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We classify the differential invariants and moving frames for sur- 
faces in projective space under the action of the projective group. 
The role of these results in the analysis of Adler-GePfand-Dikii 
flows that arise in inverse scattering and solitons is explained. 

1. Introduction. 

The differential invariants associated with a transformation group acting on 
a manifold are the fundamental building blocks for understanding the geome- 
try, equivalence, symmetry and other properties of submanifolds. Moreover, 
the construction of general invariant differential equations and invariant vari- 
ational problems requires knowledge of the differential invariants. The basic 
theory of differential invariants dates back to the work of Lie, [18] and Tresse, 
[23]. However, a complete classification of differential invariants for many 
of the fundamental transformation groups of physical and geometrical im- 
portance remains undeveloped. In this paper we find complete systems of 
differential invariants for a particularly interesting example, that of surfaces 
in real projective space. 

The classical approach to differential invariants is via the infinitesimal 
methods pioneered by Lie. The main difficulty in applying Lie's method 
to complicated examples is that it requires the integration of linear partial 
differential equations, which can prove to be rather complicated. Cartan, 
[3, 4], demonstrated how his moving frame method could produce the dif- 
ferential invariants for several groups of geometrical interest, including the 
geometry of curves in the Euclidean, affine, and projective planes; see also 
[15]. More recently, the moving frame method was been successfully applied 
to study the invariants of curves in projective spaces and Grassmannians, 
[14]. However, extensions to more general examples has proved to be more 
problematic. 
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A new, practical approach to the method of moving frames was recently 
developed by Pels and Olver, [7, 8]. The method enables one to algorithmi- 
cally implement both the practical and theoretical construction of moving 
frames for general transformation groups, bypassing many of the complica- 
tions inherent in traditional approaches by completely avoiding the usual 
process of normalization during the general computation. Once a moving 
frame and coframe, along with the complete system of invariants, are con- 
structed in the regularized framework, one can easily restrict these invariants 
to particular classes of submanifolds, producing (in nonsingular cases) the 
standard moving frame. Moreover, the new moving frame method provides 
a general mechanism for classifying differential invariants, their syzygies and 
commutation formulae. We are therefore able to completely describe the dif- 
ferential invariants, and their syzygies, for the case under consideration — 
parametrized surfaces in MPn-1. 

It is worth mentioning the classical work of Pubini, [10] and Cartan, [5], 
on the deformations of hypersurfaces in projective space. Two surfaces are 
called "applicable" if they have second order contact at a point, whereas we 
are interested in the full equivalence problem. Cartan applies his equiva- 
lence theory of Pfaffian systems to study the particular case of surfaces in 
prdjective 3-space in detail. Cartan allows reparametrizations of the sur- 
faces, and so his intrinsic invariants (which, unlike ours, are not explicitly 
written down) are different. 

The theory of differential invariants has an intimate connection with 
the Korteweg-deVries (KdV) evolution and its generalizations, the Adler- 
GePfand-Dikii (AGD) brackets. AGD brackets were defined by Adler, [2], in 
an attempt to extend the biHamiltonian integrability character of the KdV 
equation to generalized higher dimensional KdV evolutions. Jacobi's iden- 
tity for these brackets was proved by GePfand and Dikii, [11]. Alternative 
definitions were offered later on by Kupershmidt and Wilson, [17], and by 
DrinfePd and Sokolov, [6]. 

Consider nondegenerate parametrized projective curves in RP71-1. There 
exists a unique way to associate to such a curve 7 a scalar differential oper- 
ator L7— a Lax operator — such that the curve is the projectivization of 
a solution curve of the operator, cf. [24], and such that the (n — l)st order 
term of L7 vanishes. If 7 has a monodromy, the coefficients of L7 will be 
periodic. The n — 1 coefficients of the differential operator associated to the 
curve form a generating system of differential invariants for parametrized 
projective curves associated to the projective action of SL(n), [24]. 

Now, one can use the theory of differential invariance to write an ex- 
plicit formula for the most general invariant evolution of projective curves, 
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invariant under the projective action of SL(n), cf. [12]. Naturally, there will 
be an evolution induced upon the differential invariants themselves by this 
evolution of curves, and hence one obtains an evolution of Lax operators. 
Under certain natural conditions, this evolution was conjectured to be the 
AGD evolution in [12]. The lower dimensional cases (up to n = 7) were also 
proved in [12], and the final result finally shown in [20]. KdV evolutions 
are obtained when special evolutions of curves are chosen. Thus, AGD evo- 
lutions can be simply described as the evolution of a generating system of 
differential invariants of projective curves, whenever the curves are evolving 
invariantly. 

One can consider the problem of generalizing AGD flows to the case of 
two independent variables. This is an important problem not only in the 
theory of integrable systems, but also in related topological and algebraic 
areas. It seems natural to look for these generalizations among evolutions 
induced upon systems of differential invariants for parametrized surfaces in 
EP71-1, whenever the surfaces themselves evolve following general invariant 
evolutions (invariant under the RP71-1 action). A system of such differential 
invariants is found explicitly in this paper. Further details about AGD 
generalizations are given in the conclusions section. 

2. Differential Invariants. 

We begin by reviewing the basic theory of prolonged transformation groups 
and differential invariants. Let M be an m-dimensional manifold. We shall 
consider p-dimensional submanifolds parametrized by immersions t: X —► 
M, where X is a fixed parameter space, which, since we are only interested 
in local issues, can be taken to be an open subset of MP. 

Let G be an r-dimensional Lie group acting smoothly on M. In partic- 
ular, we are assuming that G does not affect the parameters x G X. Let 
Gs = {9 £ G I g • S = S} denote the isotropy subgroup of a subset S C M, 
and Gg = OxesGx its global isotropy subgroup. We assume that G acts 
effectively on subsets of M, which means that G^ = {e} for every open 
U C M. If an analytic transformation group acts effectively, it automati- 
cally acts effectively on subsets, but this equivalence does not hold in the 
smooth category. We say that G acts freely if Gu = {e} for all u G M. We 
further incorporate the adjective "locally" in these concepts by replacing 
{e} by a general discrete subgroup of G. 

Let Jn = Jri(X, M) denote the nth order jet bundle consisting of equiva- 
lence classes of submanifolds modulo nth order contact. We introduce local 
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coordinates x = (rr1,... , xv) on X, and u = (u1,... , uq) on M. The in- 
duced local coordinates on Jn are denoted by u^n\ with components Uj, 
where J = (ji,... ,.%), 1 < ju < p, 0 < k < n, a = 1,... ,#, represent- 
ing the partial derivatives of the dependent variables with respect to the 
independent variables. Note that 

(2.1) &imF = q^=q(v+
n
n\ 

Since G preserves the order of contact between submanifolds, there is an 
induced action of G on the jet bundle Jn known as its nth, prolongation, and 
denoted by GH 

Definition 2.1. An nth order differential invariant is a function /: J71 —» R 
which is invariant under the action of G^n\ 

Let sn denote the maximal orbit dimension of the prolonged action G^ 
on Jn. The stable orbit dimension is s = maxsn. The stabilization order 
of G is the minimal n such that sn = s. The regular subset Vn C Jn is the 
open subset consisting of all prolonged group orbits of dimension equal to 
the stable orbit dimension, while the singular subset is Sn = J71 \Vn. Note 
that, by this definition, Vn = 0 and Sn = Jn if n is less than the stabilization 
order of G. If G acts locally effectively on subsets, then the stabilization 
theorem, [21, Theorem 5.11], [22], states that s = r = dimG, which means 
that G^ acts locally freely on Vn for all n. 

