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The curvature flow in planar affine geometry is introduced and 
the classification of solitons (homothetic solutions) for this flow is 
carried out via the method of adjoint orbits. This technique is 
used to integrate, up to a single quadrature, the soliton equations 
in terms of elliptic functions. In particular, it is shown that ellipses 
are the only embedded solitons. 

1. Introduction. 

In recent years there has been much interest in investigating the asymptotic 
behavior of curves in the euclidean plane R2 evolving according to a flow of 
the type 

Xt = W. 

Here, X = X(t, u) : [0, T) x I —► R2 is a one-parameter family of closed 
curves and W is a vector field defined in some neighborhood of Xo = X(0,.). 
Usually, W is the gradient vector field of some geometric functional £ defined 
in the space of curves X : / —> R2. Flows studied so far include: 

• £(X) = length of (X). This is the curve shortening flow ([AL], [GH], 
[G]). Some generalizations of this flow have also deserved attention 
([GL],[A1]). 

• £(X) =  total squared curvature of X. This is the curve straightening 
flow ([LS],[L]). 

The general strategy to understand these flows can be organized in the 
following steps: (i) classification of solitons (homothetic solutions); (ii) lin- 
ear stability analysis around the solitons; (iii) local and global existence of 

1Both authors have been partially supported by FUNCAP/CE. 
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solutions (possibly with some restrictive condition on the initial data); (iv) 
asymptotic behavior of solutions and corresponding estimates on the basins 
of attraction of solitons. 

The purpose of this paper is to add a new flow to this list and carry 
out the first step in the program described above. So we consider the flow 
of planar curves by (unimodular) affine curvature. More precisely, let G C 
GL(3, R) be the group of real matrices of the type 

where the entries satisfy ad — be = 1. Now, the usual action of GL(3, R) on 
R3 induces an action of Q on R2 by affine motions. This is given explicitly 
by 

x i—> Ax + b, 

where we identify x = (#, y)T to (1, x, 7/)T, b = (e, f)T and 

a   b 
c   a 

The affine geometry of curves is then the study of properties of curves in- 
variant under this action. For locally strictly convex curves X : 7 —> R2, a 
satisfactory theory is available (see [Bl] and sections 2 and 3 below for more 
precise statements) and we briefly review some of it now (in what follows, 
given vectors a, b € R2, we denote by (a, b) the 2 x 2-matrix whose columns 
are a and b in this order and by |a, b| := det(a, b) the skew-symmetric pair- 
ing given by the determinant): 

I) After rewriting X = X(s), where s is the affine arclength parameter, a 
natural frame (T, N) € 5L(2, R) is defined over X. Here, T = Xs and 
N = Xss are the affine tangent and affine normal to X, respectively. 
The affine curvature k = |XSS, Xsss| shows up in the structure equation 
Ns = — kT and determines X up to affine motions; 

II) Conies are the curves with constant affine curvature, so that parabolae 
(ellipses, hyperbolae, resp.) have curvature zero (greater than zero, 
lesser than zero, resp.); 

Ill) The affine curvature k has a nice variational interpretation.   More 
precisely, if X(£,.), t e [0, e), satisfies X* = /N then, under suitable 
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boundary conditions, the affine length I satisfies 

(1.1) l'(0) = -ljfkds, 

a formula already known to Blaschke ([Bl]).   In particular, arcs of 
parabolae are extremals for I. 

At this juncture, in analogy with the curve shortening problem, it seems 
natural to investigate the flow Xt = fcN. It turns out, however, that this is 
not the most natural flow to consider here and the reason for this is quite 
surprising: in affine geometry curves tend to maximize their affine length 
(see comments following (3.9) below). This leads us then, in view of (1.1), 
to study the flow 

(1.2) Xi = -fcN, 

which we call the affine curvature flow. 
In this paper we give a complete classification of solitons for this flow. 

