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Spinors and forms on the ball 
and the generalized cone 

J.S.DOWKER AND KLAUS KlRSTEN 

A method is presented, and used, for determining any heat-kernel 
coefficient for the form-valued Laplacian on the jD-ball as an ex- 
plicit function of dimension and form order. The calculation is of- 
ferred as a particular application of a general technique developed 
earlier for obtaining heat-kernel coefficients on a bounded general- 
ized cone which involves writing the sphere and ball C_functions, 
and coefficients, in terms of Barnes ("-functions and generalized 
Bernoulli polynomials. Functional determinants are computed. 
Spinors are also treated by the general method. 

1. Introduction. 

The present work should be considered as an extension of an earlier one, 
[8] where heat-kernel asymptotics and functional determinants were com- 
puted for a scalar field on a bounded generalized cone (the simplest example 
of which is a ball). Here, the scalar field is replaced by more complicated 
bundles, specifically by spinors and forms. This will enable us later to dis- 
cuss topological matters such as the analytic torsion as well as settling a few 
questions regarding the spectral invariants. However the emphasis here will 
be on the actual computations and the technical problems raised have, we 
think, elegant outcomes. A primary aim is to work in arbitrary dimensions 
with arbitrary p-forms. In this connection, one objective is to make contact 
with the work of Blazic et al [5] who have given general, explicit expressions 
for the first four heat-kernel coefficients for the form-valued Laplacian on 
manifolds with boundary. We anticipate going beyond their computations 
but, of course, within the confines of a restricted geometry. 

The motivation for this calculation is partly mathematical and partly 
physical. It fits into that part of mathematics termed spectral geometry, and 
adds, we hope, to the to general stock of specifics in that area. In physics, 
heat-kernel expansions and functional determinants have been heavily em- 
ployed in quantum field theory, especially in quantum cosmology. 
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In the progress of the analysis, we develop various ancillary results and 
techniques that we hope will be of value to others who wish to undertake 
similarly detailed calculations. Although the bulk of this paper is concerned 
with the ball, there is no obstruction to discussing conical cases in like 
detail. The results would then be relevant to the investigation of the effects 
of singularities and of the non-smoothness of the boundary on the spectral 
invariants. 

The structure of this paper is as follows. In section 2, we discuss the 
various types of eigenforms that exist on the generalized cone. For rapidity, 
we use the results of Cheeger [14] on the infinite cone, additionally imposing 
appropriate conditions at the cone boundary. 

Section 3 contains the general construction of the ^-function and heat- 
kernel coefficients. This closely follows our earlier development so that ex- 
planatory details can be kept to a minimum. The result is a formula for the 
p-form coefficients on the generalized cone in terms of those on its base for 
a particular, 'modified' coexact p-form. 

In sections 4 and 5 this apparatus is applied to the case of the ball 
where it is possible to find a compact expression for the relevant p-iovm 
("-function on the sphere in terms of Barnes ^-functions. Another more 
suggestive form of this sphere ("-function expresses it as a sum of 0-form 
("-functions. The ball coefficients are determined as explicit functions of d 
and p via generalized Bernoulli functions. 

Rearranging the first few coefficients we obtain agreement with the gen- 
eral formulae of [5] evaluated on the ball. Going beyond this, we are able, 
in section 6, to find the expression for an arbitrary coefficient in terms of 
binomial coefficients and polynomials in the dimension. This is a natural 
generalisation of our previous results [8], and of Levitin's earlier [31], for the 
scalar case. Section 7 briefly looks at the important value of the ("-function 
evaluated at zero argument. 

In section 8 we address the calculation of the functional determinants 
and some explicit results are exhibited in an appendix. 

Related work has been performed by Elizalde et al [21] and we use their 
specific results as a check of our general forms. Their method of evaluation 
also works generally but involves an immediate reduction to a series of Hur- 
witz ("-functions and does not yield the functional form. The expressions for 
the functional determinants obtained in [21] contain integrals over \I> and F 
functions. In an appendix we show how these may be reduced to derivatives 
of the Riemann ("-function. 

In section 9 we turn, rather more briefly, to spinors and apply our gen- 
eral method to rapidly reproduce and justify our earlier results for spectral 
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boundary conditions. A curious vanishing theorem, noticed earlier, is proved 
in an appendix. Local conditions are also treated by the improved technique. 

2. Geometry and eigenforms. 

The geometry has been outlined in Cheeger [14] and already used in our 
earlier work, [8], so that it will not be described at length here. The cone 
manifold, M has the hyperspherical polar metric ds2 = dr2 + r2dS2 with 
dT,2 the metric on the base, JV", which is the r = 1 section of the cone. For 
simplicity, we shall assume in this paper that the base is closed, dj\f = 0, 
which is enough for the ball. 

The structure of the eigenforms of the de Rham Laplacian, A^, on the 
infinite generalized cone has been given by Cheeger [14] and, for convenience, 
we refer to [14] for the detailed action of A^ on forms of the type (S + drAu 
as well as for the necessary exterior calculus. (See also [15].) 

There are four basic types of eigenforms with nonzero eigenvalues, a2, 

(1) ^(i)=   JKp)(ar)  ^ 
r(d-l-2p)/2 

(3) i        i    \ 

where ^ is a coexact p-eigenform of the intrinsic de Rham Laplacian, 

—AN = d8 + Sd, on the base A/". We have the separation of variables 
relation 

(5) u(p) = ^(p) + ((d-l)/2-p)2)1/2 

with IJL(P) being the (coexact) eigenvalue of Atf. We are assuming that u > 1 
so that the 'negative' modes ^ J-^ do not arise. 

In addition, there are modes ('zero modes') whose Af part is harmonic, 
M = 0, 

(6) 6MW - JVE(p)(ar) hM 
W 9P ~ r(d-l-2p)/2 nP 
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and 

(7) 

with 

(8) 

MM(P) = f J''o(p)(ar)Vd  A hM 
Vp        ^r(d+i-2p)/2y orA>-i' 

VE(P) = \(d- l)/2 - p\ = vE{d -l-p) 

voip) = |(rf+ l)/2-p| = vE{d-p). 

On A'l, types 1, E and 3 are coexact and types 2, O and 4 are exact. (See 
the relations in [15].) 

For the bounded, generalized cone, conditions are to be set at r = 1. 
Absolute boundary conditions are [16, 26] 

(9) Wi)' 
M 

= 0,     </>; M 
r,i...j = 0 

M 

and have to be applied to the six types separately. 
Since 4$, h*f are pure N forms, it is easily shown that types 1, 2, E and 

O satisfy Neumann (Robin) and types 3 and 4 Dirichlet conditions. Bessel's 
equation has to be used to derive this for type 3. 

More precisely the Robin conditions are {e.g. for type 1) 

(10) dr{r^d-Wjv{p){*r)) = 0 
N 

so that the Robin parameter is u = Ua(p) = p — (d — l)/2, ([7] 3.1). The 
parameter for type 2 is Ua(p — 1). 

