
z(

i
2)(X)=^2)(x)e5j2)(x). 

Now suppose that (X, CJ) is a complete Kahler manifold. The Laplacian 
preserves the Hodge decomposition 

p+q=i 

Thus, we obtain the decomposition of Hodge type 

p-\-q=i p-hq=i 
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We notice that the space H%\(X) is nothing but the space of L2-holomor- 

phic i-forms H?2JX,£ll) on X. 
As the Kahler form u is parallel with respect to the Riemannian connec- 

tion on (Xju;), the operator ujkA : AfaiX) —> Al^ (X) sends harmonic 

forms to harmonic forms. We have the following strong L2-Lefschetz theo- 
rem for complete Kahler manifolds (for example, see [Gl]). 

Theorem (Lefschetz). The map ujkA : HZ
(2)(X) -► H^k(X) is injective 

for i + k < dime X and surjective for i + k > dime X. 

We return to an oriented complete Riemannian manifold (Y,h). Let a 
be a closed i-differential form on Y which is g-bounded. Recall that a is 
^(linear growth) if a satifies the following condition: 

a = d{(3)    and    ||/3(^)||p < c • distp(^, XQ) + c' 

for constants c, d and some ^o € Y. Typically, we apply this to a Rieman- 
nian covering (X, g) of an oriented compact Riemannian manifold (X, g) 
and a the lifting of a closed form on X, that is exact on X. We have 
shown in Prop.l that any closed 1-form is <i(linear growth). Suppose now 
X is a compact Kahler manifold, whose Albanese map 

alb : X -> Alb(X) 

is an immersion. Then the lifting of the Euclidean Kahler form to the 
covering X' —> X corresponding to the abelian fundamental group of X 
is ^(linear growth). Hence, the lifting to any covering X —* X' is also 
^(linear growth) by Prop.l. 

As a slight generalization we have 

Proposition 2, Let (X,g) be an oriented compact Riemannian manifold 
of nonpositive sectional curvature. Then the lifting of any closed form to the 
universal covering (X,g)  is d(linear growth). 

Proof. Let XQ 6 X, S a compact submanifold of X of dimension m. Then 
the (m + l)-dimensional volume of the geodesic cone over S with vertex XQ 

satisfies 

Volm+i(Cone    S) < cm    max    dist(x,xo)    Volm(5) 

for some constant cm depending only on m. Therefore, the conclusion can 
be derived as in [Gl; 0.1.B]. □ 
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Theorem 1 (Vanishing theorem for cup products). Let (X,g) be an 
oriented complete Riemannian manifold, and let a be a closed differential i- 
form on X valued in a metrized local system (V, h) which is (g, h)-bounded. 
Suppose that a is d(linear growth). 

Then for any r) G Hf2)(X) we have a A 77 = 0 G H$(X, V), the L2-de 
Rham cohomology valued in the metrized local system (V", h). 

Proof We only prove this for the constant local system case. The argument 
for the general case is the same. We write a = d (/?) with 
\\P\\g < c>&\stg{xyXQ) + c'. Let Br denote the ball in X with center XQ and 
radius r with respect to g. We may find a smooth function Xr ' X —> R+ 

with 0 < xr{x) < 1 for all x G X, Xr(x) = 1 for x G Br, Xr(x) = 0 
for x G X \ B2r and ||dxr(^)||5 < Constant/ distg(x,xo) for x G i?2r \ Br. 
Since d(xrP Ary) has compact support, d(xrP^v) € B^^X). We want to 
show that dfarP A rj) L2-converges to a Arj as r —> 00. 

We consider 

d(XrP A 77) = dxr A /? A 7] + Xra A 77. 

Since a is bounded, a A 77 is in L2, and 

/ ||aA77||2= lim  /   ||aA77||2, 
JX r->00 JBr 

and 

hm   / |Xr|
2||aA77||2= lim  /   ||aA77||2+ lim  / |Xr|

2||a A 77II2. 

Since 

/ |xr|
2||«A^||2< / HaA^O 

JB2r\Br JB2r\Br 

for r —» 00 since a A 77 6 L2, we conclude that Xr^ A 77 converges to a A 77 
in L2 for r —> 00. 

Next 
/ ||dxrA/?A77||2<const /" ^f 

by the growth properties of dxr and /?, and this expression again converges 
to 0 as r —» 00, since 77 G L2. The preceding estimates imply that 
d(Xr/3 A r?) converges to a A 77 in L2 for r —> 00. □ 
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4. Vanishing theorems for L2-cohomology. 

The next result derives consequences from the existence of holomorphic 1- 
forms and d(linear growth)-semi Kahler forms on Kahler manifolds: 

Theorem 2 (Green—Lazarsfeld type vanishing theorem). Let X   be 
a compact Kahler manifold, and ai,..., ai be holomorphic 1-forms on X 
that are linearly independent at generic points of X. Suppose that X —» X 
is a covering for which the liftings ai,..., 07  are exact.  Then 

i)   «$(-£) = 0 for p < I. 

ii) // HfaiX) ¥" 0)  then there exists a proper rational map f : X —> Y 

with dim Y = I such that H(\AX) factors through f. 

