
COMMUNICATIONS IN 

ANALYSIS AND GEOMETRY 

Volume 7, Number 4, 841-918, 1999 

Morse-Bott functions and the Witten Laplacian 

IGOR PROKHORENKOV1 

Given a compact Riemannian manifold (N,g), a fiat vector bundle 
V over N, and a Morse-Batt function h, Witten considered the 
following one-parameter deformation of the differential d in the de 
Rham complex of V-valued differential forms on N: 

d(a): w H e-ahdeah. 

This paper studies the asymptotic as a - oo of the discrete spec­
trum of the Witten Laplacian 

L(a) = d(a)d*(a) + d*(a)d(a). 

Suppose g is a metric on N, associated to a Morse-Bott function 
h. Suppose M is the critical manifold of h. The main result of 
the paper states that as a - oo the eigenvalues of L(a), which 
stay bounded, converge to eigenvalues of the Laplacian /:;;. on M, 
twisted by the orientation bundle of the negative directions in the 
normal bundle to M in N. All the eigenvalues of /:;;. are limits of 
the eigenvalues of L(a). The paper provides the estimates on the 
rate of convergence as a- oo of the bounded eigenvalues of L(a). 
The main idea of the proof is to use the adiabatic limit technique 
of Mazzeo-Melrose and Forman to analyze the spectrum of the 
Witten Laplacian on the tubular neighborhood of M . 
As an application a new Hodge theoretic proof of the Thom iso­
morphism and of the degenerate inequalities of Morse is given. 

0. Introduction. 

Summary. Suppose N is a smooth compact manifold without boundary. 
Let h : N -4 lR be a smooth function. We assume that critical points of h 
form a (disconnected) submanifold M of Nand that the Hessian D 2h of h 
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is a non-degenerate quadratic form on the normal bundle to M in TV. In 
this case the function h is called a Morse-Bott function. 

In [Wil] E. Witten considered the following one-parameter deformation 
of the differential in the de Rham complex of JV: 

(0.1)      d(a) : v ^ e-ahdeahuj = dw + adhALU1   ae M(>), w G f2*(N). 

In this paper we study the asymptotic as a —► oo of the (discrete) spectrum 
of the Witten Laplacian 

(0.2) L(a) = d(a)d*(a) + d*(a)d(a). 

Here d*(a) denotes the operator adjoint to d(a) with respect to a fixed 
Riemannian metric g on iV. 

Suppose g is a metric on TV, associated to a Morse-Bott function h (see 
Section 1). Then the spectrum of L(a) consists of the eigenvalues which 
stay bounded as a —» oo, and the large eigenvalues which grow faster than 
Ca for some constant C > 0. The main result of the paper is Theorem 8.6 
which states that the bounded eigenvalues of £(a0 approach all eigenvalues 
of the (twisted) Laplacian A on M as a —> oo. The theorem also includes 
the estimates on the rate of convergence of the bounded eigenvalues of L(a). 

The main idea of the proof is to use the adiabatic limit technique of 
Mazzeo-Melrose and Forman ([Ma-Me], [Fo]) to analyze the spectrum and 
the eigenspaces of the Witten Laplacian on the tubular neighborhood of the 
critical submanifold M of h. This analysis is accomplished in sections 2 
through 7. 

In Section 6 we give a new Hodge theoretic proof of the Thorn isomor- 
phism. In Section 9 we use our results about the spectrum of L(a) to prove 
the degenerate inequalities of Morse. 

We now give a more detailed description of the results of the paper. 

A localization of the Witten Laplacian to a neighborhood of the 
critical submanifold. For a Morse-Bott function h : N -» R let Mi,..., MA 

denote the connected components of the critical submanifold M of h. Ac- 
cording to the Generalized Morse Lemma (Lemma 8.3) each Mi has a tubular 
neighborhood Ei, which is diffeomorphic to the normal bundle to Mi in N. 
An easy calculation shows that 

(0.3) L(a) = D + a2\dh\2 + aA, 

where □ is the usual Laplacian associated with the metric g and A is a 
bounded zeroth order operator. As a —> oo the term a2|c?/i|2 becomes very 
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large, except in the neighborhood of the critical submanifolds M;, where 
dh = 0. Therefore, the eigenforms of L(a) corresponding to bounded eigen- 
values are, for large a, concentrate near the critical submanifolds of h. 

In Section 8 (Theorem 8.5) we show that the asymptotics of the bounded 
eigenvalues of L(a) can be calculated by restricting L(a) to a tubular neigh- 
borhood of M. We call this restriction D(a). Thus we are led to study the 
spectrum of □(a) on each Ei —> Mi. 

If for some i the manifold Mi is a point, then the tubular neighborhood 
around Mi is diflfeomorphic to EdimiV. Then the study of □(a), restricted to 
such neighborhood, reduces to the study of the standard harmonic oscillator. 

Zero eigenvalues of the Witten Laplacian on the tubular neighbor- 
hood. We begin our study of the spectrum of 0(a) with the examination 
of zero eigenvalues. Let E —> M be a tubular neighborhood of a single con- 
nected component M (dimM = m > 0) of the critical submanifold of h. By 
a slight abuse of notation we denote by the same letter h the pull-back of h 
from N to E under the diffeomorphism between E and the normal bundle 
to M in N. Since the Hessian of h is non-degenerate, the bundle E splits 
into the Whitney sum of two subbundles E+ and JB~, such that the Hessian 
is strictly positive on E+ and strictly negative on E~. The dimension n~ 
of the bundle E~ is called the Morse index of M (as a critical submanifold 
of h). Moreover, 

(0.4) %) = b+l2-|y-f, 

where y = (y+, y~) G E+ © E~ is the coordinate in the fiber. 
We study the spectrum of □(a) on E in a more general situation. 

Namely, we assume in addition that we are given a flat vector bundle V —> E. 
Then □(#) is defined on the space 47* (E, V) of smooth differential forms on 
E with values in V. 

In sections 1 through 5 we study the kernel of □(<*). Since the square of 
d(a) is zero, for each a we can define the de Rham cohomology H9(E, V, a), 
associated to a differential complex (f2*(E, V, a),d(a)). In Section 1 we 
show that the spectrum of □(«) is discrete. Then by Hodge theory for d(a), 

(0.5) iF(£,F,a)^kerff(a),   p = 0,1,.. .dim£7. 

As an essential step in his analytic proof of Morse-Bott inequalities, J. M. 
Bismut proved the following theorem about H9(E,a) (without considering 
an additional bundle V): 
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Theorem A ([Bis, Section 2(h)]). For all large enough a and any p 

(0.6) dim IP(E, a) = dimHp-n~'(M,o(E')), 

where o(E~) denotes the orientation bundle of E~. 

In his proof Bismut uses the existence of a Thorn form on E~ and the 
retraction of £,+ on M to construct local isomorphisms between Hp(E\i/, a) 

and H™"71' (U) over open sets U. Then the Mayer-Vietoris argument fin- 
ishes the proof. 

M. Braverman and M. Farber in [Bra-Far, Section 3] proved Theorem B, 
which is the generalization of Theorem A, where in addition we have a flat 
vector bundle V —> E. 

Theorem B (Theorem 5.3). For all large enough a and any p 

(0.7) dimHp(E,V,a) = dimHp-n~ (M,V ® o(E-)). 

Their proof is different from the proof of Bismut. They used the exis- 
tence of a Thorn form of the bundle E~ to construct homotopy equivalences 
between the complexes (i?*(£, V, a), d(a)) and (i?#(M, V ® o(£,-))J d). 

In this paper we give a proof of Theorem B based on a new approach. 
This approach is motivated by the notion of the "adiabatic limit", introduced 
in this sort of mathematical context by Witten in [Wi2]. Moreover, we 
use our method to study the eigenvalues of the Witten deformation of the 
Laplacian D(a) as the metric on E is deformed. 

The adiabatic limit. Suppose we chose a metric gg on JE, compatible 
in the sense of Section 1 with the (E+ © £?"", /i)-structure on E. We now 
describe the general set up for our approach. Let A be a smooth distribution 
of fc-planes, A C TE. Let B be the orthogonal complement of A in TE. 
Writing QE — gA © 98, for 0 < S < 1 we define a 1-parameter family of 
metrics on E by setting 

(0.8) g6 = gA®5~2gB. 

In addition, let V —> E be a flat vector bundle. Then the limit of (E, gs) as 
8 —» 0 is known as the adiabatic limit. 

The adiabatic limit was introduced in this form by Witten in [Wi2]. He 
considered the distribution A consisting of the vertical vectors of a fibration 

(0.9) f^E-*M, 
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where T is compact, M = S1, and the metric g makes (0.9) a Riemannian 
submersion. Witten investigated the limit of the eta-invariant of E as 5 —> 0. 
We also refer to [Bis-Pr] and [Ch]. In [Bis-Ch] and [Dai] this investigation 
was extended to general base spaces M. 

In [Ma-Me], R. Mazzeo and R. Melrose study the behavior of the space 
of harmonic forms on a compact manifold E for the fibration (0.9) as 5 —> 0. 
They show that modulo a change of coordinates, the space of harmonic p- 
forms approaches a finite dimensional space, which can be identified from 
the Taylor series analysis. They use Melrose's calculus of pseudodifferential 
operators on manifolds with corners to construct a parametrix for D^, where 
□^ denotes the Laplacian induced by the metric g$ acting on p-forms on E 
with values in V. This parametrix has a uniform extension to the closed 
interval [0,1]. This implies that in the case of a fibration (0.9) the eigenvalues 
and eigenvectors have well-defined asymptotics as S —+ 0. 

This paper owes much to the ideas and techniques in [Fo]. In [Fo] R. 
Forman considers a more general situation than in [Ma-Me]. In particular, 
he does not require that the distribution A C TE arises from a fibration. He 
investigates a spectral sequence for the cohomology of E, associated with A 
and B. This spectral sequence arises naturally from a Taylor series analysis 
of the eigenvalues of □£ near 6 = 0. Moreover, in Section 5 of [Fo] he shows 
that the leading order asymptotics of the small eigenvalues of D^ and the 
corresponding eigenspaces are determined by the information contained in 
the spectral sequence. 

The setting for the adiabatic limit arises naturally in our situation (see 
Section 7.1) after we change coordinates in fibers and let 6 = a-1/2. However 
we point out that, as opposed to the setting in [Ma-Me] or in [Fo], the fibers 
of the fibration E —> M we study are not compact. As a result it is crucial in 
the analysis of Sections 4 through 7 that for all large enough a the eigenforms 
of D(a) have a rapid decay at oo. The proof of this result (Appendix 2) uses 
the notion of the Bismut connection on £", introduced in [Bis]. This result 
is one of the main technical difficulties of the paper. 

Many results proved in Sections 1 through 7 of this paper are similar to 
those proved in [Fo], if instead of the standard Laplacian on E one considers 
its Witten deformation. 

The Thorn isomorphism. In Section 7 we prove the Thorn isomorphism 
[Bott-Tu, Theorem 7.10] as an application of Theorem B. For E —► M a 
rank n smooth vector bundle over a compact connected manifold M, we 
denote as HciE^V) the compactly supported de Rham cohomology of E 
with values in V. Then our version of the Thorn isomorphism is 
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Theorem C (Theorem 6.1). For any p 

(0.10) dim#£(£, V) = dimflp-n(M, V ® o(E)), 

where o(E) is the orientation bundle of E. 

To prove Theorem C we choose function h(y) = — \y\2 as a Morse-Bott 
function on E. In this case E = E~. Then Theorem C follows from Theorem 
B and the following equality, which is the main result of Section 6, 

(0.11) dimHP(E,V) = dimkerD^a), 

This equality holds for all large enough a and all p. Equality (0.11) can be 
considered as a generalization of the following well-known Hodge-theoretic 
equality: 

(0.12) dimHp(N, V) = dimker CF, 

where N is compact and □ is the Laplace-Beltrami operator. 

A simple example. Before we proceed further, let us consider a simple 
example which illustrates our results. In this example we know explicitly 
the eigenvalues and eigenforms of the deformed Laplacian. Let 

E = Mx (Rn+eRn~V 

and 
g = gM@mn, 

where g^n is the standard Euclidean metric on Rn. Let {yi} be the coordi- 
nates on M71, then 

%) = X>2-  E yl 
i=l t=(n+)+l 

We find 
□(a) = H{a) + AM, 

where AM is the Laplacian on M and H{a) = ©jjLijfffcCc*) is the direct sum 
of harmonic oscillators. For any (jxiy^ A dyi2 A • • • A dyip G fip(Rn), 

Hktydyi! A dyi2 A • • • A dyip) = ( —^ + ^oPylA dy^ A dyi2 A • • • A dy^ 

d^h 
(0.13) + a—z^Bkidyii A dyi2 A • • • A dyip). 
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The operator Bk is a zeroth order operator defined by 

Bkidy^ A dyi2 A • • • A dj/ip) = ±dyil A dyi2 A ... A dy^, 

where we have (+) if fc € {ii, 22, •.., ip} and we have (—) otherwise. 
We can compute the eigenvalues and eigenforms of □(a) by separating 

variables. Let UJ 6 ker np(a) then u = 7 ® /?, where 7 G keriJ/c(a) for all fc 
and j3 E ker AM- It follows from (0.13) that 

(0.14) l = ln~ = e-«\y\2dy{n+)+1 A'.-Adyn. 

Therefore, (3 e keiAp-n'. Since dimHp(E,a) = dimkevDP(a) and 
dimHp(M) = dim ker A^, we have demonstrated (for this example) the 
following theorem (see Theorem C and Corollary 5.4): 

Theorem D. For any p and all a 

dimHp(E,a) = dimHp-n~(M). 

We also have 

Theorem E. //Af(a) is an eigenvalue ofOp(a) which is bounded as a —> 
00, then 

Af(«) = ^-n"), 

where fJ-~n    is an eigenvalue of A^~n ^. 

This theorem should be compared with Theorem 7.23. 

A more detailed description of the content of Sections 1 through 
7. In Section 1 we put a natural metric g on 25, compatible with the given 
decomposition E = E+ © E~. Then we define a one parameter family 
of deformations n(a) of the Laplacian and describe the Hodge theory for 
d(a). We also define J2J(J5, V), the space of rapidly decreasing or Schwartz 
forms on 25, in terms of the Bismut connection. Finally, we observe that the 
cohomology H*(E, V, a) of the complex {£1*{E, V),d{a)) is the same as the 
cohomology Hl{E, V, a) of the complex (/?;(£?, V), d(a)). 

In Section 2 we consider a manifold E as a vector bundle over E~. For 
reasons which will be clear in Section 4, we have to consider the bundle 
E -» M as a filtration E -» E~ -> M. We denote as A C TE the set 
of all vectors tangent to fibers of 22 —> £?"*, and B denotes the orthogonal 
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complement of A in TE in the metric g. Then the family of metrics gs is 
defined as in (0.8). We also define a rescaling map ps, which is an isometry 

ps:((P(E,V),gs)->(n(E,V)tg). 

Fixing a > 0 large enough, 

ds = P6d(oL)pJl,   dj = psd*g8(a)p^1. 

Then we show that dimker[IP(a) = dimker[IP(5), where 

(0.15) U{5) = d8dl + d*5d5. 

In Sections 3 and 4 we study the behavior of the space of the cfo-harmonic 
forms on M as 5 —> 0. 

In Section 3 we define a nested sequence of spaces 

E^DEfDE^D ... 

by 
^ = {a;el3f(S,^)|3a;il...Ja;ib_1, 

^(u; + Su*! + ... + ^-^.i) e 0(6k), 

d*s(uj + Sm + ... + ^-Wi) E 0(5*)}, 

By explicitly computing the spaces Sf and JSf, we show that £f is iso- 
morphic to H%(E~~, V,a), which denotes the cohomology of the complex 
(f%{E-,V),d(a)), where a differential d(a) on f%(E-,V) is defined by 
d(a) = d — adh~ A . 

In Section 4 we show that the nested sequence define in Section 3 stabi- 
lizes at £%: 

££ = .ES = ... = ££>. 
Then we describe an isomorphism between H^(E^V^a) and ££>. We note 
that we can prove this fact directly for the fibration E —> E~, but not for 
the fibration E —► M, Together with the results of Section 2, we have an 
isomorphism 

(0.16) HP(E,V,a)°<Hr(E-,V,a). 

In Section 5 we use the Hodge theoretic *-operator as a convenient tool 
to deduce the following equality 

dim ££(£-, V, a) = dimHm+n~-p(M, V ® o(E-)), 
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Together with (0.16) and the Poincare duality on M this equality proves 
Theorem B of Braverman and Farber. In Section 6 we present a Hodge 
theoretic version of the de Rham cohomology of E and prove the Thorn 
isomorphism. 

In Section 7 we study the asymptotics of the bounded eigenvalues of 
□(a) as a —* oo. Observe that if we put 

6 = orll\ 

then the operators n(a) and £~2n(5) will be isospectral (we assume that 
in the definition of tl{$) the parameter a equals to one). This implies that 
if A^(a) denotes the j-th eigenvalues of HP (a) and A? (5) of CP^), then for 
any j a > 0, and p = 1, 2,... dim £7, we have 

Aj(a) = *-2AJ(*). 

To investigate the asymptotic of the small spectrum of □(£), which cor- 
responds to the bounded spectrum of □(<*), we use the Taylor analysis of 
the eigenspaces of the Witten Laplacian in the spirit of Section 5 of [Fo]. 
The main result of Section 7 is Theorem 7.23, which states that all bounded 
eigenvalues of □(a) converge to the eigenvalues of the Laplacian 

A : I2-(M, V ® o(E-)) -> ^(M, V ® o(£7")). 

In addition we show (Section 7.5) that modulo a change of coordinates the 
eigenspaces which correspond to small eigenvalues of 0(6) approach fixed 
spaces as S —> 0. 

