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1. Introduction. 

The concept of special Lagrangian submanifolds is introduced by Harvey 
and Lawson in the seminal paper [HL]. In [SYZ], Strominger, Yau and Za- 
slow propose a construction of the mirror threefold Z of a given Calabi-Yau 
threefold X using special Lagrangian tori. Roughly speaking, the mirror 
threefold Z should be realized as the compactified moduli space of special 
Lagrangian 3-torus T on X together with flat ?7(l)-connections on T. In 
particular, if the mirror threefold of X exists, then X should admit a fibra- 
tion with general fiber being a special Lagrangian 3-torus. 

Recall that a Calabi-Yau manifold is a compact connected Kahler man- 
ifold with vanishing first Chern class. By Yau's theorem ([Y]), given a 
Calabi-Yau manifold X there exists an unique Ricci-flat metric UJ in the 
Kahler class (Here we have identified a Kahler metric with its associated 
Kahler form). Note that a Ricci-flat Kahler metric is equivalent to a Rie- 
mannian metric whose holonomy group is a subgroup of SU(n). This metric 
is the so-called Calabi-Yau metric. Now we recall the notion of special La- 
grangian submanifolds. 

Definition 1.1. Let X be a Calabi-Yau manifold of complex dimension n 
with a Calabi-Yau metric u and a holomorphic n-form ft normalized in the 
following sense that 

(1.1) (-l)n(n-lV2(y/^l/2)n Q A H = LJn/n\. 

Note that Q, is unique up to a phase factor a20, 9 e R. We will call (-X^CJ, ft) 
a Calabi-Yau triple. A special Lagrangian submanifold of (X,a;,ft) is a 
compact manifold M of real dimension n together with an immersion / : 
M -> X such that 

(1.2) feu = 0   and    /*Im( A) = 0   for some       0 e R. 
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Given a Calabi-Yau triple (X^ou^Q) the deformation theory of a spe- 
cial Lagrangian submanifold / : M —> X is studied by McLean ([M]). His 
result says that the infinitesimal deformation space can be identified with 
Hl (M, R) and every infinitesimal deformation can be realized as an actual 
deformation. 

In section 2, we will study how the special Lagrangian submanifold de- 
forms when the Calabi-Yau metric varies (keeping the SU(n) holonomy). 
Note that deforming the Calabi-Yau metric is equivalent to deforming both 
the Kahler class and the complex structure on X by Yau's theorem. There- 
fore we can separate our deformation into deforming the Kahler class and 
deforming the complex structure on X. We prove that the deformation of / 
is unobstructed when the complex structure on X varies and we also identify 
the obstruction when the Kahler class varies. 

In section 3 we study the degeneration of Calabi-Yau metrics on Kummer 
threefold Y. Here Y is obtained as the minimal resolution of the quotient 
Yo of the product of three elliptic curves by a diagonal Z3 action. We 
glue the complete Calabi metric ([Ca]) on each of the neighborhoods of the 
exceptional fibers to the background flat metric. We show that they are 
approximate Calabi-Yau metrics on Y. In if 3 surface case this phenomenon 
was studied by Page ([P]), Kobayashi ([K]) and others. The main point 
is certain Ck'a estimates which are uniform in gluing parameters. For the 
crucial C0 estimate, we need a lower bound on Green's function in terms of 
geometric data (see Lemma 3.3). The proof of the lemma is given by Peter 
Li and is communicated to us by Naichung C. Leung. We also borrow a 
trick from [K] to get the desired Ck>a estimate. 

Once we have understood the degeneration of Calabi-Yau metric on Y, 
we can use the deformation theory developed in section 2 to obtain special 
Lagrangian tori on Y. Here we use the fact that there are special Lagrangian 
(immersed) tori in the singular variety Yo with respect to the degenerated 
Calabi-Yau metric (induced from the flat metric on the elliptic curve). 

However the threefold Y is rigid and does not have a mirror in the usual 
sense. Also the special Lagrangian tori constructed here does not give rise 
to a fibration. Thus this example can not be used as an example of the SYZ 
construction. 