Our approach is inspired by the classification of solitons for the curve short- 
ening flow given by Abresch and Langer [AL] and consists of renormalizing 
the flow by adding a tangent component gT to the velocity vector field 
W = —fcN so that each X(t,.) now has constant affine speed. This enables 
one to compute the evolution equation satisfied by the renormalized curva- 
ture K = £2fc, where £ is the affine speed. It turns out that this is a fourth 
order nonlinear parabolic equation. Nevertheless, the soliton condition im- 
plies a remarkable cancellation in this equation and thus classification can 
be carried out. More precisely, solitons are shown to correspond to peri- 
odic curvature functions K, satisfying the second order ordinary differential 
equation 

(1.3) k + K,2-l = 0 

and generating closed curves via the structure equations. Our main result 
is then the following: 

Theorem 1.1 (Classification of solitons in affine geometry). Let X 
be a soliton for the affine curvature flow (1-2).  Then we have the following 
possibilities for X: 

i) X is an ellipse (this corresponds to K, = 1,  which obviously solves 

am 
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ii) X = Xp?g; a curve whose affine curvature KPjq is a nonconstant periodic 
solution of (1.3) depending upon (p,q) 6 N x N. The pair (p, q) is by 
no means arbitrary and must be such that p/q is confined to the open 
interval (1/2, y/2/2). 

Remark 1.1. It follows from classification that Xp^ has 2q sextactic points 
(points where kPiq — 0) and winding number p (see fig. 2, where some curves 
are displayed). In particular, ellipses are the only embedded solitons. 

Remark 1.2. We note that our classification is, from a qualitative view- 
point, entirely similar to the one for solitons in the curve shortening flow 
([AL])as well as to the one given for elasticae in the hyperbolic plane 
([BG],[LS]) in the sense that in all of these flows, the same arithmetic con- 
dition singles out the closed solutions. It is a quite surprising fact that 
classification of closed solutions for such a diverse class of problems ends up 
in the same numerical criterion. 

Remark 1.3. We should mention that the rationality condition in the the- 
orem above expresses the fact that there exist periodic solutions of (1.3) (in 
fact, an uncountable number of them corresponding to irrational numbers in 
(1/2, y/2/2)) generating bounded curves which never close up and, hence, do 
not define a soliton. In fact, a much more interesting picture emerges from 
our classification: there do exist periodic solutions of (1.3) which generate 
unbounded curves (see fig. 3, where some of these curves are displayed). As 
we shall see, this happens if and only if the curvature assumes some non- 
positive value and, moreover, the set of such curves, up to affine motions, is 
parametrized by a bounded semi-open interval. 

Remark 1.4. Regarding steps (iii) and (iv) mentioned above, one should 
refer to recent work of B. Andrews ([A2]), where it is shown that the motion 
of any smooth embedded closed convex plane curve under (1.2) can be con- 
tinued smoothly for all time, the curve remaining strictly convex while ex- 
panding to infinite size and approaching a homothetically expanding ellipse. 
We remark that a crucial step in his analysis is the use of the uniqueness 
assertion about ellipses in Remark 1.1 above. 

This paper is organized as follows. In section 2, we recall the relevant 
definitions and facts in plane affine geometry. In section 3, we derive the 
first variation formula and introduce the affine curvature flow. In section 4, 
we adapt the Abresch-Langer approach to our setting so that the flow gets 
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renormalized and, as a consequence, the evolution equations for the renbr- 
malized affine curvature are presented. In section 6, soliton solutions for 
this flow are considered and in, section 7, the analysis leading to the classi- 
fication theorem above is carried out. A crucial ingredient in this analysis 
is the method of adjoint orbits [BG]. This technique enables one to inte- 
grate the structure equations and determine the parametrization of solitons 
explicitly up to a single quadrature in terms of elliptic functions. The paper 
also contains an appendix where two different definitions of soliton solutions 
are shown to be equivalent. 

Acknowledgements. The authors would like to express their deep grat- 
itude to R. L. Bryant for sharing with them his expertise on conservation 
laws and specially for bringing the method of adjoints orbits to their atten- 
tion. Special thanks are also due to M. do Carmo for enlightening conver- 
sations on affine geometry, to R. lorio Jr. for discussions on the analytical 
well-posedness of (4.9) below and to the referee for helpful comments and 
suggestions. 

2. Preliminaries on Affine Geometry. 

We shall consider planar regular curves X = X(^) = (rc(^),7/(?i)), u € I C 
R. Prom now on, we shall assume that the quantity 

(2.1) a = \Xu,Xuu\ 

is strictly positive. This means, of course, that X is locally strictly convex 
and reflects the well-known fact that curves with inflection points cannot be 
directly treated in affine geometry. 