The main result. In Section 8 we observe that the bounded eigenvalues 
of L(a) : {2*(N,V) -> Qm(N,V) can be calculated by restricting L(a) to 
tubular neighborhoods Ei of connected components Mi of the critical sub- 
manifold M and then applying Theorem 7.23. We prove Theorem 8.6, which 
is the main result of the paper. This theorem states that all the bounded 
eigenvalues of L(a) on N converge to the eigenvalues of the standard Lapla- 
cian A on M, twisted by orientation bundles o(E~) as a —► oo. Moreover, 
all the eigenvalues of A are limits of the bounded eigenvalues of L(a). The 
theorem also contains estimates on the rate of convergence of the eigenvalues 
of the Witten Laplacian L(a) on iV. 

The Morse-Bott inequalities. In 1954, R. Bott [Bottl] generalized the 
Morse inequalities to the case when the critical points of the function h 
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form a submanifold M, satisfying some conditions of non-degeneration (see 
Section 8). Let M = ©^M;, where Mi denotes the connected component 
of M of index n~. For each i, consider the twisted Poincare polynomial of 
Mi 

pr(t) = ^dimH^Mu V\Mi ® o(£r)), 

and the following Poincare polynomial of iV 

Then the Morse-Bott inequalities say that there exists a polynomial Q{t) 
given by Q{t) = Qo + Qit + ... with with all non-negative coefficients such 
that 

A 

X;fTJ7(t)-P(t) = Q(t)(H-t). 
i=l 

The idea of applying the Witten deformation to prove the Morse-Bott in- 
equalities was suggested by Witten in [Wil]. 

J.-M. Bismut [Bis] introduced a slight modification of the Witten defor- 
mation (using two parameters), such that the study of the corresponding 
family of operators leads to a family of operators on E —► M. Bismut 
applied a probabilistic technique to study the eigenvalues of the deformed 
Laplacian on E —> M which approach 0. 

M. Braverman and M. Farber [Bra-Far] used essentially the same modifi- 
cation of the Witten deformation as Bismut. However, they excluded prob- 
ability considerations and used instead an explicit estimate of the number 
of the eigenvalues of the deformed Laplacian approaching 0. They proved 
the existence of the spectral gap which separates the eigenvalues that ap- 
proach 0 from the rest of the spectrum. Moreover, Braverman and Farber 
also proved the twisted degenerate Novikov inequalities. 

In [H-S] Helffer and Sjostrand gave an analytic proof of the Morse-Bott 
inequalities. Although they also used the ideas of [Wil], their method is 
completely different from the method in [Bis] and [Bra-Far]. 

In our case the existence of spectral gap and the Morse-Bott inequali- 
ties easily follow from Theorem 8.6. In particular, the twisted degenerate 
Novikov inequalities of Braverman and Farber [Bra-Far] also can be easily 
recovered from this theorem. 

Acknowledgments. This paper grew out of Doctoral Dissertation of the 
author at Rice University. The author thanks his advisor Robin Forman for 
posing the problem, many helpful discussions and constant encouragement. 
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1. The Witten Laplacian. 

1.0. Introduction. In this section we put a natural metric on E, compatible 
with the given decomposition of E into positive and negative bundles E+ 

and E~ for a Morse-Bott/function h. Then we define the family 

□(a) = d(a)d*(a) + ef (a)d(a), 

of the Witten deformations of the Laplacian and describe its properties. We 
prove the Hodge decomposition for 0(a), and we define the space of rapidly- 
decreasing forms. 

1.1. Description of the data. The following set up naturally arises when 
we consider tubular neighborhoods of connected components of the critical 
submanifold for a Morse-Bott function (see Section 0.2 and Section 8). Let 
E = E+ © E~~ be the Z2 graded finite-dimensional vector bundle of rank n, 
not necessarily orientable, over a compact connected Riemannian manifold 
(M, QM) of dimension m. Let p : E —► M be the projection. Dimensions of 
E^ and E~ are denoted as n+ and n~, where n = n+ + n~. 

Suppose that in addition we are given a complex vector bundle V over 
E with a choice of a flat connection. Let ftp(E, V) denote the space of 
smooth differential p-forms on E with values in V. Then d : ftp(E, V) —> 
ftP+1(E,V) is the standard differential on Q9(E, V), corresponding to our 
choice of a flat connection on V, d o d = 0. 

1.2. The Morse-Bott function on E. We choose Euclidean metrics on 
fibers of E+ and E~. We define the metric on E to be the direct sum of the 
metrics on E+ and E~. 

For a vector y G E+ © E~ we denote by \y\ its Euclidean norm with 
respect to the metric on E: 

(i-i) M2 = |y+l2 + n2- 
Let h : E —> R be the function defined on a vector 

y = (y+,y-)eE+®E- 

by the formula 

(1.2) h(y) = \y+\2 - |y-|2 = h+{y) - fc-(y). 
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Then h(y) is a Morse-Bott function on E, having M as its critical subman- 
ifold. Moreover, the Hessian of h is positive on E+ and is negative on E~. 
Thus the index of M is n~. 

In order to study the Witten Laplacian we need metrics on E and V. 

1.3. A Riemannian metric on E. It is convenient to choose a Riemannian 
metric on E to be compatible with a given Morse-Bott function h in the 
following sense. 

We denote by TveTE the space of all vertical vectors in TE. For each 
y e E, we have the canonical identification of E and TverE (identification 
of fibers and vectors tangent to fibers). Via this identification the metric on 
E induces the metric AVer on TverE. 

We choose Euclidean connection V^ on E+ and V^- on E~. Then we 
define a connection on E as the direct sum of connections on E+ and on 
E-: 

We note that the splitting E = E+ © E~ is parallel for our choice of V^. 
The choice of a connection defines the horizontal distribution ThoTE C 

TE (see Section 1 of [Roe]), and thus the splitting of TE into complimentary 
vertical and horizontal subspaces TE = TverE © ThoTE. Note that for each 
y G  E we have an identification 

P* ■ TZ01 - Tp(y)M. 

Thus we can lift QM to the metric c/hor on ThorE. 
We define the metric g on TE to be 

9 = Qver © #hor = £ver © P*gM' 

1.4. The Bismut connection and a choice of basis on TE. In order 
to do computations we need to choose a basis and a connection on TE. As 
it will be explained in Appendix 1, the most computationally convenient 
choice of a connection is the Bismut connection. The Bismut connection V 
on TE [Bis, Section 2] can be defined as a direct sum of two connections 
V^ and V™: 

where VE is the connection on TverE (identified with E), and V™ is the 
connection on ThorjE (identified with TM). The properties of this connection 
are discussed in more detail in Appendix 1. 
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In order to choose a basis on TE, we first choose a basis on TM © E 
and then, we lift this basis to TE. Take x € M. Let {a*};=!,...n? {bj}j=i1...m 
be orthogonal bases of Ex, TXM. Let {al}i=iv..n, {b7*}^!,...™ be the corre- 
sponding dual bases. Take y 6 Ex. We can lift {ai}i=iv..n, {bj}j=i,...m to 
TE. Since there is no risk of confusion we can assume as well that {a*}^!,..^ 
is the basis of Ay and {&j}j=i,„.m is the basis of By. 

1.5. A Euclidean metric on V. In order to choose a metric on V, we 
identify the manifold M with the zero section of E. Let VjM denote the 
restriction of V on M. Fix an arbitrary Euclidean metric q on Vj^, com- 
patible with the flat connection on V. The flat connection on V defines 
a trivialization of V along the fibers of E and, therefore, gives a natural 
extension of q to an Euclidean metric qy on V which is flat along the fibers 
of £7. 

1.6. The Witten differential and the Witten Laplacian. We define 
after Witten [Wil] a one-parameter family of differentials d(a), a > 0, by 
the formula 

(1.3) d(a) = e'^de^ = d + adhA. 

It is easy to see that d(a) o d(a) = e~ah(d o d)ea/l = 0. 
The metric g on TE induces the metric on A*T*£ and, together with 

qy, leads to an L2-metric on 4?*(JE, V). 
Let 4??2N (£?, V) be the space of square integrable forms on J5 with values 

in V. If the bundle E —> M is not orientable then we let J??2x(E, V) denote 
the space of square integrable forms, twisted by the orientation bundle of 
E. 

The Witten Laplacian 0(a) on the bundle E", associated to the metrics 
g and gy, is defined by the formula: 

(1.4) n(a) = (d(a) + d*(a)f = d(a)d*(a) + d*(a)d(a), 

where d*(a) denotes the formal adjoint of d(a) with respect to the L2-metric 
on {2?2JE,V). We denote by np(a) the restriction of □(a) to the space of 
p-forms. 

1.7 The spectrum of the Witten Laplacian. In this section we formu- 
late several results about the spectrum of Q(a). 

First we need to define a self-adjoint extension of the Witten Laplacian 
We restrict 0(a) to the space fil(E, V) of smooth differential forms on E 
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with compact support. For any fixed a, □ (a) is a square of a first' order 
symmetric elliptic operator (d(a) + d*(a)). 

Since (E,g) is complete, it follows that □(<*) : f%(E,V) -► ^(E.V) 
is essentially self-adjoint ([Bra, Theorem 1] or [Cher, Section 3]). Thus it 
has a unique self-adjoint extension [R-S, Chapter viii], which we will denote 
again as 0(a). Moreover, it follows from [Cher, Section 3] that the powers 
of □(<*), restricted to f2*(E^ V), are also essentially self-adjoint. 

Theorem 1.1. For any a > 0 the spectrum ofnp(a) is discrete. In partic- 
ular, kernp(a) is finite-dimensional. Moreover, eigenforms of [3(a) form a 
complete basis for QJ2AE, V) in the L2-topology, associated to the metric g 
on the tangent space TE. 

In order to prove Theorem 1.1 we observe that for any u from the domain 
of \IP(a) there exists a sequence {o;^} C ^(E, V) such that \\uk — w\\ —> 0, 
and ||nP(a)u;fc - UP(OL)W\\ -► 0 as k -> oo. Then 

([y(a)uj,u)= \im(VP(a)uk,uk) 

= lim (||d(aH||2 + ||d>K||)>0. 
k—>oo 

In Appendix 1 (Theorem A. 1.5) we show that 

(1.5) n(a) = D + a2\dh\2 + aA, 

where D is the usual Laplacian associated to the metrics g and gv, and A is 
an endomorphism of A#(.E, V). For any fixed a > 0 zeroth order operator 
a2\dh\2 + a A is symmetric and bounded below by a constant. 

Theorem 1.2 (Bueler). Let x —► W(x) be a continuous map on a com- 
plete Riemannian manifold N with the image W(x) a symmetric (zeroth 
order) operator on A*T£ ® V. Assume that 

H = D + W 

is non-negative and essentially self-adjoint with core f2*(E,V). Let u(x) be 
the smallest eigenvalue of W(x) on A*T* (8) V. Assume that u(x) —* oo, i. 
e. there exists XQ G N such that for each K > 0 there exists R>0 such that 
u(x) > K if x G N/BXo(R). Then H has compact resolvent. 
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1.8. The Hodge theory for the Witten Laplacian. In this section we 
introduce the complex whose cohomology will be our main interest in the 
coming sections. We then show that even though the underlying manifold 
is non-compact, by using the deformation introduced in Section 1.6 this 
cohomology can be studied via Hodge theory. 

We denote by f2*(E,V,a) the space of smooth (C00)-square integrable 
forms OJ which have the property that d(a)uj G fi?2JE,V) and c?(a)*u; 6 
ft^AE, V). In sections 1 through 6, we study H*(E, V, a), the cohomology 
of the complex 

0 -+ n0(E, V, a) -> nl(E, V, a) -+ ... -+ nrn+n(E, V, a) -> 0, 

associated to the differential d(a). We have the following Hodge decompo- 
sition theorem for d(a). 

Theorem 1.3. For any a > 0 we have an orthogonal decomposition 

(1.6) /?•(£, V, a) = image d(a) 0 image d*(a) 0 ker n(a). 

Proof. Since by Theorem 1.1 dimkern(a) < oo, for any u € Qm{E^ V) we 
have the decomposition u = /? + /i, where /? E (ker n(a))-L and h E ker □(#). 

Writing 

P = {d{a)d\a) + d*(a)d(a))(n(a))-1/3 

= ^^(^(^(D^))"1/?) + ^MaXDta))-1/?) 

we have (3 = /?i + /?2, where /3i E image d{a) and ^2 6 image of*(a). 
Moreover, since (d(a:))2 = 0, /?i and /32 are orthogonal. Thus for any u E 
Qm(E, V, a) we have an orthogonal decomposition LJ = h + fa + fa. D 

We also have the following immediate corollary: 

Corollary 1.4. 

#•(£, F, a) ^ ker □(<*) = ker d(a) n ker d*(a). 

1.9. The space of rapidly decreasing forms. Until now, we have worked 
with the space of square integrable forms, but it will be convenient to work 
instead with the space of rapidly or decreasing or Schwartz forms. The 
purpose of this section is to show that restricting to this smaller space of 
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forms does not change the cohomology of the complex defined in Section 
1.7. 

It is convenient to define the space of rapidly decreasing forms on E in 
terms of the Bismut connection on TE. In order to simplify the notation, 
let 

{ai,..., an} U {&i,..., bm} = {ei..., en+m} 

be the basis, chosen in Section 1.4.. 
We now introduce the spaces Q^{E) V) of smooth rapidly decreasing or 

Schwartz p-forms. We say that OJ € I2f(£7, V) if \y\lVKuj G (2P
{2)(E,V) for 

any / > 0 and any multi-index /c, \K\ = 0,1, Here 

V* = Ve^ o • • • o Ve^, K = {n,..., iK}. 

If E = M x Mn with the product metric and the standard connection, then 
Q^E, V) becomes the space of smooth Schwartz p-forms on E. 

Since we can express d in terms of the Bismut connection, we conclude 
(see Theorem A.2.1) that !?•(£?, V) is invariant under d(a). Thus we can 
define #?(£, V, a), the p-th cohomology of (J??(£, V), d{a)). 

Theorem 1.5. For any large enough a and any u 6 fr{E, V, a); such that 
□(a)tc; = \(a)u), we have u G Ql{E^V); i. e. the eigenforms ofO(a) are 
Shwartz. 

For any a > 0 we have an induced decomposition of ]?• (E, V): 

(1.7) fis(Eiv) = imaged(a) 0 imaged*(a) 0 kerD(a). 

The proof of (1.7) is similar to the proof of Theorem 1.3 if in addition 
we know (see Remark A.2.7) that if u G  (kern(a))-L D {2*(E,V) then 

(□(aJJ-Wrt^n 

Corollary 1.6. For every a > 0 H*(E, V, a) is isomorphic to H9(E, V, a). 

Remark 1.7. M. Shubin in Appendix to [Sh2] proved a theorem about the 
decay of eigenfunctions of matrix-valued differential operators on R71 similar 
to Theorem 1.5. 

Remark 1.8. It can be shown that the space i?* does not depend on the 
choice of horizontal distribution in the definition of the Bismut connection. 
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2. A deformation of the Witt en Laplacian. 

2.0. Introduction. In this section we fix our parameter a > 0 to be large 
enough to ensure the conclusions of Theorem 1.5. For the sake of simplicity 
the notation d and D will indicate that the differential and the Witten 
Laplacian depend on a fixed a. Thus d(a) = d and □(a) = D. We consider 
E to be a vector bundle over a non-compact manifold E~. 

In Section 2.1 we introduce for all 0 < S < 1 an adiabatic deformation 
gs of metric g by expanding the metric in the directions orthogonal to fibers 
of £->£-. 

For a fixed a > 0 this deformation leads to a corresponding deformation 
D^ of the Witten Laplacian. To simplify the situation we remove the depen- 
dence of the metric on the parameter by introducing in Section 2.3 a new 
family 0(5) of operators. This will be done in such a way that for all 5 > 0 
the operators ds and D(5) are isospectral. 

In Section 2.2 we conclude that there is a natural bigrading on the space 
of differential forms on E, which is associated to an orthogonal decomposi- 
tion of TE into horizontal and vertical vectors. This bigrading leads to a 
corresponding bigrading of the differential d. 

2.1. A one-parameter deformation of the metric on E. Let TT : E —» 
E~ be the projection. The tangent space TE has an orthogonal decompo- 
sition 

TE = A 0 B 

where A is the set of all vectors tangent to fibers of E —» E~~ and 

B = ThorE © {vectors, tangent to fibers of E' -> M}. 

Note that 

g = gA®gB, 

where gA and ## are the restrictions of g to A and B. 
We define a one-parameter family of metrics on TE by setting 

(2.1) g5 = gA®5-2gB. 

2.2. A bigrading on the space of forms. The decomposition TE = A®B 
leads to the corresponding decomposition of the dual space T*E = A* ©5*. 
This decomposition in turn induces a bigrading on QP(E, V) by 

(2.2) flP(E, V) = O^tf *-*(£, V), 
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where &*-*(£, V) = T^A* © A'B* © V). 
Similarly, all operators on forms inherit a corresponding decomposition. 

In particular, the d-operator inherits a bigrading 

d = d2'-1 + d1'0 + d0'1 + d-1'2, 

where da>b : ^(E.V) -> /2i+a^+6(£;,F). Note that d1'0 and d0'1 are first 
order differential operators and d2'"1 and d""1,2 are zeroth order. 

It follows from the integrability of A that d2'1 = 0 (see Corollary A. 1.4). 
For the operator d = d + adhA we have a similar decomposition 

(2.3) d=cl1'0 + d0'1 + cr1'2. 

Since dhiThor^ = 0 (it can easily be checked in local coordinates) and the 
metric g is chosen so that TveTE+ is perpendicular to T^E", we have dh = 
dh^ — dh~, where dh+A = dlf*h+A is a (1,0)-operator and dh~A = d^h'A 
is a (0, l)-operator. Therefore, 

dL>0 = d1>0 + adh+A,    fi+^d^-adh-A,   and  d"1'2 = d"1'2. 