We remark that it is nontrivial to show the existence of special La- 
grangian submanifolds. The few examples we know are: l)Special La- 
grangian torus (singular) fibrations in certain /C3 surfaces. In this case, 
the existence is proved by using the twistor family of complex structures 
which carries a elliptic fibration with respect to one complex structure to 
a special Lagrangian torus fibration with respect to another complex struc- 
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ture (see [HL], pl54 or [GW], for example); 2)Bryant's examples ([B]) of 
the fixed point sets of anti-holomorphic involutions; 3)Special Lagrangian 
torus fibrations of Borcea-Voisin threefolds ([GW]) with respect to degener- 
ate Calabi-Yau metrics. 

Note that besides Kummer threefold Y, there are many Calabi-Yau 
threefolds which can be obtained as the resolutions of a finite group quo- 
tient of Abelian varieties. They are extensively studied by Roan ([R]) and 
others. To study special Lagrangian submanifolds on these spaces, we need 
to have a good model of complete Ricci-flat metrics near each of exceptional 
fibers. For Y as above, the exceptional fiber is CP2 and such metric was 
constructed explicitly by Calabi ([Ca]). 

The author would like to thank Naichung C. Leung and Peter Li for their 
help and Yu Yuan for useful discussion. Also the author thank the referee 
for pointing out a mistake in the previous version of this paper. 

2. Deformation of Special Lagrangian Submanifolds. 

Assume that there is a smooth family of complex structure Jt on compact 
connected differential manifold X, t e (—£,£). Denote X with complex 
structure Jt by Xt. Assume that (Xtru>u ^t) is a family of Calabi-Yau 
triples. Let /o : M —> XQ be a special Lagrangian submanifold. We want 
to study the obstruction to deforming /o as t varies. Let ft : M —> Xt 
be a family of special Lagrangian submanifolds. Then ffat = 0 and 
/t*Im(e*^Wftt) = 0 for some real valued function 6(t) : (—s,e) —> R with 
0(0) = 0. At t = 0, 

Jt(ft*"t) = |(/t>t + n(j^t) = fSLwut + fSa 

= mW)duj0 + fZdi(W)uJo + fSa. 

where ^|t=o = a e iI2(Xo,C), Jift\t=o = W is a vector field in TXQ 

defined over fo(M) and Lw is Lie derivative. 
So 

(2.1) ^(/Mlt=o = <V5i(W)LJo + ROL. 

Note that since we only assume that /o is an immersion, in general W could 
be multivalued at some points, but anyway we can use the trick in section 
1 of [M] to get around it. We pretend to have /o is an embedding and we 
identify M with fo(M) in the following. Also note that if we fix the complex 
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structure Jt = J, then a e i71'1(Xo). Similarly at t = 0, 

= /o*^ Imfio + fSP + IS Im (^(OJflo) 

+ /0*/? + /0*Im(^(0)fio). 

So 

(2.2) ^/t*Im(e^)^)lt=o = d/o*i(W)Imfio + fSP + ^W/^Re^o. 

where |lm^|t=o = 0 6 ^(XQ^R). 

Prom (2.1) we see that the obstruction to the deformation of special 
Lagrangian submanifolds is /oi?2(Xo,C) when the Kahler class deforms. 
Since f^ReCto is the volume form on M, we can make fgfi + 0/(O)/oRe 
QQ be zero class by choosing ^(O). Hence it follows from (2.2) that the 
deformation of special Lagrangian submanifolds is unobstructed when the 
complex structure deforms. Next we show that infinitesimal deformations 
can be extended to actual deformations when they are unobstructed. Our 
proof follows the arguments of [M]. 

Theorem 2.1. i) Assume that (Xt,u>t,ft>t) is & family of Calabi-Yau 
triples with fixed cohomology class [cot] - Then special Lagrangian sub- 
manifold fo : M —> XQ can be extended to a family of special La- 
grangian submanifolds ft : M —> Xt, for t G (—£,£), where S is a 
small positive number. 

ii) Assume that (X, ujt, Q) is a family of Calabi-Yau triples and fo : M —> 
X is a special Lagrangian submanifold with respect to LUQ. Further 
assume that foH2(X,C) = 0. Then there are a family of special La- 
grangian submanifolds ft'.M-^X with respect to ut, for t G (—5, fi), 
where 5 is a small positive number. 

Proof We prove i) and ii) together by implicit function theorem. The quo- 
tient bundle NM\X — foTX/TM can be viewed as a subbundle of f^TX 
using metric UQ . Let * be the Hodge star operator defined by metric UQ. 