Relative boundary conditions are obtained by dualising and, in the 
present context amount to 

(ii) ($• + <* +2-2p)#£. 
tf 

0,     ^ = 0. 
AT 

Now types 1, 2, E and O satisfy Dirichlet and types 3 and 4 Robin conditions. 
For type 3, Robin conditions read 

(12) ar(r(d+i)/2-pJiy(p_i)K)) = 0 
AT 

with the Robin parameter u = ur(p) = (d + l)/2 — p = Ua(d — p).  The 
parameter for type 4 is «r(p — 1). Hodge •-duality on M thus interchanges 
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the conditions (10) and (12) with 1 <-> 4 and 2 <-> 3 which differs from 
Cheeger. 

We denote the coexact degeneracies on M by d(p) and remark that the 
exact degeneracies, dex{p), and eigenvalues, iJ>ex{p)<, are given by 

(13) dex{p) = d(p - 1),    /iex(p) = M(p - 1). 

The structure of the eigenforms shows that the degeneracies of types 1, 2, 3 
and 4 are d(p), d(p — 1), d(p — 1) and d{p — 2) respectively. 

We now define, for later use, the modified coexact ^-function on AT, the 
base C-fimction, 

w        ^w    2^Kp)2s    2.(M(p) + ((d_1)/2_p)2)- 

(c/ [8] (3.3)). Including the 'zero modes', which is sometimes notationally 
convenient, one has 

<15> e'M-tfM + JSs-E;^. 
which defines d(p) and where jS^ is the p-th Betti number of N. The 
summations, here and later, are over the mode labels which are not always 
explicitly displayed. 

In view of the relations (13), an 'exact' C-funct;km is defined by 

(16) C£» = £i(fl)- 

Because the additional term ((d — l)/2 — p) depends on p, C^i,p(s) 'ls ^ 
the true exact ^-function, but we expect it to be the relevant construct. 

Assume for the time being that the base J\f has no boundary.   Hodge 
duality on // can be applied to yield the coexact relations 

(17) d(d - 1 - p) = dip),    and   /x(d - 1 - p) = /x(p) 

whence 

(18) u(d-l-p) = u{P) 

and therefore, for the coexact ^-function, 

(19) Cli-P(s) = £(8). 
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These relations will be verified later when AT is a sphere. 
As is well known, equation (13) is true for any Riemannian manifold. 

This follows from the isomorphism between the nonzero exact and coexact 
eigenspaces provided by the exterior derivative. It allows alternating sums 
over p to be simplified by 'telescopage' [27]. (See e.g. the early use by Ray 
in analytic torsion [35]). 

The binomial equivalent is the identity 

(V-l.-r)-B-^.-; 

3. General constructions. 

The total C-function on M is, according to (1) - (4), (6), (7), a com- 
bination of exact and coexact (on M) contributions. Noting that the zero 
modes on M give degenerate eigenvalues on M, one has 

where the of8 are the eigenvalues of the p-form Laplacian on M for i-type 
modes. 

(21) can be written in terms of the coexact ^-function on M, (^(s), as 

(22) C£4+(s) = C£/t(s) + tPi(s), 

the inverse of which is 

(23) ^HD-ir^+to- 
q=0 

Equation (22) holds for any manifold, i.e. the total C-function is always 
the sum of coexact ("-functions and (23) is just a consequence of telescopage. 

According to the method given in [6, 7, 8], and now for absolute condi- 
tions, 

(24)    Ca» =£/ |U-2^ (dip) In (r-W J^Cfcr))' ^ 

+ d(p-l)lnJ„(p_i)(A;)) , 
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where the details of the contour 7 are in the above cited references. The 
first term is the Neumann (Robin) (types 1 and E) and the second term 
the Dirichlet (type 3) part. For economy of writing, the degeneracy d(p) is 
introduced so as to take into account the ^ E-type zero modes on Af, cf 
(15). When p —» p — 1, the type 1 contribution becomes a type 2, the type 
E a type O and the type 3 a type 4. 

For relative conditions, likewise, 

(25)   (#(«) =£/ |U-2S^ (d(p - 1) In (r^P) J^flfer))'^ 

+ <J(p)liiJI/(p)(fc) 

It is amusing to check in detail Hodge duality on Ai, 

(26) cS+w = cSk-pW. 
which fundamentally arises from the intertwining [26] 

. AM _ \M , 

It is easily seen from (22) that (26) is equivalent to the statement that, 
under p -> d - p, C^(«) of (24) turns into C^(s) of (25)- Firstly, this is 
readily seen to be the case from the relations (17) and (18), if the zero E 
modes are set aside. Secondly, consider the contribution coming from the 
zero E modes in (24). One has ua(p) = p — (d — l)/2 and the argument of 
the logarithm reads explicitly ua(p)J„E(p) + kJ'^^ where \ua(p)\ = z/£(p). 
Let us assume for the moment that ua{p) < 0, and then use the relation 
zJ'^z) — vJu{z) = —zJj,+i(z) to write the above argument as —kJUE^+i. 

The factor (—k) does not contribute because it has no zero inside the 
contour, 7, and so the contribution is just that of JuE(p)+i' Now from 
(8), ^(p) + 1 = VE(d — p) and, taking into account Poincare duality on 

■A/\ $f = Pcf-pi the contribution of the p-form zero modes for absolute 
boundary conditions is seen to equal that of the (d — p)-form zero modes for 
relative boundary conditions, which was to be shown in order to complete the 
demonstration of Hodge duality on M. For ua(p) > 0 use zJf

u(z) + iyJ^(z) = 
zJj;-i(z) to arrive at the same conclusion. 

One of our main objectives is the evaluation of the coefficients, An/2, in 
the heat-kernel expansion, which is stated in generic form, 

00 

(27) KM(r) = £ Atfi T^II + JlM logr. 
n=0 



648 J.S. Dowker and Klaus Kirsten 

Our preferred general computational formula, on any manifold, M., of di- 
mension D, is 

(28) ^2 = r((£-n)/2)ResC^((£>-n)/2),    n< D. 

The ability, by choosing D sufficiently large, to work with just this for- 
mula in order to determine any coefficient, has an additional advantage 
because a finite number of 'extra' modes does not affect the analytic struc- 
ture, as in the difference between £ and ( when (28) is applied to the base 
AT. 

The calculation of the ^-function on Ai in its relation to that on jV, 
follows precisely the previous pattern, [8], the Robin and Dirichlet cases 
now being combined. It leads to the following basic equation for the coexact 
heat-kernel coefficients on M in terms of those on A/*, (n < d), 

(29) +^«-i)/2(p)-<-i)/2(p-l)) 

2=1      X 

for absolute conditions. 
The A^ are the heat-kernel coefficients corresponding to the base (- 

function, (15), and the Pi are known polynomials arising from the asymp- 
totic expansion of Bessel functions, e.g. 

W ^l[X) ' ^ Xl>b r((D-n + i)/2) r(6 + i/2)' 

The rr's correspond to Dirichlet and the za(p)'s, which depend on p through 
the ua(p), to Robin conditions. 