The identity {d?) = 0 yields the identities 

(2.4) 0 Kd2)2'0 = (d1'0)2, 

(2.5) 0 =(d2)1'1 = cW'1 + cZ0'1^'0, 

(2.6) 0 ^(d2)0'2 = (d0'1)2 + d"1'2^'0 + d1'0^1'2, 

(2.7) 0 = (d2)"2'4 = (d"1'2)2. 

2.3. A one-parameter deformation of the Witten Laplacian. For 
each p and 5 we have an induced Laplacian 

tf5 = dlgs)d + ddlg5) : ni{E, V) - flftE, V), 

where d? x is the adjoint of d with respect to the L2-metric on A*T*E ® V 
induced by the metrics g$ and qy. 

The operator D^ depends on 5 through the metric #j, which varies with 
8. To simplify the situation we introduce an isometry 

where for each UJ G 4?
M

, 

p$u = 5Ju>. 
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We define UF^) by the formula 

(2.8) &(S) = pjifyps. 

Clearly, operators D^ and UP (5) are isospectral. We also observe that d*s = 

p^d^ps and hence, for all p and 5 

(2.9) dimkerCP = dimkern£  and   kerDf = kei psCF^pJ1. 

Moreover, we have the following lemma, which is a simple calculation. 

Lemma 2.1 ([Fo, Section 1]). For any p 

DP{5) = d6d*6 + d*6d6, 

where 

ds = &<0 + 6#>1 + ti2dr1>2   and d$ = ($>0)* + 6(dP>1y + 62(d-1>2y 

is the adjoint, where all adjoints are taken with respect to metrics g and qy. 

3. A Taylor analysis of zero eigenspaces 
and an associated nested sequence of spaces. 

3.0. Introduction. In this section we start a Taylor analysis of the kernel 
of the operator 111(5). We observe that by Hodge theory CJ € ker 111(5) if and 
only if d$uj = 0 and d^cj = 0. This description of the kernel motivates an 
introduction in Section 3.1 of the nested sequence of spaces {£%} of "ap- 
proximate solutions" to the equations above. We also define the appropriate 
differentials i^kd^k ' E% —> JE^. Those spaces and differentials were first in- 
troduced in this form by R. Forman in [Fo]. Similar spaces were studied by 
Mazzeo and Melrose in [Ma-Me]. 

In this section we compute the spaces E^ and E^. In particular, in 
Section 3.2 we find that the restriction of a form from E^ is a d^-harmonic 
forms in each fiber of E —> E~~. Furthermore, there is an isomorphism 
between E2 and the de Rham cohomology H%(E~, Vjj5-,a) associated to 
the differential complex {fil{E~, V), d(a) = d — adh~A). 

3.1. A nested sequence of spaces. For each p we define a nested sequence 
of spaces 
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where E? = C%{E, V), by 

El = {u € Wa{E, V)\ 3 UJU ... ,0,^ with 

(3.1) ds(uJ + Soj1 + --- + Sk-1oJk^)eO{dk), 

d^uj + 6OJ1 + --- + ^-^fc-i) 6 0(5*)}, k = 1,2,.... 

We denote by TT^ the orthogonal projection onto E%.. We also define an 
operator d^ on £?£ by setting, for co G .Ej? 

(3.2) 4w = lim <5-fc4j(a; + M + ... + ^"Wi), A; = 0,1,2,.... 

We observe that generally the map <4 depends on uVs, however in the next 
section we are going to see that i^kdk^k does not. For example, itodtfKQOj = 
docj = d1,0^. In particular, we will show that {^kdk^k)2 — 0 and T^kd^k = 0 
for k > 2. 

3.2. A computation of E^. By definition 

£? = {a; 6 /^(E, F)| 4j(a;) € 0(6), ($(u,) € 0(J)}. 

Since 4j(w) = d1'0^ + 0(5) and d*s(uj) = (d1'0)*^ + 0(5), we have 

£? = {a; 6 flfCE, V)| d^a; = 0, (d1-0)*^ = 0} 

= {a; € /2P(E, V)| TTodonou = 0, (7rodo7ro)*u; = 0}. 

Let to £ E\. Since the differential d1,0 preserves the bigrading, we may 
assume that OJ G Ql'•' (E, V) for some i, j, i+j = p. Then UJ can be considered 
as a j'-form on E~ with the values in an infinite-dimensional bundle 

ir: Oi^V)-+E- 

(where f}l
s(A,V)  denotes the bundle whose fiber at  (x, y~)   G   E~  is 

ni{-K-\x,y),v)). 
We write ui as 

ui = 7 ® TT*/?, 

where 7 G /^(A, Vf^), /? G ^'(E-, VjB-). Then we have 

d1'0^ = (d(7 ® 7r*^))i+1'J' = ^7 ® 7r*/3. 

Similarly, 
(d1'0)*^ = ^7 <g> TT*/?, 
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and finally, 

(3.4) n1'0a; = (nA7)(8)7r*/?, 

where d^  d*^ and DA are respectively the differential, codifferential and 
Laplacian on ^(TT"

1
^,!/"), Vf^-i^-)). 

Thus 
kerD1'0 = r (E", A*T*JB- ® W(A,y)), 

where H(A,V) denotes the vector bundle over E~ whose fibers at (x,y~) 
are the D^-harmonic forms (i.e. elements of kerCU) on 7r~1(a:,y~) with 
values in V. 

The following lemma computes the kernel of D^ in the fiber. 

Lemma 3.1. Let D^ denote the restriction of the operator DA to the 
the space Q'ls('K~l(x,y~),V). Then for every point (x,y~) G E~, 

dimy kerD^ = 1, if i = 0; dimykerD^ = 0; otherwise. 

Moreover, ifuE kerD^ , then UJ = 7 ® 7r*/?; where after an orthogonal 
change of coordinates in the fiber over (x, y~) G E~, 

l\ni(n-Hx,y-),v) = e-alDy+\2 ®v, 

for some diagonal matrix D. 
Finally, the bundle 7^(A, V) is trivial 

Proof Recall that we chose g, so that gg and, hence, #£+ are smooth fiber- 
wise Euclidean metrics. Therefore, for each (x,y~) G E~ we can perform a 
calculation similar to [CFKS, Proposition 11.13] in the fiber over (x,y~) to 
get 

0^7 = (A + a2\dh+\2 + a5)7, 

where A is the Euclidean Laplacian in the fiber and B is a zeroth order op- 
erator. We have 7 = ^® v, where </> G ^(TT"

1
^, y~)) and v G V. Moreover, 

after an orthogonal change of coordinates in the fiber, the variables separate 
and D^ acts on the form 7 by 

□k7 = (©fe=1^fc(«)^)®«. 

The harmonic oscillators Hk(a) in the formula above can be expressed as 

Hk(a)4> = (Afc + Afc(4a2y| + 2aBk)) <f>, 
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where for each fc, A^ is the one-dimensional non-negative Laplacian, {A^} 
are some positive numbers, Bk(t> = <j> if <f) contains dy^j and Bk4> = — <f> 
otherwise. It is easy to compute precisely eigenvalues and eigenforms of 
Hk(a) ([CFKS]). In particular, if 7 G kerD^, then (/> G keTHk(a) for all k = 
1,..., n+; that is (/> does not contain dyk, k = 1,..., n+. So dimy ker D^ is not 
zero if and only if i = 0. In this case there is a unique (up to multiplication) 
CU-harmonic 0-form in the fiber. This form can be represented as (f> ® v, 
where (/> = e-al^+l2. D 

The following useful corollary follows from part of Lemma 3.1. 

Corollary 3.2. For any p we have 

In particular, E% = {0} for p > dim E~. 

We have the orthogonal (Hodge) decomposition in each fiber F, associ- 
ated with the operator 0?^: 

(3.5) fts(Fi V) = image CLA © image^)* © ker DA- 

Lemma 3.3.  There exists a constant c > 0; so that for all u G f2s(E, V), 

(D^V^^cKl-TriJa;!2. 

Proof It follows from (3.4) that 

inf{A G specD1'0! A > 0} 

inf      [inf (A G spec (nA : ^(^"^(x, y"), V)) 
(x,y-)eE- L      L V 

^a'{*-\{x,y-)),V))\  A>0}]. 

The spectrum of D^ varies continuously over M, and the multiplicity of 0 
is constant. Thus the smallest positive eigenvalue is a continuous function 
on M and is constant along the fibers of E~ -* M and therefore achieves a 
positive minimum. This implies that the infimum above is positive, which 
is precisely the statement of Lemma 3.3 □ 
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It follows from Lemma 3.3 that  (3.5)  induces a decomposition of 
f2's(E,V). 

fll(E, V) = imaged1'0 © image(<?'0)* © ker D1'0 

(3.6) = image d1-0 © imageCd1-0)* © (ker d1-0 n ker(d1'0)*) . 

In particular, 
n0

s''(E, V) = imaged1-0)* © Ef. 

3.3. A computation of E%. Our next goal is to relate E% to the cohomology 
H$(E-, V, a) of the differential complex (Q^(E~, V), d(a)). To this extent 
we prove the following theorem: 

Theorem 3.4. For all p we have 

dimE% = dimHP(E-,V,<x). 

Moreover, ifn~ = 0 (i.e. E = E+), then 

dim£f = dim#p(M,F). 

This theorem has an important corollary. 

Corollary 3.5.  The spaces E^ are finite-dimensional. 

We prove Theorem 3.4 by a sequence of lemmas. The first lemma deals 
with the computation of E^- 

Lemma 3.6. 

El = {a; € El\ Tud^TTiu, = 0,  {-K^^foj = 0}. 

Proof. By (3.1) 

El = {a; € np
s{E, V)\ 3 ^ such that 

ds{uj + Sm) = 0(52) and (dsy{u + 5ux) = 0(52)}. 

Since d&(uj + 8uii) = d^u + ^(d1'0^! + d0'1^) + 0((J2) and (d*)*^ + 8^) = 
(d1'0)*^ + ^((d1'0)*^! + (d0'1)*^) + 0(52) we have 

El = {a; G E\ \ 3u>i such that 

(P'V + d0'1^ = 0 and (d1'0)*^! + (d0'1)*^ = 0}. 
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Let UJ 6 E^, then the equation d1,0^ + cf0'1^; = 0 can be solved if and 
only if 

(P'l<jj e imaged1'0. 

We apply (2.5) to commute d0'1 and d1'0 and we find that 

rf1'0«?)'1a; = -d0'1d1'0a; = 0. 

Therefore, it follows from the decomposition (3.6) that dP^u G imaged1,0 

if and only if the harmonic component of dP^u is 0, that is if and only if 
TTli0'1^ = TTid^TTlU; = 0. 

Similarly, the equation (d1,0)*cc;i + (d0,1)*^ = 0 can be solved if and only 
if TTi^0'1)*^ = TTi^0'1)*^ = 0. □ 

Lemma 3.7. Suppose 7   is  any  locally  constant section  of the  bundle 
?^(^4, V), then the following diagram is commutative: 

xJo-i ^p ind ■ 7r1) Ep+i 

(3.7) 7(8)7r* 707r* 

f2P(E-,V)   —2-,   ^+1(E-,y), 

where d = d(a) = d — adh  A is a differential on the bundle E   —> M, and 
an isomorphism 

7®7r*:l?f(£;-,F)^£;[ 

i5 defined by 
P i-> 7 ® TT*/?. 

Proo/. Let /? G I?? (£7", V). We want to check that 

(TTli0'1?!-!) O (7 ® TT*)/? = (7 <g> TT*) O (i)/?. 

Indeed, we have equalities: 

7rid0'17ri(7 ® 7r*/3) = Tr^d0'1 - adh^A)^ ® TT*/?) 

= (d(7 ® 7r*/3))0'p+1 - 7 ® (ad/i" A TT*/?) 

= 7 ® 7r*d/3 - 7 ® 7r*(adh~ A (3) 

= 7 ® 7r*rf^, 
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where the third equality holds since 7 is locally constant and since a hori- 
zontal form dh~ commutes with TT*. □ 

The following lemma completes the proof of Theorem 3.4. 

Lemma 3.8.   We have: 

dim rker(7rid0'17ri) n ker(7ri(i0'17ri)* J = dim(ker d n ker d*). 

Proof. After taking the adjoints, we have a commutative diagram similar to 
(3.7): 

E?        <  E^1 

(TTidMiri)* 

(3.8) 7(g)7r* 7(8)7r* 

It follows from (3.7) and (3.8) that ker iridP>1iri = ker d and ker(7rid0'17ri)* S 
kerd*. Thus we have equality in the lemma. □ 

Now Theorem 3.4 follows from Lemma 3.8 and from the Hodge theoretic 
description of H*(E~, V, a) as 

#,*(£-, V, a) = ker d D ker d*. 

4. An isomorphism between the cohomology of E and E~. 

4.0. Introduction and the main result of this section. The goal of 
this section is to relate for a fixed large a the cohomology if* (£?, V, a) of the 
complex (/?*(£?, V),d(a)) to the cohomology H*(E~, V,a) of the complex 
(!?•(£?", V), d(a)). The main result of this section is the following theorem: 

Theorem 4.1. For any p and for large enough a 

dim HP (E, V, a) = dim flj (S", V, a). 

This theorem has an important corollary. 
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Corollary 4.2. IfrT = 0 (i.e. E = E+ and E" = M), then 

dim flj(£, V, a) = dim HP{M, V). 

To prove Theorem 4.1 we show first that the nested sequence of spaces 
El D El D El D ... stabilizes at £f, i.e. El = El = ... = ££>. Then the 
arguments from [Fo, p. 60], recalled in Section 4.3, lead to an isomorphism 
between E%o and 11%(E, V, a). This isomorphism together with Theorem 3.4 
provides us with the chain of equalities 

dimflJCE, V, a) =^1^ = dim£f = dimflj (E", V, a). 

Thus we have the conclusion of Theorem 4.1. 

4.1. A preliminary result. In this section we will prove a preliminary 
result. Namely we will show that in the definition of spaces E^ we can 
choose u;i,.. .uJk-i to be from the space of rapidly decreasing forms. This 
result will allow us to do all computations completely inside &l(E, V). 

Lemma 4.3. Let UJQ 6 E7^, and a;i,... ,^-1 ^ such that ds(ujQ + Suoi + 

• • • + d^Uk-i) = 0(6k) and d*(uJo + Sux + • • • + S^utk-i) = 0(Sk). Then 
uj € «;(£?, V) for 3 = 0,1,..., k - 1. 

Proof. We use induction on k. 

k = 1. If wo € £1 then u;o € 12; (£7, F) by definition of Ef. 

k = i — 1. Suppose the statement of Lemma 4.3 is true for k = i — 1. 

k = i. Let u;o G Sf and let a;i,..., uJi-i be such that 

(4.1) ds(ujo + Su! + • • • + (T-Wi) = 0(<r) 

(4.2) <$(a;o + ^1 + • • • + ^"^i-l) = O(^). 

Then CJI, ... ,c^_2 are such that ds(u>o + 6u;i-\ hS1-2^^) = O^2"1) 
and d$(ujo+SuJi-{ \-6l~2uJi-2) = 0(^~1). By the previous step of the 
induction, ujj G 1?;(J5, V), j = 0, ...,i — 2.  Computing coefficients in 
front of S^1 in (4.1) and (4.2), we see that CJ;_I satisfies two equations: 

ci1'0^-! + dP^cui-2 + d'^Ui-s = 0, 

(d1'0)*^-! + (d0'1) V-2 + (d"1'2) V-3 = 0. 
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Hence, uii-i is a solution of 

+ d1'0 ((d1-0)*^-! + {i^yui-t + (d-1'2) V-3) = 0. 

We rewrite this equation as 

(4.3) D1-V_i = x, 

where 

Since both (jJi-2 and uJi-s are in lf2*(jE, V), and i?J(-B, V) is invariant 
under d1'0 and d0'1 (see Theorem A.2.1), then x € /2*(-B, F). We note 
that x € (kerD1,0)-1. From (4.3) we can represent Ui-i as 

a;,_1 = (D1'0)-1X + ^ 

where h G kerD1'0. Thus CJ^I e Q^E.V), since x € ^(£7,^), 
h e n*(E, V), and (D1'0)"1 leaves n'(E, V) invariant. □ 

4.2. The spaces E% for k > 1. In Section 3 we defined the differentials 

7rfcdfc7rfc : ££ -^ ^+1 and (^4^)* : ^ -> ET1- 
Here we will show that these differentials equal zero for k > 2. This 

will lead (via the results of R. Forman [Fo, Theorem 2.5]) to the equality 
E2 = E^Q. In other words, our nested sequence of spaces stabilizes at k = 2. 

We start with the lemma in the proof of which the dimension consider- 
ations of Corollary 3.2 are crucial. 

Lemma 4.4. For any k>2, TTkdk^k = (^kdh^k)* — 0. 

Proof. We prove that for any k>2, (iTkdk^kY = 0. Then, after taking the 
adjoints, the identities Trkdkirk := 0 will follow. 

Let UJ e Ep
k, k > 2, then 
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Since u G E%, 3 CJI, ..., Uk-u such that 

%((*> + SLJ! + •. • + S^cj^) = Sk  ((d0'1)*^.! + (cT1*2)*^^) + 0(^+1). 

Thus by definition of dl 

dtcu = lim 6-kdi(<j + Su! + • • • + ^"Wi) = (rf0'1)*^-! + (d"1'2)*^^. 

Therefore, 
7rkd*k7rkuj = ^(d0'1)*^-! + 7rfc(d-

1'2)*a;fc_2. 

We consider each term in the right-hand side of the equality above separately. 
Since E% C Ef, ^(cf-1,2)*^-! is a ^^-harmonic form. Then, accord- 

ing to Corollary 3.2, TT^G?
-1

'
2
)*^-! G f2s'p(E, V), i.e. the restriction of 

7rA;(^~1'2)*^-i to the fiber must be a 0-form. However, the 0-degree com- 
ponent of (d"1,2)*a;jb_i in a fiber must be 0, since (drli2)*ujk-i is a form in 
a fiber of degree at least 1. Thus 7rfc(d~1,2)*u;fc_i = 0. 