There is an identification between C^fi^M)) and Crl'a(M,A^M|X) given 
by (f) = i(W){ujo). The exponential map below is defined by metric UQ. Let 
x be an arbitrary point in M, consider the map 

(2.3) F : (-e, s) x C^ft^M)) -> C0'a(n2(M)) 0 C0'a(fin(M)) 
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defined by 

FM) = ((exp, W(x)yuju (exp, W(a;))*Imfit). 

Here we have absorbed the phase factor e%e® into flt, so that /Q ^Imfit are 
zero cohomology class on M for all small t. 

Denote f^HW)^ by V7- By the identity /Q i(Vr)Imrio|t=o = *V; (see 

[M], §3), the following partial derivative follows from the calculation of (2.1) 
and (2.2), 

(2.4) £2^(0,0)(^) = (# + da, d * V + dj9), 

where da = /Q^^|t=o and d/3 = /o^Imnt|t=o. Note that map 

Z>JFV(0,0) : C1^^1^)) "^ ^^(^(M)) 0 ^^(^(M)) 

can be factored through as a map from Crl'Q:(ri1(M)) into 

Imd{C'1'0(ft1(M)) -> C0'a(^2(M))}eImd{C1'a(nn-1(M)) 
-> C0'a(nn(M))}. 

The key thing is that map F can also be factored through as above. This can 
be seen as follows: first, [(exp^ W{x)Yut] = [/o^t] = [/o^o] = 0. Here we 
have used the assumption in ii); Second, [(exp^. W(:r))*Im£V| = [/olm^t] = 
Lftlmfto] = 0. 

By the Hodge decomposition of ri1(M), DF^O, 0) is a surjective map, we 
can apply implicit function theorem to F which maps (—s, e) x C1'a(fi1(M)) 
into 

ImdlC^^M)) -> Cr0'a(fi2(M))}eImd{C1'a(firi-1(M)) 

-* C0'a(fin(M))}. 

So for small t, F(t,(j)) — 0 has solutions (/>(£). Then the special Lagrangian 
submanifolds are given by ft{x) = exp^ W(t, x) where (/>(t) = i(W^(t, x))(ct;o). 
D 

Remark 2.1. If mirror symmetry holds for Calabi-Yau threefold X with 
/i2'0(X) = 0, then it switches the moduli of complex structures to the moduli 
of Kahler structures. We suspect that for any Calabi-Yau threefold X with 
/i2'0(X) = 0, f*H2(X,C) = 0 for special Lagrangian torus / which gives 
the fibration of X, i.e. the deformation of the special Lagrangian torus is 
unobstructed when Kahler class deforms. 
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Example 2.2. K3 surfaces. Here we adopt the notation of [GW], §1. 
Things are complicated by h2'0 ^ 0. Consider the mirror family SM, the 
deformation of Kahler classes satisfies -^LJt € M, but the homology class 
[/(T2)] of the special Lagrangian torus is E. So the deformation of the 
special Lagrangian torus is unobstructed by Theorem 2.1 since E.M = 0. 
For the deformation of complex structures within the mirror family SM, the 
family of holomorphic (2,0)-forms are 

nt = Bt + ^ + ^t-^t.B^ E + ^-^ _ ^tE)E)^ 

where Bt and tit belong to M and m = 1. So the deformation of the special 
Lagrangian torus is unobstructed by Theorem 2.1 since E.4rQt = 0 

Example 2.3. Quintic threefolds. Since h1*1 = 1, the Kahler class can not 
deform. There is no obstruction to the deformation of special Lagrangian 
submanifolds when complex structures deform by Theorem 2.1. 

3. Kummer threefold. 

First we describe this Kummer threefold. Let £ be a primitive cubic root of 1. 
Then E^ = C/Z[l, £] is the unique elliptic curve which has an automorphism 
of degree 3, namely cp : E^ —» E^ with (p(z) = £ • z. For holomorphic map 
$ : E^ x E^ x E^ —> E^ x E^ x E^ with 

*(^l, ^2, ^3) = (f • ^1, ^ ' 32, $ • ^3), 

we have $3 =Id and $ has 27 isolated fixed points. Therefore the quotient 
variety YQ = E^ x E^ x ^/{$} has 27 isolated singular points P; of type 
C3/Zs. If we blow up these singular points, we get a smooth Calabi-Yau 
manifold Y. We call Y Kummer threefold. Note that i?2'1^) = 0, in 
particular Y has no deformation of the complex structure. Let us first 
describe the holomorphic (3,0)-form on Y. 

