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In this note, we use harmonic maps to study groups acting on products 
of simply connected complete manifolds of nonpositive sectional curvature 
with compact quotient, or sometimes more generally on simply connected 
complete metric spaces of nonpositive curvature in the sense of Alexandrov. 
By definition, that curvature condition means that if we compare a geodesic 
triangle in our space with a Euclidean comparison triangle of the same side 
lengths, then any point on one of its sides cannot have larger distance from 
the opposite vertex than the corresponding point in the Euclidean triangle 
(see [N] for a detailed exposition). In the case of a smooth Riemannian 
manifold that curvature condition is equivalent to nonpositive sectional cur- 
vature. 

It was shown by Gromoll-Wolf [GW] and Lawson-Yau [LY] that if the 
fundamental group of a compact Riemannian manifold M of nonpositive 
curvature has no center and splits as a product, then M itself is metrically a 
product. We prove this result by harmonic map techniques and extend it to 
those more general spaces described above. In the smooth case, the required 
existence result for harmonic maps is due to Al'ber [Al], [A2] and Eells- 
Sampson [ES]. (In fact, APber [A2] was the first to point out that harmonic 
maps can yield information about the fundamental group of Riemannian 
manifolds of nonpositive curvature.) 

Gromov-Schoen [GS] then studied harmonic maps for certain nonsmooth 
targets. Here, however, we also have to deal with nonsmooth domains, 
and therefore, we need to employ the theory of the first author [J2], [J3] 
of generalized harmonic maps with values in metric spaces of nonpositive 
curvature in the sense of Alexandrov (or Busemann). 

The discrete evolution method of [J2] also allows us to obtain families 
of harmonic maps depending continuously on some parameter. Thus, if for 
example the fundamental group of M is a product F = Ti x r2, we let Mj 
be a Kfij,!) space (j = 1,2) and obtain two families /^2(Mi), f%1(M2), 
depending on X2 G M2 and xi G Mi. By the uniqueness result for harmonic 
maps of Al'ber [Al], [A2] and Hartman [H] as extended to the case of metric 
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spaces by Gromov-Schoen [GS], these two families of harmonic maps are 
parallel. In case F is centerfree, they will allow us to produce the desired 
product decomposition of M. 

Our second theorem says that if a centerfree discrete group F acts freely, 
properly discontinuously, and, most important of all, irreducibly on a non- 
trivial product Riemannian manifold X with compact quotient X/F, and if 
X/T is homotopically equivalent to a compact Riemannian manifold M of 
nonpositive sectional curvature, then the universal cover of M is a Rieman- 
nian homogeneous space, and there exists a totally geodesic homeomorphism 
between X/T and M. If we assume in addition that X is a symmetric space 
of noncompact type, this result is a theorem of Eberlein [E] and part of 
a theorem of Gromov (see [BGS]). Here, however, we do not even need to 
impose a curvature condition on A", let alone a symmetric structure. On 
the way of proving this result, we shall show that F projects densely into 
the isometry group of each factor of X. This generalizes the Borel density 
theorem [B] for irreducible group actions on products of symmetric spaces. 
The reason why we do not obtain this result for general metric spaces is 
that we need a Bochner type argument in order to show that a harmonic 
homotopy equivalence / : X/T —► M has harmonic restrictions to the local 
factors of X/T. This latter argument is the same as the one presented in 
[MSY]. We would like to point out, however, that this argument was already 
described by the second author in his address at the AMS Summer Institute 
on Several Complex Variables in Santa Cruz in 1989. 

An exposition of the harmonic map method for studying manifolds of 
nonpositive curvature can be found in [Jl]. Other applications include for ex- 
ample the investigation of finite group actions on such manifolds by Schoen- 
Yau [SY]. Another line of investigation in that area recently culminated in 
the harmonic map proof of geometric superrigidity by Jost-Yau [JY] and 
Mok-Siu-Yeung [MSY]. References for the theory of metric spaces of non- 
positive curvature are [N], [J3]. 

The first author gratefully acknowledges the hospitality of Harvard Uni- 
versity and generous support from the DFG, the second one support through 
an NSF grant. 

We thank the referee for his pertinent and constructive questions. 

