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In this article, we shall use the construction of Hirzebruch, Hofer, 
Kato, and Deligne-Mostow on compact complex 2-ball quotients 
to construct further finite Galois coverings over them, and by the 
analytical result of [M-S] and [Z], these coverings will admit Kahler 
metrics which are quasi-negatively curved, or negatively curved 
when the branching locus is smooth. 

0. Introduction. 

In this article, we continue our quest in [Z] for examples of quasi-negatively 
curved Kahler manifolds. Let Nn (n > 2) be the set of n-dimensional 
compact complex manifolds which admit Kahler metrics with quasi-negative 
sectional curvature (i.e., non-positive everywhere and negative somewhere). 

It is generally believed that there should be abundant examples in each 
jVn. However, due to the strong rigidity of such type of manifolds, very few 
examples are constructed so far. The first example of surface in A/2 which is 
not biholomorphic to ball quotients was constructed in [M-S] in 1980. For 
n > 2, such non-ball quotient example in J\fn is still yet to be found. 

The only successful attempt in finding such manifolds is by constructing 
finite branched covering over a compact ball quotient, with branching locus 
along a totally geodesic divisor2. The pull back of the canonical metric 
of the ball quotient gives a negatively curved metric on the covering, with 

1 Research partially supported by a NSF Grant and Alfred P. Sloan Fellowship. 
This project is also sponsored by the National Security Agency under grant # 
MDA904-98-1-0036. 

2In the real case, Gromov and Thurston [G-T] constructed lots of negatively 
curved compact (or complete with finite volume) Riemannian manifolds, by taking 
cyclic coverings over a compact real ball quotient along a totally geodesic subman- 
ifold of (real) codimension two. 
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756 Fangyang Zheng 

degeneration along the ramification locus. By adding a suitably chosen 
correction metric near the ramification divisor, one gets a genuine metric on 
the covering space which is quasi-negatively curved. 

In [Z], we generalized the analytical result of [M-S] to higher dimen- 
sions and also relaxed the restriction on the totally geodesic divisor from 
smoothness to normal crossing. The further Fermat coverings of the three 
geometricly constructed ball quotients by Hirzebruch ([H]) then give three 
sequences of examples in .A/2, which are not ball quotients, and are differ- 
ent from Mostow-Siu's examples since they have different ratios of Chern 
numbers. 

Since Hirzebruch's work, there have been more examples of smooth com- 
pact quotients of the complex 2-ball constructed by Hofer ([HI], [Ho]), Kato 
([K2]), and the celebrated work of Deligne-Mostow [D-M]. (There was also 
the construction of Livne ([L]) on cyclic covers over the elliptic modular 
surface of level A/", which also leads to some ball quotients). All of these ball 
quotients are finite Galois coverings over some relatively simple surfaces. 
The ramification divisors are necessarily totally geodesic with respect to the 
canonical metric on the ball quotients, since that metric is kept invariant by 
any automorphism. 

The purpose of this article is to discuss further coverings over these 
geometricly constructed ball quotients. In the normal crossing case, the 
characterization theorem of Kato [K] allow us to get lots of such further 
coverings, which by the analytical result of [M-S] and [Z] (Theorem 2), are 
examples in A/2. This demonstrates the abundance of surfaces in A/2, which 
is our main goal in this article. See §2 for the detailed descriptions. 

Theorem 11 in §2.5 can also be regarded as (a special case of) an unique- 
ness result for the Deligne-Mostow's construction. We verified the two di- 
mensional cases (similar to Theorem 11), and we believe the higher dimen- 
sional cases should also hold3. Similar uniqueness phenomenon should also 
occur for the half integrality condition. 

The paper is organized as following. In §1, we collect some results by 
Hirzebruch, Kato, and Deligne-Mostow. The results stated there are not 
in their full generality, instead they are adopted only to the extent and in 
the format to suit our later needs. In §2, we state our observations and 
examples. 

3That is, if a smooth ball quotient Bn/T can be a finite Galois cover over Qst 
with branching locus away from Q, then F should be commensurable with a Picard 
lattice. See [D-M] or §2.5 for the notations. 
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1. Preliminaries. 

1.1. Uniformization of smooth orbifolds. 

Let us first recall the definition of finite Galois coverings. Suppose Xn 

is a compact4 complex manifold. A finite branched covering of X is an 
irreducible normal complex analytic space Yn with a finite, surjective holo- 
morphic map / : Yn —> Xn onto X. Denote by Rf the subset of Y where 
/ is not a local biholomorphism, and let Bf = f(Rf) be its image. Rf 
is called the ramification locus of the covering /, and Bf the branching 
locus. Restrict / to the open subset fi:Y\ f~l{Bf) —> X \ Bf, it be- 
comes an unbranched finite covering. This corresponds to a subgroup of 
finite index 7ri(Y \ f~1(Bf)y yo) C ni(X \ Bf, XQ). f is called Galois if this 
subgroup is normal. In this case, there is a finite deck transformation group 
G C Aut(Y) acting on Y, and X = Y/G is the quotient. By a theorem of 
Grauert and Remmert ([G-R]), for any reduced, effective divisor D in X, 
there is a one-one correspondence between the normal subgroups of finite 
index in 7ri(X \ D,XQ) and the finite Galois coverings over X which are 
branched at most along D,  i.e., with Bf C D. 

In general, a finite Galois covering Y over X need not to be smooth. The 
following result of Kato ([K], Theorem 1) gives a necessary and sufficient 
condition for the smoothness of Y in terms of the corresponding subgroup 
of ^i{X \ D, XQ). In order to state his result, we need some terminologies 
first. 

Let U be a complex5 manifold and b : U -> N be a function into the 
set of positive integers. The pair ([/, b) is called uniformizable, if there is a 
connected complex manifold Z and a discrete subgroup F C Aut(Z) such 
that the quotient Z/T is biholomorphic to £/, and for any z E Zy the order 
of the isotropy subgroup rz is equal to b(Tz). Here we identified Z/T with 
U. In this case, (Z, F) is called an uniformization of (£/, 6). 

In general, a pair (X, b) of a complex manifold with an N-valued function 

4The compactness assumption is not necessary, we put is here simply because 
we only need this case in the article. 

5 Again this can be defined for the real case as well, but we will only be interested 
in the complex case. 
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is called an orbifold?, if it is locally uniformizable, i.e., for any x G X, there 
exits an open neighborhood U of x such that ([/, b\u) is uniformizable. 

Example. Let X be any complex manifold, and D = J2 A be a normal 
crossing divisor in X. Arbitrarily assign an integer bi > 2 to each £);. Define 
6 : X —► N by putting 6(x) equal to the product of bi for all the Di passing 
though x (and let b(x) = 1 if there is no such Di). Then (X, 6) is an orbifold. 
We will call such an (X, b) a normal crossing orbifold. 

Let (X, 6) be a compact orbifold. Since X \ &"1(1) is a complex analytic 
subset, so we may denote by D = YA=I A ^s irreducible components of 
codimension 1. For convenience, we will say the orbifold (X, b) is of branch- 
ing type b = (&i,... , 6r), where bi = b(x) for a generic point x G A- 

Following Kato ([K]), let us denote by H = iri(X \ D,XQ), where XQ is a 
generic point in X. (The base point will not be important in the following 
discussion). For each divisor D^ let 7$ be a small loop around D^ (composed 
by a path from XQ to a point on the loop and then come back). Let Hb be 
the normal closure of {7J1,... ,7^} in i?. For any x G X, choose a small 
open ball U centered at x and define Hx = ni(U \ D, XQ) and Hb similarly. 
Let ix : Hx —*• H be the homomorphism induced by the inclusion map. 