In order to study the affine geometry of X we introduce the frame 

ueJH-+g=(T,N)eSL(2,R) 

over X, where T = Xu/y/a and N = 'Kuu/y/a. A straightforward compu- 
tation yields 

(-au/2a    -7/a\ 
,    7= \XUU,XUUU\. 

1 au/2aj 

Now, we seek a change of parameter s = s(u) such that a = 1 relative to s. 
If this is the case one should have 

1 — |XS, Xss| — 
du ZcfrA2 (Pu 

*uds^uu[ds      +Awd52 -®' 
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and it suffices to set s = J t^du, £ = a1/3. Here, £ is the affine speed of X 
(relative to u) and 5 is the affine arclength parameter. The affine tangent 
and affine normal to X are T = Xs and N = Xss, respectively. Observe 
that g = (T, N) G SX(2, R). The structure equations in affine geometry 
now read 

(2.3) 

where 

& — l^ss) -^-sss| 

is the affine curvature of X. 
Integration of (2.3) shows that k determines X up to affine motions 

(see [Bl] for details). In particular, the important special case fc=const. is 
easily handled, yielding ellipses (fc > 0), parabolae (fc = 0) and hyperbolae 
(fc < 0). For example, if X(tx) = (acosu, 6sin?x), 0 < u < 27r, is the usual 
parametrization of the ellipse with semi-axes a e 6, we get £ = (at)1/3, 
s = (aft)1/3?/ and k = (aft)-2/3. In particular, two ellipses have the same 
affine curvature if and only if they bound the same area. 

3. First Variational Formula and the AfRne Curvature Flow. 

By the previous section, the affine length of a curve X : [0,1] —> R2 is given 

by 

/:= / fcfti,   f =|Xfi,Xfm|1/3. 
Jo 

We now compute how the functional / varies when X is smoothly deformed. 
More precisely, let X = X(£,TZ), 0<t<e, 0 < rx < 1, be a smooth 

variation of XQ = X(0,.) such that 

(3.1) X, = /N + 5T. 

Here, / and g are arbitrary smooth functions of t and u. We remark that 
the factor gT can be chosen at our convenience since it only amounts to a 
reparametrization of X. We consider the affine length functional 

m = f1 
Jo 

^du 
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and wish to compute 

(3.2) Z/(t)= / Stdu. 
Jo 

In order to determine &, we start with the identities 

(3.3) XU = £T\   TU = £N,   N.^-^fcT, 

which follow from the structure equations (2.3).   Taking the derivative of 
both sides of Xw = £T with respect to t and using (3.3) we get 

(3.4) &T + £Tt = (gu - £fc/)T + (/„ + ^)N. 

Pairing this equation with T and N, we obtain successively 

(3.5) |Tt,T| = -r1(/« + e«7), 

(3.6) 6 + f|Tt,N| = (/tt-^/. 

Taking the derivative of (3.5) with respect to u, then using (3.3) and the 
fact that |T,N| = 1 implies |Nt,T| = |Tt,N|, we have 

(3.7) -(rH/u + Z9))u = -6 + 2f |Tt, N|. 

Now , (3.6) and (3.7) imply the desired formula for &: 

(3.8) & = -Ifrf + |5u + i(r HA.+^))«- 

If either every curve in the variation is closed or if /w(0) = fu(l) = g{0) = 
g(l) = 0 (clamped variations), we retrieve the first variation formula 

'«-ijf- (3.9) *'(*) =--y   kfds, 

furnishing a variational interpretation for k. 
In particular, (3.9) implies that if we are given two points P and Q 

in the plane and two concurrent straight lines m and n passing through 
P and Q respectively, then the unique arc of parabola determined by this 
configuration is an extremal for I along variations by locally convex curves 
passing through P and Q and tangent to m and n at these points. 

It is an amazing fact, however, that curves in affine geometry are com- 
pelled to maximize their affine length. In fact, it is not hard to check that 
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the arcs of parabolae referred to above are global maximizers for I under 
clamped variations (see [Bl] and remark 4.2 below). Taking into account 
(3.9), this is the reason why, as mentioned in the Introduction, the natural 
flow to study in affine geometry is 

(3.10) Xt = -ifeN. 

We call this the affine curvature flow. 