1. Uniqueness of harmonic maps. 

In this §, we recall the uniqueness result for harmonic maps that will be the 
basis of our subsequent reasoning. It is due to Al'ber [A2] and Hartman [H] 
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in the smooth case and was extended by Gromov-Schoen [GS] to the metric 
case. 

Theorem 1. Let fo and fi be homotopic harmonic maps (in the sense of 
[J3]) between compact metric spaces M' and M where the target M has 
nonpositive curvature in the sense of Alexandrov. For x G M, let f(x, s) be 
the geodesic between fo(x) and fi(x) in the homotopy class determined by 
the homotopy between fo and fi, parametrized proportionally to arclength 
by s G [0,1]. Then, the length of f(x, •) is independent of x, and all these 
geodesies are parallel to each other. Also, all the maps /(•, s), s G [0,1], are 
harmonic, and thus fo and fi are joined by a parallel family of harmonic 
maps. 

Since our uniqueness statement is slightly different from the ones in the 
preceding references and in order to clarify the meaning of the assertions of 
the statement, we provide a proof based on [J3]: As explained in [J2], [J3], 
the energy functional the minima of which are our harmonic maps, can be 
obtained as the T—limit of functionals of the form 

Eh(f)= f     I   h(x,y)d\f(x)J(y))ii(dx)n(dy) 

for a given measure n on M' and a nonnegative symmetric function h : 
M' x M' —► R. All convexity statements employed in the sequel pertain to 
T—limits while the role of nonpositive curvature is more easily explained for 
the functionals E^. Therefore, we present the reasoning for the latter. 

Let /o, fi : M1 —► M be any two maps, not necessarily harmonic. We 
assume that they are homotopic. Thus, there exists a map 

F : M' x [0,1] -> M 

{x,t)^>F{x,t) 

that is continuous w.r.t. t and satisfies F(x,T) = /r(^) for T = 0,1. For 
x G M', we let /(x,s),s G [0,1], be the geodesic arc from fo(x) to fi(x) 
homotopic to F(x1s)1 and parametrized proportionally to arclength. 

The essential point now is that because of our assumption of nonpositive 
curvature, 

d2(f(x,s),f(y,s)) 

is a convex function of s that is even strictly convex unless the two geodesic 
arcs /(x, s), /(y, s) are parallel in the sense that this distance is independent 
of 5. In particular, in the latter case they are of the same length. (It is not 
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hard to see that it suffices to consider the situation where /(z, s) and /(y, s) 
are closer than the injectivity radius of M.) 

Since the function h is assumed to be nonnegative, this implies that 

Eh[s] :=  /   / h(x}y)d(f(xJs)J(yis))fi(dx)iJ,(dy) 

also is a convex function of 5, and strictly convex unless for almost all x, y, 
the geodesies /(x, 5), /(y, s) are parallel. This first of all implies that Eh is 
a convex function of / in a given homotopy class of maps. Secondly, if /o, /1 
are minimizers of E^ then Eh[s] is constant in 5, and almost all geodesic 
arcs f(x, 5), /(y, 5) are parallel, and furthermore, Ehifi^s)) is independent 
of 5, and thus all the maps /(•, 5) : Mf —> M are minimizers as well. Also, 
since the geodesies /(a;, •) are all of the same length and parametrized pro- 
portionally to arclength, the maps /(•, s) constitute a parallel family in the 
sense that the homotopy distance between /(x, si) and /(T, $2), i.e. the 
length of the shortest geodesic between /(re, si) and f(x,S2) in the homo- 
topy class determined by the homotopy between /o and /1, for si, 52 € [0,1], 
is independent of x. This completes the proof. 

2. Results and proofs. 

Theorem 2. Let M be a compact metric space of nonpositive curvature in 
the sense of Alexandrov with fundamental group T. Suppose that F has no 
center and splits as a product 

r = ri x ...iv 

Then M is isometric to a product 

Xi/ri x ...xk/rk 

where Xx, ...Xk are complete, simply-connected metric spaces of nonpositive 
curvature in the sense of Alexandrov, and Yj acts isometrically on Xj, j = 
l,...fc. 