For any subgroup K C iJ, let Z0 be the corresponding unbranched 
covering over X\D. Let Z be the Fox completion of Z0 over X ([Fl]). It 
is a normal irreducible complex analytic space. We will call Z the branched 
covering over X corresponding to K C H. 

Theorem (Kato). An orbifold (X, b) is uniformizable if and only if for any 
x £ X, z~1(fl"6) = Hb. The corresponding covering is called the universal 
uniformization. More generally, the covering corresponding to a subgroup 
K C H is an uniformization o/(X, b) if and only if for any x € X, ^(K) = 
H!}. holds. In this case, the universal uniformization factors through the one 
corresponding to K. 

As an example, let us consider the one dimensional case. Let Eg be a 
compact Riemann surface of genus g. Let {pi,... ,pr} be r distinct points 
and assign an integers bi > 2 to each pi. Then excluding the case g = 0, r = 1 
and g = 0, r = 2,61 7^ 62, the orbifold is uniformizable. This is the classical 
solution of Fox to the FenchePs conjecture ([F]). In the next subsection, we 
will see a (partial) generalization of this in the two dimensional case, the 
Hirzebruch-Kato surfaces. 

6See [Tl] for the definitions and detailed discussions. In this article, we are only 
interested in the special case where the underlying space is smooth. 
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In this article, we shall be mainly interested in the simplest situation. 
Following Hirzebruch ([HI]), we define 

Definition. Let Xn be a compact complex manifold. A finite Galois cov- 
ering / : Y —> X is called a good covering, if Y is smooth and the branching 
locus Bf is a normal crossing divisor. 

In other words, a good covering is just a finite uniformization over a 
normal crossing orbifold. 

1.2. Hirzebruch-Kato surfaces. 

In [H], Hirzebruch constructed Fermat coverings of P2 branched along an 
arrangement of lines, and produced many interesting examples of algebraic 
surfaces. We refer the reader to [H] and [HI] for details. 

Let L = Ui=i h be k distinct lines in P2. Let E = {pfc+b • • • iPr} be the 
set of singular points, namely, those points where there are three or more 
lines in L passing through. 

We will always assume E ^ </), that is, L is not in general position. 
Let X = X(L) be the blowing up of P2 at E. And denote by A = k 

(1 < i < k) the proper transform of k and Da = Ea (k + 1 < a < r) the 
exceptional divisor over pa, where E = {p^+i? • • • ,Pr}- 

Definition 1. A compact complex surface Y is called a Hirzebruch-Kato 
surface, if it is a good covering over X(L) for some line arrangement L and 
has branching type (&i,... ,6r), where 6; > 2 are arbitrary for 1 < i < fc, 
and ba = ma(6, L) is defined to be the least common multiple of all the bj 
where lj passes through pa and contains at least another singular point (if 
there is no such lj through pa, then set ba = 1), k + 1 < a < r. 

We will call such a Y a Hirzebruch-Kato surface of type Lb = YA=I Wi- 
In [Kl], it is proved that for any given {&i,... , fyj, each > 2, and define 

ba = '^a(b,L) as above, the normal crossing orbifold (X, b) admits a finite 
uniformization. That is, there will be Hirzebruch-Kato surfaces of type Lb. 
The construction is a direct generalization of the Fenchel-Fox theorem. We 
refer the readers to [Kl] for the details. 

In §2, we will see that any two Hirzebruch-Kato surfaces of the same 
type Lb are commensurable, that is, they admit a common finite unbranched 
cover. So the specific subgroup of TTI(X \ D) = 7ri(P2 \ L) will not be too 
important here. 
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It would be very interesting to study the relationship between 
Hirzebruch-Kato surfaces over different arrangements, and the geography 
of their Chern numbers distribution. We believe that further exploration of 
this class will produce new and interesting examples of algebraic surfaces. 
Any higher dimensional generalizations would also be very interesting. It is 
worth noting that in [Hu], Hunt studied the interesting problem of threefold 
geography by considering the Fermat coverings over plane arrangements in 
P3. A generalization of Hirzebruch-Kato covering to three dimension will 
provide an even richer class of algebraic threefolds. 

Example: Fermat coverings. In [H], Hirzebruch constructed Fermat 
coverings over any arrangement L, they are good coverings over X{L) of 
constant branching type: hi = n for all 1 < i < r. n is called the order of 
the Fermat covering. Among them, he found three arrangements which, for 
suitable n, the Fermat covering becomes quotient of the unit ball B2 in C2. 

Example: Homogeneous coverings. In [Ho] and [HI], more ball quo- 
tients were found, they are good coverings over X(L) with the following 
type: 

bi = n, 1 < i < fe,       and    b0i = m, k + 1 < a <r 

where n and m are positive integers. Note that unlike the Fermat covering 
case, where the good coverings always exist, for a given L and given (n, m), 
there may not be any good coverings over X(L) with the homogeneous type 
bi = n, 6a = m. 

In [HI] (p. 140 ), a complete list of all possible (n, m) over the so-called 
homogeneous arrangements is given for the corresponding coverings to be 
ball quotient. In these cases, the existence of the coverings was obtained by 
Hofer in [Ho]. Over the complete quadrilateral, there are four homogeneous 
coverings which are ball quotients. They are part of the Deligne-Mostow's 
list (see the next subsection), since we will see in §2.1 that any two good 
coverings of the same branching type will be commensurable. 

1.3. Deligne-Mostow's construction. 

In [D-M], Deligne and Mostow used the monodromy map of the hyper- 
geometric functions to produce lattices in PU(l,n), n < 57.   In the two 

7The program was started by Picard a hundred years ago, and was also studied 
by Terada [Te]. See [D-M] for the history and references. 
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dimensional case, their result can be stated as the following. 
Write Xj = X(L)y where L is the complete quadrilateral arrangement: 

L = {(zo : zi : 22) G P2  |  20^1^2(^0 - zi)(zi - Z2)(z2 - ZQ) = 0} 

Xj is the blowing up of P2 at the four triple points. The resulting ten curves 
D = |Ji=i ^uUa=7 -^a are all (—1) curves, and there is an unique way to label 
them as J5y with 0 < i < j < 4 such that DijDDki ^ </> <$ {i, j}1^!^? 0 = (/>- 

Q = Xi\D is the moduli spaces of 5-punctured P1. Let /x = (/XQ, • • • , M4) 
be any 5-uple of numbers such that 0 < /z* < 1 for each i, X)i=o A^ = 2? and 
satisfies the integrality condition (INT): 

(!-//»- //j)-1 GZ,   V0<i<j<4 with ^ + /x^ < 1. 

Then the image of the monodromy map p : 7ri(Q) —> PC7(1,2) will be a 
lattice, called a Picard lattice. For any sublattice FQ C F which acts freely 
on S2, the normal subgroup of finite index p~1(ro) C 7ri(Q) realizes the 
smooth quotient of the ball, B^/TQ, as a finite Galois covering over Qst, the 
stable extension of Q with respect to )U, and the branching locus is contained 
in Qst\Q' We will call such a ball quotient B2/To a Deligne-Mostow quotient. 