4. Renormalizing the Affine Curvature Flow. 

We return now to the general evolution equation (3.1). As we noticed above, 
the tangential component gT can be chosen at our convenience since it 
clearly just amounts to a reparametrization of X. We take advantage of this 
fact and, inspired by [AL], we shall renormalize the flow (3.1) by choosing 
g such that evolution by 

(4.1) Xt = fN + gT 

goes through curves with constant affine speed. The starting point is (3.8), 
which we rewrite as 

-(Inflt = -kf + j + . 

Assuming that every X(£,.) is closed, one easily gets 

Proposition 4.1. //X evolves according to (4.1) then the following sen- 
tences are equivalent: 

(i) Each X(t,.) has constant affine speed; 

(ii) X(0,.) has constant affine speed and 

(4-2) ^ = -^ + kf-j\fdU; 3gu _ _lfu 
2 £ " 2 e 

(hi) Zu = 0. 

From now on, we shall consider closed curves X(£,.) evolving according 
to the evolution law 

(4.3) Xt = /N + 5T, 
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where g is determined by the proposition above.  Clearly, g depends on / 
and in the case that / = —fc, we call the corresponding evolution law 

(4.4) Xt = -kN + gT 

the renormalized affine curvature flow. 
The proposition above is the starting point for the derivation of the evo- 

lution equation for the renormalized affine curvature K. First, (4.3) implies 
that the T-component of 'Ktuuu is 

(4.5) (({gu - Zkf)u - Zk(fu + Zg))u - &(£& - #/) + (fu + &)u))T. 

On the other hand, since, by Proposition 4.1, £u = 0, (3.3) implies Xuuu = 
-£3kT. Hence, 

(4.6) Xtuuu = -3^tkT - fktT - Z3kTt. 

Pairing (4.5) and (4.6) with N we obtain 

3f2fc6 + Z% + £3fc|Tt, N| = tk(£{gu - #/) + (U + Zg)u) 

-((gu-Zkf)u-mu + {ig))u. 

Using (3.6) this can be written as 

afVt = Wu + £g)u - ((gu - ikf)u - Zk(fu + &))„ 

and, after straightforward simplifications, as 

(4.7) Z(Z2k)t = W + 3^7' + &'f + 2£V + fk'g - g'", 

where primes denote derivation with respect to u. 
Now, if we consider the evolution of a closed curve under (4.4) then, by 

defining renormalized quantities 

(4.8) K = i%   h = eg,   dt/dT = i\ 

we obtain from (4.2) and (4.7) with / = — k 

KT = -AKK" - 3K'
2
 + 2Kh' + n'h - ti" 

(4.9) 
\« = \*-* + jl* du 

The above system then describes how the renormalized affine curvature K 

evolves under the renormalized affine curvature flow (4.4). 
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Remark 4.1. Notice that the second equation in (4.9) only determines h 
up to a additive constant and this can in principle affect the evolution of 
K given by the first equation. We see, however, that hT is a tangential 
term added to the geometric velocity — KN and as such it does not affect 
the geometry of the evolution in the sense that if we replace h by h plus 
a constant, the resulting evolution gets unchanged geometrically. In other 
words, after solving (4.9) for K, and then solving the structure equation (2.3) 
for X we end up with the same curves up to tangential reparametrizations. 

Remark 4.2. Formula (4.7) above also can be used to compute the second 
variation formula for arcs of parabolae. The calculation implies that these 
arcs are local maximizers for I and furnishes further evidence for the choice 
of sign made above, but we shall not pursue this here. 

Remark 4.3. The system (4.9) can be rewritten as a single fourth order 
parabolic equation, namely, 

(4.10) KT = — -K,    + lower order nonlinear terms, 
o 

and this accounts for the difficulty of analysing the affine curvature flow for 
arbitrary initial data. In particular, a crucial ingredient in the analysis of the 
asymptotic behaviour of second order flows, namely, the parabolic maximum 
principle, is not available here. Despite this difficulty, this equation has 
been recently successfully analysed by B. Andrews ([A2]) by using integral 
estimates (see Remark 1.4 above.) We notice here that the system (4.9) is 
locally well-posed precisely because of the minus sign in the linear part of 
(4.10). 

