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1. Classification. 

In this paper we shall analyze the behavior of all non-singular solutions 
to the Ricci flow on a compact three-manifold. We consider only essential 
singularities, those which cannot be removed by rescaling alone. Recall 
that the normalized Ricci flow ([HI]) is given by a metric g(x,y) evolving 
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by its Ricci curvature Rc(x,y) with a "cosmological constant" r = r{t) 
representing the mean scalar curvature: 

!*<XfY) = 2 ^rg{X,Y) - Rc(X,Y) 

where 

-h/h- 
This differs from the unnormalized flow (without r) only by rescaling in 
space and time so that the total volume V = /1 remains constant. 

Definition 1.1. A non-singular solution of the Ricci flow is one where the 
solution of the normalized flow exists for all time 0 < t < oo, and the 
curvature remains bounded |jRra| < M < oo for all time with some constant 
M independent of t. 

For example, any solution to the Ricci flow on a compact three-manifold 
with positive Ricci curvature is non-singular, as are the equivariant solutions 
on torus bundles over the circle found by Isenberg and the author [H-I] which 
has a homogeneous solution, or the Koiso soliton on a certain four-manifold 
[K]; by contrast the solutions on a four-manifold with positive isotropic 
curvature in [H5] definitely become singular, and these singularities must be 
removed by surgery. Currently there are few conditions which guarantee a 
solution will remain non-singular; however one may hope to produce non- 
singular solutions after a finite number of surgeries. 

For any point P let p(P) be the injectivity radius at P, the largest radius 
for which the open ball in the tangent space injects under the exponential 
map; and let p be the maximum of p{P) over all points P in the manifold. 

Definition 1.2. We say a solution to the normalized Ricci flow collapses if 
p(t) —> 0 as t —> oo. 

In this case it follows from work of Cheeger and Gromov [C-G] that 
the manifold has an F-structure. For three-manifolds this is enough to 
completely analyze the topology (for example, no counterexample to the 
Poincare conjecture can collapse). The torus bundles in [H-I] do collapse. 

Now we can state our result. 

Theorem 1.3. Any non-singular solution to the normalized Ricci flow on 
a compact three-manifold does one and only one of the following things: 
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C)   the solution collapses; or 

P) the solution converges to the metric of constant positive sectional cur- 
vature; or 

Z)   the solution converges to a metric of zero sectional curvature; or 

H) the solution converges to a metric of constant negative sectional cur- 
vature; or 

H7) we can find a finite collection of complete non-compact hyperbolic 
three-manifolds with finite volume Hi,... ,7in; wid for all t beyond 
some time T < oo we can find diffeomorphisms (fii(t) : Hi —> A4 
of these manifolds into the manifold M with the solution so that the 
pull-back of the solution metric g(t) by <pi(t) converges to the hyper- 
bolic metric as t —> oo; and moreover if we call the exceptional part of 
M. those points where either the point is not in the image of any tpi, 
or where it is but the pull-back metric is not as close to the hyperbolic 
metric as we like, we can make the volume of the exceptional part as 
small as we like by taking t large enough; and each Hi is topologically 
essential in the sense that each (pi injects 7Ti(Hi) into 7Vi(Ai). 

The important part of case H' from the point of view of topology is that 
TTI injects; otherwise M might be something simple like the sphere 53 with 
the hyperbolic metric forming in the complement of a knot while a tube 
around the knot goes off to infinity. This is enough to answer topological 
questions (for example, no counterexample to the Poincare conjecture can 
contain a hyperbolic piece where TTI injects). Nevertheless from the perspec- 
tive of analysis there are still a number of questions we leave unanswered; 
such as the behavior of the collapse in case C, and whether the convergence 
in cases Z and H (not to mention H') actually requires modification by a 
diffeomorphism. 

2. The lower bound on scalar curvature. 

The division of solutions into cases P,Z, and H depends on the following 
remark, which holds in all dimensions. 

Theorem 2.1. Let R be the minimum of the scalar curvature. Under the 
normalized Ricci flow, whenever R < 0 it is increasing; whereas if ever 
R > 0 it remains so forever. 
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Proof, The scalar curvature evolves in the normalized flow by the equation 

£-"♦» |12c|2--ri2 
n 

as derived in [HI]. If we decompose the Ricci tensor Re into its trace-free 
o 

part Re and its trace i?, then 

LRd2 - lr/2 = I Re \2 + -R(R-r) . 
n n 

Now apply the maximum principle. If R < 0, then since always R < r (as 
the minimum must be below the average) we find R(R — r) > 0. Thus if 
R < 0 it must increase. Now if R > 0 it cannot go negative again, for when 
R = 0 then R(R-r) = 0 also. Note though that if R > 0 then R(R-r) < 0 
(unless i? is constant), so R in this case may well decrease. 

We can now divide the non-collapsing solutions into Case P where even- 
tually R > 0, Case Z where lim R = 0, and Cases H and H' where lim R < 0. 

3. Limits. 

Now suppose (again in any dimension) that we have a non-singular solution 
which does not collapse. Then we can find a sequence of times tj —> oo and 
points Pj and some 5 > 0 so that the injectivity radius of M at Pj in the 
metric at time tj is at least 5. Then taking the Pj as origins and the tj 
as initial times, by [H6] we can extract a convergent subsequence. However 
we need some care here, as the limit result in that paper is for solutions to 
the unnormalized flow. But we can pass back and forth by scaling space 
and time. So first unnormalize the flow, then take the limit, then normalize 
again and see what we get. The limit will still satisfy the Ricci flow with a 
cosmological term r(t), and r(t) for the limit will be the limit of the rj(t) 
for the sequence. Since we have the curvature bound \Rmj\j < M for each 
term in the sequence1 we also have the curvature bound \Rm\ < M in the 
limit. Since the injectivity radius at Pj at time tj is at least 5 > 0 for all 
j, the injectivity radius of the origin 0 at time 0 in the limit is also at least 
5 > 0. However the volume V of the limit may be different from the constant 
volume V of each solution if the diameter goes to infinity; but at least we 
know V < V. The relation of the cosmological term r(t) to the average 
scalar curvature of the limit is not yet clear. 

1 where Rmj(t) — Rm(t 4- tj) and | |. is the norm with respect to the metric 
gj(t) = g(t + tj). 
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4. Long Time Pinching. 