For five punctures, there are 27 solutions of /x which satisfies the inte- 
grality condition (INT). In 8 cases among those 27, Qst = Xj. In these 
eight cases, Qst \ Q = D is normal crossing, so a Deligne-Mostow quotient 
Y = B2/To is a finite uniformization of (Xj, 6), with 

bij = (1 -Mi-Mi)        along    Aj 

These eight solutions of M = (Mo,--- ,M4) are 

1. M=  ^(2,2,2,2,2) 

2. M=  ^(4,3,3,3,3) 

3. M=  ^(2,4,4,4,4) 

4. M=  ^(4,5,5,5,5) 

5. M=  ^(6^5,4,4) 

6. M=  ^(6,3,5,5,5) 

7. M=  i(8,4,6,6,6) 
15" 
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8.       ,*=  1(14,7,9,9,9) 

Note that the first one gives the Fermat covering of order 5, the next three 
are homogeneous coverings of type (n, m) (that is, four disjoint lines will have 
ba = m and the rest six lines have hi = n) equal to (4,8), (9,3), and (6,4), 
respectively. The seventh one gives 3,3,3,5,5,5; 15,15,15,5, which is a 
Hirzebruch-Kato surface. The first and the seventh are the only Hirzebruch- 
Kato surfaces among these eight types. 

We will see in §2.5 that, up to commensurability, these eight are the 
only smooth quotients of the ball that can be a good cover over Xj, with 
branching locus contained in D. 

2. Construction of quasi-negatively curved surfaces. 

2.1. Good coverings. 

Throughout this subsection, we shall always assume that Xn is a compact 
complex manifold, and D = X^=i A a normal crossing divisor in X. Also 
fix a point XQ G X \ D and write H = Tri(X \ D, XQ). Let 7$ be a small loop 
around Di. For a r-uple of positive integers b = (61,... , br) and any x e X, 
define if6, fl*, and ix : Hx —> H as in §1.1. Note that here we allow 6; to 
be equal to 1. 

Define }CX,D to be the set of all normal subgroups K C H of finite index 
which are fe-complete for some positive integer r-uple 6, i.e., for any x £ X, 
i-\K) = Hb

x. 
By Kato's theorem, good coverings over X with branching locus con- 

tained in D are in one-one correspondence with subgroups in JCX^D- We will 
call the corresponding r-uple b = (61,... , br) the branching type of a good 
covering Y or subgroup K. bi is just the multiplicity of / : Y —> X at any 
f~1(x) for a generic point x G Di or equivalently, the order of the image of 
7i in H/K. Of course Bf is just the union of those Di with bi > 2. 

The following observation is a direct consequence of Kato's theorem, nev- 
ertheless it provides the starting point of our examples of (quasi-)negatively 
curved surfaces. 

Proposition 1. Let Xn and D be as above. Let Kj K' be in K,x,D, with 
branching type b, b', respectively. Then K fl K' is also in ICX.DJ and tts 
branching type b" is the least common multiple ofb and b', that is, b" = [bi, ty] 
for each i. 
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Proof. For any x 6 X, we have 

i-^K n K') = i-^K) n z"1^') = Hb
x n ^ = Jjf 

The last equality holds because, under our assumption, D is normal crossing, 
so there is always a neighborhood U of x such that U \ D is biholomorphic 
to a product (A*)p x An~p, where A and A* are the unit disc and punctured 
unit disc in C, respectively. So Hx is free abelian. □ 

The next is a simple consequence of assumptions that D is normal cross- 
ing, Y is smooth, and / is Galois (so the deck transformation group acts 
transitively on each fiber of /). 

Proposition 2. Let f : Y —► X be a good covering with Bf C D. Then 
Rf = f~1(Bf)f Rf is normal crossing, and for each Di in Bf, Ri = f~1(Di) 
is the disjoint union of isomorphic smooth divisors, each is a good cover over 
Di. 

Let d be the degree of f. Then all the Chem numbers ofY divided by 
d can be computed by the data on X, D, and the branching type b (that is, 
two coverings with the same b will have equal Chem number ratios). 

By a theorem of Yau [Y], if ci(Y) < 0, which is equivalent to that 
Kx + 5^(1 —ir) A being ample, then Y will be a quotient of the complex 
unit ball Bn if and only if the first two Chern numbers of Y satisfies the 
equality 

(_l)n(ncn_2(n + 1)cn-2C2)=0 

(and in general, when ci(Y) < 0, the left hand side is non-positive). That 
gives an effective way to detect the ball quotients when X and D are explic- 
itly given. By Tian-Yau's theorem (see §2.2), this characterization can be 
given on the orbifold (X, 6) even without knowing the existence of a finite 
uniformization. We will discuss this in the next subsection. 

The last sentence in Proposition 2 can be proved directly by induction 
on the dimensions, or by using the following corollary of Proposition 1. But 
first let us introduce a terminology. 

Definition. Two complex manifolds are called commensurable, if they have 
a common finite unbranched cover. 

Proposition 3. Let Y, Y1 and Y" be the good coverings of X correspond- 
ing to K, K' and K" = K n K'.   Then Y" is a good cover over Y, with 
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branching locus contained in Rf = f~1(Bf)) where f : Y —> X. The branch- 
ing multiplicity ofY" —» Y along any component of Ri — f~1(Di) is &"/&*. 
Similarly, Y" —> Y' is also a good covering. 

In particular, ifY and Yf over X have equal branching type b = V, then 
they are commensurable. 

Now suppose we have good coverings Y and Y' over X such that Y is 
a quotient of the complex ball and b ^ b", where b" = [6, b']. Let h be the 
canonical complex hyperbolic metric on Y. It is an invariant metric, that 
is, any biholomorphism of Y is an isometry of h. So each component of 
ify, being fixed by some element of the deck transformation group, becomes 
fixed point set of an /i-isometry. So it is totally geodesic with respect to h. 
Therefore, Y" is a good covering over the ball quotient Y along a normal 
crossing, totally geodesic divisor R contained in Rf. (Since b ^ &", this is 
truly a branched covering). By the analytical result of [M-S] (Lemma 2) 
and [Z] (Theorem 2), we know that Y" will admit a Kahler metric whose 
complex curvature operator is negative definite in the complement of the 
singularities of the ramification locus of Y" —> y, which is a subvariety of 
codimension at least two. (In case the set Y^i//>bi Di is smooth, the complex 
curvature operator of Y" is negative definite everywhere). In particular, 
these manifolds are all strongly rigid in the sense that, any compact Kahler 
manifold homotopy equivalent to such a manifold must also be biholomor- 
phic or antibiholomorphic to it. This is the strong rigidity theorem of Siu, 
generalizing (in the complex case) the Mostow rigidity theorem for locally 
symmetric spaces. 

To simplify our later discussions, let us introduce a couple of notations. 
By Proposition 1, all good coverings over X with the same branching type 
b are commensurable, so we shall simply concentrate on the branching type 
vectors 6. 