Proof. 

i) Let 77 G H%AX). So, r) is an L2-holomorphic p-form on X. Since 

ai is bounded, a* A 77 is an L2- holomorphic (p + l)-form, hence 
in Hp,2} ' (X). By Theorem 1 we obtain a* A 77 = 0 as products of 
differential forms for 1 < i < I. Since I > p and ai,..., ai are linearly 
independent, it follows from elementary linear algebra (c.f. [GL]) that 
77 = 0. 

ii) First we show that all sections from H^JX) generate a rank-1 co- 

herent subsheaf L C fl^. It follows for the same reason as in i) that 

any section from H^) (X) can be written as /cq A • • • A 5/. It is clear 

that L is invariant under the action of the deck transformation group 
T, and all sections from Ti/^iX) are L2-holomorphic sections of L. 

It is known classically (c.f. [Gl], [K] and [Ko, Chapter 5]) that given 
an L-holomorphic section s one can construct a Poincare series of 
weight k 

-yer 

If k > 2 then P(s®k) is convergent and defines a F-invariant holomor- 
phic section of Z^, hence a holomorphic section of the corresponding 
line bundle L on X. Further, let 

Rk = (l[p(ski) E^ = fc) 
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be the subspace of HQ(X, Lk) generated by the Poincare series P(ski). 
If k » 0, then R^ defines a proper rational map / : X —> Y. This 
statement is due to Gromov [Gl], page 285. It is also discussed in 
detail in [Ko], Page 143-147, 13.9 Theorem, Statement 13.9.3. Since 
the generic fibre of / is compact and 5; is exact, the pull back of 
ai to the generic fibre is zero. So, all ai factor through /. This 
implies that dimF > /. On the other hand, we consider the quotient 
map / : X —> Y. By the Bogomolov-Sommese Theorem ([EV], Page 
58) the Kodaira-dimension of the rank-1 subsheaf L C Sllx cannot 
be bigger than Z. This shows that dim Y < K(X,L) < I. So, we get 
dim Y = I. It is easy to see that L descends to the canonical line 
bundle on Y in the orbifold sense. Hence all elements of Hfa (X) are 

pulled back from Y. D 

We next wish to derive an extension of Green-Lazarsfeld's theorem to 
the non abelian case: Let (V, h) be a metrized local system, such that h is a 
harmonic metric. This is equivalent to saying that V comes from a reductive 
linear representation of 7ri(X) [SI]. The harmonic metric /i, equivalently an 
equivariant pluriharmonic map u : X —> N to the corresponding symmetric 
space iV, gives rise to a new holomorphic structure E on the vector bundle 
V and the (l,0)-part of the differential d'u is a holomorphic section 9 e 
ff0(X,EndJ5®ft3t)> satisfying 6A9 = 0. The pair (E,0) is called the Higgs 
bundle corresponding to V. Suppose V is an abelian local system. Then 
6 is nothing new but a collection of holomorphic 1-forms corresponding to 
V. So, we are in the Green-Lazarsfeld situation. And by Prop.l the pull 
back of the euclidian metric on the torus via the Albanese map defined bjr 
those forms gives rise to a d( linear growth)-semi Kahler form on X. 

Another extreme case is a local system arising from a variation of Hodge 
structures. This kind of local system corresponds to holomorphic maps into 
symmetric Hermitian spaces in the special case and horizontal holomorphic 
maps into Griffiths period domains (see [GS] for details). The work of Gro- 
mov [Gl] for the Hermitian case and the recent work of Eyssidieux [El] 
for the period domain case show that X does admit a d( bounded) semi 
Kahler form. 

In general we have the following proposition: 

Proposition 3. Suppose that there exists a Higgs bundle (E,6) coming 
from a reductive local system. Then X admits a nonelliptic semi Kahler 
form u1.  And the null spaces of uJ   coincide with the tangent spaces of the 
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foliation defined by 6. 

The proof of Prop.3 is a combination of Eyssidieux's construction for 
a d{ bounded) semi Kahler form via Busemann functions on symmetric 
spaces and pluriharmonic maps into Bruhat-Tits buildings. We postpone it 
to Section 6. 

The following generalization of the Green-Lazarsfeld type vanishing the- 
orem in the non abelian case is derived from a Gromov type vanishing the- 
orem, Theorem 3 below. 

Theorem 2'. Suppose X is a projective variety and (E,6) is a Higgs bun- 
dle coming from a reductive linear representation of 7ri(X).  Then 

iJ(
0
2) (X, fi*) = 0   for   i< rank (9, 

where rankfl is defined as the rank of the map 6 : Endi? —> fi1. 