Here we improve the pinching result in Theorem 24.4 of [H4] (see also Ivey 

Theorem 4.1. Suppose we have a complete solution to the unnormalized 
Ricci flow on a three-manifold which is complete with bounded curvature 
for t > 0. Assume at t = 0 the eigenvalues X > fi > v of the curvature 
operator at each point are bounded below by u > — 1. The scalar curvature 
R = \ + IJ, + vis their sum, and let X = — v. Then at all points and all 
times t > 0 we have the pinching estimate 

R>X$nX + hi{l + t)-S\ , 

whenever X > 0. 

Proof This follows as usual by estimating the solutions to the system of 
ODE's 

( dX      ,2 

dv       o 

from which, if we put R = X + /x + u and X = —v and Y = — //, we get that 

^ = X2 + Y2 + X2 + XY-XX-\Y. 
at 

Compute 

where 

xt-(x+vf=xS+I- 
I = XY2 + A2 (X - Y) + XY (Y-X). 

We claim I > 0. For if Y < 0, then A > 0. Now I > 0 since X > 0 and 
X — Y > 0. On the other hand, if Y > 0, then we rewrite / as 

I = Y3 + {X -Y) (X2 - XY + Y2) >0. 



700 Richard Hamilton 

Hence 

Substituting 

gives 

dW 
J    >X . 
dt   - 

Now we construct a convex set Z preserved by the flow of the ODE. 
Z is a subset of the product of the space of 3 x 3 symmetric matrices (of 
curvature operators with eigenvalues A > /x > u) and the time axis t. The 
set Z is given by the joint inequalities 

R> 
1 + t 

for all points, and 

R>X[\nX + lii(l + t)-3] 

at those points where 

X>    ! 
1+t 

For any t we get a convex set Z(t) in the R-X plane. 
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The curve and the line meet at an uppermost point. (The set Z in space- 
time need not all be convex, only each time slice.) 

It is easy to check that our initial data lies in the given set at t — 0 since 

-l<z/</i<A 

to start, which makes R > — 3 and X < 1. The lower bound 

R>-J- 
-    l + t 

is easily preserved since 

— > -R2 > -R2 

dt - 3      _ 3 

from the ODE. The other bound becomes 

W > ln(l +1) - 3 

which follows easily from 

dt  - 

and the observation that 

x>   1 
l + t 

on the top boundary curve; since the other side boundary curve is preserved, 
we could only exit Z out the top. This proves the theorem. 

5. Positive Curvature Limits. 

Consider the first case where R > 0 for large t. In this case the maximal 
time interval [0, T) of the corresponding solution of the unnormalized flow 
is finite, since 

—R > - R2 

dt n 

from the maximum principle. Now for the unnormalized Ricci flow in di- 
mension 3 we have the pinching estimate 

R>X[liiX-3] 
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dropping the time dependence. This assures us that when the curvatures are 
big, the negative ones are not nearly as large as the positive ones. Now when 
we rescale to the normalized flow, the scaling factor must go to infinity since 
limt^^max^ |i?m(t)| = oo for the unnormalized flow by Theorem 14.1 of 
[HI]. In the non-singular case the rescaled positive curvatures stay finite, so 
the rescaled negative curvatures (if any) go to zero. Thus the limit of the 
normalized solutions has non-negative sectional curvatures. 

Now a complete manifold of non-negative sectional curvature and finite 
volume must be compact. Then it is proven (see [H2]) that either it is flat, 
or it splits as a product (or a quotient of a product) of a positively curved 
surface S2 with a circle 51, or it has strictly positive curvature. Since a flat 
three-manifold is a quotient of the three-torus, it cannot have a metric of 
positive scalar curvature; but our metrics in the sequence do, and since the 
limit is compact it is the same manifold. The case of a product S2 x S*1 

clearly cannot be non-singular in our sense. Since the limit is compact 
convergence takes place everywhere, and this makes the cosmological term 
the same as the average scalar curvature in the limit; thus the limit is also 
a non-singular solution of the normalized flow in this case, which rules out 
S2 x S1. The remaining case of strictly positive sectional curvature is the 
only one that can occur in the limit. Thus the limit of the solutions around 
(Pj^tj) is one which itself goes to constant positive curvature as the new 
time t —> oo. But then the original solution did also by [HI]. This finishes 
the case P of positive curvature. 

6. Zero Curvature Limits. 

Next consider the case R —► 0 as t —>• oo; this is the case Z of zero curvature. 
Again we can take a limit around points Pj as origins and times tj as initial 
times whenever the injectivity radius at all Pj at times tj is at least some 
fixed 5 > 0. Since JR —» 0 for each solution in the sequence, the limit has 
R > 0; likewise since r > R for each solution in the sequence, the limit has 
r > 0 also. We want to claim this limit has non-negative sectional curvature. 
If this is true we will be done in the same way as the positive curvature case. 
When we want to use our pinching estimates, we can rescale the initial data 
to have all sectional curvatures bounded in absolute value by one. 

To see the limit has non-negative sectional curvature, consider the un- 
normalized flow of the original solution. Its volume V now changes. We 
consider three cases.   First suppose there is a sequence of times tj —» oo 
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where V(tj) —> oo. In this case, because 

dV 
Tt=-rV 

we find 

and we would get a contradiction unless there were another sequence of 
times tk —► oo when r(tfc) < 0. Choose points Pk at these times Ik to take 
our limit of the normalized flow. Normalizing by a factor does not change 
K*fc) — 0- On the other hand r(tk) > R(ik) and R —► 0 as t —■> oo for the 
normalized flow; so to summarize 

■ r(*fc) "^ 0    and    B(*]fe) —^0    as    fc —> oo 

for the normalized flow. Now 

f R-R=  fr-R=[r-R}V 

and V is constant for the normalized flow. This gives 

R — R—+0   as    k —> oo 
/ 

at the sequence of times tj. —> oo. Note that i? — R > 0. As we take the 
limit of the sequence we may be left with only part of the manifold (when 
the limit is noncompact,) but this does not matter; we still get 

/ 
R = 0 

for the limit of the normalized solutions at t = 0. But R > 0, so R = 0. 
Now consider the unnormalized limit flow; we still have R > 0 for all t and 
R = 0 at t = 0. By the strong maximum principle applied to 

^ = AJR + 2|JRC|2 

this can only happen if the metric is flat, since the limit flow exists for 
—oo < t < oo. 
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The second case is where for the unnormalized flow we can find a se- 
quence of times tj —> oo when V(tj) —> 0. In this case before we rescale all 
the eigenvalues of the curvature operator lie in the region where 

R>X[lnX-3} 

(neglecting the improvement with time). Pick a sequence of points Pj where 
the injectivity radius is at least some S > 0 at time tj for all j —> oo. Since 
V(tj) —> 0, when we rescale we expand, which reduces curvature. We claim 
the limit has non-negative sectional curvature. For if the maximum value 
of X does not go to infinity in the unnormalized flow, it must get rescaled 
to zero to control the volume; while if the maximum value of X does go 
to infinity, in the unnormalized flow the maximum value of R will go to 
infinity even faster from the pinching estimate, and when we rescale we 
keep R bounded so X will go to zero in this case also. Thus in either case 
the limit has non-negative sectional curvature. 