Suppose Xn is compact complex manifold, and D = Y7i=i A is a normal 
crossing divisor in it. Let us fix the order of the divisors Di here. Consider 
the space Nr of r-uples of positive integers. Let 

Gx,D = {b £ Nr   |   (X, b)  has  a finite  uniformization. } 

Here as before, (X, b) means the normal crossing orbifold with b(x) equal 
to the product of bi for all Di passing through x (1 if none). Any two 
such finite uniformizations (or equivalently, good coverings with the same 
branching type) are commensurable to each other. For two elements b and 
b' in <?, define the partial order 

b -< b1 &   bi\ 6'  Vi 
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and b -< V if b < V and b ± b'. 
For simplicity, we will also denote by [6, b'] the vector whose z-th com- 

ponent is the least common multiple [&i,^], and call it the least common 
multiple of b and V\ It is after both b and b' in the above order. 

Now define BX.D to be the subset of Gx,D where the finite uniformization 
is a quotient of the complex unit ball, and let 

Gx,D = {b€G  I  byb'foi some b' G B} 

Summerize the above discussions, we have 

Theorem 4. Let Xn be a compact Kahler manifold and D = X^i=i Di a 
normal crossing divisor in X. IfbEQ^, and Y is any good covering of X 
with branching type b along D, then a finite unbranched covering of Y will 
admit a Kahler metric whose complex curvature operator is negative definite 
in the complement of a subvariety with codimension at least two. 

Note that these manifolds are not ball quotients themselves (§2.3, Propo- 
sition 7). 

So the key here is to find examples where B ^ <$, and to have b' strictly 
after some element b of B. 

2.2. A theorem of Tian and Yau. 

In [T-Y], Tian and Yau generalized the work of Yau ([Y]) and Cheng-Yau 
([C-Y], [C-Yl]) on the existence of Kahler-Einstein metrics, and give a com- 
plete characterization of the orbit spaces of a discrete subgroup with finite 
covolume acting on the complex unit ball. We will only need the special case 
when the quotient orbifold is compact and with smooth underlying space. 

Let Xn be a projective manifold, and D = X)i=i ^ a normal crossing 
divisor in X. We fix the order of Di here. Let b = (bi,... , 6r), where each 
bi > 2 is an integer. Consider the normal crossing orbifold (X, b). One can 
define the Chern classes for the orbifold, denoted by Q. We will only need 
the first two: 

cT=c1(j?)-x;(i-i)A 

35 - dX) +1 (i -1) (Ax A + A2) +1 £ (i - £) (i - £) A A 
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Up to common positive multiples, these are just the Chern classes of a finite 
uniformization of (X, b). To be more precise, if Y is a finite uniformization 
of (X, 6) and let d be the degree of Y over X. Then 

dl(X)/d = cin ,   cr2(Y)c2(Y)/d = ci""2^ 

In [T-Y], Tian and Yau proved that if —cf is ample, then there exists an 
unique Kahler-Einstein metric of negative Ricci curvature on X with singu- 
larity along D that is compatible with the orbifold structure of (X, 6), i.e., 
when lifted to a local uniformization, the metric becomes a non-singular 
(usual) metric. Furthermore, the inequality 

(-i)ncrn < (~i)^2(n + 1)cr^-2c2 

holds, with equality if and only if the metric has constant holomorphic sec- 
tional curvature. In this case, (X, b) is the quotient of the complex unit ball 
by a lattice F. Passing to torsion free sublattice, we get a finite uniformiza- 
tion Y of (X, 6). Y is a smooth compact quotient of the ball. In summary, 
a special case of Tian-Yau's theorem gives the following: 

Theorem (Tian-Yau). Let Xn be a projective manifold, and 

*=i 

a normal crossing divisor in X. Let b = (&i,... , 6r), where each bi > 2 is an 
integer. Then (X, b) admits a finite uniformization which is a ball quotient 
if and only if 

C\ < U ,     Cl     =  Ci C2 
n 

In other words, b € Bx,D once the above two necessary numerical con- 
ditions are satisfied. This gives a powerful way to produce compact smooth 
ball quotients geometrically. We will see in §2.7 some new examples of 2-ball 
quotients. 

In the next subsection, we will give the details of the orbifold Chern 
numbers computation in the case of dimension two. For higher dimensions, 
one can either use the virtual exact sequence in [T-Y] (§3), or by taking 
a sufficiently large integer m and a smooth surface S2 C Xn which is the 
intersection of n — 2 generic members in the linear system | — racr|, and 
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then restrict everything down to 5, and reduce it to the two dimensional 
situation8. 

2.3. Ratio of the Chern numbers . 

Prom now on we will concentrate on the two dimensional case, although the 
computations in this subsection can also be carried out in general dimensions 
as well. Let / : Y2 —> X2 be a good covering of degree d with branching 
locus Bf = YJi=i A- Write ffc = /^(A), and Rf = J^=1 i?;. Each Ri is 
a smooth (may be disconnected) curve, and / has multiplicity bi along each 
component of Ri. The following computation of Chern numbers is standard, 
so we omit the proof. 

Proposition 5. For a good covering f : Y2 —> X2 of degree d with branch- 
ing locus Bf = ^21=1 A a^d multiplicity bi along Ri = f~l(Di), the Chern 
numbers ofY are: 

c?(Y)/d = <*(*) + £ 
2=1   L K) KxDi+il-^-)  Df 

2 

(Y)/d = c2(X) + J2 (l - I) (KxDi + A2) 

i^3 x J 
2ev-   uv'-r)^ 

The next is the local version of Hirzebruch's proportionality principle, 
which is due to Enoki ([HI], p. 142), that we shall need later. This can be 
seen quite transparently from the differential geometric point of view, since 
for any local unitary frame {ei} in a ball quotient Yn, the curvature of the 
canonical metric takes the simple form 

Riia = -25   Riifj = -1, i ^ 3 

So when C is a totally geodesic submanifold in y, the curvature of C (for 
the restriction metric) is just the restriction of the curvature of Y, and the 

8M. Davis showed us a simple way to obtain Ci in a neat formula, by a nice local 
splitting principle [D]. 
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Chern forms can be expressed in terms of these curvatures. The advantage of 
a differential geometric argument like this is, it gives inequalities for general 
submanifolds, while equalities characterize the totally geodesy, and it can 
also work for the (finite volume) non-compact complete case. (See [Z], §3 
for more details). In this paper, we just need the simplest case: 

Proposition 6 (Hirzebruch-Enoki local proportionality). If Y2 is a 
compact smooth quotient of the complex 2-ball and C is a smooth, totally 
geodesic curve (may be a disjoint union), then (Ky + SC)C = 0. 

Now let us come back to our good coverings. For a given surface X2 and 
normal crossing divisor D = ^1=1 -A ^n X (here again we fix the order of 
Di), our goal is to find examples in Gx JJ, that is, those surfaces which are 
good coverings over ball quotients branched along totally geodesic divisors. 
We first remark that these surfaces can not be ball quotients themselves, 
that is, 

Proposition 7. B n G+ = 0. 

This is a direct consequence of Propositions 5 and 6. In higher dimen- 
sions, it can be proved similarly that B n G+ = 0, by comparing the ratio of 
the first two Chern numbers. 

In the following subsections, we shall go after those known constructions 
of B in dimension two, obtained by Hirzebruch, Hofer, Livne, Kato, and 
Deligne-Mostow, and discuss the set C/+ in each case. 