Similarly, ^(d0*1)*^.! G ^(E, V). Therefore, 

where UJ^ is the component of Uk-i which belongs to i?s'
p_ (JE1, V). 

It follows from (3.6) that a;^ can be decomposed into ^^-harmonic 

and ^^-coexact components, a;^ = /ii + (d1'0)*/i2. Then 

TrfcCd0'1)*^^^ = ^(d0'1)*^ + 7rfc(d0'1)*(d1'0)*/l2. 

Now, it follows from the description of £f in Lemma 3.6 that 

Kkid0'1)*^ = 7r/c7r27ri(d0'1)*7ri/ii - 0. 

Also, from (2.5) and (3.6) we have 

TT^d0'1)*^1'0)*^ = Tr.TT!^1'0)*^1)*^ = 0. 

□ 

In Section 3 we proved that dinuEf < oo. Thus there exists iV, such 
that E%DE%D--DE%f = EP

N+1 = .... We denote such EP
N as E^. Now 

we will show that the nested sequence of spaces stabilizes at k = 2. 
We have the same situation as in [Fo]. 
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Theorem 4.5 ([Fo, Theorem 2.5]). For allk>0 

(i) (7vkdk7rk)
2 = 0. 

(ii)  The kernel of 

(4.4)       Afc = (7rkdknk)(7Tkdk7rk)* + (7rkdk7Tky(7rkdk7rk) \E
p

k-± Ep
k 

is precisely S^, 1. 

Note that we already proved part (i) of this theorem and we proved part 
(ii) for k = 0 and k = 1 in Section 3. 

Corollary 4.6. ££> = E%. 

4.3. An isomorphism between E%o and HP(E, V,a). We outline the 
steps of the argument taken from [Fo, p. 60]. The proofs are given in [Fo, 
Sec. 3]. 

(i) For every u € £?ooj there is a formal power series 

UJ§ = UJ + (StJi + 5 ^2 + ••• 

such that, formally, 
cfou^ = d|^ = 0. 

(ii) The a;j's arising in (i) form a basis, modulo the action of T (the 
ring of formal real Taylor series), for the cohomology of the complex 
(T[i??], cfo). Here T[i?f] denotes the space of formal Taylor series with 
coefficients in flvs{E, V). 

(iii) The operator ps provides an isomorphism between (Tfi??], d§) and 
CZm d(a)). 

(iv) The cohomology of (T[i?s],<i(a)) is canonically isomorphic to 
T[Hs(Ey V, a)] and hence, modulo T, H$(E, V, a) provides a basis. 

Observations (i)-(iv) allow us to conclude, in particular, that for all p, 

(4.5) dimE^ = dimHP(E,V,a). 

This fact completes the proof of Theorem 4.1. 

Remark 4.6. In part (ii) of the argument above we used that all aVs arising 
in the expansion of us belong to f2l(E, V). 
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5. The Hodge *-operator. 

5.0. Introduction. In this section we use the Hodge *-operator as a conve- 
nient tool to study the cohomology H*(E~,V, a) = H*(E~,V,d(a)) asso- 
ciated to the differential complex (fil{E~, V),d(a)). This study allows us 
to compare Hl{E~', V, d(a)) with the de Rham cohomology H*(M, V) of M 
with values in V. 

We note that Corollary 5.2 in this section can also be deduced without 
the help of the Hodge *-operator by methods of the previous sections. 

5.1. The set up and the main result. First we want to compare 
Hl{E, V, d{a)) to the cohomology H*(E, V, d(—a)) of the differential com- 

plex («?(£, 10, d(-a)), where 

d(-a) = eahde-ah = d-adhA. 

We consider d(—a) as the differential, associated to a new Morse-Bott func- 
tion ^, where h = —h. Clearly, h+ = h~ and h~ = h+. 

This new Morse-Bott function h on E leads to a new decomposition of 
E: 

E = E+®E-, 

where E+ S E", E" ^E+. 
In this section we develop Poincare duality for the above situation. We 

denote as o^) and o(E~) orientation bundles of E and E~. HE and E~ 
are orientable then 0(iO and o(E~) are trivial. 

Theorem 5.1. For any p, 

dim HP(E, V, d(a)) = dimH™+n-r(E, V ® o(E), d(-a)), 

where H*(E,V®o(E),d(—a)) is the cohomology, twisted by the orientation 
bundle of E . 

Before we prove this theorem we derive some important corollaries. 

5.2. Some applications of Theorem 5.1. The main application of The- 
orem 5.1 is the proof of Theorem 5.3. Although, the first application of 
Theorem 5.1 is the following corollary: 

Corollary 5.2. Let n+ = 0, that is E = E~, n = n~, and H%(E, V, a) = 
Hs(E~^ V, a).  Then for all large enough a 

dimHP(E-,V,a) = dimHm+n~-p(M,V ® o(E-)). 
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Proof. By Theorem 5.1 

dim#£(£-, V, a) = dim tfs
m+n""p(£~, V ® o(E'), d(-a)) 

= dimH™+n~-p(E+, V (8) ©(JB"), a). 

Then we can apply Corollary 4.2 to get an equality 

dimtfs
m+n~-?(£+, y (g)o(£-),a) = dim#m+n"-p(M, V® o(£r)). 

D 

Now we can prove 

Theorem 5.3. Let E = E+ 0 E~ -± M.   Then for all p > 0 and large 
enough a 

dimHp(E, V, a) = dimHm+n~-p(M, V ® o(E-)), 

where H9(M, V ® o{E~)) is the de Rham cohomology of M twisted by the 
orientation bundle of E" —> M. 

Proof. We have the following sequence of equalities 

dim Hp(E, V, a) = dim HP{E, V, a) = dim flj(£r, V, a) 

= dim#m+ri~-p(M, y ® o(E~)), 

where the first equality follows from Theorem 1.5, the second is Theorem 
4.1 and the third is Corollary 5.2. □ 

Our next corollary easily follows from Theorem 5.3 and Poincare duality 
on M. 

Corollary 5.4. Let E = E+ © E~ —> M. Then for all large enough a 

dimHp(E,V,a) = dimHp-n~ {M^V ® o(E-)). 

We will use Corollary 5.4 in the next section to give an analytic proof of 
the Thorn isomorphism. 
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5.3. A proof of Theorem 5.1. We want to define the Hodge *-operator on 
E. If E is orientable, we choose an orientation on E by choosing a volume 
form on TE. Then we define the *-operator as in [CFKS, Proposition 11.9]. 
If E is not orientable, then instead of the volume form on TE we use the 
volume density. 

Then we have 

Lemma 5.5. If u E f%{E, V), then 

d*uj = (-1)(^+^)(P+
1
)+

1
 * [d(W)]. 

Proof of Lemma 5.5 is the same as in [CFKS, Theorem 11.10]. 

A proof of Theorem 5.1.   Prom Corollary 1.4 we see that for all p > 0, 

dim HP(E, V, d(a)) = dimju; 6 !??(£, V)\ d(a)uj = 0, d(a)*u; = 0} 

Similarly, 

dim#s
m+n~p(£, V (8) 0(E), d(-a)) 

= dim{(f> E {2™+n-P (E, V ® o(E)) \ d(-a)<t) = 0, d(-a)*</> = 0} 

To finish the proof we only need to show that u € f2s(E, V) is d(—a)- 
harmonic if and only if *u; € i?r+n~p (E, V (g) o(E)) is d(a)-harmonic. In- 
deed if 

d(a)uj = e-ahdeahuj = 0, 

then 
0 = *e-ahdeah * *a; = e'ah *d* eah(*Lj) 

= e-ahd*eah(*uj) = dr(-a)(*uj). 

Thus d(a)uj = 0 if and only if d* (—&)(*&) = 0. Similarly, d*(a)u> = 0 if and 
only if d(-a)(*a;) = 0. □ 

6. The Thorn isomorphism. 

6.0. Introduction. In this section we complete an analytic proof of the 
Thorn isomorphism. We recall that the Thorn isomorphism (see [Bott-Tu, 
Chapter 1.6]) relates compactly supported de Rham cohomology of the total 
space to the de Rham cohomology of the base. 
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The final step in our proof of the Thorn isomorphism (Theorem 6.2) 
relates the compactly supported de Rham cohomology of E to the cohomol- 
ogy Hm(E, V, a), associated to the differential complex (4?*(2£, V, ),d(a)). 
Then our version of Thorn isomorphism (for cohomology with values in a 
flat bundle V) will follow from Theorem 5.3. 

6.1. The statement of the Thorn isomorphism. Let E —> M be a vec- 
tor bundle of rank n over M. Let V —> E be a flat vector bundle over E. 
We denote the V-valued cohomology of E with compact support in the ver- 
tical direction as H*(E, V). Thus by definition H^E, V) is the cohomology 
associated to the differential complex (i?*(J5, V), d). 

Theorem 6.1 (Thom isomorphism). For allp 

dim HP(E, V) = dimiP-n (M, V ® 0(E)). 

6.2. A proof of the Thom isomorphism. We put a Morse-Bott function 
h(y) — ~^l~{y) — ""M2? a metric g on E and a metric <? on V. Thus 
£7 = E~. In Section 6.3 we prove the following theorem: 

Theorem 6.2. For all large enough a and any p, 0 < p < dimi£; 

dimfl£(JS,V) = dimjffP^, V,a). 

Theorem 6.2 together with Theorem 5.3 proves the Thom isomorphism 
via the following sequence of equalities: 

dimfl£(E,10 = dimiP(£;,y,a) = dim^m+n-p(M,y x 0(E)), 

and the observation that by Poincare duality on M 

dimHm+n-p(M, V x o(E)) = dimiP-n(M, V x o(E)). 

6.3. A Proof of the Theorem 6.2. We prove Theorem 6.2 by using a 
sequence of lemmas. 

We denote the space of {eahuj\ UJ e n*(E, V)} as Q9(E, V, a). Then the 
following lemma is an easy corollary of definition (1.3) of d(a). 

Lemma 6.3. For any large enough a and any p the following diagram is 
commutative: 

f%(E,V)    -^   rtp^V), 
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where the vertical arrows are isomorphisms. 

Let / : M+ —> [0,2) be a smooth increasing function, satisfying 

/(*)=*, fort 6 [0,1/2]; 

4 
f{t) = — arctan(t), for t e [l,oo). 

TT 

For all (x, y) € (M,7r~1(a;)) we also define a diffeomorphism V between 
manifolds £" and Dz by the formula 

#r,y)=(^/(M) 

Note that if |y|2, then ip(x,y) = (x,y). The manifold D2 is defined as the 
image of E under ip. Observe that D2 is a disc bundle over M with the 
fibers being open discs {y \ \y\ < 2}. 

The diffeomorphism ip"1 induces the map (V7"1)* on the spaces of dif- 
ferential forms on E with values in V: 

(Vr1)* : f%(E,V) -H. QP(D2,W), 

(V"1)* : fr(E,V,a) -> (Vr1)*^*?,V,a)), 

where W = ('0~1)*V is an induced flat bundle over Z?2- We denote 
(^-1)*(^(£;,y,a)) as aP(D2,W,a). 

Since differential d and an isomorphism (I/J~
1
)* commute, we have the 

following lemma: 

Lemma 6.4. For all large enough a and any p 

Hp(E,V,a)^Hp(D2,W,a), 

HP(E,V)*Hr(D2,W). 

Let Di C £>2 be a sub-bundle of D2, where each fiber of Di —> M is an 
open disc {y\ \y\ < 1}. Let k : Di —► D2 be a diffeomorphism which restricts 
to be the multiplication by 2 map on each fiber. 

For every p > 0 we have the following maps 

i : /2?(A, W) ^ i7p(A, W,a), 1 = 1,2, 

j:fr(Di,W,a)^f%(D2,W), 
k* : f2P(D2, W) -» ^(Di, W), and 
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where i is the inclusion, j is the extension maps and k* is the map induced 
by the diffeomorphism k. 

We now describe the map j.   Let 6 G fip(Di, W, a), then 6 = k* o 

(i/;-1)* (e-aM2u;V for some u G flg(E,V). Clearly 9 and all its derivatives 

are zero on dDi, since the form cu and all its derivatives decay rapidly at 
infinity. Thus, 9 can be extended by zero to a form in ftc{D2, W). 

Since differential d commutes with the maps i, j and fc* commute, they 
induce the maps on the corresponding cohomology. 

Lemma 6.5. For a > 0 and any p 

k*ojoi:H*(DuW)-+H*(DuW), 

k*oioj: Hp(Dh W,a) -* iP(L>i, W,a) 

are isomorphisms. 

Moreover, since fc* is an isomorphism on the cohomology, so are i and j, 
and we have a corollary: 

Corollary 6.6. For any a > 0 and any p 

HP(D2,W)^Hr(D2,W). 

This corollary together with Lemma 6.4. proves Theorem 6.2. 

Remark 6.7. Corollary 6.6 can also be proved by methods of [Bott-Tu, 
Chapter 1]. Also see [Bue-P] for another proof of Corollary 6.6. 

7. The asymptotic of the spectrum of the Witten Laplacian. 

7.0. Introduction. For each a > 0 and p = 1,..., m + n, let 0 < A^(a) < 
^(a) < • • • denote the eigenvalues of DP (a). The goal of this section is to 
investigate the asymptotics of the eigenvalues of OP (a) as a —► oo. 

The main result of this section is Theorem 7.23. This theorem states that 
the bounded eigenvalues of □(a) approach the eigenvalues of the Laplacian 

A : r2#(M, V ® o(E-)) -> r2#(M, V ® o(£r)) 

on the space of V-valued differential forms on M, twisted by the orientation 
bundle of E~. The theorem also estimates the rate of convergence of the 
spectrum. 
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In Section 7.1 we relate the spectrum of D(a) to the spectrum of the 
adiabatic deformation 0(5) of the Witten Laplacian D = □(!). We observe 
that if 5 = a-1/2 then the operators 0(a) and 5~20(5) are isospectral. The 
isospectrality means that if {^(S)} denote the eigenvalues of □p(5), then 
for any p and a > 0 we have A^(a) = 5~2A^(5),   j = 1,2,  

In Section 7.2 we study the kernel of 0(S). We conclude that for large 
enough 5 the dimension of ker[I](<5) does not depend on S and is equal to 
the dimension of Hp~n~ (M, V\M ® o(E~~)). Moreover, by the Hodge theory 
on M we have 

dim Hp-n~ (M, V <g> o(E-)) = dim ker Ap-n~. 

In Section 7.3 we start the Taylor analysis of the small spectrum of O(S) 
(which corresponds via Theorem 7.1 to the bounded spectrum of 0(a)) by 
formulating several preliminary results. 

In sections 7.4 and 7.6 we introduce a model operator A and prove the 
main result of this section. We use the classical variational approach as 
in [Du-Sc] to compare the small spectrum of the Witten Laplacian to the 
spectrum of the model operator. 

The results of Section 7.4 are applied in Section 7.5 to study the eigen- 
forms of the Witten Laplacian, which correspond to the small spectrum. 
In Section 7.5 we obtain the description of the limiting behavior of the 
eigenspaces similar to one in Section 5 of [Fo]. 

7.1. A rescaling of the eigenvalues. For a bigrading E = E+ © E~ of a 
vector bundle E-> Mlet A = TveiE, B = ThoTE. Then TE = A © B. As 
in Section 1.3 we choose the metric g on TE to be the sum of the metrics 
on A and B: g = QA © gs- 

We define a deformation g$ (0 < 5 < 1) of the metric g on TE by the 
formula 

(7.1) g5 = 9A®^~29B- 

We also define the operators d and d$ by 

d = e-hdeh = d+dhA   and  ds = dlfi + 6d0A + ^eT1'2 + dh A . 

We recall that the horizontal space B was chosen so that dh\B = 0- Thus 
dhA is a (l,0)-operator. Therefore, 

(7.2) ds = dh0 + W0'1 + ^d"1'2, where d1'0 = dlfi + dh A . 
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As in Section 2.3 

(7.3) CF(8) = dsd*6 + d*sd6 

denotes the adiabatic deformation of the Witten Laplacian D. 
We have the following theorem which is proved by a simple rescaling 

argument: 

Theorem 7.1. Let 5 = a-1/2, then for all p 

(7.4) Aj(o) = *-2A;(5), j = l,2,.... 

In other words the operators □(a) and 5~2Q(5) are isospectral 

7.2. Zero eigenvalues of 111(5). In this section we reproduce the results of 
Sections 3 and 4 in the setting of this section. We do not give proofs, but 
only indications of the necessary changes. The main result of this section 
states that for all p, dimker[IF(5) does not depend on 5 and is equal to 
dim£f = dimiyp-n~ (M, V ® o(£-)). 

As in Section 3 for each p we can define a nested sequence of spaces 

E% D El D El D ... 

by 

Ep
k = {ue np

s(E, V)\ a^i,...,a;fc_i with 

(7.5) ds(uj + Sco! + • • • + 5/c-1^_i) € 0(5fc), 

d*s(u + 5^ + • • • + 5fc-1u;fc_1) e 0(5k)}, fc = 1,2,.... 

Our computations of E^ and E^, work as before and we have 

(7.6) E? = {u e ttp
s{E, V)\ d^uj = 0, (d1'0)*^ = 0}, 

(7.7) El = {u e Ep\ TTI^^TTIO; = 0, (Trxd0'1^)*^ = 0}. 

Let LJ € Ep. Since the diflferential d1,0 preserves the bigrading, we may 
assume that u G i?sJ (£?, V) for some i, j, i + j = p. 