Proposition 2.2. In a neighborhood of any regular jet u^ G Vn
; there exist 

q(n) — s functionally independent differential invariants of order at most n. 

The traditional method for computing higher order differential invariants 
is via the method of invariant differentiation. In the present situation, since 
G does not transform the parameters, the invariant differential operators 
are particularly simple. Namely, the parametric total derivative operators 
Di = Dxi, i = 1,... ,p, map differential invariants to differential invariants. 

Proposition 2.3. If I(u^) is any differential invariant, so are its total 
derivatives DjI = D^ • • • Djfc/; where l< jv <p, k = # J > 0. 

Definition 2.4. A generating set of differential invariants is a finite collec- 
tion ii,... , IN with the property that, for all n, every differential invariant 
(on an appropriate subset of Vn) can be written as a function of the deriva- 
tives Djlj, of the generating differential invariants. 
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Every transformation group admits a generating system of differential 
invariants. The order of a generating system can be taken to be n + 1, 
where n is the stabilization order. The minimal order and minimal number 
of differential invariants required to form a generating system is not known 
in general, except in the particular case of curves, p = 1, [21]. 

Each of the preceding constructions has an infinitesimal counterpart. We 
choose a basis 

(2.2) V« = I>"(U)^'        « = !,•••> r, 

for the Lie algebra g of infinitesimal generators on M. Let 

{prWvi,...,prWvr} 

denote the corresponding infinitesimal generators for the prolonged group 
action G^. The prolonged generator pr(n) v^ is obtained by truncating the 
infinitely prolonged vector fields 

(2-3) prv„ = £     J2    D^(u(k)^ 
a=l  k=#J>Q J 

at order n. The dimension of the orbit passing through vf^ E J71 equals the 
dimension of the subspace of T Jn |w(n) spanned by pr^) vi,... , pr(n) wr. In 
particular, if G acts effectively on subsets, a jet u^ is regular if and only 
if the vector fields pr(n) vi,... , pr(n) vr are linearly independent there. The 
infinitesimal invariance criteria are standard, [21]. 

Proposition 2.5. A function I: Jn —► M is a differential invariant if and 
only if it is annihilated by the infinitesimal generators: pr vK(7) = 0; K, = 
1 r J., ... , / . 

3. The Regularized Moving Frame Method. 

We now describe how to implement the regularized moving frame method in 
the particular case of parametrized submanifolds of an m-dimensional man- 
ifold M. Let g = (gl,... ,^r) be local coordinates on G in a neighborhood 
of the identity. Let us write out the group transformations v = g • u in local 
coordinates 

(3.1) va = $a(g\...,gry,...,um). 
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The functions v0" in (3.1) are referred to as the zeroth order lifted invariants, 
since they are invariant under the simultaneous action (/i, u) \-> (h-g~l,g-u) 
of G on the trivial principal bundle G x M. Since G does not act on the 
parameters, the corresponding prolonged transformations v^ = g^ • u^ 
are easily obtained by total differentiation. The resulting functions Vj = 
Djv** are called the lifted differential invariants since they are invariant 
under the simultaneous action (h^u^) —► (h • g"1^^ • vfr)) on G x Jn. 

The primary use of a moving frame is that it enables one to pass from 
lifted invariant objects, which are trivial, to their ordinary invariant coun- 
terparts back on the original manifold and its jet spaces. This allows us to 
systematically analyze the invariants via the particularities of the moving 
frame. The following fundamental definition appears in [8], and is motivated 
by earlier work of Griffiths, [14], and Jensen, [16]. 

Definition 3.1. An nth order moving frame is a map p^ : Jn —► G which 
is (locally) G-equivariant with respect to the prolonged action G^ on Jn, 
and the right action h i—» h • p-1 of G on itself. 

Remark. For simplicity, we shall only consider right moving frames in this 
paper. A left moving frame, which is equivariant with respect to left mul- 
tiplication h i-> g - h is easily obtained by inverting the right moving frame: 

Theorem 3.2. If G acts effectively on subsets, then an nth order moving 
frame exists in a neighborhood of a point u^ € J71 if and only if vS71* G Vn 

is a regular jet. 

In particular, the minimal order at which any moving frame exists is 
the stabilization order of the group. In practical implementations, the nor- 
malization procedure for constructing moving frames amounts to choosing 
a (local) cross-section /Cn C Vn to the (regular) prolonged group orbits. In 
other words, Kn is a submanifold of dimension q^ - r which intersects each 
orbit at most once, and transversally. Given vW G Vn, let g = p(n\u^) 
denote the group element that maps u^ to the cross-section: 

(3.2) <7(n) • u^ = p(n)(uW) • uW G /Cn. 

The resulting map p^ : Jn —> G is a moving frame. Moreover, every moving 
frame has this form, where the cross-section equals the preimage /Cn = 
(p(ri))-1{e} of the identity element. 
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The simplest local cross-sections are obtained by setting r = dimG of 
the jet coordinates u^ to be constant. We denote the chosen coordinates 
by Uj, = Uju, v — 1,... ,r. Therefore, /Cn = {^i = ci,... ,ur = cr}, where 
the normalization constants ci,— , cr are chosen so that the normalization 
equations (3.2), which have the form 

(3.3) v1 = v% {g, tiW) = ci,        ...        7;r = ^ (5, ti^) = c,, 

can be (locally) uniquely solved for g = p(n)(it(n)) in terms of the jet coor- 
dinates. The resulting map defines the moving frame associated with the 
chosen cross-section. 

Remark 1. Any nth order moving frame p^: Jn —> G can also be viewed 
as a moving frame of any higher order k > n by composing with the standard 
jet space projection TT^: Jn —> Jfc. In the sequel, we will speak of "moving 
frames of order n" with the understanding that they may very well have 
been constructed at some lower order. 

We now describe how the moving frame provides us with a complete 
system of differential invariants. 

Definition 3.3. The fundamental nth order normalized differential invari- 
ants associated with a moving frame p^ of order n or less are given by 

(3.4) /W^W) = i/nVn)(u(Tl)),u(n)) = p(n)(tx(n)) • ttH 

In other words, the individual components of I^n\ which are 

(3.5) I%(uW) = v% (pW («<">) , «(fc>) ,        a = 1,... , q,    k = #K > 0, 

define differential invariants of order < n. Note that the normalized differen- 
tial invariants corresponding to the components being normalized via (3.3) 
will be constant. We shall call these the phantom differential invariants. 
The other components of v^ will define a complete system of functionally 
independent differential invariants defined on the domain of definition of the 
moving frame map. This will hold for any order n at least as large as the 
order of the chosen moving frame. 

Theorem 3.4. Let n be greater than or equal to the order of the moving 
frame. Every nth order differential invariant can be locally written as a 
function of the normalized nth order differential invariants 1^. The func- 
tion is unique provided it does not depend on the phantom invariants. 
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A moving frame therefore provides a natural way to construct a differ- 
ential invariant from any differential function. 