Let TT : Y —► I'o be the resolution map. Then Cl = dzi A dz2 A dzs is 
a holomorphic (3,0)-form on E^ x E^ x E^ . Let QQ be the holomorphic 
(3,0)-form on YQ induced from Cl. Denote 7r*Jlo by J7. Then 

Lemma 3.1. fl is a holomorphic (3,0)-form on Y. 

Proof. We only need to check that 7r*fio extends across the exceptional 
divisors and is nonzero everywhere on the exceptional divisors.   This is a 
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local calculation and is true for any dimension. Let Zn acts on Cn by 

where £ is a primitive nth root of 1.   XQ = Cn/Zn has a resolution with 
trivial canonical bundle.   Let TT : X -> XQ be this resolution map.   Then 
X is the total space of the canonical line bundle Kcpn-i of CP72-1 and the 
exceptional fiber is CPn~1. 

In terms of local coordinates, we consider a coordinate chart UQ in 
CP71"1: 

l:Uo = C1"1 C CP71"1 

Then 
TT : iirCpn-i|f/0 —> cn/zn 

^([Ij^ir-- ?2/n-l],A) = (An, Any!,... jAny^x). 

Holomorphic form d^i A • • • d^ descends to the non-singular part of XQ. We 
need to show that 7r*(dzi A • • • dzn) extends to whole X. To show this, we 
check it under above local coordinate system. 

ir*(dzi A--- dzn) = d\n A d{\^yi) A • • • A d{\^yn-i) 

= — d\ A dyi A • • • A dyn-i. 
n 

This simple calculation shows directly that ^{dzi A • • • d^) extends to an 
everywhere non-zero holomorphic n-form on X. □ 

3.1. Degeneration of Kahler-Einstein metrics. 

Now we describe the Ricci-flat metric on the blowup C3/Z3 of C3/Z3 con- 
structed by Calabi ([Ca] ). This metric is 50(6)-invariant and asymptoti- 
cally locally Euclidean. Because of 50(6)-symmetry, the Einstein equation 
for the metric is reduced to an ordinary differential equation for the Kahler 
potential. Therefore we look for a Ricci-flat Kahler metric on C3\(0,0,0) 
in the form y/-iddh, where h = h(u) with u = \zi\2 +\z2\2 + l^j2. The 
equation for a Ricci-flat Kahler metric is 

(3.1) (V^lddhf = ul 

where CUQ = ^/^Iddu is the standard metric on C3. Since 

^Iddh = ti(u)V-[ddu + h"{u)yf^idu/\~du, 
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the equation (3.1) reduces to 

h'(u)3 + uti(u)2 ■ h"{u) = 1. 

Solving this equation, we have 

d(u*h'(uY)     3u2 

(3-2) **,    ","U 
vw = (i+^)   , 

where a is a positive constant.   Integrating (3.2), we have (subscript a is 
used to indicate dependence on a) 

w-..(1+^;*((1+5)*-i) 
(3-3) fn        (, a*\XI% \ 

 = arctan 
V^ I \fZa 

+ c. 

/ 

The function ha{u) behaves asymptotically like u as u —> oo and like alog?x 
as 14 —* 0. Changing the coordinate under blowup as in Lemma 3.1, by 
a simple calculation one can see that the Kahler form \f^lddha extends 
smoothly across the exceptional divisor of C3/Z3. 

Prom (3.3) we get the following estimate of metric ga on C3/Z3 given 
bjy/^lddha as u —> oo: 

ha(u) =u + 0 I - ) , 

(3-4) 3^ = ^ + 0(4), 
^^r 
rgaa = 0 

^U0 

1 

In particular, the metric is asymptotically locally Euclidean in the sense 
that 

\Rm\ = O f —r )    as u 

where Rm denotes the curvature tensor. To control the curvature for small 
u, we assume that the holomorphic bisectional curvature of metric gi is 
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bounded by CQ. Note that for any t € C* we have scaling property: ^J(^) = 

<7a/t2, where fa : C3/Z3—> C3/^3 is multiplication by £. So as ^ —> 0, i.e., 
near exceptional divisor CP2, we have the following estimate of metric ga: 

(3.5) the holomorphic bisectional curvature of metric ga < CQ/CL. 