We write CJ as 

where 7 G r2j(A, V'), /? € Qj{M, V). Then we have 

(7.8) n1'0a; = (nA7)®7r*i8, 



878 Igor Prokhorenkov 

where CU is the Laplacian on ir2J(7r"1(m), V). 
Thus 

(7.9) ker D1'0 = T (Af, AT*Af ® W(i4, V)), 

where 7^(^4, V) denotes the vector bundle over M whose fibers at m are the 
CU-harmonic forms (i.e. elements of kerCU) on 7r~1(m). Now we have the 
following lemma: 

Lemma 7.2. Let 0^ denote the restriction of the operator D^ to the space 

i?J(7r~1(m), V). Then, for every m 6 M, dimykerD^ = 1, if i = ri~; 
dimy kerD^ = 0; otherwise. Furthermore, ifouE kerD^, thenu = 7®7r*/?. 
After an orthogonal change of coordinates in the fiber 7r-1(ra) we have 

7|(^(7r-i(m),^_1(m)) = e-a|jD2/|2Gk/n++1 A •. • A dyn ® v 

for some diagonal matrix D. 

We note that H(A^ V) is a rank-one bundle of the n_-forms. If E~ —> M 
is not orientable, then the line bundle H(A,V) -> i?^-71" (Af, F) is not 
trivial. On the other hand, the line bundle H(A, V) -> i?^-71" (Af, V®o(E-)) 
is trivial. 

Now we have the following theorem: 

Theorem 7.3. For any p 

(7.10) dimEf = dimiF"71" (Af, V <g> o(£?")). 

In a similar way as Theorem 3.4, this theorem follows from the following 
lemma: 

Lemma 7.4. Suppose 7 is any locally constant section of the bundle 
H(A, V\A), then the following diagram is commutative: 

Ep nid°^1) gp+1 

7®7r* 7(8)7r* 

fiP-n- (M? v & o(E-))     —^   l2P+1-n~ (Af, V ® o(S-)), 

where an isomorphism 

7 (8) TT* : ^-n" (Af, V ® o(E-)) -+ El 

is defined by 
7®7r*(/3) =7®7r*/3. 
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Now we can prove our next theorem: 

Theorem 7.5. For all small enough 5 and any p 

dimkerCF^) = dimEf = dimiF"71" (M,V®o(E-)) . 

Proof. By Theorem 7.3, 

(7.11) dimEf = dim£P-n" (M, V ® o{E^)). 

Then by Corollary 5.4, 

(7.12) dirniF-"" (M,V®o(E-)) = dim#f(£,F,a) = dimkernp(a), 

where the last equality is Corollary 1.4. Finally, by Theorem 7.1 

dimkerD^a) = dimkerCP^). 

The statement of the theorem then follows from (7.11) and (7.12). □ 

Corollary 7.6. For any p 

££ = JSf = ... = ££,. 

Proof. Prom (7.12) we have that dim£f = dimi2?(i5, V, a). Moreover, by 
applying the arguments from Section 4.3 to our setting we have dimEw = 
dim Hs(E, V, a). Combining these two equalities we conclude that dim Ef = 

dim££o. □ 

7.3. The asymptotics of the small eigenvalues of OP(5). Prelimi- 
nary results. We recall that TTI : f2s(E, V) —> E1^ denotes the orthogonal 
projection. We also denote as TTJ

1
 the orthogonal projection onto (E\)^-. 

Then ^ + TTI = 1. 

Lemma 7.7.  There exists a constant c > 0; so that for all u G {2s(E, V), 

(7.13) (tf'V^^cllTr^H2. 

The proof of Lemma 7.7 repeats arguments in the proof of Lemma 3.3. 
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Theorem 7.8.  There is C > 0 such that for all small enough S 

(7.14) D(S) > ^D1'0 + ^(D0'1 - C) > fi(Dlfi + D0'1 - C). 

The proof of this theorem is given in the Appendix 1 (see Theorem 
A.1.8). 

The proof of the following corollary is a simple application of Lemma 7.7 
and Theorem 7.8. 

Corollary 7.9.  There exist ci > 0 andc2 > 0; so that for anyu 6 ftl{E, V) 

||7rjLa;||<ci||n(<J)a;|| + C2*||ci;||. 

Lemma 7.10. 

(7.15) TT^TT!  = TT^d0'1)*^ = TTXC^'V = TTl (d0'1)*^ = 0. 

Proof. We will prove that Tr^d0'1^! = 0. It is enough to show that for any 
u 6 £?i, d0,1^ is cf1'0-harmonic. By the commutativity relation (2.5) we have 

d^dP^u = -cP+d^uj = 0. 

By another commutativity relation in the statement of Lemma A.1.6 part 
(1) we have 

(d1'0)*d0'1a; = -d0'1(d1'0)*a; = 0. 

Thus d^u e E^1 =* n^d^cu = 0. D 

7.4. The model operator.  The asymptotics of 5-small eigenvalues 
of DP (5). We denote as 

(7.16) A^ : i7^(M, V ® o(E-)) -> I2P(M, V ® o(S-)) 

the standard Laplacian on M acting on (V ® o(E~))-valued ^-forms. 

Theorem 7.11. For any p > n~ the operators TTID^' TTI : Ff —> Ff ancf 

A^"71    are isospectral. For allp, 0 <p < n~, TriDp' TTI = 0. 

Proo/. It follows from the diagram in the Lemma 7.4 that operators A^"71 

and 
TTl d0'1^ (TTl d0'1?!"!)* + (TTld0'1^)*^^0'1^ 
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are isospectral. The statement of the theorem then follows from (7.15).   □ 

Let 
O^/x?"71   <Mrn   <•••   and t£i,ti2,---€£f 

denote the eigenvalues (counting multiplicities ) of TTiDp' TTI and the corre- 
sponding orthonormal eigenforms. By Theorem 7.11 these eigenvalues equal 

to the eigenvalues of A^"n  . 
It follows from Theorem 7.5 that 

dim£f = dimker(7rinj'17ri) = dim ker ([>(£)). 

Therefore for small enough 5 > 0 the number of zero eigenvalues of nF(5) 

equals to the number of zero eigenvalues of A^"n  . 
Fix 0 < e < 1/2. For every p and for each 5, 0 < 5 < 1, we define the 

space Wp(5) to be the span of the eigenforms {^(5)}^\ satisfying 

(7.17) JLF{5)U^{S) = ^(6)^(6) with \*{S) < S2^,    j = 1,..., kp(5). 

Since DP(S) has discrete spectrum, kp(S) = dimWp(5) < oo. 
Similarly, we define the space WP(S) C E^ to be the span of the eigen- 

forms {u?}^!   satisfying 

(7.18) TTID^TTI^ = ^"n"^ with //f n~ < <r€,    j = 1,..., kp(6). 

Definition 7.12. We call an eigenvalue A^(5) ( /J^"
71
 ) 5-small if it satisfies 

the inequality 

(7.19) AJOJO < 52-e (MP" < <r€) 

for all Si, 0 < Si < S. 

Our goal is to compare the 5-small eigenvalues of OP (5) to the J-small 
eigenvalues of Ap~n . First we want to estimate the eigenvalues of OP (5) in 
terms of the eigenvalues of Ap~n~. Our strategy is to show that the norm 
of the restriction of OP(5) - TTID^VI to WP(S) is small. 

Lemma 7.13. Let P(S) denote the orthogonal projection on WP(S). Then 
there exists a constant C > 0 such that for any p, and for all small enough 
5 > 0 we have 

\\P{S)dp{5)P(5) - ^P^TTiD^TriP^)!! < CS 3-e 
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Corollary 7.14.   There exists a constant C > 0 such that for any p, and 
for all small enough 5, we have 

(7.20) A?(<7) < <yVpn" + C53-^    l<j< kpiS). 

Proof Both operators P(6)CP(6)P(6) and ^P^TrinS'ViP^) are repre- 
sented by symmetric matrices of the same dimension kp(6). Therefore, from 
Lemma 7.13 we can conclude that P(S)CF(6)P(6) also has exactly kp(5) 
eigenvalues which we denote as 0 < Af (S) < • • • < A^ (S\(S)- This eigenval- 
ues satisfy 

Then as a simple application of the classical min-max principle [Du-Sc] we 
conclude that 

which is the statement of the lemma . □ 

Proof of Lemma 7.13.   Since 

(7.21) Trid1'0 = d^m = Tr^d1'0)* = (d1'0)*^ = 0, 

it follows from an explicit calculation of 0^(6) in (A.1.17) that 

P(S)Dp(S)P(S) = P^TTiDP^TTiP^) 

(7.22) = S2P(S)7r1D
0/7r1P(S) + 63P(5)KsP(S) 

+ 64P(5)n-1>2P(6). 

Now we will estimate the second and the third terms in the right-hand side 
of (7.22). Prom an estimate 

(7.23) K3 < D0'1 + D"1'2 

in (A. 1.24) we conclude that 

(7.24) S3\\P(S)K3P(6)\\ < ^UP^D^POS)!! + S3\\P(6)D-1'2P(5)\\. 

Moreover, by the definition of WP(S) 

(7.25) wpw^pm^s-6. 
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To estimate ||P(5)n"1'2P(J)|| we recall that (see A.1.21) 

(7.26) CT1'2 < ciD1'0 + C2. 

Therefore, since P(5)n1'0P(^) = P(5)7rin1'07riP(5) = 0 we conclude that 

(7.27) HP^p-Wp^ll < HP^CciD1'0 + c2)P(5)|| < c2. 

Now we use (7.22), (7.24), and (7.27) to get the following inequality 

(7.28) \\P(6)CF(5)P(6) - ^P^TTI^TTXP^II 

< ^HP^D^P^II + 253||P(5)D-1'2P(5)|| 

< 5s-e + 2cS3 < C83-€. 

D 

Our next goal is to estimate the £-small eigenvalues of Ap~n in terms 
of the 5- small eigenvalues of DP (5). As before the required result will be a 
corollary of the following lemma: 

Lemma 7.15. Let P(5) denote the orthogonal projection on Wp(5). Then 
there exists a constant C > 0 such that for any p and for all small enough 
S > 0 we have 

(7.29) \\P(d)Dp(5)P{6) - ^P^TriD^TTiP^)!! < C^3"36/2. 

Corollary 7.16. There exists a constant C > 0 such that for any p and for 
all small enough 5, we have 

(7.30) 82fip-n~ < A? (S) + C53-^2,    l<j<kp(S). 

In order to prove Lemma 7.15 we need several preliminary estimates 
which are the content of the next lemma. 

Lemma 7.17. There exists C > 0, such that for all S small enough we have 
the following estimates: 

(7.31) \\P(8)TriP(6)\\ < CS1-^2- 

(7.32) \\£'0P(8)\\ < CS1-6'2,   \\{d}'0)*P(5)\\ < CS1-6/2; 

(7.33) lld0,1^)!! < cre/2, iKd0'1)*^)!! < cs-^2-, 

(7.34) H^'ViP^II < C8-e/2,   ||(d0'1)*7r1P(5)|| < C^6/2; 

(7.35) \\d-^2P(8)\\<C,   \\(dr^rP(S)\\<C; 
(7.36) lld-^TnPWII^C,   Wid-^yinP^WKC. 
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Proof. Let u be any form of norm one in W?^). 

(7.31).    It follows from Theorem 7.8 and Lemma 7.7 that 

2^-£ > 2(nP(«J)W, u>) > (D1^, co) - at2 

>C2\\^UJ\\2-C16
2. 

Inequality (7.31) easily follows from (7.37). 

(7.32).    We have an equality 

(7.38) lld1'0^!!2 + || (d1'0)*^!2 = (ff'Vo,), 

Prom Theorem 7.8 we can estimate D1,0. This estimate implies the following 
inequality: 

(7.39) llrf1'0^!!2 + ||(dlfi)*ujf < ci{£F(S)e),u>) + c2P < c82-£. 

(7.33).    Similarly, 

S^M2 + Sm^yuf < S2(a0'1aJ,u;) 
^7'40^ < (nF(5)w, u) + C2S2 < c62-€. 

Inequalities (7.33) follow from (7.40) after dividing both sides of (7.40) by 
S2. 

(7.34).    Since by Lemma 7.10 TTID
0
'
1
^ + Tr^n0'1^ = D0-1, we have 

(7.41) TTID
0
'
1
*! < D0'1. 

Now the inequality (7.34) follows from (7.40). 

(7.35).    We have an equality 

(7.42) IK1'2^!!2 + ll(<r1,2)*a/||2 = (D-1'2^^). 

It follows from (7.26) that 

(7.43) ||<r 1,2w||2 + ||(d-1'2)*^!!2 < (D1'0^,OJ) + ci < C. 

Therefore both ll^-1'2^!! and IKd-1-2)*^!! are bounded. 
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(7.36).   The proof is similar to to the proof of the inequality (7.35).      □ 

Proof of Lemma 7.15.   Since 

(7.44) 1 = TTl + TTj1, 

we have 

(7.45) P{S)np(5)P(S) = P(5)n1n
p(d)P(6) + P(5)Trinp(5)P{5). 

From (7.31) we have ||P($)?rjLP(<J)||   <  Cd1-^2.    Moreover, since P(8) 
is an orthogonal projector on the space W(8) of <S-small forms, we have 
\\€F(5)P(6)\\ < S2-e. Therefore, 
(7.46) 

\\P(5)tF(6)P(5)-P(6)ir1tF(8)P(S)\\ = \\P(5)^tF(S)P(S)\\ 

< \\P(6)niP(Sm\D^S)P(5)\\ 

< C^1-6/^2-6 < C83-3e/2. 

Prom an explicit calculation of 0(5) in (A.1.17) and from (7.21) we conclude 
that 

P(5)Tr1CF(S)P(6) = 62P(6)n1D
0'1P(6) + 62P (8)^^(6) 

+ 83P(S)Tr1K3P(8) + ^P^TTID-
1

-
2
^). 

We now estimate each term in the right-hand side of (7.47). Prom Lemma 
7.10 we have an equality for the first term: 

(7.48) TTID
0

-
1
 = Trin0'1^. 

To estimate the next term we write 

(7.49) 62TrlK2 = ^TncT1'2^0'1)* + S^dT1'2)*^1. 

For any two norm one forms OJI, 002 E Wp(6) we have 

KaVtf^i,^)! < ^KCd1'0)*^, (dr^ymu^l + ^K^-V^-1-2^^)! 
(7.50) < ^dKd1-0) villKd-1'2)*^^!! + H^'Vlllld-^Tn^ll) 

< C525l-e/2 < CS*-*'2. 
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We used (7.32) and (7.36) to get to the last line in the formula above. 
Therefore, 

(7-51) 52\\P(S)n1K2P(S)\\ < CS*-'/2. 

To estimate P(5)iriKsP(S) we write 

(7 52)     ^lK30Jh ^ = <d0'lfa;i' d'1'2^ + ((^'1)*^i, (d-Wynw) 

It follows from (7.33), (7.34), (7.35), and (7.36) that 

|<7riii:3Wi,W2)|<C(re/2. 

Therefore, 

(7.53) S3\\P(8)n1K3P(S)\\<C53-e/2. 

Similarly, we use (7.35) and (7.36) to deduce an estimate: 

(7.54) ^HP^TTiD-1'2^!! < C54. 

Finally, by combining (7.46), (7.47), (7.48), (7.51), (7.53), and (7.54), we 
get the inequality in 

\\P(6)nP(6)P(8) - P^TnD^ViP^)!! < cs3-2*/2, 

which is the statement of Lemma 7.15. □ 

Now we combine Corollary 7.14 and Corollary 7.16 into a single theorem: 

Theorem 7.18.     (1) For any p, n~ <p< dimE, there exists C such that 
for all small enough 6 we have 

(7.55)      |A?(<S) -^VP"! < C63-2*J = l,...,wm{kr(S)M8)}' 

As S -> 0, mm{kP(6), kP(6)} -► oo. 

(2) Ifp < n~, €F{5) does not have 5-small eigenvalues. 

Remark 7.19. Constants C in the statements of Lemmas 7.13, 7.15, 7.17, 
Corollaries 7.14, 7.16, and Theorem 7.18 do not depend on the choice of e. 
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7.5. Asymptotics of the eigenforms of CF (5). In this section we compare 
(rescaled ) eigenforms of UP (5) and the eigenforms of TriDp' TTI. 

Suppose /J, is an eigenvalue of TTiDp' TTI. We denote as Ffr the corre- 
sponding eigenspace in E^. For each 5 we denote F^(5) = span{u;j(<S)}, 
where CF(6)^(8) = \?(6)d?(6), with 

(7.56) |A?((5) - 62ti\ < CS3. 

For all small enough 6, dimF^(6) = dimi^. 

Theorem 7.20. For any /J, and p, and for all small enough S we have 

(7.57) FP(6) = FP + 0(6). 

Proof. Let uJj(6) € F^(S), \\u)j(5)\\ — 1. Prom Corollary 7.9 we conclude that 

II^JWII ^ C6- Therefore, 

(7.58) toj (6) = TTiUj (S) + 0(<5). 

It follows from Remark 7.19 that we can take a limit e —► 0 in the inequality 
(7.29). Therefore, we conclude that 

(7.59) ||A^H(«5) - S^O'/mu^W < C8\ 

where the constant C depends on /x. We write 

(7.60) XtiftujiS) = X^S^ujiS) + Xfflnvjtf) -^i^iUjiS) + <52/^#)- 

Since ||A?{S)^^)]] < C5Z and ||(A?((J) - tfVjMwjWH < C5Z after sub- 
stitution of (7.60) into (7.59) we have 

(7.61) ^iKMTri-Tn^TnHWH 

< ||(A^(5) - S^^iz^m + C^ < CS\ 

Let P^ denote the orthogonal projection on (Fjj,)1- in E^, then 

(M - v^nfavjiS) = Pfa - iridfr^PfaiS). 

From Theorem 7.11 it follows that there is a gap of a fixed non-zero length 
/ between n and the rest of the spectrum of TriCHp'Vi. Therefore, we have 

(7.62) \\Pfa - ^Uf^P^^W > IWrfutim- 
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Finally, we combine inequalities (7.61) and (7.62) to conclude: 

PltuJj(S) = 0(S). 