Remark 1. In order to see why the<fu3sumption of F being center-free will 
be important for our proof, it is useful to keep the Z2 action on R x K 
generated by 

71 : (x,y)^(x + l,y) 

and 
72 : (re,y) »-» (x+l,y + i) 
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in mind. Of course, this generates the same quotient as the action with 
generators 71 and 72 : (x, y) 1—► (x,y + 1). An important point in our proof 
will be to show that in our situation only the latter type of action can occur. 

Proof. We let Mj be a compact K (Fj, 1) space and equip it with some metric 
d(-,-) and some measure // satisfying the conditions that are necessary to 
make the harmonic maps employed in the sequel continuous. In order to 
see that this is possible, let us briefly recall the construction of the ^(Fj, 1) 
space Mj (see [W], pp. 216, 244). One starts with the Cayley graph of the 
group Tj for some choice of generators of Fj. Here, the vertices are the ele- 
ments of Fj, and two vertices are connected by an edge if the corresponding 
elements are related by multiplication with one of the chosen generators. 
Closed loops correspond to relations in F^, and one caps them off by insert- 
ing two-dimensional disks. Finally, one inserts higher-dimensional cells to 
kill the higher homotopy groups. Since Fj is torsion-free (because F is as 
the fundamental group of a space of nonpositive curvature; namely, torsion 
elements would produce nontrivial closed geodesies homotopic to a point 
which cannot happen for nonpositive curvature, for example by Theorem 
1), the resulting space is finite-dimensional, and Tj acts freely on it to pro- 
duce the desired if (Fj, 1) space Mj as a quotient. We may equip all the cells 
that are inserted with nice metrics and measures that satisfy the following 
properties: 

(i) The construction is F^-equivariant so that we get a metric d (•, •) and 
a measure JJL on the quotient Mj. 

(ii) The induced metrics on the lower-dimensional cells (which are con- 
tained in the boundary of more than one top-dimensional cell) agree 
and are nondegenerate. 

(iii) The measure is the volume measure, induced by the metric on the 
top-dimensional cells (w.l.o.g. the metrics are Riemannian there). 

(iv) The ball doubling property holds: there exists a constant c < 00 such 
that for all r > 0 and all x G Mj, 

Kiv: d(x^y) < 2r}) < cK{y: d{x,y) < r}) 

(v) The Poincare inequality holds. 
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We then put 

h€(x,y):=l i/(€) 
I 0 otherwise, 

where u(e) is some appropriate normalization factor, in order to make the 
energy functional that we are going to introduce nontrivial. We consider 
the approximate energy functional Ehe(f) and their F-limit E as e —> 0, 
as described in [J3]. By [J4], minimizers for E with values in a space of 
nonpositive curvature are Holder continuous. 

Mi x ...Mfc then is a compact if (F, 1) space, hence homotopically equiva- 
lent to M, as the latter one is a K(T, 1) space as well. Let F : Mi x ...Mk —> 
M be a homotopy equivalence. For each j and SJ G Mi x ...Mj x ...Mk (the 
factor Mj omitted), the method of [J2] or [J3] allows us to deform 

into a harmonic map 
fSj : Mj - M, 

depending continuously on Sj. (Actually, in the sequel, the e-harmonic maps 
of [J2] that can be obtained in a more elementary way would work as well 
as harmonic ones.) Also, by our choice of /x, the maps fSj are continuous 
themselves, and the map 

/ : Mi x ... x Mh -> M 

is a homotopy equivalence homotopic to F. As such, it is in particular 
surjective. We then apply harmonic map uniqueness, see §1. Thus, we 
get k families; in the jth family, the leaves are of the form fSj(Mj) and 
all isometric and parallel to each other. On the universal cover, we get 

corresponding families with leaves fSj yMjY (In fact, the families fSj{Mj)) 

for Sj varying, hence also f3. [MA , yield foliations of M and M, resp. 