We now construct the approximated Kahler-Einstein metric on Y by 
gluing these model metrics to each of the neighborhoods of exceptional di- 
visors of Y. For each of singular points Pi in YQ, i = 1, • • • , 27, we choose 
a small neighborhood UQI which is isomorphic to Bs/Zs for some fixed pos- 
itive S ^ 1, where Bs denotes a metric ball in C3 of radius 5. Assume 
Uoi n UQJ = 0 if i ^ j. Let r = (|2:i|2 + l^l2 + k3|2)1/2 be the distance 
function on C3 and t(r) be a cut-off function such that: 1) t(r) = 1 for 
r < 1 - <J, 2) t(r) = 0 for r > 1 and 3) [^(r)! < f. If we choose positive 
numbers a; sufficiently small, then we define Kahler potential Ha(r) on Y 

by 

Ha(r) = (1 - t(r/5))r2 + t(r/5) • ^(r2) on the resolution Ui of C/bi, 

Ha(r) = \zi|2 + 1*212 + 1^312 on the complement Y\(UiUi). 

It is easy to see that ua = \f^lddHa defines a Kahler metric ga on Y since 
we are gluing along almost flat part of two metrics on neighborhoods of 
exceptional divisors. The metric ga is not Ricci-Flat only in the 27 neck 
regions Ni defined by t(r/8) • (1 — t(r/S)) ^ 0. Denote maxi{l/ai} by ca. 
From (3.4) and (3.5) we have the following estimate of metric ga : 

(3.7) the holomorphic bisectional curvature of metric ga < coca. 

Yau's existence theorem of Ricci-flat Kahler metrics says that the fol- 
lowing Monge-Ampere equation has an unique solution ua up to a constant: 

(3.8) (uja + V^lddua)3 = ef« • LJI 

where fa is defined by /a = log(^^).   From (3.4) a direct computation 

shows that the function /a = a3 • fa on the neck Ni where smooth function 
fa and their derivative is bounded uniformly on Ni. From now on C is some 
constant independent of a* which may vary from place to place. We have 

(3.9) ||/a||c2.«<C.|a|3, 

where |a|2 = £f N2. 
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Before we derive estimates for the solution ua of (3.8). We need the 
following two lemmas. Sobolev inequality plays a central role in deriving 
estimates for the solutions of Monge-Ampere equation (3.8). The following 
Sobolev lemma follows from Theorem 13 in C. Croke's paper [Cr]. 

Lemma 3.2. Let (M,g) be a compact Riemannian manifold of dimension 
m without boundary and V be the volume. Then there exist two positive 
constants ci and C2 such that for any f in Sobolev space iJ1(M); 

Orn-2 

f  \f\^dV)  "   -C2- [  \f\2dV< [  \df\2dV, 
M J JM JM 

where ci and ci depend only on the dimension of M, the volume of M, the 
diameter of M and a lower bound on the Ricci curvature of M. 

The proof of the next lemma belongs to Peter Li (see also [L]). It is 
communicated to us by Naichung C. Leung. 

Lemma 3.3. Let (M,g) be a compact Riemannian manifold without bound- 
ary and G(x,y) be the Green function of Laplacian. Assume that 

[ G(x,y)dV(x)=0. 
JM 

Then there exists a constant c such that 

(3.11) G{x,y)>-c, 

where c depends only on the dimension of M, the volume of M, the diameter 
of M and a lower bound on the Ricci curvature of M. 

Proof. The Green's function Gr(x, y) can be obtained by integrating 

H{x,y,t)- — 

over the variable 0 < t < oo, where H(x, y, t) is the heat kernel and V is the 
volume of M. Let 

K(x,y,t) = H(x,y,t) - —. 

Clearly 
fl 1 J   K(x,y,t)dt>--. 
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Hence we only need to estimate the integral over 1 < t < oo. 
The semi-group property says that 

K(x,y,2t)=  f K(x,z,t)K(z,y,t)dz. 
JM 

Applying Schwartz inequality on the right hand side, we have 

\K(x,y,2t)\ <([ K2(x,z,t)dz)      .([ K2(z^t)d 
\JM J \JM 

= ([ K(x,z,t)K(z,x,t)dz\ 

•^K(z,y,t)K(y,z,t)dz^ 

= K{x,x,2t)ll2>K(y,y,2tYl\ 

K(x,yrt) > -Kll\x,x,t)Kll2{y,y,t). 