Therefore, 
uj(5) = P/27r1ujj(d) + 0(8), 

which is the statement of the theorem. □ 

If fi = 0, then Ffi = E^. Therefore, we have the following corollary of 
Theorem 7.20: 

Corollary 7.21. For any p and all small enough 8, 

ker D? = p,-1 ker rPijS) = pj'E? + 0(6), 

where ps was defined in Section 2.3. 

7.6. The main result about the spectrum of □(«). Now we reformulate 
Theorem 7.18 in terms of the spectrum of np{a) We recall from Section 
7.1 that 5 = a"1/2 and XP(S) = orU^a). Then we have the following 
definition, equivalent to Definition 7.12: 

Definition 7.22. We call an eigenvalue A? (a) ( fj^~n ) a-bounded if it 
satisfies the inequality 

Ajte) < ar/2 ojr' < *-£/2) 

for all ai > a. 

Theorem 7.16 can be reformulated as: 

Theorem 7.23.     (1) For any p, n~ < p < dimE" there exist constants 
C > 0 and ao = ao(k) such that for all a > ao we have 

(7.63) | Aj?(a) - Mf"" I < Ca-1'2*', j = l,...k. 

(2) Ifp < n~, np(a) does not have a-bounded eigenvalues. 

Remark 7.24. Theorem 7.20 and Corollary 7.21 can be easily reformulated 
to provide information about the eigenforms of □(#), which correspond to 
the small spectrum. 
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8. The asymptotic of the spectrum of Witten Laplacian 
on compact manifolds. 

8.0. Introduction. In this section we observe that the asymptotics of the 
bounded eigenvalues of the Witten Laplacian 

L(a):^#(iV,y)^^#(JV,y) 

can be calculated by restricting the operator L(a) onto tubular neighbor- 
hoods {Ei} of connected components {M;} of the critical submanifold M 
and then applying Theorem 7.18. 

In Section 8.1 we recall the definition of a Morse-Bott function and the 
statement of the Generalized Morse Lemma about the structure of a tubular 
neighborhood of a connected component of the critical submanifold. 

In Section 8.2 we define a metric on iV, which in the neighborhood of 
the critical submanifold comes from the metric on the tubular neighborhood 
defined in Section 1.3. In that section we also define the Witten Laplacian 
on JV. 

In Section 8.3 we prove Theorem 8.6. This theorem states that as a —> 
oo the bounded eigenvalues of L(a) on iV approach the eigenvalues of the 
standard Laplacian A on M, twisted by the orientation bundles o(E~), 
The theorem also contains the estimate of the rate of convergence of the 
eigenvalues of the Witten Laplacian L(a) on N. 

8.1. The Generalized Morse Lemma. We start by giving a definition of 
a Morse-Bott function. 

Let AT be a compact smooth manifold without boundary. Let h : iV —> R 
be a C^-function. We call a point m G M a nondegenerate critical point of 
index k if for any (or, equivalently for some) submanifold W C iV, which is 
transverse to M at ra, the point m is a nondegenerate critical point of h\w 
of index k. A smooth submanifold M of JV is called critical if every point of 
M is critical. A critical submanifold M is called nondegenerate of index fc, 
if each point of M is nondegenerate of index k. 

Definition 8.1. A C^-function h : JV —> R is called a Morse-Bott function 
if all critical submanifolds of h are nondegenerate. 

Definition 8.2. A tubular neighborhood of a submanifold M C JV is a pair 
(/, E), where E —> M is a vector bundle over M and / : E —> JV is an 
embedding such that 
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(1) f\M = id|M5 where M is identified with the zero section of E; 

(2) f(E) is an open neighborhood of M in N. 

Lemma 8.3 (Generalized Morse Lemma) [Hir]. Let h : N —> R be a 
Morse-Bott function, M be a critical submanifold of h of index n~. If 
M is connected, then there is a C00 tubular neighborhood (/, E = E+ 0 
JB

_
), dim JB" = n-, and a Euclidean structure on E+ © E~ such that the 

composition ho f : E+ © E~ —> R is given &?/ 

(y+
52/-)->|y+l2-|2/-|2 + c 

/or a// (y+, y~) 6 S + © E", me M, and where C = h(M). 

8.2. The Witten Laplacian on iV. Let AT" be a compact Riemannian 
manifold with the metric go. Let h : N —► R be a Morse-Bott function. We 
denote as Mi,..., MA disjoint connected components of the critical subman- 
ifold M of h. For all j, ind(M?) = raj". We assume in this section that all 
submanifolds Mj have positive dimension. 

Prom Lemma 8.3 each Mj has a tubular neighborhood (fji(pj,Ej)). 
Since submanifolds Mi,...,MA are disjoint we can always assume that 
neighborhoods Ui = fi(Ei),..., U\ = /A(-E

,
A) are also disjoint. 

On each Ej we put a metric gj, chosen as in Section 1.3 . Let Ej C Ej 
be the subset of all vectors in Ej with the norm less then 1 and fj(Ej) = Uj. 
We choose a smooth non-negative partition of unity {Xj}i=o,...,A) such that 
supp(xj) C Uj and Xj = 1 on Uj, j = 1,... A. We define 

A 

Xo = l-J^Xj = 1-X- 

Finally, we put a new metric g on AT, defined by 

A 

(8.1) g = xogo + yEfXi(fr1)*Si- 

Let 
L(a):/2#(iV,y)->l2#(iV,y) 

be the Witten deformation of the Laplacian on iV associated to h and g. 
That is 

L(a) = d(a)d*{a) + d*{a)d{a), 



Morse-Bott functions and the Witten-Laplacian 891 

where 

(8.2) d(a) = e-ahdeah, 

and d*{a) is an adjoint of d(a) with respect to the metric g on N and the 
metric qv on V. 

For any p, 0 < p < dim AT, and for any a the self-adjoint extension of 
the operator LPfa) to L2-integrable forms on iV is an elliptic self-adjoint dif- 
ferential operator on compact manifold. Again we call this operator LPfa). 
The spectrum of ^(a) is discrete. We denote as 0 < v^(a) < z^(a)... 
and <^(a),^2(a),... the eigenvalues (counting multiplicity) and the corre- 
sponding orthonormal eigenforms of LPfa). 

Our goal is to find the asymptotics of the bounded eigenvalues of L(a) 
as a —» oo. 

8.3. The asymptotics of the bounded eigenvalues of L(a). We start 
by introducing some new notation. Let 

aS{a):WEj,V)-+fPa{Ej,V), 

be the Witten Laplacian on Ej defined by 

(8.3) q?(a) = d(a)d*(a) + cf (a)d(a), 

where 

(8.4) d(a) = e-ahideahi, hj = fj o h, 

and d*(a) is an adjoint of d(a) with respect to the metric gj on Ej and 
the metric qy on the flat vector bundle V over Ej (see Section 1). Here we 
do not distinguish between the vector bundle V on N and its push forward 
under / to a bundle over E. 

We denote the disjoint union of Ej's as E: 

E = Ei U • • • U EA. 

Then we define 

(8.5) D»(a) = e^Dfta) : flj(£, V) - a§(E, V), 

where 
WE,v) = (BL1auEjtv). 
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We denote as 0 < Af (a) < A^a)... the eigenvalues of Dp(a) (counting mul- 
tiplicities). Let c^(a),u;2(a)j... be the corresponding orthonormal eigen- 
forms. Then 

(8.6) \?(") = EA?<0>)' 

where A^^ .(a) denotes the Z(i)'s eigenvalue in the spectrum of 0/j(a). 
Fix 0 < e < 1. As in Section 7.6 we give 

Definition 8.4. We say that an eigenvalue ^J(a) (A^(a)) is a-bounded if 
for all ai > a, z/J(ai) < a6 (A?(ai) < ae). 

Let kp(a) (kp(a)) denote the number of a-bounded eigenvalues of L(a) 

The following theorem is the main result of this section. It shows that 
as a —> oo the bounded eigenvalues of the Witten Laplacian L(a) on iV 
converge to the bounded eigenvalues of the Witten Laplacian 0(a) on the 
disjoint union of tubular neighborhoods of the critical submanifolds. 

Theorem 8.5. There exists a constant C > 0; such that for all large enough 
a and for any p we have 

(8.7) |Aj(a) - i£(a)| < Ca'1/2, j = 1,..., min{F(a), F(a)}. 

Moreover, as a —> oo; min{A;p(a), kp(a)} —> oo. 

The proof of this theorem is given in Appendix 3. 
Fix 6 with 0 < e < 1/2. We now apply Theorem 7.23 to the setting of this 

section. To do so we need to introduce some new notation. For each critical 
submanifold Mj of ind(M7) = nj and dim My = rrij we denote by o-p(Mj) 

the spectrum of the standard Laplacian Ap~no on f2p~ni (Mj,V\Mj®o(Ej')). 

This spectrum is only defined for nj < p < rrij + n~. We define crp(Mj) 
to be empty otherwise. We denote as ap(M) the union of crp(Mj) over 
all critical submanifolds Mj for which inequality n~ < p < rrij + n~ is 
satisfied.   We arrange all numbers from the set (Jp{M) in non-decreasing 
order 0 < /if < ^ < In other words each /x? is an eigenvalue of the 

standard Laplacian on fip~ni {Mj, V\M. <g> o{Ej)) for some 1 < j < A. 
By applying Theorem 7.23 to the Witten Laplacian on E = Ei U • • • UEA 

we see that there is a constant C, such that for all large enough a 

(8.8) |A?(a) - rf\ < Ca-V^i = 1, -.. ,min{F(a), kp(a)}. 
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Inequalities (8.7), (8.8), and the fact that inin{fep(a), kP(a)} -> oo prove the 
following theorem: 

Theorem 8.6. There exist constants C > 0 and ao = ao(k) such that for 

all a > ao and for all p 

(8.9) \^(a) - rfl < Ca-ll2+\3 = 1,... fc. 

Remark 8.7. Theorem 8.6 stays true if for some j dimMj = 0 (i.e Mj is 
a point). In this case if p = ind(Mj) we set ^(Mj) = {0} and ap(Mj) = 0 
otherwise. 

9. The Morse-Bott Inequalities. 

9.0. Introduction. In this section we prove the Morse-Bott inequalities 
as an application of the results of Section 8. The Morse-Bott inequalities 
(or the degenerate Morse inequalities of R. Bott) [Bottl] relate the Betti 
numbers of a compact manifold N to the Betti numbers of the connected 
components of the critical submanifold M of a Morse-Bott function h on AT. 

The non-degenerate Morse inequalities are a particular case of the Morse- 
Bott inequalities when a critical submanifold M is a union of a finite number 
of critical points. 

In order to prove the Morse-Bott inequalities we only need the estimates 
on the number of zero eigenvalues of L(a) and the existence of the spec- 
tral gap separating zero eigenvalues of L(a) from the rest of the spectrum 
([Bott2], [Bra-Far]). 

9.1. A proof of the Morse-Bott inequalities. Let u be an eigenvalue of 
If (a). Let FS(a) be the corresponding eigenspace. For any non-negative 
number a we define flia(a) to be 

(9.1) r2£(a) - ®u<aFT(oi). 

Lemma 9.1. For any a>0,a>0the following sequence 

(9.2) 0 - fljfta) - ni(a) - ■ • • - ^(a) -> 0. 

computes the V-valued de-Rham cohomology of N. In this sequence all the 
arrows are d(a) ;s . 
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Proof. Fix z/ > 0. We observe that d{a) commutes with L(a) and thus 

d{a)FP{a)QFP+\a) 

Therefore, we have the exact sequence: 

(9.3) 0 -> i?(a) -, Fl(a) - • • • - ^(c) -, 0. 

To see that (9.3) is exact, we recall that we have the following orthogonal 
Hodge decomposition: 

(9.4) Qm{N, V) = imaged(a) 0 imaged*(a) © kerL(a). 

Since both d(a) and d*(a) commute with L(a), it follows from (9.4) that 
for any p, 

F*(a) = d{a)FP-\cc) 0 dr(a)F$+\a). 

Therefore, 

(9.5) ker(d(a) : F^a) -+ F^\a)) = image(d(a) : i^V) -» Fg(a)). 

Equality (9.5) proves the exactness of (9.4). 
The following observation completes the proof of the lemma. Prom def- 

inition (8.2) of d(a) we conclude that the map 

e-ah:n9(N,V)->a9(N,V) 

induces an isomorphism between H9(N, V, a), the cohomology of 

W(N,V), d(a)), 

and H*(N, V). Therefore, for any p, HP(N, V, a) = ker Op(a) is isomorphic 
toHP(N,V). D 

For every j, 0 < j < A, we define the twisted Betti numbers 6™ • of the 
critical submanifold Mj by 
(9.6) 

b-j = dim ker (A? :  & (Mj, V ® 0(^7)) -> /2P (M,, V ® 0(^7))) . 

In particular, 6~ • = 0 for p > dimMj. 
Choose a to be less than the smallest non-zero eigenvalue from 

k 

U ^(M)> 
p=l 
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then from Theorem 8.6 we conclude that for all large enough a 

A 

(9-7) dim^(tt) = E6P~-n^ 

The following theorem is a standard consequence of Lemma 9.1 and (9.7). 

Theorem 9.2. For any p with 1 < p < dim AT, the following inequality 
holds: 

(9.8) DW^W-^ + --- + (-irnr^] 

> Bp - B^ + • • • + (-l)pBo. 

Ifp = n then (9.8) is an equality. 

Let P{t) be the Poincare polynomial for H9{N.V). For each i, 1 < 
i < A, let P^(t) be the Poincare polynomial for Hm (M*, V ® o(E~)), the 
cohomology of Mi twisted by the orientation bundle of J3[~. The Morse- 
Bott inequalities [Bottl] say that there exists a polynomial Q(t) given by 
Q(t) = Qo + Qit + ... with all non-negative coefficients, such that 

(9.9) J2 i^pr® - p(*)) = wa+*)• 
t=i 

It is an easy observation that (9.8) and (9.9) are equivalent. 
In order to recover the non-degenerate Morse inequalities, we assume 

that all Mj's are critical points and V is a bundle of rank one. Let rajt 
denote the number of critical points of index k. Then 6Z'- _ = 1 if p = n~ 

and bl~ _ = 0 if p ^ n~. The inequality (9.8) becomes 
"        i 

(9.10) nip - mp-x + • • • + (-l)*mo > Bp - Bp_i + • • • + (-l)pJBo. 

The inequalities (9.10) are called the non-degenerate Morse inequalities 
([BFKS]). 

Appendix 1. 
The Bismut connection and 

bounds on the Witten Laplacian. 

A.1.0. Introduction. In this appendix we make computations with the 
Bismut connection on the tangent space TE of a vector bundle E.   This 



896 Igor Prokhorenkov 

connection is defined as the direct sum of a chosen Euclidean connection on 
E and the Levi-Civita connection on the base M. The Bismut connection 
is a more natural choice of a connection for our purposes than the Levi- 
Civita connection on TE because (as it will be seen in Section A. 1.1) the 
Bismut connection preserves the decomposition of TE into horizontal and 
vertical subspaces. The drawback of the Bismut connection is that it has a 
non-trivial torsion. 

The Bismut connection was introduced in [Bis]. It is also studied in 
[B-G-V]. 

In Section A. 1.1 we define the Bismut connection and describe its torsion 
and curvature tensors. 

In Section A. 1.2 we choose a basis on TE and express the differential d 
in terms of the Bismut connection. In order to simplify proofs we assume 
in sections A.1.2 and A.1.3 that the bundle V is a one-dimensional trivial 
bundle. 

In Section A.1.3 we give estimates on the Witten Laplacian 111(5) by 
writing n(£) in terms of the Bismut connection. These estimates are used 
in Section 7. 

A. 1.1. The Bismut connection. The curvature and the torsion of 
the Bismut connection. Let VE be a Euclidean connection on E chosen 
in Section 1.3, and let V™ be the Levi-Civita connection on TM. Then 
we define the Bismut connection V on TE by 

(Al.l) V = VE©V™. 

For any ei 6 E, in order to parallel translate vector X € TeiE along the 
path 7 : [0,1] -> E with 7(0) = ei, 7(1) = e2, we identify X with the 
pair (Xver, Xhor) e A © B, where A © B is identified by means of VE 

with E © Tp(ei)M. Then the result of the parallel translation will be the 

pair (XveT,Xhor) e E © Tp{e2)M, where Xver is the result of the parallel 
translation of XveT along pj with respect to V^ and Xhor is the result of 
the parallel translation of Xhor along py with respect to V™. 

After Bismut [Bis] we denote as T(X, Y) the value of the torsion tensor 
T of V on the vectors X, Y. Similarly, we denote as L(X, Y) the value of 
the curvature tensor L of V on vectors X, Y. By definition 

(A.1.2) f (X, Y) - VxY - VyX - [X, Y], 

(A.1.3) L(X, Y) = VxVy - Vy Vx - V^.y]. 
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We denote as L and R respectively the curvature tensors associated to V^ 
and V™. That is R is just the Levi-Civita curvature of TM and L G 
n2(M, Hom(£, E)) is defined for X e TM, Y € TM by 

(A1.4) L{X, Y) = Vf V£ - VM " V^yj. 

Then it is a matter of simple calculations to get the following lemma. 

Lemma A.1.1 ([Bis, Theorem 2.1]). The metric g onTE is parallel for 
V. Moreover if X, Y, Z e TyE, then 

(A.1.5) f (X, y) = [L(Xhor, Yhor)y} = -[X, Y}ver, 

(A.1.6) L(X, Y)Z = [L(Xhor, Yhor)Zver] + [R(Xhor, Yhor)Zhor). 

A.1.2. A choice of basis. An expression of the Witten Laplacian 
in terms of the Bismut connection. Take x G M. Let {aj}^!,...^, 
{fy}j=i,...,™ be orthogonal bases of Ex, TXM. Let {a*}^!,...^, {V}j=i,...,m 
be the corresponding dual bases. Take y G Ex. We can lift {a;} and {bj} to 
TE, Since there is no risk of confusion we can assume as well that {a;}^!,...^ 
is the basis of Ay and {bj}j=i,...,m is the basis of By. 