Definition 3.5. The invariantization with respect to the given moving 
frame of a differential function F: Jn —> R is the differential invariant 

In particular, if JP is itself a differential invariant, then it coincides with 
its invariantization: F = Fol(n\ Thus, invariantization defines a projection, 
depending on the moving frame, from the space of differential functions to 
the space of differential invariants. 

An alternative method to construct higher order differential invariants 
is by invariant differentiation, as in Proposition 2.3. A critical remark, how- 
ever, is that the total derivative of a normalized differential invariant is not 
necessarily equal to the corresponding higher order normalized differential 
invariant. The fundamental recurrence formulae for the differential invari- 
ants (3.5) are 

(3.6) ZV£ = 7^. + M£;i. 

Higher order versions, 

(3.7) DjI% = I&,j + Mg.j. 

are obtained by differentiating (3.6). For example, 

DuDjIZ = DkI%j + DkMSv = IZj,k + E -ItfrVlk + <*)• 
P,L     aiL 

Remark. While Tg- j is symmetric under permutations of the multi-index 
(K, J), this is not true for Mgkj, which is why we use a semicolon to separate 
the two indices. 

The "correction terms" Mgk ■ can be explicitly computed using the fol- 

lowing algorithm, which is justified in [9]. Let V = V^ denote the r x q^ 
matrix whose entries are the coefficients Dj(p% of the nth order prolonged 
infinitesimal generators (2.3). Let W = V o j(n) be its invariantization, ob- 
tained by replacing the jet coordinates u^ by the associated normalized 
differential invariants I^n\ We perform a Gauss-Jordan row reduction on 
the matrix W so as to reduce the r x r minor whose columns correspond 
to the chosen normalization variables iti,... , ur to be the identity matrix; 
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let P be the resulting r x q^ matrix of invariants. Let S = (Sf) denote 
the p x r matrix whose entries are the total derivatives 5f = DiUK of the 
normalization coordinates. Let T = S o j(n) be its invariantization. Then 
the correction terms in (3.6) are the entries of the p x q^ matrix product 
M = -T - P. 

Except in the case of curves, where p = 1, the differentiated invariants 
are not necessarily functionally independent. (Again, this is not the case for 
the non-constant normalized differential invariants.) A syzygy is a functional 
dependency H(... Vjlv ...) = 0 among the fundamental differentiated in- 
variants. The recurrence formulae not only provide us with a generating 
system of fundamental differential invariants, but also classify all syzygies 
among the normalized differential invariants. 

Theorem 3.6. A generating system of differential invariants consists of 

a) all non-phantom zeroth order differential invariants Ia, and 

b) all non-phantom differential invariants of the form Iji where IJ is a 
phantom differential invariant 

In other words, every other differential invariant can, locally, be written as a 
function of the generating invariants and their invariant derivatives, Dxlji- 

All syzygies among the differentiated invariants are differential conse- 
quences of the following two fundamental types: 

(i) Djlft = Cv + Mft j, when I^ is a generating differential invariant, 
while IjK = cu is a phantom differential invariant, and 

(ii) DJIIK-VKILJ = M£K.J-M£J.K, where I%K and /£j are generating 
differential invariants, the multi-indices K fl J = 0 are disjoint and 
non-zero, while L is an arbitrary multi-index. 

A minimal system of differential invariants can be found by a careful 
analysis of the recurrence relations and consequent syzygies. Examples ap- 
pear in [8] and below. 

4. Equivalence, Symmetry and Rigidity. 

Classically, in geometrical applications, a moving frame is defined on a single 
submanifold of the underlying space. Indeed, in applications to equivalence 
problems and symmetry, we restrict the moving frame and associated in- 
variants to a submanifold of the appropriate dimension. 



816 Gloria Mari'-Beffa and Peter J. Olver 

Definition 4.1. A p-dimensional submanifold parametrized by L: X —> 
S C M is called regular with respect to a moving frame p^: Jn —> G 
if its n-jet jn 5 lies in the domain of definition of p^. In this case, the 
restricted moving frame on the submanifold is defined as the composition 
ptoojni:X-+G. 

Theorem 4.2. A submanifold S C M (locally) admits an nth order moving 
frame if and only if S is regular of order n, i.e. ]nS C Vn. In the analytic 
category, S admits a moving frame (of some sufficiently high order) if and 
only if Gs acts locally freely on S. 

Let S be a regular submanifold for a moving frame p^n\ For any k > n, 
the fcth order differential invariant classifying manifold C^k\S) associated 
with a submanifold L : X —> M is the manifold parametrized by the normal- 
ized differential invariants of order fc, namely jW = I^oj^t. For simplicity, 
let us assume that, for each k > n, C^(S) is an embedded submanifold of its 
classifying space Z^ ~ 3k. Note that tk = dimC^(S) equals the number of 
functionally independent invariants obtained by restricting the normalized 
fcth order differential invariants to S. In the fully regular case, then, we have 

tn < tn+i < tn+2 < - - <ts = £s+i = • • • = t < p, 

where t is called the differential invariant rank and s is the differential 
invariant order of S. We can now state the fundamental equivalence and 
symmetry theorems. 

Theorem 4.3. Let 5, S C M be regular p-dimensional submanifolds with 
respect to a moving frame map p^. Then S and S are (locally) congruent, 
S = g-S, if and only if they have the same differential invariant order s, and 
their classifying manifolds of order s+1 are identical: C^S+1\S) = C^S+1\S). 

Theorem 4.4. Let S C M be a regular p-dimensional submanifold of dif- 
ferential invariant rank t with respect to a moving frame p(n\ Then its 
isotropy group Gs is an (r — t)-dimensional subgroup of G acting locally 
freely on S. 

A submanifold S is order k congruent to a submanifold S at z G S if 
there is a group transformation g G G such that S and g • S have order k 
contact at z. Note that the group transformation g = g(z) may vary from 
point to point. The rigidity order of S is the minimal k for which order k 
congruence implies congruence, so S = g • S for fixed g G G; see [14, 13]. It 
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turns out that this also means that the only congruent submanifold S = g-S 
which has fcth order contact with 5 at a point is S itself. 

Theorem 4.5. If S C M is a regular submanifold of differential invariant 
order s with respect to a moving frame, then S has rigidity order at most 
5 + 1. 

This completes our review of the general theory of moving frames. We 
now apply these techniques to the problem at hand — differential invariants 
for surfaces in projective space under the action of the projective group. 

5. Notation. 

We will apply the normalized moving frame method described above to 
the case of parametrized surfaces in MP71-1, under the projective action of 
the unimodular group SL(n). Thus we shall consider immersions u\ X —> 
RIP71-1, where X is a two-dimensional parameter space. We shall use local 
coordinates x, y on X, and a standard set of projective coordinates u = 
(u1,... , u71'1) on RPn-1. In other words, we have two independent variables 
and n — 1 dependent variables. 

Let r = Jrl(X,RPri-1) denote the nth order jet bundle for surfaces in 
jjpn-i    rpkg jocaj derivative coordinates u^ on Jn are given by ufj = 

D^DyU^. The order of the derivative is m = i + j. Low order derivatives 
will be denoted by < = v%fi = Dxu

a, u%x = u%fi = Dlua, u%y = v%tl = 
DxDyUa, etc. We shall introduce the natural degree lexicographic ordering 
on the derivative multi-indices (i,j), so that the first few are ordered as 
follows: 

(0,0),   (1,0),   (0,1),   (2,0),   (1,1),   (0,2),   (3,0),   .... 