The third and final case is where the volume V for the unnormalized flow 
is bounded above and below as t —» oo by 

0<c<V<C<oo 

for some constants c and C. In this case normalizing the flow only changes 
quantities in a bounded way. Now we can use the time-improved pinching 
estimate 

i2>-X"[lnA' + ln(l + t)-3] . 

There are two cases. If 

"   1 + t 

for any constant A then X —» 0 as t —> oo and the limit has non-negative 
curvature. On the other hand if we can pick a sequence of times tj —> oo 
and points Pj where Xj = maxX at time tj satisfies 

Xjil + tj)-*™ 

then when Rj = R{Pj) we have 

Rj/Xj —> oo 

from the time-improved pinching estimate 

j>ln[X(l + t)}-3. 
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But Rj < C since we don't need to normalize, and this shows Xj —» 0. 
Thus the limit has non-negative sectional curvature in this case as in all the 
others. 

7. Negative Curvature Limits. 

Finally we come to the interesting case where R increases monotonically to 
a limit strictly less than zero. By scaling we can assume R —► —3. Now take 
any sequence of points Pj and times tj where the injectivity radii are all at 
least some 5 > 0, and take the limit; we call this a non-collapsing limit. 

Lemma 7.1. In the negative case R —> —3 all non-collapsing limits are 
hyperbolic with constant curvature A = /i = i/=—1. 

Proof. Recall the evolution equation for R 

^-tR = AR + 2\Rc \2 + ^R(R-r) . 

from which we get the ordinary differential inequality on R that 

5*2§*<*-"- 
Since R < -3 we have 

in>2(r-A). 

This makes 

poo 
/     (r - R) dt < oo 

which forces r to be near —3 most of the time. In fact for any s > 0 we can 
find a time T so that for t > T 

rt+l 
(r -R)dt< 

We can also make R lie in the interval 

-3-£<R< -3 



706 Richard Hamilton 

for t > T, and then 

rt+l 

-£< (r + 3) dt < £ . 

When we pass to the limit, the cosmological factor r(t) on the limit satisfies 

rt+l 
/      (r + S)dt = 0 

on every time interval, and thus r = — 3 on the limit. 
Now going back to the flow before we take a limit, we have 

since r is the average of R. Also 

\R-r\ = \(R- R) - (r - R)\ < (R- R) + (r - R) . 

Integrating over the manifold 

l\R-r\dv<  [ (R - R) dv +  f (r - R) dv 

which gives 

f \R-r\dv<2(r-R)V . 

Integrating in time as well gives 

// \R-r\dvdt < oo . 

When we pass to the limit of a sequence tj —> oo of translates we find 

// \R-r\dvdt = 0 

for the limit flow, which makes R = r = — 3.  Now the strong maximum 
o 

principle applied to the evolution of R shows | Re \ = 0 as well. Thus the 
limit metric has constant curvature A = /z = z/ = — las claimed. 



Non-singular solutions of the Ricci flow on three-manifolds 707 

8. Rigidity of Hyperbolic metrics. 

We can define the topology of C00 convergence on compact sets for tensors 
on a Riemannian manifold by the seminorms Ck(K,) for compact sets /C and 
integers fc, where for a tensor T with covariant derivatives DlT we have 

\\T\W)=Y,™v\DiT\ ■ 

We can also define the topology of C00 convergence on compact sets for maps 
F : M —» N of one Riemannian manifold to another. For any compact set 
K in M and any two maps F and G put 

dK(F,G)=suvd{F{X),G{X)) 
XeK 

where <i(Y, Z) is the geodesic distance from Y to Z on A/-. Recall that the 
space JkM of fc-jets of paths on M is the collection of all 

(P.JSJV..,.;*) 

where P is a point on A^ and Jl is a tangent vector for 1 < i < fc; if P(t) is 
a path in .M parametrized by t then the i-th covariant derivative 

dP ~J 

is its i-jet, so that J1 is the velocity and J2 is the acceleration, and so on. 
A map F : M —> A/" clearly induces a map J^F : J^A^ —» J^AT called its 
fc-jet extension. Consider the unit ball BJklC of all fc-jets (P, J1,..., Jfc) 
with P E JC and 

|J
1
|
2
 + |J

2
I
2
+-" + IJ*I

2
<I. 

Define the fc-jet distance between F and G? on the set /C to be 

^(X)(^,G)=^J^(Jfc
JP,JfcG). 

Then convergence in the metrics Ck(JC) for all fc and /C defines the topology 
of C00 convergence on compact sets for the space of maps. 

Now we can state the basic rigidity results we will use. These results go 
back to work of Mostow. 
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8.1 Rigidity of Hyperbolic Manifolds. // a map of a large enough part 
of one complete hyperbolic manifold with finite volume into another with no 
fewer cusps is close enough to being an isometry, then there exists an actual 
isometry between the manifolds. Specifically, for any complete hyperbolic 
manifold Ti with finite volume with metric h, we can find a compact subset 
JC of H, an integer k and a 5 > 0 with the following property; if F is a 
map of /C into another complete hyperbolic manifold H with no fewer cusps, 
finite volume and metric h such that 

F*h-h <6 
Ck{K,) 

then there is an isometry I ofH to H. 

8.2 Rigidity of Isometries. For any complete hyperbolic manifold with fi- 
nite volume H and metric h, we can find a compact subset JCofH with the 
following property; if F is an isometry of K, into Ti, so that F*h = h on K,, 
then there exists a global isometry I of H to itself with F = / on K. 

We can combine these results in the following corollary. 

8.3 General Rigidity, For any complete hyperbolic manifold H with finite 
volume with metric h we can find a compact set /C 50 that, for every integer 
t and every s > 0 we can find an integer k and a S > 0 with the following 
property; if F is a map of K, into another complete hyperbolic manifold H 
with no fewer cusps (than 7i,) finite volume with metric h such that 

F*h-h <8 
Ck(K) 

then there exists an isometry lofHtoH such that 

dce{fC)(F,I)<s . 