The combination (22) leads to the total coefficients on M, 

(31) <&(?) = <„/2(P) + <n/2(P " 1) 

and similarly for relative conditions. (31) can be inverted as in (23). 
In general 0^ (5) has a pole at s = 0 which translates into the log r term 

in the expansion (27), the coefficient being 

(32) A'M(p) = --ReaCpL<P)- 
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These are the only general equations that are needed but the algebra can 
be checked by confirming Hodge duality on M, in the coefficient form 

(33) ^2(d+l-p) = A^/2(P), 

using the easily verified formula, 

A«±(d-P) = ±A«±(P) 

where, the coefficients A^(p) are those resulting from the combinations of 
the coexact and 'exact' ("-functions on J\f discussed above, 

(34) ^±W = <^W±^1W 

4. The ball and sphere ^-functions. 

We now consider forms on that cone whose base is a unit d-sphere, 
d = D — 1, i.e. on the D-ball. This will be our main application of the 
general formalism exposed in the previous sections. As we have seen, it is 
sufficient to look at coexact forms (i.e. transverse, antisymmetric fields). 

The form C-fimctions (14) on the d-sphere are needed in order to find the 
corresponding heat-kernel coefficients for substitution into the fundamental 
equation, (29). The spectral properties have been known for some time 
[25, 4, 29, 28, 17, 36] and the coexact p-form eigenvalues of the de Rham 
Laplacian are readily established to be 

(35) 

M(p, 0 = (I + (d - l)/2)2 - {(d - l)/2 - p)2,    1 = 1,2,.... 

As anticipated, we again witness the important simplification of the Bessel 
function order, (5), to the p-independent form 

(36) i/(p, I) = I + (d - l)/2 > (d - 1)12 

exactly as in the scalar case.   The first consequence is that the absolute 
("-function (24) simplifies to 

(37) 

<S1W=E/^*-2,^(P)(Mr-«lnJ,(ibr))/ + d(p-l)liiJ„(fc) 
r=l 
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For the time being let us work at a fixed p.   The sphere coexact p-form 
degeneracy is 

(38) d(v I) = (2l + d-l)(l + d-l)\ 
K   } W )     p!(d-p _!)!(/_!)!(/+ p)(/ + d_p« i)- 

We note the symmetry, rf(p, I) = d{d - 1 - p, Z) and that rf(d, Z) = 0.   In 
addition, there is a zero mode for p = 0 and one for p = d. 

Rewrite (38) as 

p!(d-p-l)!(Z-l)!Vi+p     l + d-p-lj' 

and consider, firstly, the sum 

-   a + d-l)!r^-l)/2 

with r = exp(—r) < 1. The idea is that this gives the 'square-root' heat- 
kernel, and the sphere ^-function, (14), follows by Mellin transform on r as 
in our earlier works, [18, 13]. 

The generating function for a given form order can be rewritten using 
the identity 

(41) 

^(l + d-l)\   rl * (m-l)I 

which follows easily from recursion. 
There is still an overall factor of r^-1)/2 in (40) and performing the 

Mellin transform produces a series of Barnes ("-functions, giving, after the 
addition of the p —» d — p — 1 term, the modified coexact ^-function, (14), 
on the sphere as 

d 

<f(*)=   E   (rn
o
1)ce(25,(d+l)/2|lm) 

m=p+l \     P     / 

+ E (<,-p_!i)&(2s.(<i+1)/2i1»') 

(42, 

m=d—p 

for 0 < p < d. Obviously C^i8) = 0- 
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(42) is formally much simpler than expanding the degeneracy to give a 
series of Hurwitz ^-functions (a series noted in passing by Copeland and 
Toms, [17] and frequently used). This will come later. 

When p = 0, (42), with the zero mode included according to (15), gives 
the known scalar expression. The first sum reduces to a term that is can- 
celled by the zero mode and to a single Barnes C-fimction, the result being, 
[13], [8] eqn. (5.7), 

(43) Ct = CB(2S; (d + l)/2 | ld) + CB(2S] (d - l)/2 | ld). 

This is elegantly seen from a rearrangement of (42), detailed in Appendix 
A, that yields £jf (s) as a finite series of scalar ^-functions by means of a 
recursion relating a p-form in d dimensions to a (p — l)-form in d — 2. The 
series is (0 < p < (d - l)/2) 

(44) J'=0 

-2s / 7      o 1 \ -2s 

and this is one of our basic equations. Duality, (19), can be used to extend 
the range of p. 

When d is odd we have from (43) the special values for q G Z, 

(45) Cid(-q) = 0,    q>0, 

which corresponds to the fact that for scalars the relevant operator is the 
(improved) geometrical Laplacian. 

Prom (45) follow the special values of the modified coexact function (0 < 
p<d) 

(46) Cf (-?) = Cf ("<?) = (-l)p+1((d- 1)12 -p)2\ 

In particular 

(47) Cf (0) = (-l)p+1, 

and 

(48) CfjLivsHz) = 0,    <z>0. 
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Hodge duality, as expressed in (19), can be seen explicitly from (42). Inclu- 
sion of the zero modes obviously violates this duality. 

It is also worth pointing out that the + combination of coexact and exact 
C-functions in (34) on the sphere, in contrast to (22) on the ball, does not 
correspond to the ("-function for any Laplacian. 

Finally, we note that £jf (5) does not have a pole at 5 = —1/2, which 
is important during the construction of the heat-kernel coefficients and the 
functional determinants on M. It means that the log term is absent in 
the expansion (27), cf [8]. No further discussion of this term is given here. 
Some relevant comments can be found in the recent works by Bytsenko et 
al [10, 11]. 

5. Residues and sphere heat-kernel coefficients. 

To apply (29) to the ball it is necessary to know the coefficients on the 
sphere. We use (28) on N with the appropriate (^-function, in this case 
either C^ or CN- 

From (44), the residue of the modified coexact sphere ^-function at 5 = 
fc/2, k e Z, is 

(49) 
1 P r>k-d+2j T){d-2j-l) . 

where we have been able to use the results of our earlier work [8] for the 
residues of 0-form ^-functions. The Dv are easily evaluated generalized 
Bernoulli polynomials. 

The corresponding heat-kernel coefficients are, for min ([n/2],p, d — p) = 
[n/2] with d — k = n, 

(so)  ^r<2(p) 

r((d + i)/2)[^] (-i^iffff-1* (d-2j-i 
1       i;r((fc + l)/2)^(d-2j-l)(n-2j)!V    P-i 

A^frip) vanishes when n is odd and less than d because Dv    is zero for odd 
v. 

A useful check is provided by the modified coexact coefficients A^^^ = 

(_l)<Z£Sd(_^!, q e Z+, for odd d.   According to (46) these half-odd 
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coefficients are non-zero, in agreement with the results of [22] and [12] for 
the de Rham coexact C-ftmction. For this case, the only half-odd coefficient 
is the q = 0 one, corresponding to £(0)? and we know that the modified and 
de Rham coexact heat-kernels are related by a factor, 

(51) ^od(r) = e-((d-1)/2-p)2r Kp Rham(r), 

the expansion of which reproduces exactly (46). There are no half-odd 
coefficients for n < d, nor for p = 0 when the zero mode is included. 

Similar statements hold for the 'total' coefficient, A^^- Because of the 

construction, (34), of (p +, one should not, of course, expect a standard 
geometric form, except when p — 0. 