5. The Soliton Equations: solving for K. 

We now look for a special class of solutions of (4.9). We start with a 

Definition 5.1. A soliton for the affine curvature flow (1.2) is a solution 
X = X(t,.), t € [0, to), by closed curves satisfying KT = 0 and |T, Tt\ =0. 

Since the renormalized curvature K is clearly invariant under homoth- 
eties, the first condition requires that the homothety type be preserved along 
the evolution. We show in the Appendix that solitons solutions as defined 
here correspond precisely to solution of (1.2) which evolve by dilation about 
some point. On the other hand, it follows from (3.5) with f = —k that 
the second condition is equivalent to h = K!.  In other words, we are just 
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prescribing the tangential velocity of solitons as they evolve. Inserting this 
information into (4.9) one gets 

,-u f K;"" + 2(02 + 2™" = 0, 

but clearly the first equation equals the second derivative of the second one 
and we conclude that solitons correspond to periodic solutions of 

(5.2) K" + K
2
 - fji = 0 ,      /x = /   ^du, 

Jo 

generating closed curves via the structure equations (2.3). This is the prob- 
lem we now start to analyse. 

Without loss of generality, one can make /i = 1 in (5.2). In fact, one 
can easily check that this amounts to replacing K(S) by //~1/2/^(//~1/45) and 
this just reflects the possibility of rescaling the curve. So we now look for 
solutions in X for the system 

(5.3) X = T, T = N, N = -«T, 

where K : R —> R is a periodic solution to the equation 

(5.4) £ + /s2-l = 0. 

From now on, dots will denote derivation with respect to affine arclength. 
More precisely, we wish to determine for which periodic solutions of (5.4) 

the system (5.3) has a closed solution in X. In the next section, we will be 
able to analyse this system for any periodic curvature solution by using the 
method of adjoint orbits. As an outcome of this, we can determine precisely, 
in terms of a certain elliptic integral, which solutions X close up and this 
yields the numerical condition in the classification theorem. 

For the time being, however, we indicate how periodic solutions of (5.4) 
can be expressed in terms of elliptic functions. First observe that the 'energy' 

(5.5) E = k2 + l K3
-2K 

is a first integral for (5.4). The phase portrait of (5.5) in the plane («, k) 
can be easily determined and is depicted below. 
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Figure 1: Phase Portrait 

We now analyse the periodic solutions of (5.4). Clearly, K = 1 corre- 
sponds to an ellipse (which is obviously a soliton) and K = — 1 generates a 
hyperbola, which is not closed, hence not a soliton. As for the nontrivial so- 
lutions of (5.4), we see that they are periodic if and only if —4/3 < E < 4/3, 
and we can classify them according to the minimum value Kmin of K, namely, 
such a solution is hyperbolic (parabolic, elliptic, resp.) if ttmin < 0 (= 0, > 0, 
resp.). The table below summarizes this taking into account the range of E 
(Kmax denotes the maximum value of K). 

type of solution elliptic parabolic hyperbolic 
range of E -4/3 < E < 0 E = 0 0 < E < 4/3 
Umin >0 = 0 <0 
Kmax >0 >0 >0 

In any case, however, the periodic solutions can be expressed in terms 
of elliptic functions. More precisely, if -4/3 < E < 4/3, the solution KE of 
(5.5) is given by 

KE(S) = asil - q2sn2(hs,p)) 
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Here, 

P  = — >    9  = — >    r  = 7(^3 - ai) ,    h = \-r , as — ai as 4 V o 

where ai < a2 < as are the roots of 

PE;(2/) = -2y3 + 6y + 3£; 

and sn(rr,p) is the Jacobi elliptic sine function with modulus p (see ([D]) for 
details). 

6. The Soliton Equations: solving for X. 

We now start the geometric and analytical descriptions of solitons. First, 
note that for each —4/3 < E < 4/3, the solution K, of (5.4) is an even 
function with respect to its sextactic points (points where k = 0). Hence, 
the curve X associated to K, via the structure equations is invariant under 
the 'affine Coxeter group' generated by the affine 'reflections' corresponding 
to the substituitions T —» —T and N —> N at such points. This is, however, 
all that one can say about the solutions of (5.3) without using the method 
of adjoint orbits. So we now start to describe this technique which allows 
us to perform this integration. 