In higher dimensions, especially in dimension 3, the construction of 
Deligne and Mostow [D-M] (see also [D-Ml], [Ml] and [T]) also gives several 
compact quotients of the complex ball. However, the branching loci are no 
longer normal crossing, so we can not get further coverings simply by taking 
intersection of the corresponding subgroups. Hopefully, since the singular- 
ities of the ramification are still very mild, a modification of the argument 
perhaps could also yield some (quasi-) negatively curved compact Kahler 
manifolds, the existence of which (other than compact ball quotients) is still 
unknown. 

2.4, Hirzebruch-Kato surfaces: revisit. 

Let us now discuss the necessary conditions for a Hirzebruch-Kato surface to 
be a ball quotient. Recall that such a surface Y is a good covering over X(L), 
the blowing up of P2 at the singular multiple points S of an arrangement 
of lines L = QiLi h-  (2 ^ <f>). The branching locus is D = {Ji=l A where 
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the first k curves are the proper transforms of k and the last rf — k are part 
of the exceptional curves, with branching multiplicities b = (fei,... j&r')? 
where fe; > 2 (1 < i < k) are arbitrary, and 6a = ma(6, L) is the least 
common multiple of all fy where k passes through both the a-th singular 
point pa and at least another singular point, for each k + 1 < a < r'. Here 
we wrote E7 = {pfc+i? • • • iPr'} Q S for the subset where ma > 2. We call 
such a surface a Hirzebruch-Kato surface of type L6, where by an abuse of 
notations, this b actually means (6i,... , &&)> with each bi greater than 1. 

Now write / : Y —> -X'(L) for the covering map and let Ri = /_1(A). 
If Y is a ball quotient, then all the i2», 1 < i < r7, will be totally geodesic 
curves in Y, so by Proposition 6, they satisfy (Ky + 3Ri)Ri = 0. Since 
Ri = £/*(A), this gives 

&+(i+^)A+g(i^)^ A = o 

Also, for each Di = k, Df = 1 — |EnZj| is a positive multiple of i??, which is 
negative. So any line U will have to contain at least two singular points, so 
E' = E and ma is the least common multiple of bi for all U passing through 

POC- 

Apply this to each D^ we get the following 

Proposition 8. // a Hirzebruch-Kato surface of type Lb is a ball quotient, 
then E7 = E; each line k contains at least two points of E; and for each 
1 <i < k, k + l<a<r,it holds 

-2-—      V - 

iAi|-2=(iEii-i)|+£!+;>: ^-i^i 

where p^ is a Qa-fold point of L, and A is the set of nodes ofL. The subscript 
i means taking intersection with U. Conversely, if both identities hold, then 
the Hirzebruch-Kato surface is a ball quotient. 

A particularly useful consequence of the second identity is, if |Ai| < 1, 
then bi > 2. 

The first identity in the above is due to [BHH]. The second identity is 
also known to them. 
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When both equalities in Proposition 8 hold, the Hirzebruch-Kato surface 
Y is indeed a ball quotient. This is because by adding up the first identity 
for all a, one gets ('&C2(Y) — c\{Y))/d = 0 (use Proposition 5 & 6 once each). 
The ampleness of Ky can also be verified. 

Let us now examine the algebraic possibility of the first identity in Propo- 
sition 8. It can be written as 

1=1 

where q > 3, each bi > 2, and m = [&i,... , bq] is the least common multiple. 
A direct computation shows that the following are the only possibilities: 

Proposition 9.   The only solutions for q and b = (fei,... , bq) to the above 
are 

q = 6 

9 = 4 

q = 3 

(2,2,2,2,2,2) 

(3,3,3,3), (2,2,2,6), (2,2,3,3), (2,2,4,4) 

(5,5,5),   (3,6,6),   (3,3,9),   (3,4,4),   (3,3,5), 

(2,8,8), (2,5,10), (2,4,12), (2,3,18), (2,3,10) 

In other words, for a Hirzebruch-Kato surface of type Lb to be a ball 
quotient, the singular points of L will have to be either 3, 4, or 6-fold points, 
and in those cases the multiplicities are also very restrictive. If |Ai| < 1 for 
all i, then all bi > 2, so only 3 or 4-fold points can occur as singular points, 
and with stronger restrictions on those bi. By an easy case by case study, 
we get 

Proposition 10. For all the line arrangements L appeared in [HJ and [HI], 
that is, simplicial real arrangements, arrangements defined by a reflection 
groups or cubic curves, and for any b, the only Hirzebruch-Kato surfaces that 
are ball quotients are the three Fermat coverings found by Hirzebruch in [H], 
and one more in the complete quadrilateral ^4i(6) case: b = (3, 3, 3, 5, 5, 5); 

where the three lines with bi = 5 pass through a common point. 

We omit the proof here. Most of the cases can be immediately ruled out 
by Proposition 8, especially the last sentence. The rest a few can be easily 
excluded by Proposition 9. 

Although most of the Hirzebruch-Kato surfaces are not ball quotients, 
but their existence gives a large amount of elements in Q over X(L), there- 
fore, by taking least common multiples as in Proposition 1, we know that 
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for any X(L), the set C/+ will be non-empty (and contains a large amount 
of elements) whenever B is not empty. 

2.5. The complete quadrilateral. 

Consider the complete quadrilateral 

J4I(6) = {^0^1^2(^0 - Zi)(zi - Z2)(Z2 - ZQ) = 0} 

in P2. Denote by Xj the blowing up of P2 at the four triple points. We use 
this notation because it is the first one of the three ball quotients discovered 
by Hirzebruch [H], we will denote the other two by Xn and XJU later. As 
mentioned in §1.3, the resulting ten curves can be labeled by 

D=   J2   A, 
0<i<j<4 

with the property that Dy fl DM ^ (j> <& {i,3} H {fe, /} = </>. When viewing 
Xi as the stable compactification of the moduli space of 5-punctured P1, 
Dij is the part when the z-th and j-th punctures collide. We will fix the 
order of D as 

(01,02,03,04; 12,13,14,23, 24,34) 

For the "elite-eight" types of the Delight-Mostow's quotients (cf. §1.3), the 
corresponding type vectors b are the following (we keep the same order of 
numbering them as in §1.3) 

^=      V^J ^5 ^) ^J ^5 ^J ^5 *-^5 *^J ^ / 

= (8,8,8,8;    4,4,4,4,4,4) 

= (3,3,3,3;    9,9,9,9,9,9) 

= (4,4,4,4;    6,6,6,6,6,6) 

= (12,12,6,6;   6,4,4,4,4,3) 

= (4,12,12,12; 3,3,3,5,5,5) 

= (5,15,15,15; 3,3,3,5,5,5) 

= (8,24,24,24; 3,3,3,4,4,4) 

of the above eight b are in B for Xj.   The first 
one is also found by Hirzebruch [H], the next three by Hofer (cf.  [HI] and 

1. ftW 

2. 6(2) 

3. 6(3) 

4. &(4> 

5. 6(5) 

6. &(«) 

7. 6P) 

8. 6(8) 

osto w, all 
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[Ho]), and the seventh is exactly the Hirzebruch-Kato surface of Proposition 
10. By Proposition 1, the good coverings with the same b are always com- 
mensurable. This gives an abstract proof of part of the commensurability 
discussion of [D-Ml]. 