The proof follows directly from Prop.3 and iii) in Theorem 3 below.    □ 

Our second type vanishing theorem is applicable for so called Kahler non- 
elliptic manifolds (also including singular ones), i.e. there exists a covering 
(X^UJ) —> (X, u>) such that GJ = c?(linear growth). 

The main examples of such manifolds are: manifolds of nonpositive sec- 
tional curvature, generically finite maps into holomorphic tori, harmonic 
maps with maximal rank at generic points into symmetric spaces and into 
Bruhat-Tits buildings (see Section 6). 

Theorem 3 (Gromov type vanishing theorem). i) Suppose that 

(X,UJ) is a compact Kahler nonelliptic manifold. Then HLJX) van- 
ishes except possibly for i = dime X. 

ii) Suppose that (X, cu)  is compact Kahler manifold, and there exists a 
singular Kahler nonelliptic form u/  on X, i.e.  a/ is a closed 2-form 
on X   of (Ijl)-type that is positive definite on a nonempty Zariski 

open subset XQ C X and u>f is d(linear growth).   Then H^JX^Q1) 
vanishes except possibly for i = dime X. 

iii)  Suppose that the following two conditions hold: 

(a) Let  X   be a projective algebraic manifold,   and suppose there 
exists a semi Kahler nonelliptic form u1   on  X.    i.e.    a/   is 
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a closed 2-form on X of (l)l)--type that is positive semidefi- 
nite on a nonempty Zariski open subset XQ C X and u/ is 
d(Unear growth). 

(b) 7ri(X) C ^i(X) is a normal subgroup and 7ri(X)/7ri(X) is resid- 
ually finite, i.e. there exists a sequence of normal subgroups of 
finite index 

•••crnC...r1C7r1P0/7r1(X) 

with CiiTi = {1}. 

Then H92AX^Ql) vanishes for i < rku/, where rka/ := Tkuj'(x) for 
generic points x G X. 

Remark. We believe that the assumption that X is a projective algebraic 
manifold in Condition a) and Condition b) in the statement iii) is only a 
technical condition, but we do not know how to get rid of it. 

Proof of i). Straightforward: Let Co = d((3) such that (3 has at most linear 
growth with respect to the pull back Kahler metric. So, for any k e N we 
have Aku; = d(/?A A^"1^) and (3 /\/\k~l£j has again at most linear growth. 
Applying Theorem 1 we obtain f\ku Arj = 0 for k > 1 and rj e H?2JX). 

Hence, the hard Lefschetz theorem implies that HLJX) = 0 for i ^ dim X. 

i) is proved. 

Proof of ii). The proof is also quite standard. Let r] be an L2-holomorphic 
z-form on X with i < dime X =: n. We consider the differential form 

rj A fj A a/ 

of degree 2n, where fj is the complex conjugation of rj. Since u/n~l is 

J(linear growth), by Theorem 1 r/ A u/ is in the L2-closure d(L2) fl L2. 

Since fj is closed and in L2, 77 A 77 A u/1 * is in the Z^-closure d(L1)nL1. 
By Gromov's L1-Lemma ([Gl], l.l.A.) any 2n-form £ that is in d^L^HL1 

has 

/,■ 

This implies that any 2n-form £ that is in the L1-closure ^(L1) fl L1 has 
also 

L 
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Applying this fact to 77 A 77 A u/     , we obtain 

/ -       ~,n—i 
I   77 A 77 A u/       =0. 

JX 

On the other hand, let XQ be the open subset of X, where u1 is positive 
definite. Since X \ XQ is a zero measure subset, 

/    77 A 77 A u/1 * = 0. 

The following argument can be found in [GH], page 110. Let </>i,..., (j)n be 
the local holomorphic unitary coframe w.r.t. a/; if 

I 

then 

Now 

so 

77 A 77 = Y^vimh A0J- 
J,J 

-/ V — 1 V-^   / 7 

UJ'
71
"

1
 = Ci(n- i)\    J^    ^ A 4>K] 

\K\=n-i 

for suitable Q 7^ 0, thus 

77A77A^n"z = Q^|77/|2.$, 

where $ is the volume form of a/ on XQ- SO, the vanishing of the preceding 
integral implies that all 77/ = 0. ii) is done. 

Proof of Hi).   If rka/ = dim X then (X,LJ,U') is singular Kahler nonellip- 
tic. So, hi) follows from ii). In general, suppose rku/ = r > 0. 

Since under Condition b) iri(X)/7ri(X) is residually finite, there exists 
a sequence of normal subgroups of finite indices 

{1} c • • • c r, c • •. c ri c mWMx) 
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with HiTi = {1}. Letting r'n denote the preimage of rn C Tri(X)/7ri(X) 
in 7ri(X), we obtain a sequence of normal subgroups of finite indices 

TTIOY) c • • • c r^ c • • • c r; c ^(X) 

with nnr^ = 7ri(X). It corresponds to a sequence of coverings of finite 
degrees 

X —> - • • —> Xn —► • • • —>- Xi —>• X 

with 7ri(Xn) = Fjj. Let cfn denote the degree of the covering Xn-^ X and 
hl^(Xn) denote the dimension of the space of holomorphic i-forms on Xn. 
Since nri7ri(Xn) = 7ri(X), by Kazhdan's and Luck's theorems [K], [L] 

/i2' (Xn) iQ   ~ 
hm sup—j—i = /i^(-Y), 

where ^^(Jt) is the von Neumann-dimension (w.r.t. the group 

7ri(X)/7ri(X)) of the space of L2-holomorphic i-forms on X. 