(hence the terminology "leaves"), but this is not needed for our reasoning 

at this stage.) For i ^ j,Ti permutes the leaves fa. (Mj\ (since F; and Fj 

commute, we infer from the uniqueness statement that F; maps leaves to 
leaves), but we claim that for each 7 G F;, ^ G Mj, 

74&) = /*'(£;) 
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for some s'j. We view this also in the following way: If we identify the leaves 

fSj(Mj) for varying Sj through the parallel geodesies from Thm. 1, i.e. we 
identify fsi(^j) with /s2(£j) for any sj, si? we obtain a space f(Mj) isometric 

j j j   j 

to all the leaves fSj(Mj) on which 1^ acts trivially.  We may also identify 

f iMj) with any leaf fSj [Mjj, and thus consider f (Mj) as a subset of 

M. 
7 then induces an isometry of / (Mj), again denoted by 7 by an abuse of 

notation. If the claim is not true, there exists Xj € / [Mj) with 7(2^) 7^ Xj. 

Since J(XJ) ^ Xj is assumed, the geodesic from Xj to 7(XJ) projects 
to a geodesic in M different from the one defining the parallelism between 
the leaves coming from the uniqueness of harmonic maps. This family of 
geodesies yields a new homotopy between /(Mj) and 7*/(M7) to which 
we may again apply the uniqueness theorem for harmonic maps in order to 
produce a parallel family of images of harmonic maps connecting f(Mj) and 
7*/(Mj). We therefore obtain a nontrivial parallel family of translations of 
f(Mj) inside /(My), and thus also a family in /(Mj) of parallel geodesies, 
denoted by cx, going from x to 7*£. Let t be the length of these geodesies 
cx. The geodesies cx commute with arcs in /(Mj) in the sense that for every 
arc b : [0,1] —► /(Mj) starting at x, we have 

7*6(1) = c6(i)(t). 

Let Cx be a maximal extension of a lift of cx to M. If it projects to a 
closed curve in M, it is not hard to see that this curve is smooth, hence 
a closed geodesic c. It then represents an element of TTI (f (MJ),X) that 
commutes with all elements of TTI (/ (Mj), x); hence it is contained in the 
center of F, contradicting our assumption that F is center free. If cx does not 
project to a closed curve, we take the shortest geodesic arc b : [0,1] —» M 
from x to 7^x for some n sufficiently large so that b is not contained in 
cx. The family of geodesies c6(s), s e [0,1], then projects to a family of 
curves in /(Mj). If this family defines a closed torus, we obtain a subgroup 
isomorphic to Z2 in the center of TTI (/ (Mj), x). Otherwise, we perform the 
construction with higher dimensional families until we finally obtain some 
closed torus and some group isomorphic to Zl for some I G N in the center 
of TTI (/ (Mj), x), again contradicting the assumption that F is center free. 

We now take another look at the assertion of the harmonic map unique- 
ness theorem. Namely, if we fix Xj G Mj and let Sj G Mj := Mi x ...Mj x 
...Mfc (the factor Mj omitted) vary, then f(xj,Sj) := fsjixj) is a totally 
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geodesic set (pXj(Mj) := /(rr^Mj). In particular, the inclusion map 

is harmonic. If we now keep s^ fixed and let Xj vary, then by the same ar- 
gument, f(xj,Sj) = <PXJ(SJ) yields a totally geodesic set <^.(Mj) coinciding 
with fSj(Mj), again applying the harmonic map uniqueness theorem. 

By our preceding arguments, we then get two F-invariant totally geodesic 
foliations on the universal cover M, denoted by a ~ on top. (The foliation 
property easily follows from our construction and the fact that / as a ho- 
motopy equivalence is surjective.) In order to conclude the proof, we shall 
show that they induce a F-invariant product structure for the metric of M. 
For 7j € Fj = Fi x ... x f j x ... x F^, 7j/(^, s.?) is the point on jjfSj (Mj) 

closest to f(xj, Sj). Namely, otherwise the geodesies on the leaves 7j/a. (Mj) 
between that closest point and jjf(xji Sj) would create a center of Fj, hence 
of F, in the same way as above. This observation now implies that the leaves 
of our two foliations are orthogonal to each other in the sense of inducing 
the desired product structure for the metric on M. □ 

Theorem 3. Let F be a centerfree group of isometries of a product Rie- 
mannian manifold X = Xi x ...X^ (fc > 2); acting freely and properly dis- 
continuously with compact quotient X/T. Assume that F acts irreducibly in 
the sense that no finite index subgroup of F splits as a product. Assume 
that M is a compact Riemannian manifold of nonpositive sectional curva- 
ture homotopically equivalent to X/T. Then there exists a totally geodesic 
diffeomorphism 

f : X/T - M, 

and M and X are Riemannian homogeneous. 