As a curiosity, constructing the 'total' sphere coefficient (c/ (34)) by just 
adding equation (50) for p and p — 1, we have 

r((d+i)/2)^  , 2^ze-ri) At-gA 
KK     i;r((fc + l)/2)^1   1; (<f-2j-l)(n-2j)! U-JV' 

similar to the general form on the ball developed in the next section and also 
in agreement with the results of Giinther and Schimming [27] and Gilkey, 
e.g. [26]. 

Equation (51) can be used, in familiar fashion, to give general formulae 
for the standard,i.e. de Rham, coexact heat-kernel coefficients on the sphere, 
denoted i?n/2, somewhat simpler than those derived in [12] and [22]. Thus 

(53) H-0 

M
    <,n(<n\M-N 

■nSd        (  \        \~^ W\P) ASd        (   \ BM+\ri\P) = 2^ (M - N)\  
iV+l/2W 

where w(p) = ((d — l)/2 — p) and A^2(p) is given by (50). For odd d, the 

only non-zero half-odd coefficient is Bj,2(p), as has already been remarked. 
Elizalde et al [22] give selected numerical values for the total B coef- 

ficients obtained from a general formula that involves a series of Hurwitz 
(^-functions and is slightly less convenient than the above. We have found 
agreement with their values. 
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The connection between the two expressions is simply that the result of 
[22] follows from ours if the generalized Bernoulli polynomials are expanded 
in ordinary ones. From a numerical point of view this is unnecessary because 
there are efficient algorithms that give the generalized functions directly. 

6. General form of coefficients on the ball. 

We now come to the central part of this paper, the explicit construction 
of the heat-kernel coefficients on the ball. 

Firstly we can think of checking against the limited results of [5] for the 
coefficients for the form-valued Laplacian on manifolds with boundary. 

From Theorem 1.2 of [5] applied to the D-ball, the total coefficient ex- 
pressions for absolute boundary conditions are, (the + superscript is dropped 
in this section) 

(54) 
(4^/2 

AiD\p) = 
D 

\Sd\      0   v^     2^(d+l)\p 

(±flA(°)(p)-
1J(D\-2(D-1 

M^w^ - 1 d 
1
   (P) = ^6 |Sd| 

\Sd\   A3/2W-384 

D 

P; 

(13d+ 2) 

D-l 

P-l 
+ 6 D-2 

p-2 

4(29d - 26) 
D-l 
p-l 

+ 288(d-l)^;2
2)-192(d-l)(^;3

3 

Assuming, according to our general philosophy, that d is sufficiently large, it 
has been checked that the first three coefficients follow from our formulation 
using (29), (50) and various binomial identities including the recursion 

(55) 
a - 1\      /a - 1 

The fourth coefficient will be confirmed later by a more powerful technique, 
and the series continued. 

Although these results were derived on the basis of a restriction on p, no 
such restriction exists for the expressions (54) in [5]. The conclusion is that, 
once the coefficients are displayed as explicit functions of d and p, they can 
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be continued outside the restrictions, the reason being that their particular 
structure is guaranteed by the geometric formulation. 

These particular checks show that our general formulae are correct but it 
is not feasible to pursue the further evaluation of the coefficients in this way 
by algebraic rearrangement of the produced expressions, since it involves 
awkwardly repeated application of the binomial recursion and of other iden- 
tities. A systematic approach to the evaluation of any coefficient is better 
provided by fitting unknowns in a general form, and this process will now 
be set in train. 

From basic theory (e.g. [26]) the geometric expression on a flat, bounded 
D-manifold, .M, is, up to terms involving derivatives of the extrinsic curva- 
ture tt, 

(56) 

c(n)(47r)d/2^/2(p) = /    bn(D,p)J2(^ni)^n2)'.-) 
JdM n 

with 
c(n) = 2\/7r,    n even 

= 1,    n odd 

= 2(d+l)v/7r,    n = 0 

and where n = (ni, n2,...) is a partition of n — 1. For convenience the n = 0 
term has been included although it is really a volume contribution. We seek 
thebn(D,p). 

For the D-ball, (56) reduces to 

(57) 

c(n)(4n)d^/2(p) = |Sd| X>|n|MAp) = |Sd| ^^(Ap) 
n k=l 

where |n| is the number of components in the partition and bj^ , is the sum 
of those bn for which |n| = fc, 

fe^ApHEMAp) 
|n|=fc 

These are the only combinations that can be determined from working on 
the ball. 

The numerical multipliers &n(jD,p) satisfy the binomial recursion 

(58) bn(D,P) = bn(D - l,p) + bn(D - l,p - 1), 
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proved by crossing M with a unit circle, [5]. This relation is what has be- 
come of the more familiar statement of dimension-independence for scalars. 

Thus bn(D,p) can be expanded as a linear combination of binomial co- 
efficients (pt^1) for varying a and b. Since bn(D,p) vanishes for p outside 
the range 0 to D, a must equal b and be nonpositive. Consequently the 
expansion reads 

(59) &n(Ap) = EMn,m(^-^) 
m=0 \P      m) 

which is the boundary version of the Giinther and Schimming form [27]. The 
limits have been fixed by noting that they must be independent of both D 
and p and, therefore, can be set by considering the particular value D = n, 
for which there are n + 1 independent constants implying n +1 terms in the 
sum. The trivial first coefficient, &o = (Dv), can also be used to pin down the 
limits to those shown. The conclusion is that, on the ball, the general form 
can be written, 

(60) f^^w-f;*..^:^ 
' ' 771=0 V ' 

where Pm' (d) is a polynomial of degree n — 1 in d. For n > 1 

(6i) p4n) (<o = E Mn.^|n| = E M£dk 

n fc=l 

where the M^7!; are constants. 
Our method is simply that, for fixed n, knowing the left-hand side for 

0 < p < n, (60) can be inverted for the P^\d), keeping d unspecified. 
The method employed in [5] uses the particular values bn{n,p) to invert 
(59). Our technique is more flexible in practice, although the analysis in [5] 
does bring out clearly the amusing fact that the general coefficient can be 
generated from just the values ^^(p), 0 < p < n. 

In detail, we firstly note that, for p = 0 to n, the matrix of binomial 
coefficients on the right-hand side of (60) is triangular so that the inversion 
follows recursively by forward substitution, 

(62) 
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The driving coefficients A^lim) (0 < m < n) will be determined from (29) 
as polynomials in d because, for given numerical values of p and n, the sphere 
coefficients, (50), are obviously such polynomials. 

It should be stated that the ^-function on the ball is a standard one, 
and that the heat-kernel coefficients are geometric (leading to the general 
form (60)). In this case it is quite permissible to evaluate the polynomials 
in whatever parameter region is convenient and then continue, despite the 
fact that they involve coefficients on the sphere for which this might not be 
possible. 