Claim 1. 

1- ^(^n)        n lim sup = 0. 
n—>oo dry ^n 

Proof of Claim 1. Since X is a projective algebraic manifold, there exists a 
linear system \D\ for some very ample divisor D. An element from |jD| is 
a hypersurface in X, and a generic one is a smooth hypersurface. If we take 
I generic smooth hypersurfaces Di,...,Di from |JD|, then the intersection 

DiC\---r\Di=:Y 

is a smooth projective submanifold in X of dimension dimX—I. Since Y is 
the intersection of ample divisors, by the Lefschetz hyperplane theorem for 
fundamental groups, the homomorphism i* : ^i(Y) —> ^i{X) is surjective. 

For I = dimX — rku/, we may choose such a Y so that the pull back 
i*(u/) via the inclusion i : Y ^ X is positive definite in a nonempty Zariski 
open subset of Y. So, i*(w') is a singular Kahler nonelliptic form on Y 
and the pull back i*(uj') on the covering Y is <i(linear growth). Applying 
ii) we get Hf2)(Y, Q*) = 0 for 0 < i < dimY - 1 = r - 1. 

Now let Yn C Xn denote the preimage of Y C X, and we consider the 
sequence of coverings 

y_,..._>yn_>..._>y1_>y 
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with nn7ri(Yn) = 7ri(Y) and of the same covering degrees dn as before. Ap- 
plying Kazhdan's and Luck's theorems and the vanishing for L2-holomorphic 
i-forms on Y we get 

lim sup       7
V n) =0,    0 < i < r - 1. 

n->oo dn 

So, in order to prove Claim 1 it is enough to show that for any n we have 

hifi{Yn) = h^iXn)    0<i< dimY - 1 = r - 1. 

Since Yn = Di fl • • • DDi is the intersection of the ample divisors Di,...\Di 
on Xn, by applying the Lefschetz hyperplane theroem for cohomology 
groups successively we get the the equality. Claim 1 is proved. Hence, 
hi) is complete. 

Theorem 3 is done. □ 

Remark. In the preceding argument, we have reduced the situation to 
finite coverings of X so that the L2 condition is trivially satisfied. In general, 
of course, the restriction of an L2-form to a subvariety need no longer be 
of class L2, but if we are dealing with the universal covering of a projective 
algebraic manifold X, for a given L2-form 77 E H?2ASll),i < r, we consider 
projective subvarieties j : Z —> X of dimension r in generic position, with 
j*ri / 0 and rkj*uj' = r. In that case, we have enough flexibility in the 
choice of Z, by taking a generic pencil and moving the base locus around, to 
be able to assume by Pubini's theorem that j*/? is of class L2. This remark 
may be useful for establishing other vanishing theorems in the spirit of iii) 
of Thm. 3. 

Theorem 3 has the following 

Corollary 2. Let (X,OJ) be a compact Kdhler manifold, and let u : X —> 
N be a pluriharmonic map into some Riemannian manifold N that is of 
maximal rank dim^ X at generic points. Suppose that on the universal cover 
N of N, there exists a strictly convex function tp with gradient of at most 
linear growth, and with bounded Hessian. Then H^JX^ft1) = 0 except 
possibly for i — dime -X"* 

Proof. We consider 
u/ := dd((p o Ct), 
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where u : X —> N is the lift of u. 
Since the composition of a convex function with a pluriharmonic map 

is plurisubharmonic, a/ is nonnegative. In fact, it is positive definite at 
generic points since u is assumed to be generically of maximal rank, and (p 
is strictly convex. Since (p has gradient of linear growth, and the derivative of 
u is bounded as X is compact, u/ is d (linear growth). Altogether, (X, CJ, UJ') 

is singular Kahler nonelliptic and Theorem 3, ii) applies. □ 

5. Vanishing theorems in algebraic geometry. 

Our first application here is to reprove some vanishing or nonvanishing the- 
orems in algebraic geometry. The general idea is simple. On one hand, we 
use Kazhdan's theorem [K] to produce some L2-cohomology class on some 
infinite covering XQQ —> X via algebraic cohomology classes on sequences 
of algebraic coverings that converge to X, provided the growth of algebraic 
cohomology groups is proportional to the growth of degrees of the coverings. 
On the other hand, some cohomology class on the initial manifold is going 
to be exact X. We may apply this idea to the following interesting prob- 
lem, the so called generic vanishing theorem for cohomology groups of local 
systems in algebraic geometry. In this paper we only consider the rank-1 
case, which has been studied by Green and Lazarsfeld [GL]. 