Let S5 be the symmetry group of five elements. Any r G S5 induces 
an order change among Diji A? —> DT^T(jy If b and b' can be identified 
through such a reordering, certainly the corresponding coverings will be 
commensurable.   We will denote by rb the permutation of b induces by 

Theorem 11. Any good covering of Xj with branching locus contained in 
D which is a ball quotients must be commensurable with one of the Deligne- 
Mostow's quotients, that is, B = {rb^ \   1 < k < 8,r G 55}. 

Proof Suppose b E B for (Xj,D).  By Proposition 6, each curve Dij will 
give an identity 

2        111 
Oij        Ors        0rt        0st 

where {r, 5, t} = {0,1,... , 4} \ {i, j}. That is, the column vector 

- — —     —) 
boi '602'      '634/ 

satisfies the system of linear equations Ay = n, where u =   \1,1,... ,1), 
and 

A = 

2000000111 
0 2 0 0 0 1 1 0 0 1 
0 0 2 0 1 0 1 0 1 0 
0 0 0 2 1 1 0 1 0 0 
0 0 1 1 2 0 0 0 0 1 
0 1 0 1 0 2 0 0 1 0 
0 1 1 0 0 0 2 1 0 0 
1 0 0 1 0 0 1 2 0 0 
1 0 1 0 0 0 1 0 2 0 
1 1 0 0 1 0 0 0 0 2 

Let {eij} (0 < i < j < 4) be the natural basis, and for 0 < i < 4, denote by 
Vi = Y^jzLi eij' (Here we assume e^ = ey). Then Avi = 2u. Since Au = 5u, 
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so for each i, Vi — ^u is in the kernel of A. They span a 4-dimensional space 
V 

since the sum of all five of them is zero. On the other hand, since the upper 
left 6x6 corner of A is non-degenerate, so the rank of A is 6, and V is the 
kernel of A. Since A(y — ^u) = 0, so there exists some x^ with ^ Xk = 1 
such that 

1    f 
k=0 

Vk- -^u 

That is 

y = YlXkVk~ KU 

k=o 

At each position ij, this gives 

1_ 1 
bij bii~

Xi + Xj     5 

Let fjLk = | - xk, then ^Mfc = 2, and 

&« = (i - m - Vj) 
-i 

It remains to show that each //*. satisfies 0 <///.< 1 . Since //$ + //j = 1 — ^7 
is strictly between 0 and 1, we just need to show that each /z* > 0. Take /20 
for example. By adding up the four equalities which involve /XQ, we have 

^o + ^^-tt 
k=l Ufc 

Since each bok > 2, we get //Q > 0. When /XQ = 0, all bok — 2, so ^ = i 
for 1 < fc < 4. But then 5— = 1 — m — ^2 = 0, which is a contradiction. 
Therefore //Q must be positive, and so are the other /x^. 

In other words, we have represented these b^ as the reciprocal of the 
I — Hi — jjij for five numbers in the interval (0,1) whose sum is 2. This is 
exactly the INT condition in [D-M].  By their result, there are exactly 27 
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solutions, eight of which satisfies /i; + /Zj < 1 for all 0 < i < j < 4, which is 
of course the list from 1 to 8. □ 

For any Hirzebruch-Kato coverings 6, any 1 < k < 8, and any permu- 
tation r, r7 E 55, the least common multiple [rb, r'b^] are all elements in 
Q+ (assume rb ^ r'b^). By Theorem 4, this gives us an abundant class of 
examples of quasi-negatively curved surfaces. 

By Proposition 5, we have 

Proposition 12. If Y is a good covering over Xj with branching type b 
along D, then 

c?(y)/c2(y) = 2+ ^^ 

Note that by [Zl], for any general type compact Kahler surface with 
non-positive sectional curvature, the ratio cf /c2 is always between 2 and 3, 
with 2 and 3 characterizing the quotients of the bidisc D x D or the ball 
JB

2
, respectively. 

2.6. Other arrangements of lines. 

Hirzebruch and Hofer also constructed compact quotient of B2 from some 
other arrangement of lines. They are all homogeneous coverings (cf. §1.2). 
Besides the complete quadrilateral Lj = Ai(6), there are eight more ar- 
rangements involved ([HI]). We will discuss them case by case. 

For an arrangement L = U^i h 0f & lines in P25 we will denote by ts the 
number of 5-fold points, namely, the point where there are exactly s lines, 
in L passing through. Again denote by S the set of singular points, that 
is, s-fold points with s > 3. Let X = X{L) be the blowing up of P2 at all 
points of E, and denote by U the proper transforms and Ea (k + 1 < a < r) 
the exceptional curves. Recall that a homogeneous covering of type (n, m) 
has branching multiplicities bi = n along each k and ba = m along each Ea. 

The Hesse arrangement LJJ. 

k = 12, t2 = 12, £4 = 9, and ts = 0 otherwise. 
It can be described as the following. Fix a smooth cubic curve C in 

P2. Let S be the set of 9 inflection points of C, and consider all plane 
cubic curves containing S. It forms a pencil. There are exactly four singular 
members of this pencil, each being the union of three lines. L/j is just the 
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union of these 12 lines, and E = S consisting of 4-fold points. By [HI], 
the homogeneous covering with (n, m) = (3,3) or (4,2) give ball quotients. 
(The first one is a Fermat covering, the second example of Hirzebruch's three 
original ball quotients). 

Let us denote these 12 lines by kj, with 1 < i < 4 and 1 < j < 3, so 
that for each i, Li = [j kj is a singular member in the Hesse pencil. We will 
denote X(L//) simply by XIh with D = ({Jk]) U (U^a). 

Proposition 13. For this (X//,JD); the only elements of B are those two 
homogeneous ones. 

Proof. Suppose (bij,ba) gives a ball quotient. Since each kj contains three 
points of S, kj is a (—2) curve. So by the local proportionality, we have 

*}- —     —     —      V — 
bij      bik      bu       ^  ba 

where {j, k, 1} = {1,2,3}. Similarly, for each a, we have 

2       v^    1 

Add up the first identity for the three lines in Li, we get 

3    1 9    1 

So the sum of 1/6 for the three lines in the group Li is the same for each i. 
Similarly, if we fix In and add up the second identity for the three singular 
points on Zn, then all the lines in other groups appear exactly once, so we 
have 

°=*Zr+Zr, _2 1 1_ 

c7    ba  ' 4^ hj     bn     bu     hs 

Replace the first term in the right hand side by the first identity, we know 
that all b^ are equal. All ba are thus equal by the second identity. It's now 
easy to see that (3,3) and (4,2) are the only two possibilities. □ 

Denote these two homogeneous type by b^\ i = 1,2. As in the complete 
quadrilateral case, for any Hirzebruch-Kato covering 6, where b^ could be 
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arbitrary (> 2), (while ba is the least common multiple of the four bij with 
kj passing through p^), the least common multiple [6,6^] or [6,6^] gives 
elements in G^- By Theorem 4 they correspond to quasi-negatively curved 
surfaces. 