On the other hand, to estimate K{x, x, t) we differentiate the semi-group 
property with respect to t and get 

K'{x, x, 2t) = 2      K(x, z, t) • K\z, x, t)dz = 2 f K(x, z, t) • AK(z, x, t)dz 
JM JM 

= -2 /  \VK(x,z,t)\2dz. 
JM 

Since  /   K{x, z, t)dz = 0, the Poincare inequality implies that 
JM 

/   \VK(x,z,t)\2dz>\      K2(x,z,t)dz = \K(x,x,2t), 
JM JM 

where A is the first eigenvalue. This implies that 

K'(x,x,t) < -2\K(x,x,t), 

hence 
K(x,x,t) < Kix.x.^e-2^'^ 

for all t > 1. However, 

K(#, x, 1) = H(x,x, 1) — — < H(x, x, 1). 
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Now the upper bound of H(x, y, 1) and the lower bound of A give an estimate 
of K(x, y, t) which is integrable over 1 < t < oo. Note that both the upper 
bound of H(x, x, 1) and the lower bound of A only depend on the lower 
bound of Ricci curvature and the diameter (see, for example, [SY] Theorem 
4.6, pl69 and Theorem 4, pi 16 respectively). The lemma is proved. □ 

Since the family of metrics ga has uniformly bound on the volume, the 
diameter and a lower bound on the Ricci curvature, the positive constants 
ci and C2 in (3.10) and c in (3.11) can be chosen independent of a; for the 
family of metrics ga. 

We begin with the C0-estimate of ua. If we only need the uniform bound 
of ua, we can do it in the way of [T], pl57 (see also [Y]). However we need \ua\ 
to be small which is necessary in the second derivative estimate. We modify 

their proof. Without loss of generality, we may assume that / uaujl = 0. 

Denote u>a + \/^lddua by cja. Let Va — fY a;^. Then 

—   /   Ua(Zl -ul) = — UaV^lddUa A (^ + £a A CJa + »%) 
Va JY Va JY 

= -TJT I   V^dua A dua A (22 + 2a A uja + v*) 
Va JY 

< -— /  y/^ldua A dua A ul 
Va JY 

Note that 

^ J ua(u
3

a -UJZ) = 1.J ua(ef* - 1)UJI 

By applying (3.9) and Holder inequality, we have 

l^|V«a|
2a;3<l^Me/"-l)|^ 

-^/Kk-c'|a|3G^K|2^ 
1/2 

By Poincare inequality (here we use the first eigenvalue has an uniform 
bound for metric ga), we deduce 

f/yKM<C>l^/l^3) 
1/2 
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Let 

IKI|2<C-|a|3 

I/P 

We have proved 

(3-12) „__       ,, 

Denote u+ = max(ua, 0) and u~ = max(-ifca, 0). A direct computation gives 

= -^ / (u-)pV^lddua A (ul + ZaAua + ul) 
K JY 

_ 4p 

• 1 / x/=19 ((<.-)"?) A 5 ((u-)*) A (Sj +50 A ua + cj) 

and 

^(^)p(^-^) 

va JY 
_        4p 

~"(^ + T)2' 

.^jfV=T0((ti+)at1)A5((t»+),!t1)A(^+SaAa;o+^) 

Combining these two inequalities, we have 

(P- 



IP+1^ 

800 Peng Lu 

It follows from this and Sobolev inequality (3.10) that 

(3.3)   ^{'iU^T-U" 
< C ■ \a\3 ■ 1-l^u^l 

Let po = 2 and pi = fpi-i, for i > 1. It follows from (3.13) that 

(3.14) iKng- < 2 II.JS:; + j^tij • v. I Kr--1^ ■ H3
. 

Assume that Ht/ollp^j < Q-i ' W\3 (we assume Q-i > 1). Then by Holder 
inequality 

(7 . 25? /  1       Z* \ (Pt-1-1)/Pi-1 

Note that 

Vci       1     ■ 4ci • (pi_i - 1)   l 1      ' 

r*    n2 

ci   l 4ci-(p{_i-l) 

We can choose Cj = (C ■ pi-i)1^-1 ■ Ci-i. Using (3.12), it follows that Cj 
has a uniform bound C. We have proved 

IMPi<c>|3. 
Now the C0-estimate follows by letting i —> oo, 

(3.15) |K||co<C.|a|3, 

where C is independent of a. 
Now we derive the C2-estimate for txa. Let Aa and Aa be Laplacians 

given by metrics uja and uja respectively. By (3.7) CQ • ca bounds the holo- 
morphic bisectional curvature of metric uja. Let 

fc(a:) = -jg(-^j)(a:)/c«- 
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Then |fc(x)| < CQ. The following inequality is (2.22) in [Y]. 