We consider the Picard variety Pic0(X) of X. It is the moduli space of 
rank-1 unitary local systems (flat line bundles) on X.  Let S%, C Pic (X) 
denote the subset defined by 

SP = {Le Pic0(X) | #0(X, QP 0 L) ^ 0}. 

It is well known that 5£ is a subvariety (for example see [GL]) 

Corollary 3. (Generic vanishing theorem of Green—Lazarsfeld) Let 
X  be a compact Kahler manifold.   Suppose that X  has I  holomorphic 1- 
forms, which are linearly independent at generic points. Then SZ is a proper 
subvariety of Pic0(X), for p < I. (That means also that H0(X,VLP®L) = 0 
for a generic L G Pic0(-X')  and p < I.) 

Proof. If the statement were not true, then there would exist some p < I 
with H0(X,np ® L) ^ 0 for all L e Pic0(X). The main point here is to 
construct a sequence 

... _> Xi -> ► Xi -> X 
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of coverings of finite covering degree d;, such that 

hp>0(Xi)/di > constant. 

Let Ti denote the subgroup of 2l-torsion points in Pic0 (X). (Here in place 
of 2l-torsion points one can also take ^-torsion points for any prime number 
p.) The sequence of groups 

• • O Ti D TJ-i D • • O {1} 

corresponds to a sequence of abelian coverings 

• • • —> Xi —* • • • —► Xi —> X 

such that 
GdiXi/X) - Ti     and   n+O^ = 0 L. 

LzTi 

Denote 
Ti = kernel(7ri(X) -> Gal^/X)), 

and let TT : XQO —> -X" be the covering such that 7ri(X00) = DilV One sees 
easily that 

Im{7r* : H^X^ Z) -+ H^X, Z)} = 0. 

This means that the liftings of all holomorphic 1-forms from X to X are 
exact. 

It is straightforward to see that the finite covering map TT; : Xi -* X 
induces an isomorphism 

H^Xi.Q^) ~ H^X^i^) = H\X^x®^0Ri) = 0 H0(X,np
x®L) 

LeTi 

As hPV{X,L) > 1 for L e T^ we obtain 

h^0(Xi) = Y, W\X,L) > \Ti\ = di. 
LeTi 

So, by Kazhdan's theorem ([K], Theorem 2) there exists a non zero L2-holo- 
morphic p-form on X. On the other hand, since the liftings of all holomor- 
phic 1-forms from X to X are exact and I of them are linearly independent 
at the generic point of X, hence, by Theorem 2 all L2-holomorphic p-forms 
on XQQ for p < I must be vanishing. A contradiction. □ 

Using the same argument we also reprove a Nakano-type generic vanish- 
ing theorem, which is again due to Green-Lazarsfeld. The statement here is 
weaker than the original one (c.f.[GL]). 
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Corollary 4. (Nakano-type generic vanishing theorem of Green- 
Lazarsfeld) Suppose that X is a compact Kdhler manifold that admits an 
immersion X —> T into a holomorphic torus. Then hp>q(X,L) = 0 for 
generic L G Pic0(X)  and p + q < dim X. 

Proof Let UJ = Y^i dzi A dzi be the flat Kahler metric on T. The pull 
back of LJ to X via the immersion is a Kahler metric on X. Further, 
let • • • —> Xi —> Xi-i —>...—> Xi -> X be the sequence of coverings 
constructed in the proof of Cor.3. One checks easily that the lifting u is 
<i(linear growth). Hence, from Theorem 3 HLJX) is zero for i < dim X. 

If there were some p + q < dim X such that hp'q(X,L) > 1 for all 
L e Pic0(X), then by applying Kazhdan's theorem as above, we would get 
a non zero class in W^O^oo)- A contradiction. □ 

In fact, Arapura [Ar] and Simpson [S2] have the following description of 
the subvariety 

S^X) := {L e {1-dim. local systemslff^L) ^ 0}; 

they have shown that S^X) is a union of translates of subtori of C*bl(x\ 
Simpson shows further that these translates of subtori are translations by 
torsion points. As a consequence, they reproved a theorem of Green- 
Lazarsfeld, namely that the subvariety 

Si(X) = {Le Pic0(X) I H'iX, L) * 0 }; 

is a union of translates of subtori of Pic0(X). 
Combining those descriptions and the same argument as above, we may 

also reprove the general form of Green-Lazarsfeld's vanishing theorem. We 
omit the details. 