More specifically, the map 

(5.1) k = \{i,3) = -(i + j)(i + 3 + l)+3, 

defines a bijection A: N2 -^ N, such that (i, j) is the k = A(i, j)th index in 
the lexicographic ordering. We use the convenient alternative notations 

(5.2) Dk = DiDi,        and       «£ = «£,        when       fc = A(»,j), 

for derivatives and differential operators. In particular, 

uf = n^ = ua
} uf = ul0 = <, ti? = v$A = u«, 

«4 = "2,0 = <r> «5  = «1,1 = </> «6 = U0,2 = «£,, 



818 Gloria Mari-Beffa and Peter J. Olver 

and so on. Given k = A(i,j), we define (j,(k) = m = i + j, which is the order 
of the derivative Dk corresponding to k. It equals the smallest triangular 
number tm = ^m(m + 1) < k. Define the map a : N x N —* N so that given 
k = \(i,j) and I = Xft\f), we set p = cr(k, I) = A(i + i7,j + f). Therefore, 

(5.3) Daiktl) = Dk • Du        and       u«{Kl) = Dk{uf) = A(^). 

Further, define 9 = r(fc, Z) = A(i — i7, jf — /). Note that r(fc, Z) is defined if 
and only if i* < i and j7 < j. We further define 

Finally, define the binomial coefficients 

^   -"       lo, otherwise, 
fc = A(i,i),    Z = A(z7,/). 

Consider the projective action of SL(n) on RP71""1. Given a unimodular 
matrix A = (ap, where i, j = 1,... , n, the associated transformation rules 
are given by 

(5.6) ^ = £l 1        a = l,...,n-l. 

The components of v in (5.6) are the lifted invariants of order zero: v = 
A - u. Since we are dealing with parametric surfaces, the higher order lifted 
invariants, which are the components of the prolonged group action v^ = 
A • u^n\ are given by differentiation: 

(5.7) v% = vfj = DiDiv" = Dkv",        when       k = A(z, j). 

The infinitesimal generators are given by 

(5-8)     V«==^'     V^ = Uad^'    w0 = was, a,/?=l,...,n-l. 

Here 
3 o 3 

(5-9) s=E^ = Ev^ 
is the scaling vector field. 
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6. The case of surfaces in 

'4 uh> 4'j'A (*l uj nl 
4 uh> Ui"j"      - - u uf ul 
.4 V?, ; «i«j"/ VI uf < 

In this section we will describe in detail the simplest case, which is that of 
surfaces in RP3. The results and computations will serve as an illustration 
of what we expect to find in the general situation. 

Consider a parametrized surface u(x,y) = (^1(a:,2/),ix2(a:, y),v?{x,y)) G 
RP3. Given three multi-indices k — A(i, j), / = A^7,/), m = Xii",]"), we 
define the associated 3x3 matrix of partial derivatives 

(6.1) 

Let 
A3(fc) Z, m) = det Uz{k, I, m) 

denote its determinant. In low order cases, we can replace (i, j), etc., by 
derivatives indices. The most important of these is 

(ul ul ulx 

i 1 UT 
Urj. Uy U^/ 

with determinant A3 = det U^. 

Definition 6.1. A parametrized surface is nondegenerate if the matrix (6.2) 
is nonsingular: A3 = det U^x, y, xx) ^ 0. 

Actually, we shall assume a "convexity" condition that A3 > 0. Note 
that the sign of A3 can be switched by relabeling the coordinates in 

Remark. We have chosen this particular nondegeneracy condition just for 
specificity. We could, alternatively, replace the second derivative with re- 
spect to x by either of the other second order derivatives. 

We now begin our implementation of the normalization procedure. The 
first step is to normalize the components v1 = v2 = v3 = 0 of the order zero 
invariants (5.6) by solving for some of the parameters dj. This leads us to 
the choice 

3 

(6.3) < = -^a^, a = l,... ,3. 
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This normalization will generalize in an obvious way to the n-dimensional 
case. 

Once we have solved for the parameters aj as in (6.3), we next nor- 
malize the corresponding matrix consisting of first and second order lifted 
invariants, 

(6.4) K* =    v2
x   vl   vlx    = /, 

V>1    vy    vlx) 

to be the identity matrix. Let us call 

3 

(6.5) ^ = ^4^ + ^. 

The value of the relative invariant K will be fixed later. Further, we let 

3 

(6.6) Kk = Kij = DkK = J2 4uij       when       k = X& fi> 

denote the derivatives of if, prior to normalization.   For example Kx = 

DXK = Yjp apu%' 
The formula 

\/9=l 0=1 0=1 J 

implies that the normalization (6.4) yields the relationship 

(6.7) 

where A denotes the upper 3x3 minor of the 4x4 matrix A. Equation (6.7) 
fixes the parameters in A in terms of K and its derivatives. Namely 

a]   al   a\\       (K    0    2KX 

(6.8) A = [ aj   4   4    =     0    K     0    ] ([/*) 
^af   a|   ay       \0     0      K 

The final step in the normalization process is to solve for the parameters 
ai, /3 = 1,... ,4.  These will require higher order normalizations that will 
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produce the three terms Kx, Ky and Kxx, the last one depending on third 
order derivatives. A particularly convenient cross-section is provided by the 
additional normalizations 

,.2 v"   = v"  = v"    =0 xy yy xxy 

This leads to the identities 

(6.9) 
fu, 

(Kx,Ky,Kxx) = (af   a\   afj U% = (af   a|   a§)    u: 
<u: 

xy 
2 
xy 

xy 

^U1 

2ayy 

u. 

u 

xxy 
2 
xxy 
3 
xxy > 

Prom here we are able to determine uniquely a|, a^, 03, by substituting the 
value of a^ from (6.8) and using Cramer's rule. We find 

(4   4   4) = -^* (A3(a;j/),-A3(yi/),A3(a:a:y)), 

where we abbreviate 
A3(fc) = A3(rr,xa:, fc). 

Finally, notice that condition (6.3) implies that the determinant of A, 
after normalization, equals 

det A = det 

a{ 4 ^3 0\ a? 4 4 0 
a? 4 4 0 
a? a$ 4 KJ 

= K det 
A*' ^3 

using (6.8). Thus, it suffices to choose K = (A^)-1/4 to guarantee that A 
still belongs to SL(4).  This finally fixes the value of af, and hence all of 
the rest of the parameters. This way, we obtain a third order moving frame 
p(3). j3 —> SL(4)   The explicit formuia fe 

(6.10)   pW(uW) = (A*)-! • 

/ 

'1   0 
0   1 

,0   0 

-A3(a;a:) + A3(zy)A3(z) \ 

A3(0) 

A3(x) 

-A3(xy) -±A3(yy) -A3(xxy)        , AZ+/^^      ,, 
^ + ±uzA3(yy) + uAAz{xxy)J 
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where 
A3(fc) = A3(0,y,fc), 

the 0 indicating that the first column of the determinant consists of the 
undifferentiated variables (w1,^2,^3). 