Proof. First we can require that /C, k and S be chosen well enough from the 
theorem of Rigidity of Hyperbolic Manifolds to guarantee that H and H are 
isometric by an isometry I, and with /C large enough so that we also have 
the result on rigidity of isometries. Then we can assume H = H. For this 
/C, suppose there is some £ and e > 0 so that no matter how large we take 
k or how small we take 5 > 0 we can still find F mapping JC into H with 

\\F*h-h\\ck{iq<8 
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and 

dce{)C)(FJ)>e 

for all isometries I of Tito itself. Taking a sequence kj —> oo and Sj —» 0, we 
can find such a sequence of maps Fj and extract a subsequence convergent 
to a map FOQ with F^h = h on /C. Then there exists a global isometry / of 
H to itself with FQO = / on /C. For this / 

when j is large enough contradicting our assumption. This proves the corol- 
lary. 

9. Harmonic Parametrizations. 

In order to show that hyperbolic pieces persist in the solution as t —> oo, we 
will need to use a special parametrization given by harmonic maps. 

Theorem 9.1. Let M. be a compact Riemannian manifold with boundary 
with strictly negative Ricci curvature and strictly concave boundary. Then 
for every metric g on M. close enough to the original metric g we can find a 
unique (among maps close to the identity) diffeomorphism F of M to itself 
so that F : (M.,g) —> (<M,g) is harmonic and F takes the boundary dA4 
to itself and satisfies the free boundary condition that the normal derivative 
DNF of F at the boundary is normal to the boundary. 

Proof. We apply the inverse function theorem. Let §(M, dM) be the space 
of maps of M to itself which take dM to itself. Then $(>t, dM) is a mani- 
fold (indeed a Banach manifold in an appropriate norm such as C2+a or L2) 
and the tangent space to §{M,dM) at the identity is the space of vec- 
tor fields V = Vl-J^ tangent to the boundary. Consider the map sending 
F G $(-M, dM) to the pair {AF, (PNF)\\\ consisting of the harmonic map 
Laplacian and the tangential component (in the target) of the normal deriva- 
tive of F at the boundary. We only need to check that the derivative of this 
map is an isomorphism at the identity. The resulting operator is an elliptic 
boundary value problem whose kernel is the space of solutions of 

Ay + i?c(V) = 0   on.M 

V± = Q   ztdM 

(Dtfl0||-n(l0 = 0   at&M 
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where V± is the normal component of V, (D^V)^ is the tangential component 
of the normal derivative of V, Re is the Ricci tensor (as an automorphism 
of TM.) and 11 is the second fundamental form of the boundary (as an 
automorphism of TdM). Notice that Killing vector fields tangent to the 
boundary automatically satisfy these equations. 

Now using these equations and integrating by parts gives 

f!    \DV? = f    Rc(V, V)+ f   U(V} V) . 
JJ M JdM JdM 

If Rc < 0 and 11 < 0 we conclude that the kernel is trivial. Since this 
elliptic boundary value problem is self-adjoint (because of the free boundary 
condition) the cokernel is trivial also. This proves the theorem. 

Definition 9.2. Let /C be a compact manifold with boundary <9/C and met- 
ric /i, and let M be a compact manifold without boundary and metric g. 
We say a diffeomorphism F from /C into M satisfies the constant mean 
curvature boundary conditions if 

(1) F(dJC) is a constant mean curvature hypersurface in Ai, and 

(2) the area of each component of F(d)C) equals the area of the corre- 
sponding component of <9/C, and 

(3) the normal derivative of F at <9/C is normal to the boundary image 
F(dlC). 

Theorem 9.3. Let /C be a compact manifold with a metric h of strictly 
negative Ricci curvature and a strictly concave boundary. Then there exists a 
number k and a constant S > 0 depending only on K, and h with the following 
property. IfM is a compact manifold with a one-parameter family of metrics 
gt for a < t < (3, and if at t = ot we can find a harmonic diffeomorphism Fa 

ofK into M with metric g^ satisfying the constant mean curvature boundary 
conditions and with 

F*a9a-h\\ck{K:}<8 

then we can extend Fa to a one-parameter family Ft of harmonic diffeomor- 
phisms of K, into M. with metric gt satisfying the constant mean curvature 
boundary conditions and varying smoothly in t with 

\\Ft*gt-h\\cHtc)<5 
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on a maximal interval a < t < u; and either u = (3 or else 

\\K9u, - h\\cHlc) = 5 . 

Proof. Suppose at some time t = ir we have a harmonic diffeomorphism F^ of 
/C into M with metric g^ satisfying the constant mean curvature boundary 
conditions. By the inverse function theorem we can first find a constant 
mean curvature hypersurface near F7r(dlC) in M with the metric gt for t 
close to TT and with the same area for each component; note that since <9/C 
is strictly concave and F^ is close to being an isometry we know F7r(d)C) 
is also strictly concave, and the foliation of a neighborhood of F^dK) by 
constant mean curvature hypersurfaces has the area as a function with non- 
zero gradient, which allows us to adjust the area as we choose. Then by the 
inverse function theorem again in Theorem 9.1, we can find the harmonic 
diffeomorphism Ft near F^ which takes dK, into the constant mean curvature 
hypersurface we just found and also satisfies the free boundary condition. 
Thus the set of t where we can extend the map as desired (except for the 
norm inequality) is open. Next we show it is closed also. 

Suppose then we have a diffeomorphism i^ such as we desire for 
a < t < CJ. We claim we can take the limit of Ft as t —► cu to get the 
map we want at CJ. Note that the Ft satisfy 

\\Ft*9t-h\\cHK)<5 

and the metrics gt for a < t < /3 are uniformly equivalent; this implies that 
the Ft are equicontinuous, and we can find a subsequence tj —> LJ for which 
the Ft converge uniformly to a map F^. We can then in fact choose a further 
subsequence so that the Ft converge to F^ in CA:~1(/C), because the bounds 
in Ck imply equicontinuity in Ck~l. The the limit map has 

K^ - h\\c^HIC) < s. 

We need to check that F^ is still a diffeomorphism. We at least know F^ is 
a local diffeomorphism, and Fu is the limit of diffeomorphisms F*., so the 
only possibility of overlap is at the boundary. Here we use the fact that we 
know FLj(dJC) is still strictly concave if k is large and S is small, and this 
prevents the boundary from touching itself. Thus F^ is a diffeomorphism. 

A limit of harmonic maps is harmonic, so F^ is a harmonic diffeomor- 
phism from /C into M with the metric g^. A limit of constant mean curvature 
hypersurfaces with the same area is again a constant mean curvature hy- 
persurface with the same area, so F^ipK) has constant mean curvature and 



712 Richard Hamilton 

the same area as dK.  Likewise ¥„ continues to satisfy the free boundary 
condition that the normal derivative of F^ at dK, is normal to Fu{dK,). 