6. Further examples of singular Kahler nonelliptic manifolds 
and x{Kx) 0f Shafarevich varieties. 

A special and important class of Shafarevich varieties are locally symmetric 
Hermitian spaces X = X/T. In this case the Shavarevich map is the identity 
map. Gromov [Gl] showed that the invariant Kahler form is ^(bounded). 
And using the metric he proved a vanishing theorem for L2-cohomology 
except in the middle dimension dime X. 
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An important generalization along this direction was obtained by P. 
Eyssidieux [El]. He considered the Griffiths-period map / : X —> D/T 
corresponding to a variation of Hodge-structures. Suppose that / is an 
immersion (this means that the corresponding representation 7ri(X) —> F 
is large). Then X admits a Kahler hyperbolic metric. We will discuss his 
argument below. 

However, in the most general case there is no hope to get a Kahler 
hyperbolic metric. A typical example is in the Green-Lazarsfeld vanishing- 
theorem where we have holomorphic maps into tori. We can only get some 
Kahler nonelliptic metrics. So, we must replace Kahler hyperbolic metrics 
by Kahler nonelliptic ones in the general case. We have seen in Section 4 that 
the existence of this kind of metrics is strong enough to deduce vanishing 
theorems. 

We start with a compact Kahler manifold (X, a;) that admits a reductive 
representation p : 7ri(X) —► GLn(C). This means that the Zariski closure 
p7ri(X) is a reductive algebraic group and decomposes into an almost direct 
product of a torus Go and some almost simple groups G^, i > 1, 

'^{X) = GoxllGi. 
i 

By [C] there exists an equivariant pluriharmonic map 

u: X ->N 

corresponding to p into the symmetric space N of noncompact type with 
isometry group GLn(C).     Let T^JN) denote the complexified tangent 

space of N. Then by [Sa] the image dXT^X)) c T^x)(N) is contained 
in an abelian subspace W C T£,xJN) of maximal dimension. W is decom- 
posed into a direct sum of the nilpotent and semisimple subspaces 

W = Wn + Ws. 

The semisimple part Ws is just the complexified tangent space of a flat 
A C N of maximal dimension passing through u(x). 

The main idea here is that we shall construct a Kahler form as a sum 
of a Kahler form that is non degenerate in the Wn-direction, and a Kahler 
form that is non degenerate in the Ws-direction. 

For the nilpotent part, we have the argument of Eyssidieux [El]: 

We consider the equivariant pluriharmonic map 

u X^N 
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into the symmetric space corresponding to p, and we would like to utilize u 
in order to construct a semi Kahler form on X that is d (linear growth). We 
start with the construction of Eyssidieux [El]. The idea is to pull back a 
suitable convex function from AT, and the natural starting point here is the 
distance function d(-,p) from some point p £ N (or rather ^/l + d(p, •)2, in 
order to have a smooth function). The problem is that the Hessian of d(',p) 
does not have a positive lower bound in those directions that correspond 
to flats in N. If the map is holomorphic, then the image of TXX under 
du cannot be contained in the tangent space to a flat, unless du(x) = 0, 
because these flats are totally real. However, there exist so-called singular 
directions in TX that are contained in more than one maximal flat going 
through p. Eyssidieux overcomes this problem by considering in place of the 
distance function from an interior point the normalized distance function 
from a suitable point q at infinity, the so-called Busemann function of q. 

One fixes a point p £ AT, and q then can be considered as the tangent 
direction of a geodesic ray 7(t) starting at p. The Busemann function <pq : 
iV —► R then is defined as 

ipq(x) := lim (d(rc,7(t)) - d(p,7(*)))- 
t—►00 

By a proper choice of g, each tangent vector in N is contained in a unique 
maximal flat going through q. Consequently, pulling back the Hessian of 
such a Busemann function under a holomorphic map yields the desired form 
onX. 

However, if the map is only pluriharmonic instead of holomorphic, then 
dd(<pq o u) does not necessarily have a positive lower bound anymore as in 
the third inequality in Prop. 4.5.1 of [El]. It is still nonnegative, because the 
composition of a convex function with a pluriharmonic map is plurisubhar- 
monic, and it is not identically zero, because even if the image of u should be 
contained in a flat, we may choose q not contained in this flat. (One might 
also take sums of Busemann functions.) Since we have a stronger vanishing 
theorem at our disposal (see Thm. 1 and Thm. 3 (ii) and Cor. 2) than [El], 
we may get by below with those weaker properties. 

We return to the general case. 
Let pi : 71*1 (X) —> Gi denote the representation induced by the z-th 

projection. It is clear that for the abelian representation po : ^i{X) —* Go, 
we have a factor map 

TTiPQ -> C*6l<*> -> Go, 

where p'^ : 7ri(X) —► C*bl^  is the standard discrete representation.   By 
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enlarging the representation we may simply assume that po = P'Q. This 
makes the new representation even bigger. 

Now we consider pi : 7ri(X) —> G;, i > 1, a Zariski dense representation 
into an almost simple algebraic group G;, 1 < i. 

We now summarize some general properties of such representations for 
which details and references can be found in [JZ2] Page 499 and [Z] Pages 
142-143. Since 7ri(X) is finitely presented, the moduli space of representa- 
tions of 7ri(X) —> Gi is defined over some number field. 