From the definition of the Bismut connection it follows that for all i and j 

(A1.7) Va.aj = 0 and V^bj = 0. 

In addition, we can choose the a vertical basis to be parallel in the horizontal 
direction. Then for all i and j 

(A1.8) V^aj = 0. 

Now we describe the formulas for the operators d and d* in terms of the 
Bismut connection. In order to simplify the computations we assume that 
the bundle V is a trivial one-dimensional bundle over iV. 

We denote by i(y) the operator of interior multiplication by the vector 
v. Then we have the following lemma: 

Lemma A.1.2 ([Bis, Proposition 2.2]). For any (x,y) G E, we have 

d = aPVaj + VVhj + ^bk A bli{[L{bk, bfiy)), 

(A.1.9) <f = -^OVa, - *(&,-)V*, - \[L{bkM)y]i{h)i{bi). 
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The following corollary expresses operators cf1,0, d0,1, d~1,2 and their 
adjoints (defined in Section 7.1) in terms of the Bismut connection. 

Corollary A. 1.3. 

(A.1.10) d1'0 = aPVa,, (d1,0)* = -ifoOVa,, 

(A.1.11) dP'1 = VVbp (dP'1)* = -i(^)V6,, 

d-1.2 = !&* A bli([L(bk, bOy]™-), (d-1'2)* 
(A.1.12) 2 

= -^[L(bk,bl)y}i(bk)i(bi)- 

Corollary A. 1.4. 

d2'"1 = (d2'"1)* = 0. 

Now we are ready to compute 0(a): 

Theorem A.1.5. For any a, 

(A1.13) n{a) = n + a2\dh\2 + aA, 

where for all p the operator A is a bounded endomorphism of AP(E). 

Proof We have d(a) — d + adhA and cP(a) = d* + m(Vfo). Therefore, 

n(a) = D + a2 ((dhA)i(Wh) + i(Vh)(dhA)) 

+ a (di(Vh) + i{Vh)d + d*(dhA) + (dhA)d*) 

= a + a2\dh\2 + aA. 

We recall that dh = d1>0h is a (l,0)-operator. By making computations at 
a point (x,y) G E and writing dh = J^a-7, i(Vh) = ^iiaj), it is easy to 
conclude that 

(A1.14)       d0^i(Vh) + i(Vh)d0^ = 0, ((P^YidhA) + (dhA)(d0^y = 0, 

and 

(A1.15) d-^iiVh) + iiVfycT1'2 = 0, (cT1'2)*^^) + (dfeA)^"1'2)* = 0. 



Morse-Bott functions and the Witten-Laplacian 899 

Thus, 

1,0\* A = dlfii(Vh) + i(Vh)dlfi + (dlfi)*(dhA) + (d/iA)(d1'0) 

d2h 
= g-? (aJi(aj) - ^K)= 0- 

Since aUfaj) + iiafia? = 1, @ = 2, for j = 1,... ,n+ and 0 = -2, for 

j = n+,..., n, we have 

n+ n 

(A1.16) A = 2(n--n+) + 2^a^(aj)-2   ^   a^^a^). 
3=1 j=n++l 

For any CJ of the form ^a'1 A • • • A aik A 6*fc+1 A • • • A 6
Z
P, a?i{aj)u = 1 if 

J € {zi,... ,ifc} and aH(ik) = 0 otherwise. Explicit formula (A.1.16) shows 
that A is a bounded endomorphism of AP(E). D 

A.1.3. Some estimates for the Witten Laplacian. In order to estimate 
the adiabatic deformation of the Witten Laplacian we explicitly compute 
D(S). Let na'6 denote da'6(da'6)* + (da>h)*da>\ then 

n(j) = n1'0 + 52n0'1 + 54n-1'2 

(A1.17)    + J V'^cT1'2)* + (d"1'2)*^'0 + (d1'0)*d-1'2 + d-1'2(d1'0)*) 
+ ^(d^Hd"1'2)* + (d-1'2)*d0'1 + (d0'1)*d-1'2 + d-1'2(d0'1)*), 

where D1,0 = n1'0 + |d/i|2+A. In our computation first we used the fact that 
the multiplication by e~h commutes with d0'1 and d-1'2, and then equalities 
(A.1.14) and (A.1.15). To simplify notation we will write 

(A1.18) a{5) = D1'0 + ^D0'1 + ^D"1'2 + SKx + 52K2 + 5SK^ 

Lemma A.1.6. 

(1) d1'0^0'1)* + (d0'1)*d1'0 = 0, (d1'0)*d0'1 + d0'1^1'0)* = 0. 

(2) The operator K2 is bounded zeroth order. 

(3) The operator D-1,2 is a zeroth order operator. Moreover for any LJ G 
^(E.np-^l^ciyl2- 
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Proof. To prove part (1) it is enough to show that (d1'0)*^0'^0'1^1'0)* = 0. 
We use Corollary A. 1.3 to write 

(d1'0)*^'1 + d0'V0)* = -t^OVa^Vb, - 6fcV6fci(aJ)Va. 

= -i(aj)b
k(Vaj%k-VbkVaj) 

= -iiaj^iLiaj, bk) + V[aiiM) = 0. 

To get from the first to the second line in the formula above we use (A.1.7) 
and (A.1.8). Then we use the anti-commutativity relation i(aj)bk+bki(aj) = 
0. To get the equality to 0 in the last line in the formula we use (A. 1.5) and 
(A.1.6). 

To prove part (2) and part (3) of the lemma we explicitly compute^ 
and D-1,2 in terms of the Bismut connection. From [Bis, Proposition 2.6] 
we have 

(A1.19)   K2 = \ {aj A [L{bk, bOajjiibkXbi) + *(%■)*([£(&*, &/)%])&* A 6/) . 

and 

CT1'2 = - l(bk A 6zt([L(6fc,60y])[i(^,^)y]<(^)*(^) 

(A.1.20) + [L(bk,, blf)y}i(bkf)i(bv)bk A bli{[L{bk, bfiy])). 

The statement of part (2) of the lemma then follows from the fact that the 
norm of [L(bk,bi)aj] is bounded. 

To see (3) we observe that [L{bk,bi)y) is linear in y. Therefore, we have 
an estimate \[L(bk,bi)y\\ < c\y\ which becomes an estimate on D"1,2.        □ 

Corollary A.1.7.   There exist constants ci and C2 such that 

(A1.21) □-1'2<cin1'0 + C2. 

Proof. The proof of the corollary is the following string of inequalities: 

D"1'2 < c\y\2 < aldhl2 < ciD1'0 + C2. 

D 

Next we estimate the operator 0(6) from below in the following theorem: 
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Theorem A.1.8 (Same as Theorem 7.8). There exists a constant C > 

0 such that for all S small enough 

(A1.22) d(S) > l-n1'0 + S2(D^ -C)> ^(D1'0 + D0-1 - C). 

Proof. We observe that D-1-2 is non-negative. Moreover, by Lemma A.1.6 
the operator Ki equals to zero, and K2 is a bounded zeroth order operator. 
Therefore, there exists c, so that 

(A1.23) DO^n^ + SW + ^Ka-cS2. 

To estimate K3 we observe that for any u G (2*(E, V) we have the inequality: 

(53K3a;,ci;)=2(53/2d0'1a;,53/2d-1'M + 2(53/2(d0'1)*a;,J3/2(d-1'2)M, 

so that 

(A1.24) I{53K3u;,u)\ < 53(D0'1^,a;) + 63(D"1'Vu>) 

Finally, by Corollary A. 1.7 

(A1.25) (D"1'2^,^) < cip1'0^,^) + C2(aJ,u;). 

Thus, for S < 1/2 

D{S) > D1'0 + ^D0'1 - c^D1'0 - CS2 

(AL26) yi^O^ + S^D^-c). 

This inequality is the statement of the theorem. Q 

Appendix 2 
The space of rapidly decreasing forms. 

A.2.0. Introduction. It is useful to recall in a slightly different form the 
definition of the space of rapidly decreasing forms from Section 1.9. For any 
choice of numbers a > 0 and /, / = 0,1,2,..., we define the space 

(A2.1) Sa^^e^iE^lUl + lyinvrujllKoo, |K| = 0,1,2,...,/}, 

where V is the Bismut connection, defined in the Section 1.4, and 

(vr = veiio...oVeVl 
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for a multi-index /c = {ii,..., i^}. Here 

{ei,..., em+n} = {ai,..., an} U {61,..., fem} 

is the basis of TE. 
We say that UJ belongs to the space of rapidly decreasing forms ftl{E, V) 

if u G Saj, for all a > 0 and I > 0. We denote as S^/ an intersection of 
Saj, for all a > 0. This is the same definition as in the Section 1.9. In this 
notation QS{E,V) = 500)00. 

The space of rapidly decreasing forms is very convenient to work with 
since, on one hand, for large a > 0 the eigenforms of n(a) are rapidly 
decreasing forms. On the other hand, £21{E, V) is invariant under opera- 
tors d1,0, d0,1, d""1,2 and under exterior multiplication by dh. In particular, 
J?*(JB, V) is also invariant under d(a) and <i*(a). 

The goal of this appendix is to prove the following two theorems: 

Theorem A.2.1. The space of rapidly decreasing forms is invariant under 
operators d1'0, d0,1, GT"

1,2
, dhA, and their adjoints. In particular, f2*(E^V) 

is invariant under d(a) and d*(a). 

Theorem 1.5. For any large enough a and any OJ £ fi*(E, V, a); such that 
□(a)u; = \(a)uj, we have u> G !?*(£?, V); i. e. the eigenforms ofO(a) are 
rapidly decreasing forms. 

We will prove Theorem A.2.1 in Section A.2.1. The proof of Theorem 
1.5 is contained in Section A.2.2. 

A.2.1. A proof of Theorem A.2.1. To simplify the computations we 
assume that the vector bundle V is a trivial one-dimensional vector bundle. 

We recall from Appendix 1 (Corollary A. 1.3) the expression of the com- 
ponents of the differential d in terms of the Bismut connection. 

(A.2.1) d1'0 = o^Va,, (d1'0)* = -ifoOVa,, 

(A.2.2) d0'1 = 6%, (d0'1)* = -ifa)^, 

(A.2.3) d"1'2 = ±bk A bli([L(bk, bi)y]ver), 

(A.2.4) (d"1'2)* = ~[L(bk, 6z)y]»(6fc)*(^)- 

By definition, the space of rapidly decreasing forms is invariant under Vei. 
Therefore, we only need to show that i7*(-B, V) is invariant under exterior 
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multiplications by the basis elements {ej} of T*E, by dh, by L(bk, bfiy, and 
by all the adjoints of those operators. 

Let u e fil(E, V). As an example we show that ej AUJ G ^(E, V). Since 
11^' Aa;|| = |M|, and the operator ejA commutes with the multiplication by 
(1 + |j/|)oi We conclude that J A CJ G 5OO,O for all j = 1,..., m + n. 

To show that ej A u G 5oo,oo we will use the simultaneous (for all j) 
induction in l. The case / = 0 is settled above. 

Assume that e? A u G S^i for all j = 1,..., m + n. 

We want to show that e* A u G Soo,H-i for a11 J = 1' *' *'m + Vl' It.is 

equivalent to show that for any multi-index «, |«| = / + 1, we have V^(e-7 A 

^) G Soofl. We write 

(A2.5) V/c(ejAa;) = ejAV/ca; + [V'',ej]Aa;, 

where \S7K,ej) - ^Ke? - e^'V* is the commutator. Since V^ G Qm
s{E,V), 

it follows that eJ' A VKu G S^p. 
The crucial step is to show that [V*,^'] A UJ G ^OO^Q. This step easily 

follows from out next lemma. 

Lemma A.2.2.  The commutator [V*,^'] can be represented as 

(A2.6) &*,€?] = er A PwiViV). 

where each PKJ)r(V, y) is a polynomial in y and V of the form 

£    Cp„{x)yf>V 
A7,l7l<i 

Here (3 and 7 are multi-indeces, and coefficients Cpn{x) depend only on the 
coordinate on the base. 

The statement of the lemma above can be deduced from the calculation 
of the commutator [V*, e*] in local coordinates. Local expressions for the 
Bismut connection and the basis elements are all linear in y. Moreover, the 
transition functions between the coordinate neighborhoods U x W1 which 
cover the bundle E are also linear in y. 

A.2.2. A proof of Theorem 1.5. We start by observing that the local 
elliptic estimates imply that for any a all eigenforms of the Witten Laplacian 
□(a) are smooth. 

The idea of the proof of Theorem 1.5 is to show by means of elliptic 
estimates that for large a the powers of the Witten Laplacian control the 
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powers of \y\ and the powers of covariant derivatives with respect to the 
Bismut connection. 

The following lemma is the first step in the proof of Theorem 1.5. 

Lemma A.2.3. For any a   >   0  and any UJ   G   ft*(E, V,a),   such that 
\2{OL)U = \(a)u;, we have UJ G 5OO,0; d(a)u G S^o, and d*(a)u) G S^^. 

Proof. We will start the proof by defining the family {Jt\ t > 0} of cut-off 
functions on E. 

Let (j){s) : M —> M be a smooth cut-off function defined by ^(s) = 1 for 
0 < 5 < 1, (j){s) = 0 for s > 2. We define the family Jt(y) : E -► R by 
Jt(y) = 0(|y|/t), where \y\ is the Euclidean norm of y € E. Then for any 
t > 0 and any form cu G Qm{E, V, a), such that □(a)u; = \(a)(jj, we have 

(A2.7) A(a)||Jt|yM|2 = (J?\y\2aU{a)uj,u). 

After substituting □(a) = □ + ai2|d/i|2 + aA into (A.2.7), we have 

A(a)|| Jt|y|aa;||2 = (Jllyl^Da;^} + a2(J2|y|2a|^|2u;,u;) 
( j +a(J?|»|a-A,,a,>. 

Moreover, we can integrate {J^\y\2anuj^u) by parts to get 

2 91   (^lyl2a^^) = \\Jt\y\aM\2 + \\Jt\y\adM? 
(   • ' ) + (d(J2|y|2a) Au,,du,) + (d(J2|y|2a) Ad*a;,W>. 

First we put a = 0 in (A.2.9). Since E is a vector bundle with compact 
base there exists c> 0 such that |o^|2 > c|y|2. Therefore, after substituting 
(A.2.9) into (A.2.8) we have: 

\\Jtdu,\? + ¥tfv\? + cc?\\Jt\y\M? 
< \\Jtdu>\\2 + \\JtdM? + a2(J?\dh\2u;,u;) 

= A(a)|| Jta;||2 - a(J?Auj, UJ) - 2{JtdJt A UJ, dw) 

-2(JtdJt/\d*uj,uj). 

We estimate further by means of Cauchy-Schwartz inequality: 

||Jt^||2 + ||Jtd*u;||2 + ca2||Jt|y|2a;||2 

< A(a)||Jtujf + a\\A\\\\Jtuj\\2 + 1/2||Jt(hj\\2 

+ 2\\dJt A UJ\\
2
 + 1/2|| Jtd*u;\\2 + 2||dJt A UJ\\

2
. 
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Finally, since A is a bounded operator, and \dJt\ < f for some positive 
constant c, there exists some positive constant C(a)such that 

||JtM\2 + \\Jtd*u\\2 + WMyM2 < C^WJMl2 < Ci(a)||a;||2. 

Taking a limit as t —► oo in the inequality above we get that dcj, d*a; and 
\y\uj all belong to S^o- So, in particular, u G 51,0. Now we go back to 
(A.2.9). After differentiating Jt\y\2a and substituting of (A.2.9) into (A.2.8) 
we get 

A(a)|| JtM
au,||2 = || Jt|y|ada;||2 + ||.%|a<f u,||2 + 2(JtdJt A |y|2aa;, cbv) 

+ 2(JtdJt A \y\2au;, d*u;) + 2a(J2|y|2a-1d(|y|)a;, du) 

(A.2.10) + 2a( J^yl^-^dyDu;, d*^ 

+ a2(J?\y\2a\dh\2uj,u) + a(J?\y\2aM")- 

Since there exists c > 0 such that \dh\2 > c\y\2) we have 

(A2.ll) a2(J2\y\2a\dh\2^u) > ca2(Jt
2|y|2a+2a;,^). 

After substituting (A.2.11) into (A.2.10) and taking into consideration the 
boundedness of J*, dJt and d\y\, we conclude that there exists C = C(a, a), 
such that for all £ > 0, a > 1/2, we will have 

|| Jt\y\adu\\2 + II Jilyr^ll2 + ca
2|| J^r+^H2 

<C(||Jt|yrW||2+t-1|||yr-1/2da;|||supp(dJt)|||yr+1/2a;|||supp(<iJt) 

+ iiiyr-i/2^|||supp(dJt)|l|yr+i/2a;|||supp(dJ() 

+ ||Jt|yr-1/2a)||||jt|yr-i/2da;|| 

+ ||Jt|yr
1/2u,||||jt|yr-i/2^||)) 

where || • |||supp(dJt) m^aiis that in the definition of || • || we integrate only 
over the supp (dJt). Now we use (A.2.12) to prove the lemma. First, we 
assume that a — 1/2. Since we already know that w E S^o, dw € 3$$, 
and d*<jj E ^co, we see that the right-hand side of (A.2.7) is bounded by 
a constant, which is independent on t. After taking a limit as t —> oo, we 
conclude that u E 53/2,0? ^ £ £1/2,0? aild d*uj E 52/2,0 • At each step we 
can conclude that if u E 5a_|_1/2jo? du E 5a-i/2,o> and d*u E 5a_1/2)o? then 
u E 5a+i)o, dw E 5a)o, and d*uj E 5a5o. By iterating this process we deduce 
the statement of the lemma. □ 

Our next goal is to get an estimate of norms of covariant derivatives with 
respect to the Bismut connection in terms of the Witten Laplacian. 