We can now use our previous argument, where k— 1 suffices in place of k 
if we take k one bigger to start, to see that F^ extends to harmonic diffeo- 
morphisms Ft for t near u satisfying the constant mean curvature boundary 
conditions. Then the uniqueness part of the inverse function theorem in 
Theorem 9.1 guarantees that the previous family Ft for a < t < UJ agrees 
with this new family around u where they overlap. This makes i^ the limit 
of the Ft in C00(/C), not just in Ck-l{K). Now we get 

\\F^-h\\ck{K)<5 

as desired. This allows us to continue the family Ft until u = /3 or 

||^W-HU(iQ = * 
which finishes the proof. 

Recall that a sequence of manifolds Mj with metrics gj and origins Pj 
and orthonormal frames Fj at Pj converges to a complete manifold M. with 
metric g and origin P and frame J7 if we can find a sequence of compact sets 
/Cj in M. exhausting M. and a sequence of diffeomorphisms Fj of neighbor- 
hoods of ICj into Mj so that Fj takes the origin P to the origin Pj and the 
tangent map TF takes the frame J7 to the frame ^j, and so that 

Ifito-gWcuv^o 

as j —> oo for all compact /C in M and all integers k. 
We can extend the metric g on M to a metric on the orthonormal frame 

bundle using the connection to define horizontal and vertical subspaces, and 
using the usual metric on the orthogonal group which appears as the fibres. 
This allows us to define the distance between frames. Now we state a result 
which lets us replace the approximating maps in the limit of a sequence of 
manifolds with ones chosen systematically, at least in our case. 

Theorem 9.4. Let Mj be a sequence of manifolds with metrics gj and ori- 
gins Pj and frames Tj which converge to a complete manifold M with metric 
g and origin P and frame T. Suppose the limit M contains a compact subset 
K, where the Ricci curvature is strictly negative, and K, has a smooth bound- 
ary dK which is strictly concave, and K contains the origin P. Then we can 
find a sequence of maps Fj from K into Mj for j which are harmonic dif- 
feomorphisms and satisfy the constant mean curvature boundary conditions, 
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and which have d(Fj(P)^Pj) -+ 0 and d(TFj(Jr),!Fj) —» 0 as j —> oo; and 
also have 

as j —> oo for all integers k. 

Proof. Since <9/C is strictly concave, we can foliate a neighborhood of dK, 
with constant mean curvature hypersurfaces where the area A has a non- 
zero gradient. When the approximating maps Fj : /C C M —> .Mj are close 
enough to isometrics on this collar of <9/C, the metrics gj on M. j will also ad- 
mit nearby constant mean curvature hypersurfaces foliating a neighborhood 
of 9/C, by the inverse function theorem. Since the area A on M.j still has 
non-zero gradient, one of these will have the same area as <9/C. Moreover we 
can change the map Fj by an amount which goes to zero as j —> oo so that 
now Fj{dK) is this constant mean curvature hypersurface. The pull-back 
metric F^gj will be as close as we like to #, so we can again change Fj by 
an amount which goes to zero as j —* oo so as to make Fj a harmonic dif- 
feomorphism and satisfy the constant mean curvature boundary conditions, 
by the inverse function theorem result in Theorem 9.1. Before we modified 
Fj we had Fj{P) = Pj and TFj^) — Tj, and we only change Fj by an 
amount going to zero; so after the change we have 

d(Fj(P),Pj)-+0   and   d{TFj{F),Fj)->Q 

as desired. Also since we change Fj by as little as we wish on /C, we still 
have 

for all k. 

10. Hyperbolic Pieces. 

Suppose H is a complete hyperbolic manifold with finite volume. For all 
small enough A > 0 we can truncate each cusp along a constant mean 
curvature torus of area A which is uniquely determined; the remainder we 
denote by HA- AS A —> 0 the HA exhaust H. The choice of A does not 
depend on H. If £o > 0 is the Margulis constant, then once we are in a 
cusp at a point with injectivity radius less than £Q, we stay in that cusp as 
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long the injectivity radius is less than SQ. Hence we can truncate cusps at 
constant curvature tori of area A < AQ = C£Q where c is a universal constant. 

Now we prove the persistence of hyperbolic pieces. Consider all the 
possible hyperbolic limits of a given solution to the Ricci flow, and among 
them choose one H with the least possible number of cusps. Suppose the 
times tj have the manifold M with the metrics g(tj) and origins Pj and 
frames Tj converge to Ti with hyperbolic metric h and origin P and frame 
J7. Pick a number A > 0 to truncate cusps, an integer £ and an e sufficient 
to guarantee from Theorem 9.1 the uniqueness of the identity map / among 
maps close to / as a harmonic map F from HA with the given hyperbolic 
metric h to itself where F satisfies the boundary conditions of taking OHA 

to OHA and with the normal derivative of F at the boundary of the domain 
normal to the boundary of the target. Then choose k and 5 > 0 from 
Theorem 8.3 on rigidity. 

By Theorem 9.4 we can guarantee for all large enough j the existence 
of harmonic diffeomorphisms Fj of HA to a manifold MA(tj) obtained by 
truncating Ai with metric g(tj) at constant mean curvature tori of area A, 
with Fj taking OHA to dA4A(tj) and normal to the boundary at the bound- 
ary as above. Since the metric g(t) varies smoothly with tj, by Theorem 9.3 
we can smoothly continue the map Fj to a family Fj(t) with Fj(tj) = Fj and 
with Fj(t) having all the above properties. If for some j we can continue 
all the way as t —> oo, the hyperbolic piece persists. Otherwise we get a 
contradiction as follows. 

For each j large enough, we can continue the family Fj (t) for tj < t < tj 

where tf is the first time when 
J 

\\Fj(t)*g(t)-h\\ck{nA) = 6 

by Theorem 9.3. Consider the new sequence of the manifolds M with metrics 
g(tf) and origins Fj(tf)P and frames TFj{tf)F. Since the Fj{tf) are close 

to isometries, the injectivity radii of the metrics g{tj) at Fj{tj)P do not 
go to zero, and we can extract a subsequence which again converges to a 
hyperbolic limit H with metric h and origin P and frame T. The new limit 
H has at least as many cusps as the old limit W, since we chose H with as 
few as possible. 