If pi is rigid, then pi is defined over some number field K (see [SI] for 
details). By Simpson's theorem on VHS [SI] pi is a complex component 
of a Q-variation of Hodge-structures r^. We have two possibilities for this 
kind of representations. 

1) pi is bounded w.r.t. every prime ideal p C OK, the ring of alge- 
braic integers of K. By taking the diagonal embedding into the direct 
product of different field embeddings K <-* C, we see that r; is a 
complex component of a Z-variation of Hodge-structures (see [Z]). By 
enlarging the representation we may assume that TI itself is a Z-VHS. 

2) pi is unbounded w.r.t. some prime ideal p C OK- 

If pi is nonrigid, then pi can be deformed to a pi^ such that p^ is 
defined over some number field L and is unbounded w.r.t. a prime ideal 
PCOL. 

Summing up the above discussion we obtain a new representation 

ft := Po x Wn x Hpit : miX) - C^W x JJiJ, x JjG,, 
2>1 i>l i>l i>l 

such that 

po : 7ri(X) -► G*6l(*) 

is the standard representation, 

n : TTI(X) —► Hi, i > 1, 

is a Z-VHS and 

put: ni(X)^Gi(Kp),i>l 

is a Zariski dense and p-adically unbounded representation into an almost 
simple p-adic algebraic group Gi(Kp) over some p-adic number field Kp. 
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Definition, (see [Ko, Chapter 4.1] for the general case) 
Let r : 7ri(X) —> GLn be a representation, and XT —► X be the covering 
such that 7ri(Xr) = Kerr.   We call r large if all compact and positive 
dimensional subvarieties in XT are contained in a proper subvariety of XT. 

Campana and Kollar ([G], [Ko, Chapter 3]) have proven that if r is not 
large then there exists a surjective rational map, the so called Shafarevich 
map 

shT : X -+ Sh(X) 

such that r factors through shT. 
We come back to our situation. If the original p is large then p' is 

again large. Consider the family of representations {p't\teT such that pg = 
p = po x Iii>iTi x Ui>iPufJt - Po x ^-i>in x IU>iPi,t and f/Q is large by the 
assumption. We claim that p't is again large for generic t G T. Otherwise 
we would get a family of the Shafarevich maps {sht : X —> Sht(x)}t^T' 
With positive fibre dimension for the family {p£}teTo where To C T is a 
Zariski open dense subset. Since the generic fibres shtl{y),y G sht(X) are 
homotopic to each other and Pte\sh-1(y) = Id, t e TQ we may fix some fibre 

shfo'(y) such that pt\ah-i(y) = Id for t G TQ. Consider the holomorphic map 

Tv ^U Hom(U1(Sh^(y),G)/G 

Since 7r(To) = Id and To is Zariski open dense, p'0 = 7r(0) = Id. By applying 
the exact sequence of the homotopy groups 

- MsthoHy)) - MX) - ^(SMA-)) ^ i, 

we show that p^ factors through shf0 : X —> s/i^o (-X") • A contradiction to PQ 

being large. In general we may use the Shafarevich map 

shp: X^Sh(X). 

The representation p factors through shp, and is large on Sh(X). So, we 
may work on Sh(X) to obtain such a representation p'. 

For the standard representation po : TTipQ -^ C*6l(x), let fo : X -> lb 
be the Stein-factorisation of the Albanese map of X. Then po factors 
through fo up to some etale covering of X. 

Similarly, for the Z-VHS r* we consider the corresponding Griffiths pe- 
riod map 

gi : X -> A- 
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Since the action of Ti7Ti(X) on the period domain A is discrete, we obtain 
a quotient map (take again the Stein-factorisation) 

Qi-. X-+ZiCDi/nKi(X). 

As before, r* factors through gi up to some etale covering of X. 
Finally, for the p-unbounded Zariski dense representation pij : ^i(X) —► 

G(KP) one may construct an equivariant pluriharmonic map 

Ui : X -^ Ai 

into the Bruhat-Tits building of G(KP) (see [GSch]). Since pij is p-un- 
bounded, ^^ is not constant. Considering the complexified differential 

du^idu^ + idul)0'1, 

the (l,0)-part (du^)1,0 is a collection of holomorphic 1-forms on X. By 
Theorem 2 in [JZ1] these 1-forms define a surjective morphism fa : X —> Yi 
of connected fibres, such that dim Y is equal to the dimension of the linear 
space spanned by (du0)1'0 at the generic points, and pij factors through 

& 
Taking the product of all the preceding morphisms 

h := /o x Hgi x Ufa : X - Yo x J]^ x JJ^, 

Z?7 factors through h. Now we want to construct a positive semidefinite 
Kahler metric CJ' on X, such that a/ is d(linear growth) and the null 
spaces of cu' coincide with the tangent spaces of the fibres of h. 