Evaluation is a routine machine matter, the first outcome of which is 

-^3/2 (?) ^n (^)• Some results are given below in the form of matrices of the 

constants M^ in (61), 

(63) 

M!3> = 

(64) 

Ml4) = 

(65) 

Ml5) = 

/ 1   13 3 1 \ 

2 192  48 4 
13   29 3 1 

\384  96 4 "2/ 

/ 4   164 

135  315 

16 16 8\ 
5 3 3 

1   92 74 
45  105 15 

8 -4 

1   136 26 8 4 
V 27   315 15 3 3/ 

/ 77 77 191 19 15 3 \ 
15360 960 192 6 ~T 2 
235 263 1475 47 55 11 

36864 1440 768 _"8~ T 4 
139 1987 1769 157 15 3 

61440  15360 1536 48 4 2 
2041 3787 347 9 5 1 

\737280 92160 15 36 16 8 -J 
A subscript has been added to indicate that these values are for absolute 
boundary conditions.  Although any relative coefficient can be found from 
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the absolute ones using duality, in order to obtain the general form the en- 
tire analysis should be repeated. A tactically better way combines these 
procedures and consists of using the recursive nature of the relative coeffi- 
cients to write down a general form, precisely as in (60), together with the 
corresponding solution, (62), but now where the values of the coefficients for 
p = 0 to n are determined by duality in terms of already evaluated absolute 
quantities. In any case, one rapidly finds that the first coefficient is the 
same, that the second is reversed in sign and that the remaining ones (up 
to n = 5) are contained in the matrices, 

M^ = 

M(4) = 

(66) 

M(5) = 

/ 5 

192 

13 

~48 

3 

4 
1\ 

~2 
7 29 3 1 

\ 384 96 ~4 2/ 

/ 8 172 16 16 8\ 
189 315 5 3 3 
11 104 74 
315 105 15 

8 -4 

1 116 26 8 4 
V 189 315 15 _3 3/ 

/  109 29 193 19 15 3\ 
15360 320 192 6 T 2 
1049 1247 1501 47 55 11 

18432C )  5760 768 8 8 4 
47 709 1783 157 15 3 

61440 5120 1536 48 T 2 
13 2467 325 9 5 1 

\ 147456 92160 15: 16 16 8 4 / 

It is a matter of a few minutes by machine algebra to calculate larger ma- 
trices. 

A direct relation between the absolute and relative quantities can be 
obtained algebraically. The M-matrix elements are connected by 
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by virtue of the identity 

easily proved by induction on i. 
Knowledge of these constants enables restrictions to be placed on the 

multipliers, bn(D,p), in the general geometric form of the coefficients, (56). 

Denoting the set of b^(D^p)^ (1 < k < n — 1), by the vector b(n), the 

vector of binomial coefficients ( Z^)? (0 ^ rn < n)i by c(n) and the set of 

powers dk (1 < k < n — 1) by d(n), equation (60) takes the matrix form 

(68) Sfc^^W-dEOMWcW 

and the restrictions are 

(69) b(n) =M(rl)c(n). 

For example, for n = 5 there are 4 partitions so 

&S5) = fc4,      bf)=bl!3+b22,      bf=bx^      bf = bv 

and only these particular combinations are known using (69) and (65) or 

(66).   It is clear that one can always unambiguously determine fc^ij and 
Uln-1- 

We finally note that the n = 4 values at D — 4 agree with those in Table 
2 of Moss and Poletti [32]. 

Generating functions. 

A generating function approach to the form order, p, could be introduced 
at this coefficient stage by defining 

Ai>) = E(-^i>) 
(70) p=0 
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In particular the value a = — 1 is required (c/ [5] Thm. 1.3), 

which is a convenient way of organising and computing this quantity, at this 
point. 

There is topological interest in the case a = 1 and we see from (70) that 

^n)/2(l) = 0,    n<Z>; 

^/2(1) - c(jD)r((d _ 1)/2) ^   W - XCM) - 1 

which provides a check of the Gauss-Bonnet theorem. If relative coeflBcients 
are used we find x(.M, dM) = — 1, which is correct. 

7. Value at zero. 

Special interest, both mathematical and physical, attaches itself to the 
particular value C^+(0) which merits individual treatment, e.g. [32, 24, 3]. 
Further, as already said, these values play an important role in the algebraic 
computations of Blazic et al [5]. 

Generally, for absolute conditions, the coexact expression is 

(73) 

C^(0) = -^(^(-1/2) + <£.i(-l/2)) + i(C/(0) - C^i(0)) 

- Ei (Wfc) (Res ^(fc/2)+Res ^i (fc/2)) 
,=1^ 

(-Wa(p))fcResC^(fc/2) 

For J\f = Sd the residues are contained in (49) and the values of the £- 
function found from (42) or (44) (there are no zero modes on the sphere in 
the sense that v > 0). 

An alternative evaluation consists of using the standard formula 

(74) <t4+(O) = A™(p)-0*1 

together with an explicitly computed general coefficient (60). The absolute 
Betti numbers of the ball are /?o = 1, the rest vanishing. 
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The direct evaluation via (73) is the most efficient, numerically. Machine 
computation shows agreement between these two approaches and also with 
the values presented in [21], except that the p = 0 numbers for d = 6 and 7 
differ. 

It is a remarkable fact that in using (29), leading to (60) and thence to 
(74), one does not have to worry about the 'zero modes' in say (15), whilst 
such contributions are vital when evaluating directly from (73). 

Finally, using the inverse (23) and noting that C^(0) vanishes, we re- 
confirm the topological formula 

X = E(-l)p^ = ^(-l)" Ag/2(p). 
p=0 p=0 

8. Form functional determinants. 

In this section we consider functional determinants for p-forms. As we 
have seen in the calculation of the heat-kernel coefficients, it will be enough 
to consider the determinant associated with the coexact C-fimction (24), 
this being simply a combination of Robin and Dirichlet contributions. It is 
immediately appreciated that the results derived in [8], eq. (9.8) for Dirich- 
let boundary conditions and eq. (11.2) for Robin conditions, remain valid 
once the base ^-function there is replaced with the p-form base ^-function, 
eq. (14), with, in addition, 

(75) 

^I       (KP) +n) p ^ (i/(p) + tt) 

and the related quantities, (^+1(s), (£{s,«), if the zero modes are included 
as in (15). 

The coexact determinant for p > 1 combines Robin with Dirichlet and 
is determined, for absolute conditions, by the derivatives, 

C (0) = C^+1(0) + Cf-VW + Cf (o, «a(p)) 

+ ln2(^(-l/2) + <jC1(-l/2) 
A 

+ 2EResC^(V2)Mi(l,«a(p)) 
i odd 
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d 

+ 2X>sC^i(V2)A(l) 

d , i-\ 

(76) + 2 J] Res C^(»/2) ( M, (l, «0(p)) ^ 1/A; 
<=i x ib=l 

i odd 

2-1 

+ 2 J] ResCf(V2)   M,(l^a(p))^l/A; 
i even 

+      ^i|^(Vua(rt)__-*2Mi(l,«a(p)) 

t(l - i2) 

+ 2 ^esC^/S) (A(1) £ 1/A; 

A(*) - tA(l) 
JO 

+ /   rfi 
t(l - t2) 

The Mi and J5j are known polynomials associated with the asymptotic 
expansion of Bessel functions and, to avoid repetition, we refer to [8], and 
to references therein, for more details. Some information can be found 
incidentally in Appendix D. 

