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Holomorphic Foliations and Kupka Singular Sets 

B. AZEVEDO SCARDUA & C. CAMACHO 

Let T be a nondicritical codimension one holomorphic foliation on 
the fc-dimensional complex projective space M = CP(fc), k > 3. 
Assume that the closure K^) of the Kupka singular set is a 
complete intersection projective variety and that the points in 
K(!F) —K^) exhibit slightly generic holomorphic integrating fac- 
tors. Then the Kupka components have normalizable transverse 
type and therefore the foliation F is given by a closed rational 1- 
form on CP(fc). In general (for M a complex manifold and K^) 
not necessarily complete intersection), we prove the existence of an 
affine or projective transverse structure in a neighborhood of the 
Kupka singular set. 

1. Introduction. 

1.1. Singular holomorphic foliations. 

According to Probenius Theorem [23] a (nonsingular) codimension one holo- 
morphic foliation T on a complex manifold M is given by an open covering 

M =   (J Uj of M such that in each Uj we have a nonsingular holomor- 

phic 1-form Uj that satisfies the integrability condition ujj A dujj = 0, and 

such that for each Uj fl [/; ^ 0 we have UJ^JJnU = dij-^jlu^jj. for some 

holomorphic nonvanishing function gij in Ui D Uj. If M is a complex pro- 
jective space M = CP(fc) then it is known that there are no such foliations 
without singularities. On the other hand we may consider singular holomor- 
phic foliations defined as follows: A singular codimension one holomorphic 
foliation on M is defined by an open cover M =  [jUj and integrable holo- 

jeJ 
morphic 1-forms as above, but that may have singularities.   The singular 

1Scardua was supported by CNPq-Brasil and Min Affaires Etrangeres-France. 
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set singujj = {p e Uj,Uj{p) = 0} is an analytic subset of Uj that satisfies: 
singUjilUi = singcuinUj for all UiCiUj■ ^ 0. This shows that there exists an 
analytic subset S C M such that S D Uj = singa;^ and by the first case the 
open manifold M' — M \ S is foliated by a codimension one (nonsingular) 
holomorphic foliation ^r/. Using Hartogs' Extension Theorem [9],[10] it is 
possible to prove that T' extends in an unique way as a foliation on M \ S2 
where 52 C S is a codimension two analytic subset of M that is chosen to 
be minimal with this extension property. In other words, we may assume 
that the singular set S has codimension two in M. In this case we define 
singj7 = S and J7 will be the pair (J7', singj7). We call J7 a codimension 
one singular holomorphic foliation on M and sing J7 is the singular set of J7. 

1.2. Foliations on projective spaces. 

We turn our attention to the case M is a projective space CP(k) of 
dimension k > 2. Using the triviality of certain cohomology groups on 
C^"1"1 \ {0} (see Cartan's Theorem and the solution of the Cousin Problems 
in Ck+1 \ {0} in [8] [10]) it can be shown that a codimension one holo- 
morphic foliation on a complex projective space CP(k) can be defined in 
homogeneous coordinates in Ck+1 by a differential 1-form 

k+i 

UJ = Y^ai{z)dzi        zeCk+l 

t=i 

where the ai(z) are homogeneous polynomials of the same degree (without 
fc+i 

common factors and) satisfying ^ Ziai{z) = 0, and the integrability con- 
i=i 

dition UJ A du = 0.   The singular set of w is S(u>) := {z e C^-1-1; 07(2:) = 
0 .7 = 1,...,& + !}. We denote by Tifv) the codimension one singular 
holomorphic foliation on Ck+1 defined by u with singular set sing a;. If 
TT: Cfc+1\{0} —> CP(k) denotes the canonical projection, this induces a 
foliation J7 = J-(OJ) on CP(k) with singular set sing J7 = 7r(S(cj)) and 
TT^^J

7
) = F(UJ). As we have remarked above there is no loss of generality if 

we assume that cod sing J7 > 2. Let us first comment the case k = 2. 