It is not too hard to prove that this frame is of minimal order, since the 
SL(4) projective action on RP3 has stabilization order 3. In view of (5.8), 
the second order prolonged vector fields pr^2) va, pr^2) v^, a, (3 = 1,2,3, are 
all linearly independent on nondegenerate jets, where A3 ^ 0. In fact, we 
only need to consider the derivatives with respect to x, y, and xx to achieve 
that condition. On the other hand, we need to go up to order three to make 
pr^ wa linearly independent. Indeed, if f,g and h are functions such that 

ful
x + gu2

x + hul = ful
y + gu2

y + hu3
y =■ 0, 

then it is not hard to show that / pr(2) wi + g pr^2) W2 + h pr^2) W3 is a 
combination of the prolongations pr^2) va and pr^2) v^, a, /3 = 1,2,3. This 
does not happen once we go up to third order, for precisely the same reason 
that the normalization above will bring the lowest order frame possible. 
Indeed, at that point A3 ^ 0 so that no linear relationship between w£, Uy 
and v%x can be found. 

The description of a generating set of invariants and their associated 
syzygies becomes quite straightforward once a frame has been found. We 
simply have to turn to Theorem 3.6 where the classification was found in 
terms of the frame. 

Let /(n) be the normalized differential invariants, defined in terms of our 
moving frame (6.10) as in (3.5). Then, according to the normalizations we 
used to achieve our frame, the phantom invariants will be 

fell') Ta       Ta       Ta       Ta        m — 1  9 3 I2        T2        T2 
yyj.j-j-j J.    ,      J.X1      j.y,      ■Lxxi      "        ■L5 *") ^1 ±xy') yyi      ■Lxxy' 

Consequently, Theorem 3.6 implies that the normalized invariants 

I1      I1       I1 I1 
xyi       yy'        xxxi        xxyi 

(6 12"! T3       T3        T3 T3 
y\j.j.^ij ■Lxy')        yy'   xxxi      ■'■xxy'i 

T2 7-2     7-2     r2      7-2 
xxxi        xyyt        yyy   xxxyi xxyyi 

provide a generating set of differential invariants. However, this set is far 
from minimal, as we shall see from the recurrence formulae (3.6). 

In order to obtain the correction terms Mj£ . we proceed as described 
in Section 3.  The matrix T is obtained as follows.  We first assemble the 
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derivatives of the lifted invariants that were normalized to produce the frame 
(i.e. the ones defining the phantom invariants) into a matrix by placing 
the x derivatives in the first and the y derivatives in the second row. The 
invariantization of the resulting matrix, that is, replacing the jet coordinates 
by their associated invariant, produces T. In constructing these matrices, 
we use the following convenient order on our jet space coordinates: 

U ,     U ,     U ^UX^Uy^UXx)UX^Uy^UXX^UXlUy1UXX^UXy^Uyy^UXXy^ 

followed by 

u\, ul, u\, £$,..., fi?, £9, £10,.. •, ul, u\, 67, fit,... 

Using the first part of the assigned ordering, we see that 

/1 0 0   0   I1   I1     0 0 I2       1   I3   Is       0    I2     I2 
rp    1   J.   \J   \J     \J       xy     xxx xxx xy     xxx xyy   ^xxxy 

\ 0 1 0 il  I1 I1   00   0   J3  J3 I3   i2   I2   I2 
y KJ   x   \J   ■'■xy     yy   ^xxy w      ^xy   •'■yy   ■'•xxy     xyy     yyy     xxyy 

The rows of the infinitesimal generator coefficient matrix V will be written 
in the following order: 

Vl, V2, V3, V11, V21, V31, V12, V22, V32, V13, V23, V33, Wi, W2, W3. 

Once that ordering is in place, we replace each u\, by the corresponding 
invariant /£, which gives the invariantization of V as 

W = 

/J0000 0 0 0 \ 
0/00 0        ^3(5,6,7,...) 0 0 
0    0    7 0^3(5,6,8) 0 ^(7,9,10,...) 0 
0    0    0/0 0 0 43(5,6,7,...) 

V0 2^,3 0 0 52(5,6,8) Bx(5,6,7,...) 52(7,9,10,...) S3(5,6,7,...)/ 

Here E^j is the matrix having a one in place (i, j) and zeros everywhere else. 
Further, 

(k        I      m 

il if  il  ■ 
5 if il ■ 

while the rows of 5j(fc, /,...) are given by the invariantization of 

(Dk^vP)   Di(^vP)    ...),        a, 13 = 1,2,3, 
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after all the differentiations have been performed. 
The next step is to row reduce W so that the initial 15 x 15 minor equals 

the identity. Then P = (/, P), where P is the invariantization of the matrix 

H = 

( 0       0       0 \ 
#11      0       0 
#21 #22 #23 

0 0 #33 
\#41 #42 #43/ 

The columns of # correspond to ttj, fc = 5,6,7,..., fij^, fc = 7,9,10,... and 
v?k, fc = 5,6,7,... in precisely that order. Explicitly, 

tv\    v\   v\    v\    v\    ., 
#11=#33=       0       0      5?      0      vl     ., 

\^5     ^6     ^7     ^8     ^9      ' 

Further, #21 and #41 have as columns 

0 

respectively, for k .= 5,6,...; #22 and #42 have columns equal to 

'vl - vlDkiv'v2) - \vlDk(vy - vlsDk(v
2v3) 

z2 

Kvl - viD^v2) - ^viDk(v2)2 - viDk(v2v% 

(Dk{v1v2)' 
iDk(v2)2 

\Dk(v
2v3)/ 

respectively, for k = 7,9,10,... Finally H23 and H43 have, respectively, 
columns given by 

'-vlDkivW) - ^vleDk(v
2v3) - vlDk(v

3)2' 
0 

K-i$Dk(vW) - \vlDk{v2vz) - viDk(v
3)2 

( Dk(v
lv3)\ 

%Dk(v
2v3) 

\ Dk(v3)2 J 

for k = 5, 6, 7,... 
The function Mj£.x equals minus the dot product of the first row of T 

and the column in P corresponding to u^. M^.y would be found similarly 
using the second row of T. The most interesting of the resulting recurrence 
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formulae are the following ones: 

(6.13) 

n ri   - T1        r3 T1    - Id3 }2I2    4- -J3 I2    - -I2 
^x^xv — 1xxv ~~ 1xy1xxx       ^xy)  1xxx ~ Q^yt/^xxx   9 x iy = 1ixy ~ 1xy1xxx ~ ^xy)   1xxx T* 2W  xxx       2J'Xyy 

n rl   - T1        (T1 \2 - T3 T1    4-2 J3 I2    - -I2 JJy1xy — 1xyy ~~ V-xy) 1xy1xxy ^ ^1xy1xyy       2   yyy 

n   r3   _ j3     _ jl   _ j3 j3 
■LJx1xy — -'xxy       ^xy       ^xy-'-xxx 

n  r3   _ r3     _ / jl jS N _ jS j3 
■LsyJ-xy ~~ 1xyy       \1xy1xyJ       ±xyJ-xxy 

n Tl  - T1    - (T3 T1   } - 2TS I3 I2 JJxl
yy ~    xyy       \1yy1xxx)       ^■Lxy±yyLxxx 

r> T1   - T1    - (T1 T1 ) - I3 I1    + 2/3 I2 1J
y1yy — 1yyy      \1xy1yy)      1yy1xxy ^ *1yy±xyy 

n  r3   _ r3    _ jl  _ j3 j3 
1Jxlyy "~    xyy      ■Lyy      ^yy'-xxx 
n   r3   _ j3     _ / rl j3 x _ j3 j3 

■UyIyy "" "^yyy       \1yy1xy)       ^yy^xxy 

D I2    = I2      -I2   I3 
■LJx1xxx       ±xxxx       ■Lxxx-Lx2. 