To simplify the notation, write gf = g(tf), Ff = F^tf), Pf = Fj(tf)P 

and J7^ = TFAtt)^.  Then the maps Ff are harmonic diffeomorphisms 
3 J^ 3 3 

of HA with metric h into M with metrics gj satisfying the constant mean 

curvature boundary conditions with FfP = Pf and TFfF = F*, while 
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the sequence of manifolds M with metrics g^   and origins Pj   and frames 

ft converges as j —> oo to the manifold H with metric h and origin P and 

frame iF. We also know that 

?*\* „# (Ffygf-h 
Ck(K) 

= 5 

for each j. 
By the definition of convergence, we can find a sequence of compact sets 

ICj exhausting H and containing P, and diffeomorphisms Fj of neighbor- 
hoods of JCj into M with FjP = Pf, and TFjT = ff such that for each 

compact set /C in W and each integer k 

F*q* h 
Ck{K) 

as j —> oo. For large enough j the sets Fj(ICj) will contain all the points out 
to any fixed distance we need from P. ; and hence 

FifyDF* (HA) 

since 7^ is at bounded distance from P and iy Pj = Pj   and F* is rea- 
sonably close to preserving the metrics. Then we can form the composition 

Hj = F-loF*:'HA-+H. 

Since the Fj are as close to preserving the metric as we like, for any 5 > 5 
we have 

H*h - h 
CHHA) 

<S 

for large enough j. Then a subsequence of Hj converge at least in Ck~1(HA) 
to a map Hoo of HA into H. 

We can improve this convergence to C00 by using the theory of elliptic 
boundary value problems. The convergence of the Hj to .floo lets us pick a 
finite number of coordinate charts on H so that their pull back to charts on 
M by the Fj are such that for any fixed point X in HA the P- take a fixed 
neighborhood of X for all large j into one of these pull-back charts. In this 
chart the estimates on lower order derivatives of the P- give estimates on 
the higher order derivatives. On the other hand for large j we can estimate 
as many derivatives of Fj or Pr1 as we like. Combining these gives uniform 
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estimates on all derivatives of Hj = Fr1 o Fj. It follows that for a better 
subsequence we can make Hj converge to Hoc in C00(W). 

The limit map will itself be harmonic since the F-   are harmonic and the 

Fj are as close as we like to preserving the metric. Moreover we still have 

H*h-h '•OO = 5 
Ck{HA) 

in the limit. Equality here rather than inequality prevents HQQ from being an 
isometry. The map #00 will ^iH be a diffeomorphism. It is clear there can be 
no overlap in the interior, and the boundary cannot have any overlap either 
because it is strictly concave.   Now each F-   satisfies the constant mean 

curvature boundary conditions, while Fj is as close to preserving the metric 
as we like, so the limit HOQ will also satisfy the constant mean curvature 
boundary conditions. Therefore iJoo takes HA to HA- 

The rigidity result in Theorem 8.3 guarantees that for A small enough 
and any i and e > 0 we can find k and S > 0 so that the above ifoo 
guarantees the existence of an isometry lofHtoH with 

dc'CHAi^ooiI) < £ • 

In applying rigidity we use the fact that the limit 7i has as few cusps as 
possible, hence no more than H. We can use / to identify HA with HA- 

The contradiction comes from observing that we now have two diffeo- 
morphisms, namely HQO and the identity /, of HA to itself which are close 
but different, and both are harmonic and satisfy the constant mean curva- 
ture boundary conditions. The only way around this contradiction is if one 
family Fj(t) extended to t —► 00 without a stopping time tj. This shows at 
least one hyperbolic piece persists. 

We can continue to form other persistent hyperbolic pieces in the same 
way as long as there are any points Pj outside of the chosen pieces where 
the injectivity radius at times tj —> 00 are all at least some fixed p > 0. The 
only modification in the proof is to take the new limit H to have the least 
possible number of cusps out of all remaining possible limits. 

11. Variation of Area. 

Now we wish to show that the boundary tori of any persistent hyperbolic 
piece are incompressible, in the sense that the fundamental group of the 
torus injects into that of the whole manifold. To see this, we shall assume 
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that some curve in the torus bounds a disk in the manifold, and obtain a 
contradiction. 

Let HB be a hyperbolic piece of the manifold M truncated by boundary 
tori of area B with constant mean curvature. We denote by HQ = M — H0

B 

the part of M. exterior to HB, i.e. the complement of the interior. By 
Van Kampen's Theorem, if n^dHB) injects into niCHg) then it injects into 
7ri(M) also. Let T be a torus in dHs- If fllCO does not inject into 7ri{H%)^ 
then by Dehn's Lemma the kernel is a cyclic subgroup of TTI (T) generated by 
a primitive element. We shall show this leads to a contradiction. The work 
of Meeks and Yau [M-Y] shows that among all disks in Hg whose boundary 
curve lies in T and generates the kernel, there is a smooth embedded disk 
normal to the boundary which has the least possible area. Let A = A(t) be 
the area of this disk. This is defined for all t sufficiently large. What we 
shall show is that A(t) decreases at a rate bounded away from zero. 

Theorem 11.1. For every 5 > 0 there exists a time T such that for t >T 

in the sense of the lim sup of forward difference quotients. 

Now it is clearly intolerable that such a situation should go on forever as 
t —> oo, since A > 0. This contradiction will show that 7ri(T) in fact injects 
in KICHB) ^ we desire. Now we turn to the proof of Theorem 11.1. 

Let us compute the rate at which A changes under the Ricci flow. We 
only need show A decreases at least at a certain rate, and since A is the 
minimum area to bound any disk in the given homotopy class, it will suffice 
to find some such disk whose area decreases at least that fast. We choose this 
disk as follows. Pick the minimal disk at time to, and extend it smoothly 
a little past the boundary torus. For times t a little bigger than to, the 
boundary torus may need to move a little to stay constant mean curvature 
with area B as the metric changes, but we leave the surface alone and take 
the bounding disk to be the one cut off from it by the new torus. There will 
be two contributions to the change in the area A, one from the change in 
the metric and the other from the change in the boundary. 

The change in the metric comes from the normalized Ricci flow 

^g(X, Y) = | r g(X, Y) - 2Rc(X, Y) . 
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Choose an orthonormal frame Fi, JF2, F3 at a point P on the surface so that 
Fi and F2 are tangent to the surface while F3 is normal, and write 

Rci = Rc(FhFi) 

for the components of the Ricci tensor. Then the rate of change of the area 
element da on the surface is 

¥tda = 
2 
- r — Rci — RC2 da. 

and the total change of the area of the surface due to the change of the metric 
g comes from integrating this over the surface. Also the change in area at 
the boundary from the motion of the boundary with a normal velocity V 
along a piece of length ds is given by V ds, and the total change of the 
area from the motion if the boundary is given by integrating this over the 
boundary curve. This gives the formula 

Now write the sectional curvatures as 

Rrm =Rm(F21Fs,F2,F3) 

Rm2 = Rm(F3,F1,F3,F1) 

Rm3 = Rm(F1,F2,F1,F2). 