1.3. Singularities in dimension 2. 

In the two dimensional case the singular set is discrete and we regard the 
local behaviour of J7 around an isolated singular point. We may therefore 
consider a germ of holomorphic 1-form v(x,y) = A(x,y)dx + B(x,y)dy 
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with an isolated singularity at the origin 0 G C2 or the dual vector field 
X = (—JB, A). Let us recall some basic facts [2],[16]: 
• A separatrix is a germ of irreducible analytic curve which is invariant and 
passes through the singularity. 
• The singularity is called nondenegerate if the linear part DX(0) is nonsin- 
gular. In this case we may write F : xdy — Xydx + h.o.t. = 0 (where h.o.t. 
means "higher order terms"), for some A £ C*. The class of nondegenerate 
singularities can be "stratified" as follows. 

The singularity is hyperbolic if A ^ M. Hyperbolicity implies linearization 
of the foliation around the singular point [16]. 

If A G C\R_ the singularity is in the Poincare domain. This is equivalent 
to the following geometrical condition: the leaves of T are transverse to the 
small 3-spheres §^(0) centered at the singularity. A Poincare singularity is 
resonant if {A, A-1} fl N ^ 0. A nonresonant Poincare type singularity is 
analytically linearizable [16]. In the resonant case the singularity is either 
analytically linearizable or can be put in the Poincare-Dulac form: xdy — 
(ny + xn)dx = 0 [14]. In this last case there exists only one separatrix, its 
holonomy map is tangent to the identity and nonperiodic. 

If A G R_ then it is in the Siegel domain and exhibits a saddle-like be- 
haviour: there are exactly two (transverse and smooth) separatrices and if 
a local open leaf (that is, a leaf which is not a separatrix) accumulates the 
singularity then it accumulates both separatrices. When A G Q_ the sin- 
gularity will be called resonant. An important subclass of Siegel resonant 
singularities is the class of the ones exhibiting holomorphic first integrals. 
This class is characterized by the topological condition that the leaves are 
closed outside the singularity [16]. In general a resonant Siegel singularity 
is not linearizable, and there is no standart model to which it is analytically 
conjugate. On the other hand there are formal (nonlinear) models given by 
Martinet-Ramis [14], that is, models to which any nonlinearizable singular- 
ity is formally conjugate. If the Siegel singularity is nonresonant then it is 
formally linearizable [16]. 
• In general we have the Reduction Theorem of Seidenberg [2],[16] that 
asserts the existence of a proper holomorphic map TT: U —► U (for a fixed 
small enough neighborhood U of the origin) which is a finite composition of 
quadratic blow-up's at singular points such that the foliation TT*^

7
 pull-back 

of J7 by TT, exhibits in TT"
1
 (0) only irreducible singularities which can be of 

the following two types: 
(i) xdy — Xydx + h.o.t. = 0 and A ^ Q+ (simple singularities), 
(ii) yP^dx - [x(l + XyP) + h.o.t.]dy = 0, p > 1.   This last case is called 
saddle-node. We call (y = 0) the strong separatrix of the saddle-node. 
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The divisor D=7r~1(0) C M of the resolution TT can be written as D = 
771 

(J Dj, where each {Dj} is diffeomorphic to the projective line CP(1). 
i=i 

Definition 1. The singularity 0 6 U is nondicritical if D = 7r~1(0) is in- 
variant by J7* and this is equivalent to the fact that T exhibits only a finite 
number of separatrices passing through the fixed singularity. If a nondegen- 
erate singularity is dicritical then it is of the form nxdy — mydx + h.o.t. = 
0,n,m e N. 

1.4. Kupka singularities. 

Now we regard the case k > 3. In this case the singularities may be no longer 
isolated. However we may expect to have some local product structure (of 
a regular foliation by a two dimensional singularity). This is done by means 
of the study of the Kupka phenomena that we proceed to describe. In the 
singular set of J7 we can distinguish the Kupka singular subset defined as 
K(F) = ir(K(u>)) where K(UJ) = {p € Ck+l\{0}]uj(p) = 0 and dw(p) ± 
0} [11]. The main properties of the Kupka subset are summarized in the 
following theorem (see [5],[7],[11],[13],[17],[18]). 