(3.16) e2°"u"Aa(e-2?;«u°(3 + Aaua))(x) 

> A(x) + B{x)(S + Aaua) + C(x)(3 + Aaua)3/2, 

where 
A(x) = Aafa(x) - 9inf (-i%) (x), 

B(x) = -6ca, 

C(x) = (2ca + inf (-RiW) (x)) e-W*)/2, 

ca = ^(l + ^JCo- 

We try to get an estimate of 3 + Aaua from (3.16). Suppose that e_2caUa(3 + 
Aa«0) attains its maximum at x G Y. Then from (3.16) 

0 > e2Z°u°Aa (e-2^"" (3 + Aaua)) (x) 

> Aafa(x) + 9k(x)ca - 65,(3 + Aaua)(x) 

+ e-/.(»)/2(i + Co _ k(x))ca(Z + Aana)3/2(x). 

Hence 
either e-f^/2(l + CQ - k(x))ca(3 + Aauaf/2(x) 

< 12ca(3 + Aaua)(x) 

or e"/-^)/^! + co - fe(x))ca(3 + Aatta)
3/2(a;) 

<-2(Aa/a(x) + 9fc(a;)ca). 

By (3.9) it implies that 

(3 + Aa«Q)(x)<C. 

So we have proved for any y 6 Y using (3.15) 

(3.17) (3 + Aaua)(y) < e2?a(SupUQ-infUa)(3 + A^)^) < c, 

when max{aj}/min{ai} is bound by an arbitrary fixed number. 
The equation (3.8) and estimate (3.9) imply 

3 + Aaua = £(1 + «,) > 3 ("[[(I + ua) j      = 3e^W/3 > 3(1 - C ■ \a\2). 
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Prom this, (3.17), (3.9) and equation (3.8) it follows 

(3.18) C-l-ua<ua<C-ua. 

This is the C2-estimate for ua. 
It is well-known that C2'Q:-estimate follows directly from (3.18): 

(3.19) KlUa  < C. 

(see Theorem 17.14 in [GT] and it is easy to check that the constant C is 
independent of a's.) 

We need to improve estimate (3.19).   We follow the approach of R. 
Kobayashi ([K]). Consider the following equation with parameter t: 

(3.20) 
K + ^ddua,tf = (1 + t(e'» - 1)) • <4, 

I uatt -(4 = 0. 

It has an unique solution by [Y]. Since log(l + t(efa — 1)) has the same 
properties as fa, the above discussion implies that there is C2'a estimate 
like (3.19) for u^: 

(3.21) IK,*||C2,a < c, 

where constant C is independent of t G [0,1] and o.   Differentiating the 
equation (3.20) with respect to t, we have 

(3.22) Aa,; 
du, 'a,t   5^-1 

dt 1 + t(c/« - 1)' 

Let Gaj{x, y) be the Green's function for the Laplacian of metric ua^ = 
Ua + ^f—ldduat with infy Gaf(x, y) = 1. Then by Green's formula, 

dua,t{x) dua,t(y) (3.23) —— - — JY-df--a,-y-t jY ±a,t——Ga.tfry)*^ 
dt Vn.tJv     dt       a>z    Va.tJv    ""     dt 

where V^t = fy^t- So 

dua,t(x)       I   1     f duatt(y)   3 
dt 

+ 
Va,t JY 

dUa,t(y) I   3 
dt Kt-^a) 
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Now we estimate each term on the right side. The first integral is 0 by the 
second equation in (3.20). As for the second integral, 

1     f dua,t(y)f 3 
\va>tJY dt Kt-^a) < 

duait(x) 
dt c° 

— f t\ef' a£ 

< C\a\ 
dUatt(x) I 

dt \cQ 

<i 
"■ 2 

dUajix) 
dt c0 

when a is small.   Because of (3.21), Lemma 3.3 implies that there is a 
constant C independent of a and t such that 

-L   f Gatfay)^tt<C. 