The dual Hesse arrangement LJJJ = A^(3). 
k = 9, ts = 12, and ts = 0 otherwise. 
This is the dual picture of the nine inflection points on a smooth plane 

cubic. It can be described by the equation 

(4-4)(4-4)(4-4) = o 
in the homogeneous coordinates of P2. Each line contains four triple points, 
so all k are (—3) curves. Now suppose that a ball quotient is a good covering 
over XJII with multiplicities b = (6;, 6a) along D. Since £2 = 0, the local 
proportionality principle takes the simple form: 

~ bi + ^ b„ 
PaZk 

1-—    V - 

Again, fix a line k and add up the second identity for the four triple points 
on Zi, we have 

Pcxek 3=1    J 

Substitute the first term on the right by the first identity, we know that all 67, 
must be equal. By the second identity, all ba must also be equal. So we are 
again in the homogeneous situation. The possibilities are (&»,&«) = (4,8), 
(5,5), (6,4), or (9,3), as found in [HI]. So we have 

Proposition 14. For (XJJJ, JD); the only elements in B are the above four 
homogeneous coverings found by Hirzebruch and Hofer. 

There are six arrangements left: A3(4), A3(5), icosahedral, Gies, and 
A3 (2), A3 (3). In the first four cases, the distribution of multiple points 
along each line is the same, so a similar type of argument implies: 
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Proposition 15. In each of four cases: A%(4), A%(5), icosahedral, and 
Gi68; (cf [HI]), the only element of B is the (unique) homogeneous one 
found in [HI], 

The proof is left to the readers. For the two remaining cases, namely 
Al(2) and ^(3), the situation is a little bit different, since in each case 
there are two types of lines, where the singular point distributions are not 
the same. It turns out that there are non-homogeneous elements in i3, that 
is, there are more ball quotients by Tian-Yau's theorem. 

2.7. Some new examples of 2-ball quotients. 

Let us start with the arrangement ^(m), m > 2, which is defined by 

zoziz2(z^ - zf){zf - zf)(z% - zJS1) = 0 

in the homogeneous coordinates of P2. It has the following data: 

k = 3m + 3,   £2 = 3m,   £3 = m2,   £m+2 = 3 

Let 0 < i < 2, and denote by h the lines Zi = 0, ^ = Ij D lk, where 
{hj.k} is a permutation of 1,2,3. Let U = (JJJLi Up be the group of m lines 
passing through &. Each triple point a is the intersection of three lines 
coming from different groups, and the nodes (double points) are formed by 
the intersection of k with each line of L^ 0 < i < 2. 

Let Xm be the blowing up of P2 at all the m2 triple points a and the 
three (m + 2)-fold points &. Denote by Ea, E^ the exceptional curves, 
respectively. If a finite uniformization Y of (Xm,b) is a ball quotient, or 
equivalently, b e B, then we will have by local proportionality principle 
(Proposition 6) a bunch of equalities. It can be shown that all lines in Li 
must have equal multiplicity, which will be denoted by Q, and all the triple 
points have equal multiplicity as well, denoted by ba. The equalities from 
the local proportionality principle now become 

2       m      1       1 
bHi      (H      bj      bk 

Oa        Co        Ci        C2 

2ml 1 m=- + —+ -— + -_ 

2m       1       1      m m = — + __ + _ + 
ci      0^     bi     ba 
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Here again 0 < i < 2, and {ijj, k} = {0,1,2}. 
Prom these equalities, we get 

11 1      m       , 
r~r~ = a'  r + — = a 
Oi     o^ bi      Ci 

That is, they are independent of the index i. 
Add up the first identity for i = 0,1,2, and use the second identity, we 

have 

T,(l + r-]>rn 
i=o V01     0w 

Since each bi > 2, this implies 

2    1 3 
m — - 

— V 2 

So we know that m < 4. 

Case 1.    m = 4 
All three b^ must be 1. So all three bi are equal, and all three c* are 

also equal. We shall call such a situation "subhomogeneous". In this case, 
the equations are reduced to 

2 m     2 

&M c      b 

i       2 3 

ba c 

Here we skipped the subscript i.   When b^  = 1 and m = 4, the only 
possibility is 

bi = 2,   c. = 4,   6a = 8,   b^ = 1 

Case 2.    m = 3 
Since 

2=0 

at least one b^ will be 1. Let us assume b^ = 1. For i = 1,2, by 

_L     I- J_     1 
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we know that b^ will have to be 1 since bo>2. So all three 6Mi = 1 and we 
are again in the subhomogeneous situation. The equations reduced to 

i      3     2 

c      b 
1       2      3 

ba      c 

from which we get four solutions9, all are subhomogeneous: 

6Mi = 1,   6; = ba, (bi, a) € {(8,4), (5,5), (4,6), (3,9)} 

se 3.    m. = 2 
In this case we have 

A/l       1 > 
>2. 

As in case 2, if one of the feMi = 1, all three of them are equal to 1, which 
will violate the third identity (for m = 2). So all 6Mi > 2. 

Note that there is a symmetry between the three exceptional curves E^ 
and the three proper transforms k. That is, in we interchange bi with 6^. 
for all i, then the resulting orbifold is isomorphic to the original one. So 
without loss of generality, we may assume 

£i/V>i- 
2=0 

Fact.   Ifa>6>c>2 are three integers such that 

1      1     1      , 
-+T+->1 
a     b     c 

Then (a, 6, c) is in {(n, 2,2), (fc, 3,2)} forn > 2 and 3 < k < 5. 
Using this algebraic fact, it is then straight forward to find all solutions 

of these equations. Let us denote by /x = (6^, 6^2,6^),   b = (6i, 62, ^s) and 
C= (ci,C2,C3). 

9Note that the position of the three exceptional curves E^. and the three lines 
li can be interchanged, the two resulting orbifolds are isomorphic to each other, so 
we ignore the solutions obtained by interchanging bi and b^ for all i. 
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1). a = 4,   b0, = 8,   bi = 2, 6W = 4; 

2). Cj = 6,   6a = 4,   fcj = 2, 6W = 3; 

3). ba = 3, ?=/* = (2,2,3), c= (12,12,6); 

4). 6a = 4,fe = Ar=(2,2,4), *= (8,8,4); 

5). &« = 6,6 =/!= (2,2,6), ?= (6,6,3); 

6). 6Q = 6,6 = /x = (2,3,3), ?= (6,4,4); 

7). 6a = 6,/i=(2,3,3),   6 = (3,3,6),   ?= (4,4,3). 

Again if we interchange 6 and ft, we also get solutions, but the resulting 
orbifold remains the same. It can be verified that in each of the above 
cases, cT < 0 and cf2 = ScJ, so by Tian-Yau's theorem, each admits a finite 
uniformization which is a smooth compact quotient of the complex unit ball 
inC2. 

In each of the above cases, the combination of the ball quotient coverings 
with the abundant Hirzebruch-Kato coverings give a large class of elements 
in G+' It is easy to compute the ratio of the two Chern numbers in each 
case, and see their distributions. 

One can also play the local proportionality principle to the other arrange- 
ments of lines listed in [H]. It turns out that above three cases, together 
with the homogeneous ones and the Deligne-Mostow ones in the complete 
quadrilateral case, are the only combinations for ball quotients. 

To start, let X = X(L) be the blowing up of P2 at the singular points 
S of L = Ui=i k- Suppose b £ Bx,D, where as before 

k r 

D=\jTi   (J   Ea 
i=l     a=k+l 

Let / : Y2 —> X be a finite uniformization of (X, b). Then Y is a ball 
quotient, and the branching locus Bf is contained in D (note that we allow 
some bi to be equal to 1). 