First, notice that (5.3) and (5.4) imply that 

X - AT + «N 

is a constant vector. Hence, by translating X, if necessary, we can assume 
that 

(6.1) X = AT - /cN. 

This is a crucial reduction since now we just have to determine g = (T, N) 
for each «, and this is where the method of adjoint orbits comes into play. 
Once this has been done, (6.1) gives the parametrization for X. 

Now, for each nontrivial periodic solution K, of (5.4) corresponding to 
some energy E according to (5.5), consider the 5/(2, R)-valued matrix 

3 — hi2 —KK 
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Here, sl(2, R) desnotes the Lie algebra of SL(2, R). Recall that in view of 
(2.3), (2.2) now reads 

/0   -K\ 

(6-2) g-1g = 
\1     0 

This, together with (5.4) and (5.5), implies the validity of the Euler equations 

(6.3) L = [L,g-1g]. 

These equations mean that L takes values in a single adjoint orbit on 
si (2, R). In other words, 

(6.4) gLg"1 = Lo, 

where LQ is a constant matrix. This is, of course, the crucial step in the 
method of adjoint orbits, so we reproduce here the pertinent computation: 

— (gLg-1) = gg-igLg-1 + gLg-1 - gLg-igg-1 

as 
(6-5) =g(L+[g-1g,L])g-1, 

and this vanishes by (6.3). 
In order to appreciate the relevance of (6.4) let us follow ([BG]) and 

consider, for each LQ G 5/(2, R), 

£Lo = {(f, A) e SX(2,R) x 5/(2, R); fAf"1 = LQ }. 

Projection onto the second factor makes Z3LO into a GLo-bundle over the 
adjoint orbit containing LQ. Here, 

GLo = {f e 5L(2,R); f Lof"1 = LQ} 

is the stabilizer subgroup of LQ relative to the adjoint action. Restriction of 
JBLO 

to (the image of) L defines a GL0-bundle over L. Recalling that L is 
periodic, we can pull back this bundle under L to obtain a GLo-bundle, say 
CLQ? 

over ^e un^ circle S1, which happens to be isomorphic to the trivial 
bundle S1 x GLQ- Clearly, the pair (g,L) defines a (possibly multi-valued) 
section of CLQ • Now, let (h, L) represent any (single-valued) section of CLQ • 
Since 

(6.6) hLh"1 - Lo 
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it follows that 

(6.7) g = ah, 

where a takes values in GL0. In other words, a defines a (possibly multi- 
valued) section of CLQ- A further computation using (6.7) shows that 

(6.8) a^a = h h"1 - hh 

Note that the lefthand side of this equation may be regarded as known. 
Hence, this defines an equation on GLQ satisfied by a. 

At this stage, the crucial observation is that, for LQ i=- 0, GLQ is always 
a one-dimensional, hence abelian, subgroup of SX(2, R) and we can at once 
conclude that a can be recovered from (6.8) by a single quadrature([Br]). 
This information, together with (6.7), says that the same holds for g, and 
then for X by (6.1). 

One can even go one step further and use the above setup to draw conclu- 
sions on the qualitative behaviour of g without explicitly integrating (5.3). 
First, notice that det LQ = det L = —3E. It is not hard to check that in the 
parabolic or hyperbolic cases, i.e., when detLo < 0, GL0 is isomorphic to 
R+, the group of positive real numbers under multiplication, so that CL0 is 
simply the cylinder S1 x R+. Now, it is an easy matter to infer from (6.8) 
that a is defined for all values of s and traces out a curve in CLQ with velocity 
bounded away from zero. It follows in particular that a never closes. Using 
(6.7), we conclude that g (and hence X) never closes. In particular, X never 
defines a soliton in this range of E. We remark that these curves are always 
unbounded (see fig 3). 

We are thus left with the elliptic range —4/3 < E < 0. Here, det Lo > 0 
and GL0 is isomorphic to S1, so that CL0 is a torus. Applying the argument 
above to this case, we conclude that h and g define quasiperiodic motions 
on this torus. We are thus led to expect that the corresponding curves X 
are always quasiperiodic and that there exist some rationality condition that 
singles out the closed ones. All of these claims are confirmed by implement- 
ing the above scheme in this case. This will enable one to integrate the 
soliton equations as promised. 