I      efa - 1 
This and 

< c • M 
11 + t(c/- - 1) 

imply the third integral is bounded by C • |a|3. So we get 

(3.24) 

duat 
dt C0 

1 
< - 
- 2 

dUai 

dt c0 
+ C.|a|3, 

du, 'a,t 

dt c0 
^C-M3. 

Denote the Holder norm with respect to metric u;a by Ck>a and Holder norm 
with respect to a fixed coordinate system on Y by Ck>a. Note that near the 
exceptional divisor metric ga goes to zero at a rate |a|. Now it follows from 
the interior Schauder estimate for equation (3.22), (3.9) and (3.24) that 

dugj 

(3.25) 

dt 

dut 

C2>< 
<C.|a|3, 

•a,t 

dt c2 

du a,t 

dt C2^(K) 

<C.|a|2, 

<C.|a|3, 

where K is any relatively compact set in the complement of the 27 excep- 
tional divisor CP2's, C is a constant independent of t and a; but depending 
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on K and max{ai}/min{a;}. Note that u^o = 0 and uayi = ua. Prom. 
ua = /0 -^dt and (3.25), we have 

IK||c^<C.|a|3, 

\\Ua\\c2 < C • \a\2 

\\ua\\c2,a{K)<C-\a\3. 

It follows by bootstrapping argument that 

IM^a < c ■ H3
, 

r,26x K||e3<C.|a|3/2, 
1 "    ^ lklb<C.|a|, 

l|wa||g4i«w<C'.|a|3. 

We have proved the following 

Theorem 3.4. Let YQ and Y be the space defined at the beginning of this 
section. Let u)a be the Kdhler metric defined by (3.6). Then, for any 
relatively compact set K in the complement of the 27 exceptional divi- 
sor CP2 'Sj there exist positive constants Ci and C2 both independent of 
a (but Ci depending on K and max{ai}/min{a;} and C2 depending on 
max{a;}/min{a;}) such that 

(3-27) „      „ . ~      .   ,3 

llwa||g4,aW < Ci • |a|3, 

\\Ua\\c^(K) < C2 ' \a\2 

3.2. Special Lagrangian tori in Y. 

In this subsection we prove the existence of a family of special Lagrangian 
tori in Y. First E^ x E^ x E^ has special Lagrangian torus jfibration with 
respect to holomorphic (3,0)-form Cl = dzi A dz2 A dzs and flat metric, 
namely Ta^c = Ta x Ti x Tc for any real numbers a, b and c. Here Ta C E^ 
is the image of R+av^-T under the projection C —►2%. For generic values 
of a, 6 and c, the image of Tafrc in Yb does not meet those P^'s and gives 
an immersed torus. It is in fact a special Lagrangian torus with respect to 
the quotient metric, which is a degenerate Kahler-Einstein metric, and the 
holomorphic form ffo- Now we conclude that this immersed torus in YQ can 
be perturbed to a special Lagrangian torus in Y. In fact the same is true 
for any special Lagrangian submanifold in Yo\{Pi}. 
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Theorem 3.5. Let Y be Kummer threefold.   Then any special Lagrangian 
torus fo in Yo\{Pi} can be perturbed to a special Lagrangian torus in Y. 

Proof. Assume that open set U contains the image fo in Yo\{Pi} and the 
closure U of U is compact. We have shown that 7r*f^o is a holomorphic 
(3,0)-formony. 

Now the Ricci-flat metric Sa = uja + yf^\ddua differs from uja by a exact 
form y/—lddua on U which is small by Theorem 3.4 and 7r*fio is the same as 
0,0 on U. Prom the proof of Theorem 2.1, we conclude that we can deform 
special Lagrangian torus fo to a special Lagrangian torus in (Y,u;a,7r*fio) 
when we choose ai small enough and max{ai}/min{a2} bounded. □ 

Remark 3.2. Note that Kummer surfaces are constructed exactly the same 
way as Y. Theorem 3.4 is true for Kummer surfaces (see [K], Theorem 18) 
and the relation between holomorphic (3,0)-form is also true for Kummer 
surfaces (holomorphic (2,0)-form then). So we get the existence of a fam- 
ily of special Lagrangian tori on Kummer surfaces without using elliptic 
fibration method of [HL]. 
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