Let 1/ be all the lines k in L with bi > 2, and S7 the singular set of the 
subarrangement Z/. For any point pa e S \ I/, suppose the g-lines passing 
through pa are {h : 1 < i < q}, with k in 1/ for 1 < i < p and not in 1/ 
for p < j < q; where p > 0. Since pa is not in E7, we know that 0 < p < 2. 
So the exceptional curve Ea = P1 is an orbifold with p < 2 singular points, 
hence for any component C of f~l(Ea), the underlying space of C is still a 
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rational curve, which can not be contained in a ball quotient. This shows 
that we must have E7 = E. The lines in L \ U are thus redundant ones, 
i.e., they are in general position and do not intersect with E' fl A', where A7 

is the set of nodes of Z/. In all the arrangements appeared in [H], (except 
the near-pencil Ao(fc), which can be immediately ruled out), there is no 
redundant lines, so we may assume that for the arrangement L with b e B\ 

bi>2 Vk, l<i<k 

Now suppose Ea is an exceptional curve and Zi,... , lq are the lines passing 
through pa. If ba > 2, then Ea is in the branching locus, and we will have 

o      2      Al 2 = r + Er 
Since each fy > 2, ba > 2, we get 

Therefore q < 6 (and when q = 6, ba = bi = 2). That is, all the singular 
points pa with ba > 2 must be g-fold points with 3 < q < 6. Another useful 
remark is that, as in §2.4, if a line k contains less than two nodes of L, then 
h > 3. Using these observations, most of the arrangements can be ruled 
out quickly (for the possibility of an element of /?), and in the rest a few 
cases (e.g., Ai(8), Ai(13)), a similar type of argument as in the previous 
subsection will lead to the conclusion: 

Proposition 16. For all the arrangements L appeared in [H], namely, real 
simplicial arrangements, and arrangements generated by unitary reflection 
groups or cubic curves, the only cases for BX(L),D 1° be non-empty are the 
ones listed before, namely, the eight types for the complete quadrilateral 
Ai{&), the homogeneous ones found by Hofer and Hirzebruch (Proposition 
13 through 15), and the ones for A\{2) = Ai(9); A\{Z), A\{4) listed as Cases 
1 to 3 in this subsection. 

Let us omit the detailed verifications here, as our main purpose in this 
article is to illustrate the abundance of the class A/2, which, in our opin- 
ion, is already quite satisfactory by the existing elements of B obtained by 
Hirzebruch and companies. 

In the next subsection, we shall discuss the situations when these further 
coverings over the ball quotients have smooth branching locus. These further 
coverings will then be negatively curved everywhere. 
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2.8. Negatively curved surfaces. 

Suppose y, Y' are good coverings over X with branching multiplicity b and 
b' along JD, respectively. Write / : Y —» X for the covering map. Suppose 
b' y b. Then by passing to an finite unbranched covering of Y, if necessary, 
Y, is a good covering over F, and its branching locus is exactly 

B = rl(D') = rll u A 

with multiplicity ty/bi along the preimage of Di. When Y is a ball quotient 
and D' is smooth, Y/ will admit a Kahler metric which is everywhere neg- 
atively curved ([M-S] and [Z], Theorem 1). In the following, let us discuss 
some examples of b 6 /5, b' y b with smooth D/ = [j{Di : ty > bi}. 

Example 1. In the complete quadrilateral case. Let 1 < k < 8, r G S5. 
and consider b = rb^ € B. Let b" be the Hirzebruch-Kato covering such 
that the last six positions of fe" and b are equal, and take £/ = [6", b]. Then 
D' is contained in the the union of four disjoint curves, hence is smooth. 

Example 2. Still the complete quadrilateral case. Fix the order of Dij as 
in §2.5. Consider the seventh ball quotient 

6(7) = (5,15,15,15; 3,3,3,5,5,5) 

This is a Hirzebruch-Kato covering itself. Consider another Hirzebruch-Kato 
covering 

b' = (5,15,15,15; 15,3,3, 5,5,5) 

In other words, by changing 612 from 3 to 15. The least common multiple 
&0i remains the same for all i. In this case, D* = D12 is smooth. 

Example 3. For any homogeneous b e B of type (&;,&<*) = (n,m), let b" 
be the Fermat covering of order n (with all bi and b^ equal to n), and let 
{/ = [ft", b]. Then when m is not a multiple of n,b' y b and D' is the disjoint 
union of the exceptional curves, so it's smooth. 

More generally, for any arrangement L and any element b e B, let b" 
be the Hirzebruch-Kato covering with b" = bi for the proper transforms of 
each line in L, and let bf = [&", 6], Most of the time, 6' 7^ 6, hence fe7 >- 6, so 
£/ G (?+. The branching locus Z}' of the further covering is contained in the 
disjoint union of the exceptional curves and is thus smooth. 
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Example 4. Livne ([L]) also constructed some ball quotients by cyclic cov- 
erings over level N elliptic modular surfaces with branching locus the disjoint 
union of N2 smooth sections. In [Hu], Hunt gives a clear description of this 
construction. Following the notation there ([Hu], §4.1), the ball quotient 
53(9) admits a further cover 59(9), while the ball quotient *S'2(12) has a 
further cover 56(12). In each case, these further coverings are also cyclic 
coverings along (disconnected) smooth curves. So they also provide exam- 
ples of negatively curved compact Kahler surface. 

Remark 1. Again it is easy to compute the ratio of the two Chern num- 
bers for the above negatively curved surfaces. For example, in Example 2, 
that ratio is 437/151. None of these surfaces coincide with the sequence of 
examples constructed in [M-S], since their Chern ratios are different. Let us 
omit the detailed comparisons here, it is straight-forward but lengthy. 

Remark 2. Most of the surfaces constructed in this paper are only quasi- 
negatively curved, that is, they admit Kahler metrics which are negatively 
curved in the complement of a finite set. It is highly unlikely that any 
of these surfaces can not be negatively curved, i.e., it does not admit any 
everywhere negatively curved Kahler metric. Although at this point we do 
not know how to "deform" the quasi-negatively curved metric to obtain a 
negatively curved one. 

Let us conclude with a final remark. Let Xn be a projective manifold 
and D = X)i=i -^ a noraial crossing divisor in X. Fix the order of Di 
and define £, B as before. By the powerful existence result of Tian and 
Yau, a given integer vector b = (61,... , br) is in B or not can be verified 
by checking the relatively simple numerical conditions. Now if b € B, and 
let Y be a finite uniformization of (X, 6), Y is a smooth compact quotient 
of the unit complex ball Bn. If b' >- 6, then we can consider the normal 
crossing orbifold (Y,b'/b). The analytic result (Theorem 2 of [Z]) then gives 
a singular metric on (Y, bf/b) which is compatible with the orbifold structure. 
Since the sectional curvature is non-positive, it is uniformizable. In other 
words, if b e B and b' y 6, then (X, U) is always uniformizable by [G] and 
[Ha]. But it is not known whether [X^b') is finitely uniformizable or not. 
(That is, V still may not be in Q). In the case of arrangement of lines in 
dimension two, Hirzebruch-Kato coverings produces a lot of elements in £, 
which, after taking the least common multiple with a b G B) gives us a large 
amount of surfaces in A/2. 
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