Let /3i,..., /?;,... be the holomorphic 1-forms on X defining the map /o 
and ddfa,..., <9<9</>i,... be the Hessian of Busemann functions on the sym- 
metric spaces corresponding to the VHS #1,... ,^,... as explained above. 
Then from Prop.l and the Prop. 4.5.1 of Eyssidieux [El] the sum 

i i 

is a positive semi definite Kahler form on X and is ^(linear growth). 
Further, let ds^ be the Euclidean metric on the building and let 

(i^dsAi)1,1 be the (1, l)-part of the pull back metric. Then it is posi- 
tive semidefinite, and Kahler, since Ui is pluriharmonic. The null spaces 
of (i^dsAj)1,1 at the generic points are vertical tangent vectors along the 
fibres of fa. 
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The semi Kahler metric UJ
!
 on X is now defined as 

i i i 

We have to check that 0' is positive definite on some open subset. Prom the 
above discussion we see that the null spaces of u/ at the generic points are 
the vertical tangent vectors along fibres of the map h. Since h is generically 
finite, a/ is positive definite on a non empty Zariski open subset XQ C X. 
It is clear that a/ is 7ri(X)-invariant, and we conclude that it descends to 
a singular Kahler metric u' on X. 

Lemma 1.  ujf is d(linear growth). 

Proof. Recalling Prop. 1 and observing that ddifi is even d (bounded) as the 
gradient of a Busemann function is bounded, it only needs to be checked that 
^(i^dsAi)1,1 is ^(linear growth). We start by reviewing the pluriharmonic 
map u into the building 

u: X-> A. 

The general properties of buildings that will be used below can be found in 
[B]. The properties of harmonic maps into buildings and forms on buildings 
can be found in [GSch] and [JZ1] and [JZ2], Page 491. 

The building A is covered by apartments 

On each apartment A there is a natural choice of a collection of real linear 
functions {xi,..., XI}A (they are essentially the root system on Rr of the 
group G up to some translations on i?r), such that on the intersection of 
two apartments A and A' the two collections of differentials coincide 

{dxi,..., dxi}A\AnA' = {dxi,..., ctejjvHAnA', 

the elements will be permuted by the Weyl group W of G. 
Consider now the complexified pull back 1-forms 

u*cdxi = ai + a;. 

The harmonicity of u implies that c^, 1 < i < I are holomorphic. The sum 

l 
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is then ^-invariant. Hence, they piece together and give rise to a 2-form on 
X, the exterior 2-form corresponding to the semi Kahler form (u^ds^)1'1. 

Claim.   X^=i ai ^ ®i is d(linear growth). 

Proof. It is clear that on the preimage u~l(A) of each apartment A we 
may write 

( ]P ai A ai j =y}2l(oLi + ai)/\ai\ 

= d    iY^u*(xi)/\ai\ 

The main point here is that we can piece all of these primitive forms on 
u~l(A) together to obtain a global primitive form on X 

l 

^2aiAai = d(l3). 
i=l 

The following discussion of affine coordinates can be found in [B], Fixing 
a vertex po € A, then for any point p e A we may find an apartment 
A containing po and p (not unique). We choose those linear functions 
{XI,...,XI}A on A that vanish on po> and define /3 restricted on the 
preimage of A as 

P\u-HA) := (XX^*) Aai) 
\i=l / u-1 

(A) 

fi is well defined on X, which can be seen as follows: On the intersection 
of two apartments A and A* containing po and p the two collections of 
linear functions coincide 

{xi,...,xi}A\AnAi = {xi,...,xi}AI\AnA>, 

since all Xi vanish at po? and the Weyl group W just permutes them. So, 
the above sum does not depend on which A we have chosen. Thus, /? is 
well defined. 

We now show that /? has linear growth. It is clear that all linear func- 
tions xi have linear growth w.r.t. the metric on A. Since u is equivariant 
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and Lipschitz, all u*Xi are linear growth w.r.t. a fixed chosen Kahler metric 
UJ pulled back from X. 

We still need to show that all {ai,..., ai} are bounded w.r.t a). This 
is equivalent to showing that the sum of their norms 

l 

is bounded. Since this function is well defined, continuous on X, and is 
7ri(X)-invariant, it is bounded. Thus, we show that (3 is linear growth. The 
claim is proved. Hence, Lemma 1 is proved. □ 

Lemma 1 implies Prop.3 in Section 4. In particular, if p is large then 
a/ is a singular nonelliptic Kahler form on X. Hence, from ii) in Theorem 
3 we get 

Corollary 5. Let X be a compact Kahler manifold, suppose that X admits 
a generically large and reductive linear representation p : ^(X) —-> GLn. 
Then 

Hl2)(X,W) = 0   for   K&imcX. 

Combining this corollary with Atiyah's jL2-index theorem [A] we verify 
Kollar's conjecture in the representation case 

Theorem 4. Let X be a compact Kahler manifold, suppose that X admits 
a generically large and reductive linear representation p : 7ri(X) —> GLn. 
Then 

x(Kx) > 0. 
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