Proof. We claim that the projection Tj of F into the isometry group of Xj, 
I(Xj), acts densely on Xj, j = 1, ...fc. Assume on the contrary that it acts 
properly discontinuously on some maximal subset flj of Xj. We conclude 
that Qj = Xj] namely, any p G Xj \ Qj by the maximal choice of Qj has the 
property that there exists a nontrivial sequence (7i/)z/G^ C Fj for which 

JuP —► Po 

for some po G Xj. Take any q G ftj. Then, since Fj acts by isometries, 

d{lvP>lvq) =d(p9q). 
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Hence, 7^5 remains bounded, hence converges after selection of a subse- 
quence, contradicting the definition of Q,j. Thus, indeed, Q,j = Xj, and re- 
acts properly discontinuously on Xj. 

We shall now conclude that F is reducible. Let Xj be the product of 
the factors of X different from Xj. We claim that the sets Xj x {p} for 
p G Xj yield a foliation of X/T with compact leaves. Namely, any point in 
such a set Xj x {p} is identified only with a discrete set of points in other 
such sets, because Tj acts properly discontinuously on Xj. In particular, in 
any fundamental region for the action of F, only finitely many such sets are 
equivalent under the action of F, where we call two sets equivalent if they 
contain points identified by the action of F. This easily implies compactness 
of the leaves. 

Let Tj be the projection of F onto the isometry group I(Xj). Since F has 
compact quotient X/T, and since the sets Xj x {p} yield compact leaves in 

X/T, Tj1 := \ 7 G F'- : (e, 7) E F > has to act with compact quotient on each 

such set. Since Tj and F'- commute, each 7 £ Tj yields an automorphism of 

any such set (x'- x {p}\ /T'j1. 

As in the proof of Thm. 2, we look at the family of harmonic maps 

/„ : (Xj x M) /rj» -> M 

induced by the homotopy equivalence between X/T and M. Again, these 
maps form a parallel family / that is continuous in p. Since 7 G Tj yields 

an automorphism of (xi x {p}J /T'j1, /|(X/xM)/r^ and 7 o /|(X/x{p})/r'n 

induce homotopic harmonic maps from compact spaces, and by uniqueness 
of harmonic maps (see §1) again, they can be joined by a parallel family. 
Noting that F ^ is a normal subgroup of F, we therefore get a flat bundle 

with fiber / (Jx'j x {p}) /rj1) over the base / (Xj/Tj). Thus, 7 € Tj in- 

duces an automorphism of the fiber. By the Arzela-Ascoli theorem, these 
automorphisms can only be contained in finitely many homotopy classes of 
selfmaps of the fiber. On the other hand, any nontrivial such automorphism 
homotopic to the identity generates a nontrivial center of F^71, hence also 
of F, as in the proof of Thm. 2. Thus, Tj induces only finitely many auto- 
morphisms of the fiber. Therefore, a finite cover of this flat bundle splits 
as a global product. Since we have a homotopy equivalence between X/T 
and M, i.e. a map between X and M equivariant w.r.t. the F-actions on 
these spaces, we may pull this product back to X. Now F and Tj x T'j1 

are commensurable, since they both are subgroups of Fj x F^ with a quo- 
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tient of finite nonzero measure. Therefore, we obtain a contradiction to the 
assumption that F acts irreducibly on X. 

In order to show density of the action, however, it remains to exclude 
the intermediate case where Tj has a nondiscrete orbit whose closure in Xj, 
however, is not all of Xj. In that case, we have a family of leaves £(£) in 
Xj, depending on some parameter £, obtained as the orbits of the closure 
Tj of Fj in the isometry group I{Xj). Since we have more than one leaf, 
f j has to contain more than one connected component. The projections 
S(t) of S(t) form a foliation of X/Y with compact leaves. For every leaf, 
we let ft : £(£) —► M be the harmonic map in the homotopy class of /|E(t). 