Then 

and 

Since 

Rci = Rm2 + Rm3 

Rc2 = Rmi + Rm3 

Rci + Rc2 = Rmi + Rm2 + 2Rm3. 

Rmi + Rm2 + Rm3 = - R 

where R is the scalar curvature 

Rc\ + Rc2 = - R + Rmz . 
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This gives 

di=I! (!r-\R)da- jj Rm2da+Lv ds ■ 
The Gauss curvature of the bounding disk is 

K = iZras + detll 

where det II is the determinant of the second fundamental form II. Since the 
bounding disk is a minimal surface 

detll<0 . 

The Gauss-Bonnet Theorem tells us that for a disk 

// K da+     kds = 27r 
id 

where k is the geodesic curvature of the boundary. This gives 

Consider that for a negative curvature limit under the Ricci flow 

r —> — 6       and       R —> — 6 

and R > R. Thus for every e > 0 we can find a time T such that for T > t 

2r_l*<_(1_£) 

and 

//(5'-5*)*>s-<i-.)A. 
The geodesic curvature k of the boundary of the minimal disk is the accel- 
eration of a curve moving with unit speed along the intersection of the disk 
with the torus; since the disk and the torus are normal, this is the same as 
the second fundamental form of the torus in the direction of the curve of 
intersection. Now if the metric were actually hyperbolic, the second funda- 
mental form of the torus would be exactly 1 in all directions. Hence we can 
find a time T again such that k <1 + e for T >t. This makes 

I kds< (l + e)L 
d 
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where L is the length of the boundary curve. Also since the metric is as 
close to hyperbolic as we like, its change under the Ricci flow is as small as 
we like; so the motion of the constant mean curvature torus of fixed area B 
will have a normal velocity V as small as we like. Thus again we can find a 
time T such that for t > T we have \V\ < e. This makes 

L Vds<eL . 

Combining these estimates, we find the following. 

Theorem 11.2. For every e > 0 there is a time T so that for t>T 

HA 
^p < (1 + 2s)L - (1 - e)A - 27r 

for all t > T. 

In the next section we shall find an estimate saying L is not much bigger 
than A, and this will finish the proof of Theorem 11.1. 

12. Bounding Length by Area. 

It remains to bound the length L of the curve of intersection of the minimal 
disk with the torus in terms of the area A of the disk. Consider the situation. 
For large t the metric is as close as we like to hyperbolic; not just on HB 

but as far beyond as we like. Thus for a long distance into HC
B the metric 

will look nearly like a hyperbolic cusplike collar. 
We construct a special coordinate system on the cusplike tube projecting 

beyond the torus T in OHB as follows. The universal cover of T can be 
mapped conformally to the x-y plane so that the deck transformations of 
T become translations in x and y, and so that the Euclidean area of the 
quotient is 1; then these coordinates are unique up to a translation. Then we 
extend to a third coordinate z, starting with z = £ on the torus T where £ is 
chosen so the torus in the hyperbolic cusp with the same x and y translations 
at height £ has the same area B, and so that the lines where both x and y 
are constant are geodesies perpendicular to T and the distance ds = dz/z 
along these geodesies, the same as in hyperbolic space z > 0 with metric 

dx2 + dy2 + dz2 

dsz = 
z2 

By taking t large we can make the metric in as large a neighborhood of T 
as close to hyperbolic as we wish, in the sense that the sectional curvatures 
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are as close to —1 and as many covariant derivatives of the curvature as 
close to zero as we wish; this allows us to make these good coordinates for 
£ < z < £* for as large a £* as we wish. The translations from T act as 
isometrics on the set 

and the resulting quotient maps into M. as above. The metric has the special 
form 

* 2 _ Qxxdx1 + 2gXydxdy + Qyydy2 

z2 

where gxx and gyy are close to 1 and gXy is close to zero. Moreover since 
we have bounds on the curvatures and their derivatives, we can make any 
derivatives of gxx,gXy, or gyy as close to zero as we like in these coordinates 
by taking t large. 

Now consider our minimal disk, and let L(z) be the length of the curve of 
intersection of the disk with the torus at height z in our special coordinates. 
We prove a monotonicity formula. 

12.1 Monotonicity Theorem. For every e > 0 and every £* we can find 
a time T so that for all z in £ < z < (* and allt>T the function 

zl+£   fz L(w)dw i w 

is monotone increasing in z. 

Proof. We construct a comparison disk as follows. For almost every z the 
intersection of the disk with the torus at height z is a smooth embedded 
curve or a finite union of them. If there are more curves than one, at least 
one of them is not homotopic to a point in T, and then it must represent 
the primitive generator in the kernel of 7ri(T) that dies in ^i(Hc

B), and in 
addition part of the original disk beyond height z continues to be a disk 
that bounds it. We extend thisjlisk back to the initial height £ by dropping 
the curve straight down. Let L(z) be the length of the curve we picked at 
height z\ of course L(z) < L(z) with equality if it is the only piece. Let 
L(w) denote the length of the same curve in the x-y plane dropped down 
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to height w for £ < w < z. We need to be fairly delicate here in estimating 
the length L(w). In the hyperbolic space we would have 

L(w) = -L(z) 
w 

exactly. In our case there is a small error proportional to L(z), and we must 
also take it proportional to the distance z — w by which it drops. This comes 
from estimating the ^-derivatives of gxx,gxy,gyy in our special coordinates. 
Then for every S > 0 and every £* we can pick T so that for t > T we have 

L(w)--L(z)  <S(z-w)L(z) 
w 

for all z and w in £ < w < z < £*• Now given e and £* pick S = 2e/(i*. 
Then 

ZH--Z(^) 
w 

< 
2£z(z — w)L(z) 

ur 

This makes 

L(w)<-L(z) 
w 

1 + 
2£(z-w) 

w 

Now we are ready to do the comparison. 
When we drop the curve vertically for our comparison surface we get an 

area A(z) between £ and z given by the integral of the length L(w) times 
the vertical distance ds = dw/w, so 

*,)./ 
L(w)dw 

£ w 

On the other hand if we do not drop vertically we pick up even more area, 
so the area A(z) of the original disk between £ and z has 

M*) > f L(w)dw 
w 

Now the original disk minimized among all disks bounding a curve in the 
primitive generator of the kernel, and the^comparison disk beyond the height 
z is part of the original disk, so A(z) < A(z). This gives 

r* L{w)dw     r 
Jc     w    - Jc 

L(w)dw 
w 
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Now from our comparison of L(w) to L(z) < L(z) we have 

riw^<zL(z)r[iz|£+2!f dw 

and we evaluate the latter integral as 

1      1A /I       1 (1_2£)(___J+£^___ 
which simplifies to 

z-C 
<z 

1 + s z-C 

This gives the estimate 

I 
2 L(w)dw      z - C 

w C 
1 + e z-C Hz). 