(A2.12) 
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Proposition A.2.4. For large enough a > 0 and for any form u in the 
domain of □(a) there exists C = C(a) > 0 such that the following elliptic 
estimate holds: 

n m 

(A2.13)      Y, H VaHi2 + E H^Mi2 ^ c«°(")"> <*> + II^II
2
)- 

In the proof of Proposition A.2.4 we will assume for simplicity that u; has 
compact support. If u does not have compact support, then all calculations 
should be done for Jt(jj. In this case as in the proof of Lemma A.2.3. we can 
take a limit as t —> oo. We have the following lemma: 

Lemma A.2.5. Assume that in Proposition A.2.4 formula (A.2.13) holds 
for all compactly supported forms u. Then (A.2.13) holds for all UJ, which 
satisfy conditions in Proposition A.2.4. 

Proof. Let u be in the domain of □(a) then, by assumption, 

n m 

(A.2.13)   Ell^^H2 + J2\\%jJM\2 <C((D(a)Jtuj,JtLj) + \\Jtu;\\2). 
i=i j=i 

We have Vai(Jtuj) = Jtfa^ + f^o; and Vbj(Jtcj) = JtVbjcu. Therefore, 
there exist constants Ci > 0 and C2 > 0 such that 

n m 

EII
J
^^II

2
+EII

J
^^II

2 

*=i j=i 

(n m 

EII^JHI'+EIIV^.JHI'+IMI
5 

<C2((n(a)Jta;,Jta;) + ||Jta;||2). 

On the other hand, 

(□(a) Jtw, Juu) = (J?U(a)uj,uj) + \\dJt f\u\\2 + \\dJt A *a;||2 + {dJtAoj, JtI), 

where the term I is linear in du and d^u. Moreover, we choose small e > 0 
and estimate by Cauchy-Schwartz: 

\(dJt A w, Jtl)I < l/€||dJt A UJ\\
2
 + e|| Jt7||2. 
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The norm of Jtl can in turn be estimated by 

(n m 

i=l 3=1 

Finally, combining all the estimates together, we conclude that there exists 
C > 0 such that 

n m 

<C((Jt
2n(a)u;,a;) + |H|2) 

= C «a(aKu,> + ((1 - J?)D(a)a;,a;> + |M|2) . 

Inequality (A.2.13) now follows if you take t —» oo in the inequality above. 
□ 

Proof of Proposition A.2.4.    After substituting □(a) = □ + a2|c?/i|2 + aA 
into (n(a)a;,a;) and integrating by parts we get 

(A2.14)    (doj.duj) + (d*uj,d*uj) + a2(\dh\2uj,u) + a(Auj,uj) = (D(a)uj,uj). 

We substitute d1'0 + d0'1 + d"1'2 for d and (d1'0)* + (d0'1)* + (d"1'2)* for d* 
in (A.2.14). After integrating by parts, we have 

(tf'Vu;) + (D0'1^,^) + (D"1'2^,^) + cross-terms 

+ Q>2(\dh\2uj,uj) + a(Auj,(jj) = (D(a)uj,uj) (A2-15) ■      2,1^,2 

We observe that according to Lemma A.1.5 the cross-terms which contain 
d1,0 with d0,1 and (d1,0)* with (d0,1)* will disappear. We will now estimate 
the rest of the cross-terms in terms of (D1'0^, CJ) , (D0,1^, a;) and (D-1,2^, a;). 
Namely, 

(A.2.16)    2|(d1'Vd-1'2a;)| +2|((d1'0)*u;,(d-1'2)*a;)| 

Similarly, 

(A.2.17)    2|(d0'Vd"1'Ml + 2|((d0'1)*a;,(^"1'2)MI 

< 1/2(0°^^) + 2(n-1'2a;,u;). 
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We can use (A.2.16), (A.2.17) (estimating the cross-terms in (A.2.15) from 
below) to get the following estimate 

(A 2 18) W"'") ^ imD^u) + (D0'1^^)) - SiD'^u) 
+ a2(\dh\2u;,u) + a(Aw,uj). 

In the basis defined in Section A. 1.1 we calculate 

(A2.19) (□1'0W,W) = £||?a|W||a. 
2=1 

On the other hand, for (D0,1^, to) we have 
m 

(A.2.2Q) J'=1 

+ E (bk A *(60 (I(6^ 6*) - ^(fc*A)y]) ^ w) • 

It follows from the description in Lemma A. 1.1 that the operator 

Y^ h A i(bi) (L{bu bk) - V[L{bkMy]) 
kj. 

is of first order in Vai and V^^ with the coefficients which are at most linear 
in y. Therefore, it can be estimated in terms of operators D1,0, D0,1 and 
1 + \y\2. That is, there is a constant Ci > 0 such that 

(A.2.21)    | J2(bk A <(6|) (1(61,6fc) - V[L(6fc,6()2/]) w, w)| 
fe,« 

< i^p1^,^ + i/4(n0>Vw) + Cidicuii2 + (ij/iVw)). 

After estimating (with the help of (A.2.21)) the first order part on the right- 
hand side of (A.2.20) from below, we get 

m 

(DO'V u;) > £ ||V6iu,||2 - l/^tf'Vu,) - l/4(n0'V"> 
i=i 

-C7i(||W||2 + (|y|Vw». 

The inequality above is equivalent to 
m 

(D0'1^) > 4/5 V ||V6.a;||2 - I/^D^^OJ) - 4/5C1(|M|2 

(^•2.22) f=i 

+ (\y\2uj,uj)). 
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Next we substitute (A.2.22) into (A.2.18) to get 

771 

(□(a)u;,u;) > l^^1'0^^) + 2/5^ \\Vbju;\\2 - l/lOP^.w) 
i=i 

(A.2.23) - 2/5C1(|M|2 + (|y|2a;,W)) - S^Vw) 

+ a2(|d/i|2a;,a;) + Q;(Aa;,w}. 

We recall that \dh\2 > c\y\2 for some positive c > 0, and that A is a bounded 
zeroth order operator. Therefore, for large enough a there exists C2 = 

£2(0:), such that 

-3(D-1'2a;,a;> - 2/5C1(|M|2 + (b|Va>)) 
(A2-24) +a2(|^|Va;) +a(Acj,u;) > -C2\\u\\2. 

Finally, we combine estimates (A.2.23) and (A.2.24) (substituting 

E?=i l|Va^||2 for (D^w.a;)) to get 

n m 

(A2.25)       (□(a)a;,a;) > 2/5^ ||Vaiu;||2 + 2/5^ ||V6,a;||2 - C2||a;||2. 
2=1 j = l 

The statement of the lemma now easily follows from A.2.25. □ 

Corollary A.2.6. For large enough a  and for any form to,   such that 
[2(a)u = \(a)(jj, we have UJ G 5O,I fl Soo^o- 

The rest of the proof of Theorem 1.5 proceeds by induction in a and I. 
For 0 < a < oo and I = 0,1,2,..., we denote by ||a;||a|j the norm on 5a,/ 

defined by 

(A2.26) IMl2,^ £ ||(i + |y|)a(vrc||2. 
K,,\K,\<1 

Let w be such that n(a)a; = A(a:)u;. Then by Corollary A.2.6 u e So^nSoofl. 
This starts our induction. 

Next by substituting Jt\y\av instead of LJ into the elliptic estimate 
(A.2.13) and by commuting \y\a with V and n(a) we can get the following 
estimate 

(A2.27) |M|2+M < C(a5a)(||u;||2+2jo+ |k||2,i). 

Prom (A.2.27) we consequently conclude that LJ e ^ifiSoco for a = 1,2,  
Therefore, UJ G SQO,!- 
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By substituting JtD(a)uj = X(a)Jtcj instead of LJ into the elliptic es- 
timate (A.2.13) and by commuting 0(a) with V, we deduce that cu G 
^0,2 H SOQ^. Next we use induction to conclude that LJ € S^^- 

In this fashion we see that u> 6 ^oo^ for k = 0,1,2,..., which is the 
statement of Theorem 1.5. 

Remark A.2.7. The arguments similar to the proof of Theorem 1.5 show 
that all solutions UJ of the equation 

n\(a)(jj = 7 

are from the Schwartz space i?*(£?, V) if the right-hand side 7 is Schwartz. 

Appendix 3 
A proof of Theorem 8.5. 

A.3.0. Introduction. The goal of this appendix is to prove Theorem 8.5: 

Theorem 8.5.  There exists a constant C > 0, such that for all large enough 
a and for any p we have 

|A?(a) - ij(a)\ < Ca-Wj = 1,... ,min{F(a), fc»}. 

Moreover, as a —> oo, mm{kp(a), kp(a)} —> oo. 

The idea of the proof is to use the classical variational approach to 
eigenvalues of [Du-Sc]. On a small neighborhood around each component 
of the critical submanifold operators L(a) and D(a) are equal. Since for 
large a the eigenforms of L(a) and □(a) decay quickly away from critical 
submanifold, we can use the cut-offs of eigenforms of one operator to build 
test forms for the other. 

The statement of Theorem 8.5 easily follows from two inequalities: 

A?(a) < i^(a) + Ca"1/2, 1 < j < kp(a) and 
(A3'1) i£(a) < Aj(a) + Ca-1'2, 1 < j < kp(a). 

We will prove only the first inequality. The proof of the second inequality 
is similar. 

In Section A.3.1. we introduce a variational characterization of the eigen- 
values of 0(a) and we define the test forms for the variational approach. In 
sections A.3.2 through A.3.4 we complete our estimates. 
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A.3.1. Test forms and the min-max principle. We start by defining 
our test forms. First, we need to introduce a smooth family of partitions of 
unity {XRJ}J=O,...,A on N. This family will depend on a parameter R. We 
define 

ERJ := {(*,y) 6 Ejl \y\ < 22},   ER = ERtlU-.-UERA, 

URJ := MERJ),   UR = URAU-.-UURA. 

Finally, we define the non-negative smooth functions XRji 3 — 1? • • • > A> to 

be 1 on t/Rj- and to be 0 on M — U2R,j' We further define: 

A 

As our test forms we pick ^ ^(a), z = 1,..., j, defined by 

Then, provided that the test forms {^j^} are linearly independent for 
i = 1,..., j, we can use the min-max principle in the form of the Rayleigh 
quotient ([Cha, Chapter 1] or [Du-Sc]). From the min-max principle we have 

WR,i{oL),VR^a))E 

Fix small enough i?. Then the metric on C/^ is the pullback of the metric 
on E under the diffeomorphism / = (/i,..., /A). Therefore, for such R 

(A 3 3)    ^"WRMWRM)* = (□P(«)/*(€(«)Xi?),r(^(a)Xfl))S 

= <Ip(a)(^(«)XH),^(a)XR>W. 

Similarly, 

(A3.4) (^(a), ^(a)>B = <^(a)xH, </>?(a)x*>iV. 

Therefore, inequalities (A.3.2) become 
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A.3.2. A computation of the variational quotient. It is easy to com- 
pute ([CFKS, Proposition 11.13]) that 

(A3.6) L(a) = d*d + dd* + a2\dh\2 + aA, 

where A is a zeroth order operator. 
Since d*d + dd* = *d * d + d * d*, where * denotes the Hodge *-operator 

on N, we have 

(d*d + dd*)(^(a)x) = *rf * dtyix) + d*d* (fax) 
(A.3.7) = *d * (dx /\(t>i + Xd(t>i) + d * {dx A *<& + xd(*(/>i)) 

= d*(dx A ^i) + *(rfx A *d&) + xd*#i 
+ d * (dx A *^) + dx A d*<^ + xdd*(/)i. 

After multiplying (A.3.7) by x^(^) on both sides, integrating by parts, and 
combining terms we have 

(Lxfc, X&) = (X^ij X0i) + {dx A &, d(x^)) 

+ (*(dx A *d^), x^) + (*(dx A *&)> d*(x^)> 

+ (dx/\d*(f)i1x<f>i)' 

Recall that L^ = ^^. We rewrite the formula above as 
(A3.8) 

(Lxfaxfc) = "ilMif + \\dx A M2 

+ (dx A <fc, x#z) + (*(dx A *d^), x^i) 
+ <*(dx A *</>;), *(dx A *^)) + (*(dx A *^), xd * ^> 

+ (dxAd*^,x^), 

where x = XR' 
We want to estimate the right hand side of this formula. We represent 

it as (Lx&>X0z) = ^llx^tll2 + h + ^2, where 

(A.3.9) h - ||dxi? A ^||2 + || * (dx* A *^)||2, 

(A 3 10) /2 = ('dXR A ^'Xi?^^ + (*(dxR A *^*)' ^^^ 
+ (*(dXR A *(/)i),XRd * <&) + (^Xi? A d*^, XR^i)- 

A.3.3. An estimate of /i. Since by definition of XRi supp (dx^) C U2R \ 
UR, and ||dxi?ll ^ const, we have 

(A3.11) Ihl^Ciim^yfiJ1- 
Now we need the following 
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Lemma A.3.1.  There exists a constant c = c(R) such that 

(A3.12) IKM&pmJ2^"1- 

Proof. After integrating by parts in (A.3.6) we have 

Since the term ||d(/>;||2+||d*(/>;||2 is non-negative and A is a bounded operator, 
we have 

(A3.14) a2(\dh\2<l>i, fa) < Vi(a) + cia, 

Therefore, we also have a similar bound for the restriction: 

(A3.15) a2((\dh\2<t>i)\u2R\u^ h) ^ ^(a) + cia- 

On the other hand (|<i/i|2)|^   sty   > C2 for some positive C2 = C2(i2). Thus 

{A3W) a2c2||(<^2^J2 < a2((|d/i|2^)|&21l\^^<> 

< Ui(a) + cia. 

After dividing both parts of (A.3.16) by a2C2 we have 

(A3.17) \\^i)\u2R\uR\\   <       a2C2       ^ ca    • 

In the last inequality we assumed that z^(a) is a-bounded. See Chapter 8. 
□ 

We can now apply the lemma above to the inequality (A.3.11) to get 

(A3.18) |/i| < CscT1. 

A.3.4. An estimate of ^ Since supp(<ix#) C U2R \ UR, we have 

(A3.19)     |/a| < Csim^vJ (Wm^uJ + Wid^i^oj) ■ 

To estimate the right hand side of (A.3.19) we need the following 
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Lemma A.3.2.  There exists a constant c = c(R) such that 

(A3.20) \\(d&)\u2R\uR\\ < c>   11(^*^)1^x^11 < c' 

Proof. We start with the equality (A.3.13): 

(A3.21) ui(a) = ||#i||2 + ||d*^||2 + ^2(|^|2^,^) +a(i4^,^>. 

Since the terms ||#;||2, ||d*^||2, and a2(|d/i|2</>i,</>;) are all non-negative, A 
is a bounded operator, and Ui(a) is a-bounded, we conclude that for some 
d >0, 

(A3.22) ||d&||2<cia,   ||d* ^||2 < cia. 

Unfortunately, estimates (A.3.22) are not good enough, so we need to work a 
bit harder. We define a non-negative smooth characteristic function X[R 2R] 
by 

(A3.23) X[R,2R} = 1 on #2# \ tk,   supp(x[fl,2ii]) C U^R \ UR/2- 

Then, for x = X{R,2R}, 

5 = II(^)|^WJI2 + II(^^)|^WHII2 

(A 3 24)        - (^d^'d^) + (xd*0i> rf*0t> 
= (*d * (x#i), (/>i) + (d(xd*(f)i), (pi) 

= (x(d*d + dd*)^, ^i) + (*(dx A *#i), ^) + (dx A d*^, ^). 

Next, since fa is an eigenform for the eigenvalue i/;, we observe that we have 
the equality: 

(A3.25) xMi = X(d*d + dd*)fa + a2x\dh\2fa + axAfa. 

By expressing x(d*d+dd*)fa from (A.3.25) and substituting it into (A.3.24) 
we get 

(A 3 26) B~ ~Ui^u ^ ~ ^fol^l2^*' ^) " a(xA&> &) 
+ (*(dxA*dfa),fa) + (dxAd*fa,fa). 

Now we observe that, since xl^|2 is bounded from below by some positive 
constant, the term 

-a2(x\dh\2fa, fa) - a(xAfa, fa) 
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is negative for large a. Therefore, 

(A3.27) ^^(a)ll(^)|c/4H\c/R/2l|
2 

We use (A.3.22) and (A.3.12) to deduce from (A.3.26) the estimate in the 
statement of the lemma. □ 

It follows from Lemma A.3.1 and Lemma A.3.2 that for some C3 > 0, 

(A3.28) ||/2|| < Cza-1'2. 

Now we estimate the denominator in (A.3.2).   To do so we need the 
following lemma: 

Lemma A.3.3.  There exists a constant c = c(R) such that for all a large 
enough we have 

(A.3.29) MWxtofiWxRi-Sikl^ca-1,   l<i,k < F(a) 

where 5ik is a Kronecker symbol. 

Proof. We write XR = 1 + (XR ~ !)• Then 

WMXR, «(a)x*> = {${<*) + (Xfl - l)^(a), ^(a) + [XR - l)«(a)) 

+ ((Xi?-l)^(a)?(xi?-l)^(a)). 

Since supp(xi? -1) CN\UR, 

\(<K(<x)xR,<l?k(*)XR)-Sik\ < 4^^)\N\uR\\UPk(a)\N\uR\\ ^ ca~1' 

In the formula above the last inequality on the right follows from the ap- 
propriately modified proof of Lemma A.3.1. □ 

Corollary A.3.4. For large enough a the test functions in (A.3.2) are lin- 
early independent. 
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Now we are ready to finish the proof of the Theorem 8.5. Prom (A.3.5), 
(A.3.18), and (A.3.28) it follows that there exists C4 > 0, such that 

^(a)||x^(a)||2 + Ji + J2 
j[ j- WXRfiWW2 

maxi<i<J-(z/(a) + C4a"1/2) 
~ 1 — c/a 

Thus there exists C > 0, such that 

\p
j(a)-v?(a)<Ca-1/2,i = l,...,j. 

In particular, we have (A.3.1). 
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