D I2    =1 LJy1xxx       1: 

xxx       1xxxx       ■Lxxx-Lxxx 
r2 

r-k   T2 r2 .   o rl   r3   r2       1  o r3   r2     T3     __ T2     f3     _ 9 f3   T"2 

UxJ-xyy — 1xxyy + Z1xyIxy1xxx "t" *1xy1xxx1xxy      1xxx1xyy       ^-Lxy1xxxy 

Tl   T2      — T2        -9T1   T2      -2I3 I2 1Jy1xyy — 1xyyy      ^1xy1xyy      ^xy^xxyy 

n  r2 r2      ^.^r1 r3 r2    +1T3 T2    T3    - T2   I3    - 3I3 I2 
Ux-Lyyy = Ixyyy + 6iyy1xy1xxx "1" 01yy1xxx1xxy      1xxx±yyy      ^yy^xxxy 

n T2   — T2    - ^r1 r2   - s/"3 J2 
JJ

y1yyy ~~ 1yyyy     01yy1xyy     01yyJ'^yy 

These imply that we can reduce our generating set to be 

(a-\A\ T1       Tl       T3       I3       I2 I2        I2 
(0.14) i^y, -Lyy, J-xyl lyy, ^XXX? ^Xt/t/5 ^yyy' 

Finally, if one wishes to find M^;x:r the process will have to be iterated. 

For example, 

DxI
aK,x = I%,{xx} + MfK.xhx + DXM^X 

so that 

Ml{xx} = M?K;x}]x + DxM%]X. 

Now, as for the complete classification of syzygies, only the second case 
in Theorem 3.6 applies here, since all phantom invariants have lower or equal 
order than the generating invariants. There are a wide variety of syzygies, 
but they can all be written in terms of differential consequences of the ones 
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involving the generating set (6.14); namely 

LJy1xy       ■Uxlyy ~~ lvIxy;y       lvlyy;xi CK — 1, O, 

n   7-2      _  n   7-2 ii^2 _ M2 
J-yy-Lxyy      J-yx-Lyyy       1   xyy\y      ^^yyy'.xf 

D2I2    -D2I2    =M2       -M2 
y  xxx x  xyy       x *xxx\yy xyy',xxi 

DSI2    - D3I2    = M2 - M2 
-^y^xxx x^yyy       •*■ ^xxx'^yyy       ■Ly-Lyyy;xxx' 

7. Surfaces in RF1"1. 

Now let us treat the general case of parametrized projective surfaces in 
MPn_1. We retain the order on derivatives and notation introduced in Sec- 
tion 5. We first extend the result in Section 6 for the case n = 4. 

Definition 7.1. A surface u(x, y) is nondegenerate if the generalized Wron- 
skian matrix 

Un-i = 
«2          «3       •••        "n 

\u2          U3          •■■      un     / 

is nonsingular: 

(7.1) A ri_i = det^n_i^0. 

Theorem 7.2. T/ie projective group action on RPn_1 stabilizes at order 

m + 1; where m = //(n). Therefore an equivariant moving frame p( ': J —> 
in"1 t(;iW exist only for k > m + 1. 

Proo/. The proof is identical to that in the case n = 4. One must show that 
the lowest order for which the prolongations of the infinitesimal generators 
(5.8) are independent is m + 1. Under the condition An_i ^ 0 it is not 
hard to see that pr^) va and pr^ va^ are all independent (one would write 
the matrix of coefficients and would check that it has maximal rank).  On 

n-l 
the other hand, if /i,... , /n_i are functions satisfying J2 fiuk = 0> ^OT any 

n-l 
k < m, then it is not hard to show that J2 fi Pr    wa is a combination of 

i=i 
the pr^ va and pr(fc) va^. If fc = m + 1 this will not happen and one can 
prove that the rank of the coefficient matrix is maximal. □ 
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As in the previous section, we want to normalize some of the derivatives 
of the lifted invariants (5.6), and fix, through these normalizations the values 
of the parameters a*-. Once we have done that, the invariants will be given 
by the substitution of these parameters in the remaining lifted invariants. 
We write the matrix A in block form 

"(a <)' 
where A denotes the upper (n — 1) x (n — 1) minor. First of all, normalizing 
the zeroth order lifted invariants v = 0 will specify the column vector a. 
Then we will require v% = 6%, a = 1,2,..., n — 1, k = 2,3,..., n, which will 
normalize the minor A. Finally, we will give n—1 higher order normalizations 
that will allow us to find values for the bottom row vector a. The last entry, 
a£, will be fixed so that the determinant of A, after normalization, remains 
equals 1. 

In view of (5.6), the normalizations v = 0 are achieved by setting 

n-l 

(7.2) a% = - ^T a^/,        a = 1,... , n - 1. 
/3=1 

As before, let us call 

n—1 n—1 

(7.3) K, = K = ^ ^r1^ + <=i>        ** = DkK = Yl aTluk' 
13=1 (3=1 

Notice that Di is the (0,0) differentiation, following the lexicographical or- 
der. The value of K will be fixed at the end of the process. 

Next, we will impose the normalization 

(7.4) K-i = 

/  C2 ^3        •••        *&  \ 

vr1 er1 ••• «s-y 
=/. 

The result of the first order normalizations can be stated using the notation 
introduced in (5.4), (5.5) above. 

Theorem 7.3. Assume that (7.4) and (7.2) hold. Then, 

(7.5) I = K-(C/n_1)-
1, 
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where K   is  the  matrix whose  (fc, I)   entry equals     ^   !£,-(&, I),   k,l   = 

1,2,..., n — 1. In particular, the entry is zero if 

T(k, I) is not defined. 

= Oj or, equivalently, 

Proof. Applying Leibniz' rule to 

n-l 

£*(*«") = 5>!«f 
/3=1 

produces the following formula: 

n-l 

(7.6) Kv% = Y,aH-Y. 
0=1 l=i "-  -" 

vfKrfal). 

Therefore, applying the normalizations (7.4), (7.2), we obtain 

n-l 

(7 7)        yal^ = l ['] Kr {k'l)' Whei1        ^ - Kl) 

0=1 [OJ when       /x(fc) < //(/). 

Thus, the analogy of equation (6.8) in the general case is 

/ a\        a\      ...    a^.A   / u1 

A • Un-x = 

\a 

a\ 

n— 1      ^n—1 

xn-l 

<=i/ 

2 

«2 

«3 

u?-1   u?-1 

71 

r.n-l 

= K, 

1^, 
71—1   / 
71        / 

where K is given as in the statement of the Theorem. □ 

In order to understand the last group of normalizations, it will help us 
to discuss the form of the (n — 1) x (n — 1) matrix K in some detail. Let 
us represent its nonzero entries by a *. Recall from the notations that the 
triangular number tk represents the number of derivatives of order less than 
k. That is, t^+l, tfc+2,..., £&+! are the positions in the lexicographical order 
for derivatives of order k. Using this ordering of derivatives and conditions 



Differential invariants for parametrized projective surfaces 829 

for when = 0, we readily see that K has the shape 

/ *  0 **o ***o 

0* 0** o*** 

00 *00 **00 

00 0*0 0**0 

00 00* 00** 

0 0 

0 0 

0 ... 