To finish the proof, let 

n,).r L(w) dw 
w 

denote the integral. Then 

I(z)< 
z-C 1 + s z-C L(z). 

Using the inequality 

1 + x 
> 1-x 

we find that 

z-C 
l-e z-C I(z) < L{z) 

or equivalently 

z-c 
Hz) < L(z) . 
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Thus 

4-H') = M > dz z 
1 1 + E 

z — C      z I(z) 

and hence 

Tz
log{ 

t1+£I(z) 
>0 

which shows that 

is monotone increasing for £ < z < £* as desired. 

Corollary 12.2.   We also have 

^£    rz L(w)dw 
W 

> t£m 

for(<z<C 

Proof. The quantity on the left is monotone and approaches that on the 
right as z —> £. 

Corollary 12.3. If A{z) is the area of the part of the disk between £ and z 
then 

yl+e 

z-C 
A(Z) > cm. 

Proof. Recall 

A(z) > J' L{w)dw 
w 

Corollary 12.4. For every S > 0 we can find £# and T so that for t>T 

L(0<(1 + 6)A(C#) 
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Proof. The previous result gives 

z \      z 

for all z > C- Take z = £# with C# large so that ^/(z — C) is close to 1, then 
take e > 0 so small that (z/Q6 is close to 1. 

Now recall that we had 

rJA 
— < (1 + 25)L - (1 - <J)A - 27r 

where 5 > 0 is as small as we like, and we only need to show this is negative. 
Thus for any e > 0 we are in good shape unless 

A<(l + £)L 

and hence we can assume 

A{C)<{\ + e)L{0 

since ^4(C*) < A and L{C) = L. Assuming this now, we proceed. First we 
show that for some large z the length of L{z) is not too great. 

Lemma 12.5. For every 5 > 0 we canfindT and a ratio r so that i/C/1 > r 
and C#/C ^ r and C*/C# ^ r then for some z between £# and £* 

L(z) <{1 + S)j; L(0 . 

Proof. Let 

Then 

X = mf{^>;<#<2<<*}. 

/ 

On the other hand 

J^>(C-C#)X 
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and we can assume 

,4(C*)<(l + e)L(C). 

Combining these estimates gives that at the infimum z 

and we can take e and r to depend on 5. 

Now we pick another disk for a final comparison. We choose the height 
z above, where L{z) is not too large, and move the curve there through a 
small area to agree with the curve in the same homotopy class which is a 
geodesic circle in the flat metric coming from our special x-y-z coordinates, 
and then drop this geodesic circle vertically in the special coordinates to 
complete the disk. Note two technical points. First the curve at the height 
z where L(z)/z is minimal may not be smooth; this does not matter because 
the estimate in Lemma 12.5 on L(z) will hold at least on a set of positive 
measure. Second, if the curve at height z has several pieces, as before one 
of them will lie in our homotopy class, and we can ignore the others. 

Now we given an estimate on the area necessary to deform the curve in 
the torus. 

Theorem 12.6. Given an embedded curve of length L circling the cylinder 
S1 x R of circumference W once, it is possible to deform the curve through 
an area A < LW into a meridian circle. 

Proof Since the curve has length L, it is contained in a finite cylinder 
of height L. The region between the curve and either end of this finite 
cylinder is topologically another finite cylinder, and this gives the desired 
deformation. 

Corollary 12.7. Given an embedded curve of length L in aflat torus which 
generates a non-trivial homotopy class whose geodesic circle generators have 
length W', it is possible to deform the curve through an area A < LW into 
one of these geodesic circles. 

Proof The torus is covered by a cylinder of circumference W where the 
image of the fundamental group of the cylinder in the fundamental group of 
the torus is the class of the curve. The embedded curve in the torus lifts to 
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an embedded curve in the cylinder. By the previous result we can deform 
the curve in the cylinder through an area A < LW into a meridian circle, 
and this descends to a deformation of the curve in the torus through no 
more area into a geodesic circle. 

With this estimate on the flat torus we return to the argument. Let G 
be the length of the geodesic circle in the cusp at height 1 for normalization. 
Then its length is the hyperbolic metric in the torus at height z will be G/z. 
Our metric and the hyperbolic metric will differ from each other by a factor 
at most 1 + S where 5 is small for t large. The area in the torus in the flat 
metric to deform the curve of length L(z) in our metric, which is at most 
(1 + S)L(z) in the flat metric, to the geodesic circle of length G/z in the flat 
metric is bounded by 

(l + S)GL(z)/z 

and the area in our metric will not be greater by more than a factor (1 + 5)2. 
This gives a bound on the area of deformation which is 

(l + 6)3GL(z)/z. 

The area to drop the geodesic circle from height z to height £ in the hyper- 
bolic metric is exactly 

and the area in our metric is not greater by more than a factor (1 + 5)2. 
Moreover we can drop 1/z to estimate the area of the vertical column in our 
metric by 

(1 + 6)2G/C. 

Hence comparing the area of the minimal disk to that of the comparison 
disk just constructed gives 

A(z) < (1 + 6)3G 
L{z)_     1 

*    c. 
But from Lemma 12.5 we have 

z   -v      ; C* 
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and from Corollary 12.4 we have 

L(0<(l + 6)A(<;#) 

and A(C#) < A(z) since £# < z. Thus 

L(0<(1 + 6)5G m +1 
c*    cj 

Now since G is fixed from the geometry of the limit hyperbolic manifold H 
we can make 

(1 + 6)5G/C<s 

for any e > 0 by taking £ large. This enables us to take L(Q as small as we 
like by making ( large. Thus for any 6 > 0 we can choose £ and T so that 
for t > T we have L(Q < e. But in this case the formula 

^r < (1 + 2£)L - (1 - S)A - 27r 
at 

works since (1 + 26)L is very small and we still have the good term —27r. 
This finishes the proof. 
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