Theorem 1.1. Let k > 3, J7, UJ, Ktf) be as above: 
(i) The Kupka set K^) is a locally closed codimension 2 smooth submanifold 
ofCP{k). 
(ii) The Kupka set has the local product structure: Given a connected compo- 
nent K C K^) there exist a holomorphic 1-form ©, called the transversal 
type of K, defined on a neighborhood of 0 G C2 and vanishing only at 0, a 
covering {Ua} of a neighborhood of K in CP(k) and a family of holomorphic 
submersions <pa: Ua —> C2 satisfying: tp^i®) = K D Ua, <£*© defines T in 
ua. 
(iii) K{!F) is persistent under small perturbations of T, namely, fixed any 
p G KiT) with defining 1-form (p*@ as above, and for any foliation T1 

sufficiently close to T, there is a holomorphic 1-form Q/ close to © and a 
submersion y>   close to (p, such that T1 is defined by ((pf)*@f near the point 

P- 
(iv) Let K C K^) be a compact connected component such that the first 
Chem class of the normal bundle of K in CP(k) is nonzero, then the 
transversal type of K is 0(x, y) = nxdy —mydx, n, m £ N and this transver- 
sal type is constant through analytic deformations of the foliation. 
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On the other hand, not much is known about the structure of T near a 
singular point not lying in the Kupka set.2 An important result along this 
direction is the Reeb theorem [19] that states that if w[cj) — 0, dttf(g) = 0 
and the linear part of w at q is nondegenerated then, near q, the foliation 
T has a first integral which is a Morse function. In dimension three it is 
known also that if q E sing T is an isolated common zero of w and dw then 
near q the leaves of T are the orbits of a 2- dimensional Lie group action 

[1],[12]. 

Definition 2. Let K C i^(^r) be an irreducible component of K(T} and 
© = A(x, y)dx + B(x, y)dy = 0 its transversal type. 
• We say that K is in the Poincare domain if the first jet of G is of the form 
Ax dy — jjiydx, X/fx E C\R_ . In this case we say that it is resonant if either 
X/fjt 6 N or /JL/X G N. We say that K is in the Siegel domain if Xf/j, £ R_ . 
In this last case we say it is resonant if A//x E Q-  (see section 1.3 above). 
• K is analytically normalizable if © is either: (i) in the Poincare Domain, 
0 = xdy — Xydx + h.o.t., A G C\R_. (ii) resonant in the Siegel domain 
being linearizable or , 0 = xdy — Xydx, A G M_. (hi) in the Siegel domain 
resonant but analytically normalizable, i.e., analytically conjugate to the for- 
mal normal form of Martinet-Ramis ([14]). (iv) a saddle-node analytically 
conjugated to the normal form 0 = x(l + Xyk)dy — yk^1dx [15]. 
• A singularity q G K^^K^) is called nonresonant if there exists at least 
one component K C K(!F),q G K, of type (i) or (ii) that is nonresonant. 

1.5. Statement of the main results. 

First we recall the definition of complex complete intersection we use 
[5],[24]: Let 5 C Mk be an analytic subvariety of codimension q. 

Definition 3. We say that S is a complete intersection if there exist codi- 
mension one analytic submanifolds Si,..., Sq] such that 5 = Si fl • • • fl Sq 

with transverse intersection off some codimension > 1 subset of S. 3 A 
complete intersection will be called a transverse complete intersection if the 
intersection Si fl • • • fl S'g is everywhere transverse. 

2For instance it is an open question to classify the foliations with empty Kupka 
set. 

3In particular any algebraic curve in CP(2) (possibly singular) is a complete 
intersection. 
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The main property we use concerning complete intersections is the fol- 
lowing theorem of E.Levi (see [5], [24]): 

Theorem 1.2. Let S C CP(k) be a codimension q complete intersection 
algebraic submanifold. Given a neighborhood V of S in CP(k) any mero- 
morphic 1-formw defined on V extends meromorphically (i.e., rationally) to 
CP(k). In fact, the complementary M = CP(k) \ S is a (k — q +1)-complete 
complex manifold in the sense of [5],[24]. 

Next we give some remarkable examples of foliations and Kupka sets. 

Example 1 (Darboux foliations). A Darboux 1-form (see [4], [20] 
where Darboux 1-forms are called logarithmic 1-forms) is given in C^4"1 

by 
k+l 

i=i 
where the //s are homogeneous polynomials in k + 1 complex variables. 
Clearly V admits the integrating factor 1/f where f = fi... fk+1, i.e., the 
linear 1-form jV is closed. The 1-form V can be seen also as the pull back 
by the map F = (/i,... , fk+i) of the 1-form 

k+l 
C = y. <\? xi.. .Xj ... ajfc+i dxj 

j=l 

where (xi,... ^Xk+i) are affine coordinates for C^"^1. 
Now we take a polynomial Darboux 1-form V in C*^1 as above. The 