Let 7 E f j be contained in a connected component of Tj not containing 
the identity. 7 then does not map E(t) onto itself, but onto another leaf 
I!(t/). It therefore normalizes the subgroup of Tj of those elements mapping 
S(t) onto itself, at least for generic t. Namely, the quotient of Tj by the 
identity component acts properly discontinuously on the leaf space {£}, and 
therefore, the set of its fixed points is discrete. For t not in this fixed point 
set, only elements of Tj contained in the identity component map E(£) onto 
itself, and 7 normalizes this subgroup. 

We then obtain a nontrivial homotopy between the two harmonic maps 
ft and 7 o f^ We then obtain a vector field along ft (S(t)), and performing 
this construction for every t, along M that allows us to create a center in 
the same manner as in the argument for the case where Tj was assumed to 
act properly discontinuously. Since we assume, however, that T is center 
free, we conclude that any orbit of Tj is dense in X. Therefore, tj acts 
transitively on Xj, and Xj is a homogeneous space. 

The proof of Thm. 3 is now completed by the following 

Lemma 1. Let the discrete group T operate properly discontinuously and 
isometrically on the Riemannian manifold X = Xi x ...Xk {k > 2) with 
compact quotient X/T. Let p : F —» I(Y) be a homomorphism into the 
isometry group of the Riemannian manifold Y of nonpositive sectional cur- 
vature, and let f : X —* Y be a p-equivariant harmonic map. Then the 
restriction of f to each factor of X is harmonic itself and if V and W are 
tangent to different factors through p 6 X, then 

v2m(v,w)=o. 

If T has no center and operates irreducibly, then f is totally geodesic. 
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Proof. For simplicity of notation, we assume k = 2, i.e. 

X = X1 x X2. 

The general case can be reduced to that one by an easy induction. We let 

(ea)a=iv..ri 

be an orthonormal frame at p e X, with ei,...emi tangent to Xi, and 
emi+i, ...erni+m2 tangent to X2. We let indices ai,/?i,... range from 1 to 
ffti) a2>/?25 ••• from mi + 1 to mi + m2, a,/3,... from 1 to m = mi +7712- The 
standard Bochner formula for harmonic maps gives with the usual summa- 
tion convention and the Riemannian metric (•, •) of Y, the Ricci tensor Ric* 
of X and the curvature RY of Y 

/      </aa, /#> =   /      (fop, fa?) +   I      (^ (/0) , /a> 
JX/Y JX/T JX/T 

(1) -/      (RY{faJfi)fp,fa) 
JX/T 

(1) just follows from integrating by parts and the definition of the curvature 
tensors. In the same way, we obtain for j = 1,2 

/       {fcLjCLj, fprfj ) =   /       (fajpj j fajPj > +   /       (Ric* (faj ) , /a .) 
JX/T JX/T JX/T 

(2.j) -/      (RY(UjJpj)fpjJaj) 

Since / is harmonic, faa = 0, and so the left hand side of (1) vanishes. 
Noting also that 

(RicxfaiJa2)=0 

for all ai, 0:2, since X = Xi x X2 is metrically a product, we subtract (2.1) 
and(2.2) from (1) to obtain 

0=   /        {fawi faw) +   /        (faiau fpiPi) +   /        {foL2Ct2i ffofc) 
JX/T JX/T JX/T 

(3) -   /        (-R    (faiifa2)foL2ifai)' 
JX/T 

Since Y has nonpositive sectional curvature and the other integrands in (3) 
are (sums of) squares, all integrands in (3) have to vanish identically. In 
particular 

(4) /axax = 0 = /< aiai — ^ — J 012012 
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so that the restriction of / to each factor is harmonic, and 

(5) /aiO2=0foraJlai,a2, 

so that the Hessian of / vanishes in mixed directions. In case F is centerfree 
and acts irreducibly, we shall now show 

(6) /01ft =0for allai,/?i. 

By the same argument then also /Q2/?2 = 0 for all 0% /^ and altogether the 
Hessian of / vanishes and / is totally geodesic. (6), however, easily follows 
from the fact that 

(/au/ft) 

is invariant not only under r2 (because of (5)) but also under Fi (F^ is the 
projection of F onto the isometry group of Xj) and that the latter group 
acts densely in Xi by what has been shown in the preceding arguments in 
the proof of Thm. 3. This completes the proof of the Lemma and of Thm. 3. 
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