0 ... 

0 0 

0 0 

*    * 
0    * 

0   * 

0   0 

\ 0   0 

..   * 0 * * 

..   * * 0 * 

..0 0 * * 

..   * 0 0 * 

..   * * 0 0 

0   0 * 0 ..   0 0 * * 0 

0   0 0 * 0   . ..   0 0 0 * * 

0   0 0 ..   * 0 0 

0   0 0 ..   0 * 0 

..   0 0 * 0 0 

..   0 0 0 * 0 

0   0      0 / 

where the block in (block) place (i,j) is of size (i + 1) x (j + 1) and where, 
if /i(n) = ra, there are m by m blocks. 

In particular, K is upper triangular, and the diagonal entries all equal K. 
Therefore det K = K71'1, and hence, in view of our order zero normalization 
(7.5), A € SL(n) if and only if 

K=(An-ir1^ 

Thus, 
n-l 

< = #-;>>?• 
i=i 

Moreover, the derivatives ifi, .K^j^s? • • • 5 multiplied by appropriate bino- 
mial coefficients, appear one after another in order, in each row, in the 
indicated nonzero slots. This way, we can determine how many different 
KjS appear in the normalization of each one of the parameters in A by sim- 
ply counting how many nonzero entries there are in the appropriate row of 
K. Notice that, for example, if /i(n) = m, and if n — tm < m, the coefficients 
a*™-1 will involve only K, if n — tm = m, these coefficients will involve K 
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and Kx, and if n — tm = m+1 (that is n = £m+i), the coefficients will involve 
K, Kx and Ky, and these would be the only possible cases for a*™-1. The 
same way, by simply counting how many nonzero (or zero) entries there are 
in the kth row, we can know how many different if/s, and which ones, are 
used in the definition of the parameters af. 

Lemma 7.4. Suppose tm < n < tm+i. Then 

n-ts- s(m - s + 1) < £m_s-fi 

for all s = 1,2,..., m — 1. 

Proof. The proof is a simple calculation. Observe that n — tm < m +1, since 
m + 1 is the difference between tm and tm+i. Also, we have that 

n-ts =n-tm + (tm- tm-l) + (tm-l - ^m-2) H h (**+! - *a) 

= n - tm + m + (m — 1) H h (s + 1) 

,     ,   (m + s + l)(m-s) 
= n - tm + ^ • 

Therefore 

/              ..N                      (m + s + l)(m —5) 
n — ts — s(m — s + l) = n — tm-\ s(m — s) — s 

(m — s)(Tn — 5 + 1) 
< m + 1 + ^  - s = tr, zm—s+l' 

This suffices to prove the result. □ 

To make the description of the frame more accessible to the reader we 
will separate the normalizations in three different groups. 

Case 1. 

Assume that n — im+i. Consider the normalizations 

(7.8)   Vj -U' 
J = (jn — s + 2, s - 1), (m — s + 1, 5),... , (1, m), 3 = 1,... , m. 

That is, we normalize the derivatives i;r*+1"~   for r = tm+i + s,tm+i + s + 
1,... ,tm+i+ra + l. 
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Theorem 7.5. The normalizations (7.8) determine Kj = fcj(^(m+1)) as 
functions of u and its derivatives up to order m + 1, for all j = 2,..., n. 
Indeed, 

(7.9) (a?   a^   ...    <_1)=k^-_1
1, 

where k = (kj).  These values of the parameters, together with 

where An = 

/An_i(2,l)\ 
An_i(3,l) 

; and where An-i(j, 1) is the determinant ob- 

VAn_i(n,l)7 
tained from An_i 6y substituting the column with the jth derivative by the 
column without differentiation, define an equivariant frame of order m + 1. 

Proof Formula 7.7 implies that such a normalization will enable us to write 
Kr(rjty in terms of as many of the Kj as will appear in the formula for the 
coefficients aj,... , aj^. If k = £s+i — 1, then these coefficients are written 
in terms of Ki,... , Kn_ts_s(m_s+1), since there are exactly n — ts — s(m — 
5 + 1) nonzero entries in each ts+i — 1 row. Lemma 7.4 and (7.7) imply 
that normalizations (7.8) will express .Ktm-a+i+ij... ,Ktrn_s+2 in terms of 
previous K's, namely, ifi,... KtTn_s+1. 

In this manner, the condition 

~tm+l-l    _   ~Wl-l _ n 

(case s = m) produces K2 and K3 in terms of a^1-1 and the derivatives 
^L+i+m* ^L+i+m+i* * = l,2,...,n - 1. But the formulae for af1 in 
Theorem 7.3, and that of Ki, imply that 

so that 

nn-l _ A-(n+l)/n ^ ,„        v 

K2 = k2 = 1 A^+^A^^n - 1, n + m) 

K3 = ks = 1 A^+^An.iCn - 1, n + m + 1) 
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where An-i(i,j) is the determinant of the matrix obtained from U when we 
substitute the column with i derivatives by the column with j derivatives, 
and Cij(U) is the cofactor of the matrix U associated to the (1,3) entry. 

Next, the normalizations 

qfim — 1 — nfim — 1 — r.^m-1 — A 

will produce K^ K5 and KQ in terms of K2 and if3, namely 

n-l 

Ea^"lfiL+i+-i = 3^4, 

n-l 

n—1 / v 

The value of a*m  1 has been already fixed to be 

+ A-li [2ir2a,n_2(C/n_i) + (m - l)lir3Ciin_i(£/n_i)] 

and therefore 

k± = iA;5+1)/nAr,-i(«m - 1, n + m - 1) 

+ -A^ [2fc2An_i(n - 2, n + m - 1) 

+ (m - l)k3An-i(n - 1, n + m - 1) 

A* = ^ifWAn-i^ - l,n + m) 

+ A-i1 
1 1 

A;2An_i(n-2,n + m) + -A;3An_i(n- l,n + m) 

^6 =     , 2    ^A^f ^"An-iC^ - 1,n + m + 1) + m(m — 1) 

+ -7 -fT An-i [2fc2An-i(n - 2, n + m + 1) 

+ (m - l)fc3An_i(n - 1, n + m + 1)]. 
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They can be expressed in terms of derivatives of u up to order m + 1, upon 
substitution of k2 and k^. 