In order to proceed we shall need one more reduction, namely, if one 
replaces g in (6.4) by eg (which amounts to composing X with an affine 
motion) LQ gets replaced by CLQC

-1
 and this allows us to move around LQ 

in its adjoint orbit so that is has the simplest form. This freedom of choosing 
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a suitable canonical form for LQ will be important in the computation that 
follows. 

Since we are now in the elliptic range, set 3E = —c2 for some 0 < c < 2. 
We observe that the canonical form for LQ in its adjoint orbit is 

Now a solution in h for (6.6) is easily found to be 

<6'9> -vsbjC^ """ 
and a laborious calculation using (6.8) yields 

-i. ^      /  0   -1 
a    a = 

3 - K
2
 V 1     0 

Prom this we conclude that 

,       . ( cosO   -sin<9 \      • c 

Coupling this with (6.7) and (6.1), the outcome of our computation is sum- 
marized as follows: 

Proposition 6.1. // K is an elliptic solution of (5A) then, up to affine 
motions, X takes the form 

1 [?>k cos 9 + CK sin 8 
.A. — 

y/c(3 — AC
2
)  V^ sin8 — CK cos6 

where 9 : R —> R is some (any) solution of 

e=    c 
2 ' 3-K 

In particular, X is always bounded and quasi-periodic,  and it closes up 
(hence defining a soliton) if and only if the integral 

(6.11) r(c) = ! 
JK, 

K+(c) 2^3 c dn 

.(C)   (3-K
2
)V-C

2
 + 6K-2K* 

is a rational multiple of2n. Here, 0 < K-(c) < 1 < K+{C) < \/3 are the two 
positive roots of 2K

3
 — 6K + c2 = 0. 
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The above proposition is crucial in understanding the qualitative be- 
haviour of solitons, so we now explore its consequences. 

First, if in this elliptic range, we write X in polar notation 

then a computation yields 

6K -C
2
      3/i2 + 2tt3' 

so it follows that </> > 0 always. Thus, the curve X turns steadily counter- 
clockwise about the origin. Also note that r2 = (6K — c2)/c so r reaches its 
maximum (resp., minimum) exactly where K reaches its maximum (resp., 
minimum). 

Furthermore, the limiting behavior of r(c) as c approaches 0 from above 
or 2 from below is relevant to understanding which closed curves are possi- 
ble, since r(c) gives the angular displacement of X when K and k undergo 
a complete period. Now, it follows from elementary (but tedious) compu- 
tations using elliptic integrals that r is continuous and increasing on the 
interval 0 < c < 2 and extends continuously to the extremals of this interval 
if one defines T(0) = TT and r(2) = 7r\/2. Thus, for any rational number p/q 
satisfying 1/2 < p/q < l/y/2 we have r(c) = (p/q)27r, and the proposition 
above implies that the corresponding X defines a soliton. It is clear that X 
will close in q complete cycles of K and will have 2q sextactic points, half 
of which are maxima and half of which are minima. Moreover, X will have 
winding number equal to p. In particular, ellipses are the only embedded 
solitons. 

This completes the classification of solitons in affine geometry. 

Remark 6.1. Usually the denomination 'Euler equations' is reserved for 
equations like (6.3) arising when g is a solution to a homogeneous variational 
problem in a Lie group equipped with some left-invariant metric([B],[BG]). 
In this case, the Euler-Lagrange equations imply the Euler equations. Now, 
as can be easily checked, our problem lacks this variational structure. In 
spite of this we have decided to maintain the terminology essentially because 
the above choice for L has been very much modelled on the variational 
theory. 

Remark 6.2. B. Andrews' work ([A2]) mentioned in Remark 1.4 above 
implies in particular that curves close enough to an ellipse converge to an 
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ellipse under (3.10). A natural question here is whether the ellipse is the 
only soliton that is stable in this sense. If this is the case, it would be 
interesting to estimate the dimension of the unstable manifolds of the flow 
around unstable soliton solutions. 

Remark 6.3. Motivated by questions in computer vision and image pro- 
cessing, some authors ([COT], [OST], [SP], [AST]) have considered the so- 
called affine invariant flow 

Xt = N. 