For p = 0 a small extra consideration is necessary. As we have mentioned, 
absolute 0-forms are Neumann scalars and the Robin parameter is then 
^a(O) = — (d — l)/2. Looking at C^(s5 ^) h1 eq. (75) it is seen that, for u — 
—v(p), one encounters a branch cut occasioned by (incorrectly) including the 
true zero mode for Neumann conditions. The technical reason is that the 
asymptotic expansion for these specific Robin parameters is slightly different 
from the others. 

The easiest way of taking this into account is to subtract the contribution 
in (75) for u ^ — ^(p), then take the limit as u —> — v(p) and finally to add 
the correct contribution for u = —u(p). 

For Neumann conditions the end result is 

C^(0) = C^+1(0) 

/ d 

+ ln2l $(-1/2)+ 2 Y^ Res C^(V2) ^(1,^(0)) 

i odd 
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i-l 

+ 2J2 ResCif (V2) (^(1,^(0)) J^l/fc 
^ k=i 

Mi(t,ua(p))-tMi (l,ua(0)) 

i=l X fc=l 
i odd 

(77) + /   dt 
/' *(1 - *2) 

i-l 

+ 2 J] ResC^(*/2)[Mi(l,Ua(0))2l/fc 
<=1 ^ k=l 

i even 

fl     MifaugjO)) -^^(1,^(0))^ 

+       lim       (cSv(0)«) + ln((d-l)/2 + U))+ln(d + l). 
u—>—(a—1)/2 \ / 

The relative, Dirichlet expression is given in [8]. 
Equations (76) and (77) are expressions on the generalized cone and 

we apply them now to the ball, for which all quantities have already been 

treated, apart from ^+1(«) (C^+1(5)) and Cp(s,u) (Cj^M)-  For these 

remaining ("-functions one immediately finds, along the lines of [8], 

(78) 

m=p-\-l 

d 

+ E (d^p_\)^(^(d + 3)/2|lm+1)+CH(5;(d + l)/2))V 
m=d—p 

and 

m=p+i \   P   / 

+ E (d!!;_1
1)&(^+1i1-) 

m=p+l 

(79) ^    / m-1 

Tin=d—p 

+ 6p0((d - l)/2 + u)-s + 6pd(d + l)-s. 

The contribution of the zero modes is visible and Q7+1(s), C^^^a) need 
not be stated. It is clearly seen that the limit u —> — (d— l)/2 in (77) is well 
defined because the logarithm is cancelled by the last term in (79). 
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Using (78) and (79) in (76) and (77), the determinants emerge as deriva- 
tives of the Barnes ^-function at s = 0. These may be expanded using 
Stirling numbers, 

(80) 

n=0 ^ ^ 

to give derivatives of Hurwitz or Riemann ("-functions, [2] p.433. The deriva- 
tives presented in Appendix B were obtained in this way. It is easy to find 
the expression in any dimension d and for any value of p. 

The presentation of our results is a little more explicit than the corre- 
sponding ones of [21] in that only derivatives of Riemann C-ftinctions are 
involved, there being no integrals over F or ^ functions. In fact, the inte- 
grals in [21] can be done, bringing exact agreement between the two sets of 
expressions. This agreement is elaborated, in its essentials, in Appendix C. 

It should be noted that, as a consequence of an earlier error in [7] for 
Neumann 0-forms, a log 2 term should be added to the results in [21] for 
p = 0 and d > 2. 

9. Spectral properties of spinors. 

For the sake of completeness, the method of [8] is now employed to put 
the results of the earlier work on spinors, [19], on a secure and systematic 
footing. For any undefined quantities and for further explanations, refer to 
this paper. 

Spectral boundary conditions. 

In [19] it was shown that spectral boundary conditions lead to 

(81) *W/2-i(*0 = O,        neZ, 

with the degeneracy 

(82) d(n) = 2ds(n + ]^~T 
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Having in mind the treatment of the scalar field in [8] we define the spinor 
base ("-function appropriate for the ball, 

(83) CAf(s) = X>(n)(n + £/2-l) 2s 

71=0 

This choice guarantees that all formulas in terms of Ov in section 3 of [8] 
remain valid. Also the polynomials Di(t) defined there are unchanged. In 
particular, eq. (4.8) is still true, the only difference is in the base ^-function 
used for the calculation of A^, the base heat-kernel coefficients. n/z7 

Let us continue with the treatment of XM (S) for the ball. It has the 
especially simple form 

(84) CAT (*) = 2ds <B(2S, (d - l)/2 | ld). 

To obtain the heat-kernel coefficients using eq. (4.8) of [8], we need only 
the residues in (84). Using the known values of the Barnes ^-function in 
eq. (4.8) of [8] one regains all the results of [19] for the heat-kernel coefficients 
including the conjecture for their general form. 

The determinants come out similarly. Due to the identical structure of 
the present problem, eq. (9.8) of [8] remains valid once the base zeta function 
there is replaced by (83). The only 'unknown' quantity is 

(85) Ctf+iW = 2ds(B(s,(d+l)/2 | ld+1). 

Using (80) this can be expanded in Hurwitz-Riemann £-£unctions, and com- 
plete agreement with the results exhibited in [19] is again quickly and eco- 
nomically found. 

In Appendix D we prove the curious identity for the spectral heat-kernel 
coefficients, 

(86) ^(§-2)/2(r,)=0'    Devea, 

observed numerically in [19], the significance of which has not yet been 
discovered. 

Local boundary conditions. 

For local boundary conditions a few more technical details are necessary. 
The eigenvalue condition is, [19], 

(87) Jn+D/2(k)-Jl+D/2-l(k)^0,    neZ 
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with the mode degeneracy 

(88) d(n) = ds^ + °-2^, 

which is half that of the spectral case. Defining the base C-fiinction as in 
(83) we have 

(89) Ctf(8) = dsCB(28iD/2-l\ld). 

The polynomials describing the asymptotics are a bit different, however, and 
read 

2i 

A(*) = X>v^+a' 
a=0 

which leads to a slightly different form of the Ai(s). These are found to be 
(one only has to refer to [30] eq. (2.18), and replace the ("-functions by the 
base (^-function), 

A    , . 1    r(s - 1/2) >   , 

i r(£ + i/2) 
(90)     ^"^ivnr 

Ms)~   r(s)<:Af{s + t/2)^)
Xt'a r((* + a)/2)  • 

Due to the different Ao(s) and Ai(s) the heat-kernel coefficients this time 
read 

v^x,      >   /,« -w^V^       r((I>-n + i + a)/2) 

i=l a=0 VV >'/    y 

It would be possible to rewrite the right-hand side in terms of the spinor 
heat-kernel coefficients on the base, leading to an equation like (29). 