And so the substitution proceeds. At each step we solve for some of the 
Kj in terms of the previous ones, until we reach the case 5 = 1, in which we 
solve for Kr, r = tm + 1,..., tm+i = n, in terms of Ki,..., .Ktm. Since the 
entries of k are generated by this recursion, they can be explicitly obtained 
upon inversion of a lower triangular matrix, whose entries are written in 
terms of determinants of the form An_i(i, j). Indeed, if we assume we have 
normalized up to vr

3+1~ =0, r = n + s,n + s + l,...,n + ra+l, obtaining 
the values of fctm_s+1+i, ...,fctm_a+2 in terms of £2, • • • ,fctm_a+i, then the 
normalizations 

r.ts-l v^3     =0,        r = n + s — l,n + s,... ,n + m + 1, 

will produce the relationship 

n-l 

(7.10)       Y,4°-1uim+1+s+k-2 = 
1=1 

tm+i + s + k-2 

tm-s+2 + k      I 
Ki tm-s^+k 

ts-l for all k = 1,2,..., m — s + 3. On the other hand we have that a^5     equals 

^    A^Ci^-l^n-l) 

m—s-f 1 r-f-l rr 

+ EE 
r=l     Z=l  LL 

tr+s_i + S + Z — 2 
^tr+zC'z,tr+s_l+s+/-2(^n-l) 

Hence, we obtain the recursion formula for the coefficients of k, namely 

-1 

(7.11)   fctm_s+2+fc = (m-5-fc + 4)-1(S^1
3j    A^ 

l m-s+lr+1 ,     i   7 _ Q\ 

•   A^1An.1(ts-l)n +s + k-2) +   J^   E(r-/ + 2)(5
S_2   ) 

•fetr+zAn_i(*r+s-i + 5 + /-2,n + 5 + A;-2) 

for all A; = 1,2,..., m — s + 3. 
This formula can be easily written in a matrix formulation of the form 

k = b + J3k, where k and b are vectors, the latter being defined by the first 
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term in the equation (7.11), and where B is a strictly lower triangular matrix 
whose entries are written in terms of An_i(z,<7). Hence k = (/ — JB)~1b 
can be explicitly obtained. At the end we have produced a vector k = 
(kj) defining the values of K2, K3,..., Kn appearing in our frame when we 
substitute them in the matrix K. This vector will also determine the values 
of the parameters af,..., aJJ. Namely 

(a?    aS    ...    a«)A,-l = k, (a?   a^    ...    a») = k^, 

and 

n-l 

2=1 

This completes the proof of case 1. 

An-l(3, 1) 

VAn-iCn,!)/ 
D 

Case 2. 

Assume that n = tm + m. In this case we simply have to repeat the 
procedure above, once normalizations (7.8) have been substituted by the 
normalizations 

{j^+i. = o = vt ^Y1'1 = 0, Cm+l + J- tm+l    J ' 

(7.12)        J = (m - s + 2,5 - 1), (m - s + 1, s),..., (2, m - 1), (1, m), 

5 = 2, . . . , 771 — 1, 

and 
5*2-1 = 0j J = (m + 1,0), (m, 1),..., (2, m - 1). 

Case 5. 

Assume that ra = tm + fc for some fc = 1,2,..., m — 1. Again, repeat the 
procedure followed in the first case, but now the normalizations are somehow 
more involved. They are given by 

J = (m — k + 1, A; — 1), (TO — fc, fc),..., (1, m — 1), 

(TO — s + 2, 5 — 1), (TO — s + 1, s),..., (TO — fc + 2, fc — 1) 

whenever 5 = 1,2,..., fc, and 

-Wl-l ^ o, J = (TO - 5 + 1, S - 1), (TO - 5, «), . . . , (1, TO - 1), 
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whenever s = k + 1,..., m — 1. This gives us a total of tm + k — 1 normal- 
izations that, as we indicated in the first case, will generate values for Kj, 
j = 2,..., n in terms of i^™4"1) and, hence, will determine the rest of the 
parameters involved in the construction of the frame. 

8. Conclusions. 

In this paper we have described the regularized moving frame method. Us- 
ing this method, we have computed complete systems of generating dif- 
ferential invariants and invariant differential operators for the geometry of 
two-dimensional surfaces in projective space. These results can be directly 
applied to problems of equivalence, symmetry and rigidity of projective sur- 
faces. 

As outlined in the introduction, there are important implications of our 
result in the study of generalizations of AGD evolutions to the case of two 
independent variables. For example, in the case n = 3, one can obtain the 
most general formula for invariant evolutions for maps u: R2 —> RP2. For 
that we use the same approach used in [12] and deduce that the most general 
invariant evolution is given by 

(8.1) 2        2 

where Ji and J2 are two general differential invariants for the action. From 
our results in this paper, we can conclude that a generating set of differential 
invariants is given by the four independent functionals 

h = 

12 = 

«i Ulx 
ul ulx 

ul «t 
ul < 

«J ulyy 

«J < 

4 «J 
ul < 

h = 

h = 

ul,,    u* 
u: 

xy 
2 
xy 

ul   ul 

u: 

u: u. 

u: 

u: 

4 uly 1 ulx < 
,.2 ,.2 ?, „ 2 « 2 ux Uxy uxx uy 

ul < 
I z < 

These four invariants are the generalizations of the standard Schwarz deriva- 
tive, for the case of maps u\ R2 —> RP2.   The evolution (8.1) induces an 
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evolution on the invariants /i, J2, /s, I4, which, as explained in the introduc- 
tion, can be regarded as a generalization of the standard Hamiltonian KdV 
evolution — the Lie-Poisson evolution on the dual of the Virasoro algebra: 

where h is the Hamiltonian. In particular, the Korteweg-deVries equation 
is obtained when h = I. 

But soon one realizes that we can never get a Hamiltonian evolution 
that way. For instance, (8.1) relies on a 2-dimensional vector of invariants 
(^15^2)) whereas we now have 4 independent invariants. And even if we 
choose only two of them we can never find an independent Hamiltonian 
evolution: the invariants depend on the second jet of the surfaces, rather 
than on the third or higher jet, which happens in the case of curves. In view 
of these difficulties we need to find other (third order) invariants that will 
evolve according to a Hamiltonian system. For example, the three invariants: 

I = 3(I1)y-2(I3)x-2li-3I1h, 

(8.2) ^ = 3(J2)t/ ~ 2U4)x - 2/4 - 3/2/3, 

K = 4(h)x + 4(/3)y + 2/3/4 - |/l/2. 

will generate an entire family of Hamiltonian evolutions on the dual of the 
Virasoro algebra, one per direction on the (re, 2/)-plane. The following results 
can be found in [19]. 

Theorem 8.1. Given any combination dz = adx + /3dy, a, (3 G R, there 
exists an invariant functional E^p = a2/ + OL^K + (3 J such that, if Ji = 
ah, J2 = (3h, and if u evolves following equation (8.1), then Ea^ evolves 
following the KdV Hamiltonian evolution 

(Ea,p)t = hzzz + 2EOL^hz + (Ea^)zh. 

In this sense, the Eaip can be viewed as generalizations of the traditional 
Schwarzian derivative. 

As for classical Hamiltonian systems in two independent variables such 
as the KP equation, one finds one unavoidable complication: the nonlocal 
character of either the Hamiltonian functional or of the Poisson structure 
itself. 
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Theorem 8.2. Consider I the invariant defined in (8.2). Then there exists 

an analytic function h: R2 —» R such that, if Ji = / + h and J^ = h, and if 
u evolves by (8.1), then I will satisfy the KP equation 

3 
\^t)x :=: \J-xxx   I   ollxjx ~r "Zro  ±yy 

Of course, the function h in the Theorem will never be a local functional 
on the jet space. We can't talk about the differential invariance of /&■, since 
it is not well defined for such purposes (a differential invariant is always a 
local functional on the jet space). That is, a more general theory would 
be necessary to include these nonlocal systems in the framework we have 
presented in this paper. 

Further relationship of these evolutions with integrable partial differen- 
tial equations and the underlying Poisson geometry is still under investiga- 
tion. 
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