It can be shown (see equation (7.7) in the Appendix) that, up to inessential 
reparametrizations, this is equivalent to the flow 

X* = ^n, 

where rj and n denote the euclidean curvature and normal, respectively. It 
follows that the affine invariant flow is second order in the sense that the 
evolution equation for k is a second order parabolic equation. Moreover, this 
flow has a variational structure in the sense that the area enclosed by curves 
evolving according to it decreases as fast as possible. By a straightforward 
adaptation of the renormalization procedure described above, it is easy to 
check that ellipses are the only solitons (embedded or not) for the affine 
invariant flow. 

7. Appendix. 

The purpose of this appendix is to show that soliton solutions as introduced 
in Definition 5.1 correspond precisely to homothetic solutions of (3.10), i.e., 
solutions which evolve by dilation around some point. 

Let us introduce some additional notation. Denote by u the euclidean 
arclengh of X and by s its affine arclength. Thus we have ds = rf^du, 
where 77 is the euclidean curvature, and 

(7.1) T = rllh 

where r = 77"1 is the curvature radius and t is the euclidean unit tangent 
vector to X. Recall that the support function of X is defined by p = — (X, n), 
where n is the euclidean normal to X and ( , ) denotes the euclidean inner 
product. Let 0 be the usual angular coordinate which is globally defined over 
X since X is locally convex. Since 7/ = d6/du, the Serret-Prenet equations 
now read 

(7.2) X0 = rt,   t0 = n,   n* =-t. 
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From this we get pe = (X, t) so that 

(7.3) X = pet - pn. 

The question now is whether there exists a similar formula in Affine Geom- 
etry. This is the case indeed as we shall see. 

Let us introduce the affine support function a = |X, T|.   This can be 
written in purely euclidean terms: 

(7.4) a = \pot - pn, r^h] = rl'*p. 

The relevance of a is that the area enclosed by the curve is given by 

(7.5) A(X) = ±J Pdu = ±J ads 

and starting from this it is not hard to show that if X evolves under (4.4) 
then 

ids. P.6) d-^=[K, 

It is also easy to check that 

(7.7) N = (r1/V1/3t + r-1/3n. 

Now we compute 

(7.8) (7sT=(p, + pr2/3(r1/3)u)t 

and 

(7.9) aN = pr2/3(r1/3)ut + pn. 

It follows from (7.3), (7.8) and (7.9) that 

(7.10) X = <7sT-aN, 

as desired. 
After these preliminaries, we claim that soliton solutions are precisely 

those curves for which a = K,. Recall that solitons are defined as curves X 
satisfying the structure equations 

(7.11) XS = T,   TS=N,   NS = -*T, 
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where K is a periodic solution to 

(7.12) KSS + K
2
 - 1 - 0. 

Now if a = K, we find from (7.11) that KS = |X,N| and KSS = |T,N| + 
|X, — KT\ = 1 — Ka = 1 — K

2
 and (7.12) is satisfied. Reciprocally, if K is a 

solution to (7.12) then arguing as in Section 6 (see equation (6.1)) we find 
that, after possibly translating the curve, X = ACST — ttN and hence a = K. 

We are thus left with the problem of checking that homothetic solutions 
are precisely those solutions of (3.10) such that, for each time, the curves in 
the evolution have the property that K is proportional to a. It is convenient 
here to rescale the flow in such a way that the expanding curves enclose 
the same area, say TT. If X(r) denotes the one-parameter family of evolving 
curves, we define 

and compute the evolution of X with respect to the rescaled time 

<7-i4>     ^-iter*- 
Using (7.13), (7.14) and (7.6), we get 

(7.15) X? = -«N - AX, 

where a tilde refers to those invariants associated to the rescaled curves and 

A = ±[R ds 
x 

Inserting (7.10) into (7.15) we obtain the evolution equation for the rescaled 
flow: 

(7.16) Xf = (-K + Aa)N - Acr5f. 

We now appeal once again to the well-known principle that tangential 
terms do not affect the geometry of the evolution in order to conclude that 
the flow (7.16) is geometrically equivalent to the flow 

Xf = (-« + Acr)N, 

and this clearly implies that a curve expands by homotheties about some 
point (i.e. Xf = 0) if and only if the affine curvature is proportional to the 
affine support function (i.e. k = ACT), as desired. 
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p/q=4/7 

Figure 2: Closed Curves 



752 Levi Lopes de Lima and Jose Fabio Montenegro 

Figure 3. 
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