For the ball, using (49) for the residues of (V(
S
)J (89), all results of 

[19] are immediately reproduced in an organised and rapid fashion. Let us 
therefore proceed to the determinant. 
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As a result of (90) one has 

^(0) = 2 (ln2 - 1) CAT(-1/2) - CV (-1/2), 

j4i(0) = ln2Ctf(0)-i&(0), 

(92) 4(0) = -J2 Ha (PP CAT (t/2) + 7 Res CAT (*/2) + 
a=0 ^ 

Res Cw(*/2)^((o + *)/2)), 

with characteristic differences to the spectral case.   Further contributions 
come from 

oo 

(93) Z'iO) = Y^ d(n)Zu'(0),    v = n + D/2 - 1, 
n=0 

and 

(94) 
D-1 n m 

Zu'(0) = 2\nT(v + l) + 2u-2v\nv- \U(2TVU) + J^ ^r"- 
n=l 

This follows from the results preceding eq. (3.1) in [30]. 
Formally (94) is twice the scalar case. It also shows that Dn(l) = 

2(R(—n)/n and so the contribution Z'(0) is known from the scalar field 
calculation. Adding up, everything fits nicely and the final answer reads 

C{o
/2'(0) = ln2(2CAr (-1/2) + CAT (0)) + 2CV+i(0) 

(95) + 4 In 2 ^ ^^ Res & (*/2) 
t=i       ? 

i3"1 r2(R(-i) ti i ,  yi    A(t) - tA(i)" 
+ 2^ Res C^(V2) 

i=l SM rft t(l - t2) 

Specialising to the ball, all results of [19] are thereby established again in a 
systematic and general way. 

10. Conclusion. 

Our essential results are, firstly, the expression (29) for the coexact heat- 
kernel coefficients on the generalized cone in terms of those on its base. Sec- 
ondly, (60) gives any ball heat-kernel coefficient, with explicitly computable 
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polynomials, (61), and leads to the restriction (69) on the general coeffi- 
cients. Thirdly, we draw attention to the formula (76) for the functional 
determinant and finally to the expression (44) for the modified p-form coex- 
act ^"-function on the sphere as a finite sum of (conformal) 0-form functions. 

To save excessive analysis, we have concentrated on the simplest gener- 
alized cone, i.e. the ball. As a continuation, more complicated bases, A/*, 
can be considered. In the earlier paper, [8], we looked at the case when the 
base was a sphere of non-unit radius, say a, calling this a monopole. Then, 
in place of (36) for the order of the Bessel functions, we have 

(96) v2(l,p) = 1(J + (d- l)/2)2 - ((d- l)/2 -p)2(l - 1) 
a ci 

which is not a perfect square unless p = (d—1)/2. We therefore expect that a 
pole at s = 0 in 0^(5) will arise even for ^e case of the de Rham Laplacian. 
However, unlike the scalar (p = 0) case, it does not seem possible to achieve 
a perfect square, and hence to avoid the pole, simply by attaching a term to 
the de Rham Laplacian. This obstruction is probably related to the fact that 
there is no direct way of making the equation conformally invariant except 
for the special value p = (d — l)/2. It is possible to use Branson's operator 
[9] but we would then lose contact with the body of work associated with 
the de Rham Laplacian. 

The lack of conformal invariance can be appreciated in the structure 
of the coexact ^-function on the sphere, (44), which is a combination of 
improved 0-form C-fimctions each of which is conformal in a different di- 
mension. 

Further possible choices for J\f include hyperbolic spaces and factored 
spheres for which there would be more topological and analytical excitement 
involving, as they do, multiple connectedness and conical singularities. 

Regarding spectral spinors, our previous method involved fitting a con- 
jectured general form for the coefficients using specific numerical values. 
The present technique establishes both this general form and the actual 
expressions in one operation. 
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Appendix A. 

In this appendix we derive the form (44) for the coexact sphere (- 
function. The most important property for the proof is the 

Lemma. 

(97)       E    (m_1)&(2S;(a + l)/2|lm) 

=-E(rri1)CB(2s;(o-i)/2|i-) 
m=p 

+ ^~1)CB(2S;(a-l)/2|ld). 

Proof. Rewrite the left-hand side of (97) using the difference relation, [1], 

(98)   CB(S; (a + l)/2 | lm) - CB(S; (a - l)/2 | lm) 

= -CB(«;(a-l)/2|lm-i) 

and then combine terms using the binomial recursion (55). 

Now we are set to show the following recursive property of the p-form 
C-function (42) 

Lemma. 

(99) \ p ; \ * J 

+ 6vfi | 

for 0 < p < (d - \)I2. 

d-^-2s 
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Proof. Starting from (42) and (15), use of (97) gives first 

+ (^1)6?(2S;(d-l)/2|l(i) 

E ^ 1N 
m=d—p 

Separate the m = d term from the last sum, then 

Cf (s) ={^ p
l) (cs(2S; (d + l)/2 | la) + Ce(2S; (d - l)/2 | ld) 

+   E   (d^1)cB(2*;(d+l)/2|lm). 
Tn=d—p 

Next, combine the m = d—1 terms of both sums using (98), 

d-2 

^ = (d p M Co5dW - E (?_ i) ^(2,; (d- l)/2 | lm) 
\    ¥     / m=p ^ ^ 

+   E   (^"_1
1)cB(2S;(d + l)/2|lm) 

" (P 11) CB(2S; (d "1)/2' ld-2) + ^0 (^T 

Apply (97) once more in the second sum and then the binomial recursion, 
(55), to reach Lemma (99). Finally, applying this Lemma p + 1 times, for 
p < (d — l)/2, produces the important relation (44) in the main text. No 
doubt this also follows from a direct analysis of the degeneracies. 

A comment on these equations is perhaps necessary.   Setting p = 0 in 
(99) we must recognise that (^ (s) equals ((d— l)/2)~ s for consistency. 

This follows easily from (42). In general, C^W = ((<*- 1 + 2P)/
2
)"

2S
- 
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Appendix B. 

In this appendix are listed some selected derivatives at zero of the coexact 
zeta function for absolute boundary conditions and with M the ball. 
In d = 2, 

^ = -i-1f^og3-^)+^ + C'(0) 

C- = -l + ll^-^)+3C'(-i)-C'(0) 

^ = _£ _ log2 _ 3('(-2)     C'(-l) 
^ 32       12 4 2' 

In d = 3, 

M _    1213     151 log2     C'(-3)  , C(-2)  ,  13^-1)  ,  ./rm 
Co     -_4320 + —90"" + ^— + ~Y~ + 6 + C(0) 

A,_5989      19 log 2 a-2)     S^C-l)     ^m 
Cl     -lOOSO"-^-+ C("3) + —2" 2 C(0) 

A,_     507      7 1og2 C'(-2)     7^-1) . 
C2    -"ll20 + ^0_ + C("3)~_l 2—+ 2C(0) 

/A<=   173       log 2     C'(-3)     ^(-2)     ^(-1) 
^3 30240       90 3 2 6' 

In d = 4, 

X = _ 25381     17 log 2     , 5 ^(-4)     23 ^(-3) 
^0 46080       2880 g 64 48 

47 ^(-2)     103C(-1)       , 
+ —32"+       48       +C(0) 

, M = ^803_     77 log 2 _ .    „ _ 5^-4)      19^-3) 
^ 11520        720 g 16 12 

^ _ _209_ _ 863 log 2 _ 15 C'(-4)      15 ^(-3) 
^2     ~ 2560 480 32       +        8 

3C(-2)     21C/(-l) 
16 + C'(0) 

^M = _^509_     77log2 _ SC'M)      11 ^(-3) 
^3 11520        720 16 12 

_7a-2)  i»c(-i)_ 
8      12    ^ ; 

^ = J7_  17 log2 _ 5('(-A)     7C/(-3) _ ^(-2) _ C'C-l) 
U   9216   2880    64     48     32    48 ' 
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The ^-functions on the right are Riemann ^-functions. 
As mentioned in the text, it is possible to obtain the determinants in 

any dimension d and for any value of p without difficulty. 

Appendix C. 

In this appendix we outline a method for the calculation of integrals of 
the type 

rb 
(100) /   dww^Hogriw), 

J a 
needed in order to see explicitly the agreement of our results with those of 
[21]. 

We start from the usual relation 

(101) —as,w) = -sC{s + l,w), 

valid for any modified ^-function, such as (J^(s) or the Barnes C-fimction, 
but here applied to the Hurwitz ^-function. 

The differentiations are continued to give, 

(102) a^C(5'W) = (-Vns(s + 1) ■••(* + * - l)C(s + n, w) 

= fn(s)C(s + n,w). 

Now differentiate with respect to s 

(103) ^C'(s, w) = ti(s)((s + n,w) + fn(s)C'(s + n, w) 

and set s = —n 

(104) 

^C'(-n, w) = ^(-n)C(0, w) + /B(-n)C'(0, w) 

= ti(-n)C(p, w) + /„(-n)(logr(ti;) - log V^F). 

Next, multiply by wn~1 and integrate 

(105) 

fn(-n) j dwwn-l\ogT{w) = j dwwn-l^C>'{-n,w) 

+ fn(~n\bn-an)logV2^ 
To 

rb 

-f'ni-n)       dwwn-laQ,w). 
J a 
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Define 

In(s) = Jadww«-^t'(S,W) 

and integrate by parts to get the recursion 

gn-l 
(106) In^ = W      d^^^3^ 

- (n- l)In-i(s) 

which is trivially continued using Ii(s) = C'C5* &) "" C(si a) 
Prom (103) we have 

gn 

(107) 

where 

(108) 

w Qwm C'i-n, w) = wm (/^(-n)C(-n + m, w) 

+ fm(-n)C'(-n + m, w)) 

fm(-n) = m\(n),    a-n) = m\(n)yjt ^^ \mj \mj *-^ m — n — k 

Using the recursion (106) n times, and also (108), the following result is 
found for the integral (100), 

(109) 

1=1 \ / L k=1 J J   a 

The simplest case, when n = 1, is given in [20] and an integral related to 
(109) forn = 2 can be found in Nash and O'Connor, [33] eqn.(C.30). 

If one of the limits in (100) is zero, the last sum in (109) has to be 
interpreted as the limit as w —» 0 and, in this case, we use 

(110) 

to see that 

C(s,w) = w'8 + C(s, 1 + w) 

lim -n-1 

itf->0 
w C'H^)-CH^)Er^ 

k=i 
k + l 

= 0 
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for I < n, whereas 
limC,(-n,^) = C'(-n) 

w—»0 

for n > 1. 
Let us now give some examples of the general formula (109). To compare 

with Co(0) in d = 3 of [21], we need 

I 
i 

dw (w — 1) \ogr(w), 

which is obtained by setting n = 1 and n = 2. For n = 1, we get the well 
known formula ([23], 1.9.1 (18)) 

(111) y dw logPH = ^ log(27r) = -^(O) 

which is the essential part of Raabe's formula. 
Forn = 2 

(112) j1 dwwlogT(w) = ~- ^C'(O) + C'C-l)- 

The integral term in [21] is therefore 

2 J dw(w - l)logrH - -I + 2C/(-l) + ^(0). 

In other dimensions, generally a and b take integer or half-integer values. 
Using (109) the integrals can always be expressed in terms of derivatives of 
the Riemann C-fimction. We meet some known integrals such as ([37, 20]) 

/3/2 3      13 3 1 
dw logI» = -- - 24 log2 - -C'(-l) - gCW 

and some lesser known ones, e.g. 

(114) 
1-3/2 

JO 
dww\ogT(w) = -\ - Hlog2 + ^C'(-2) - ^'(-1) - |C(0) 

generalisations of which can be found using (109). 
Finally we point out that a generalisation of Raabe's formula to the 

multiple F-function is derived by Barnes [1] using the same ingredients as 
in the above. 
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Appendix D. 

The identity (86) will now be proved. In terms of the spinor base £- 
function it reads 

d-2 

Res CAT (1/2)-Res C^(l)-2^Res £^(1 + i^D^l) = 0. 
i=i 

Using knowledge of the residues in terms of the Bernoulli functions, [1], one 
has 

(115) 

B&Kd-l)^)     i?tffa((d-l)/2) 
(d-1)! (d-2)! 

^        •   ,      B^\ , (id-1)12) 

which is a standard recursion formula for the generalized Bernoulli functions 
as will now be shown. 

We first note that 1^(1) = {—\)l/2. This value is obtained by compar- 
ing the small z approximation of the Bessel function I^vz) with Olver's 
asymptotic form. Thus, working always to order z2, 

Inl^uz) - i/ln (uz/2) - lnr(l + i/) + In fl +     J      (uz)2) . 

Expanding the log, 

In fl + —L—iuz)2] ~ lz2—^ = L2uY(-l)nv-n 

V       4(1/ + !)^    V      4    1 + 1/*,      4      f-V    ; 
n=0 

and also 

In r(l + u) ~ z/ In i/ - i/ + | In 2™ - JT ^)-^-u~k 

,=1      fc 
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The Bessel asymptotics are 

]nlv(uz) ~ —-\n2irv- -ln(l + 2;2) 

+ u(y/l + * + hi( ?==))+f)M Dn(t) 

n=l 

1,    „ 1    2 ~ —-InzTri/ —-z 
2 4 

+ ,(1+^+ln(z/2))+E^w-;5(i)/2 
n=l 

Comparing, we obtain the quoted value of £^(1), and also that of Dn(l) 
met in our previous work. The higher derivatives can clearly be found by 
carrying the expansion further. 

Substituting these values of JD^(l) into (115) yields the condition 

(116) i:(d71)^i-i((d-l)/2))=0 
3=0  V     J     / 

which is a special case of the recursion relation ([34] eqn.(ll) p.161) 

(117) 

involving the general Bernoulli function. Setting a; = 1, z/ = d — 1 and 
n = d, this becomes 

(118) 
d-1 

E i:(";1)^1-,-w=(<'-i)^--2
i,(x) 

= (d - l)(x - l)(x - 2)... (x - d + 2). 

If d is odd, (d — l)/2 is integral and, since 1 < (d — l)/2 < d — 2 for d > 1, 
the right-hand side of (118) vanishes for all odd d when x = (d — l)/2, as 
required to show (116). 

For even d = 2g, (118) allows one to give the general form of the coeffi- 
cient 

(119) 
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A similar result should hold for the monopole. Put LJ = a in (117). 
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