set sing(£) is the union of all codimension two coordinate planes and 
K(C)\K(JC) is the union of all codimension three coordinate planes. A 
straighforward calculation shows that the Kupka set K(V) C F"1^^)) 
and moreover there exists a codimension 2 analytic subset S c sing J7 sat- 
isfying: 
(a) S is a complete intersection variety i.e. S = {[z] G CP(k);hi(z) = 
h2{z) = 0} where hi and /12 are homogeneous polynomials in Cfc+1. 
(b) K(J7) fl S is open and dense in S. 
(c) Given q e 5\K(Jr), J7 can be represented in a neighborhood of q by a 
closed meromorphic 1-form Qq. 

If for instance \j/\i £ Q, Vz 7^ j then we also have the following condi- 
tion: 
(d) Given K C K^) the transverse type 0 admits no meromorphic first 
integral. 
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Example 2 (Closed meromorphic 1-forms). The general form of a 
closed rational 1-form 77 in Cfc, with polar divisor the zero set of a poly- 
nomial function / is, 

where / = f™1 ... f^r is its decomposition in irreducible factors and Aj € C 
(see [4]). This result is called Integration Lemma. An analogous expression 
exists in the local analytic case (see [6]). Using these local expressions one 
can verify that again the Kupka set may verify conditions (a), (b), (c) and 
(d) above if we have for instance Xi/Xj $ Q, Vi ^ j. 

Now we recall [20], [21]: 

Definition 4. Given a meromorphic integrable 1-form UJ on M we say that 
(uJjT]) is an affine pair if: 
(1) du = 77 A UJ , dr] = 0, 
(2) the polar divisor (77)00 of 77 has order one and consists of the union of 
(u;)oo u (^o and an invariant divisor of J7, 
(3) the residue of 77 along any noninvariant irreducible component C of 
(CJ)^ U (a;)o is equal to either —(the order of the poles of u along C), or (the 
order of (u;)o along C ), respectively. 

Definition 5. Let J7 be a foliation given by an integrable meromorphic 1- 
form UJ on M (not necessarily with isolated singularities). We assume that 
(u;)o U (u^oo has no ^-invariant component and that there exists a mero- 
morphic 1-form 77 (usually non closed) such that duj = 77 A UJ (see Remark 2 
(iv)). A meromorphic 1-form £ is such that (uj^rj^) defines a projective 
triple for T, if: (1) u = 77 A UJ, with (77)00 = (^)oo U (a;)o, (77)00 of or- 
der one and such that for any irreducible component C C (^)oo u (a;)o 
we have either RescT? = —ord((a;)00,C), or Resc77 = ord((a;)o, C), respec- 
tively. (2) dr] = UJ A £, (3) dt = £ A 77, (Oo = Hoo and (^oo = (^)o 
and for each irreducible component C C (CJ)OO U (a;)o we have either 
ord((£)o, C) = ord((a;)oo, C) , or ord((£)oo, C) = ord((a;)o, C) respectively. 

Remark 1. The existence of an affine pair implies the existence of a Liou- 
villian first integral F = J (UJ/ exp(f r])), for the foliation J7 defined by a;, 
and is also equivalent to the existence of an affine transverse structure out- 
side some algebraic nivariant codimension one subset (see [20],[21]).  The 
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existence of a projective triple is equivalent to the existence of a projective 
transverse structure for T (the foliation defined by a;), on a certain open 
subset TJ = CP(fc)\((r/)0o U (£)oo) (see [20], [21] for a detailed description). 

Our main results are the following: 

Theorem A. Let T be a holomorphic foliation on CP(k), k > 3; such 
that there exists a codimension 2 algebraic subset S C sing J7 satisfying 
conditions (a),(b),(c) and (d). Then T is given by a closed rational 1- 
form onCP(k). 

Theorem B. Let T be a holomorphic foliation on a k-dimensional complex 
manifold Mk, k > 3; such that there exists a codimension 2 analytic subset 
S C sing J7 satisfying conditions (b),(c) and (d). Assume that T is given 
by a meromorphic integrable 1-form u outside the polar set {00)00- Then T 
admits an affine pair (u;, 77) in a neighborhood of S. IfM — S is 2-complete 
then 77 extends meromorphically to M. 

Theorem C. Let T be a holomorphic foliation on a k-dimensional complex 
manifold Mk, k > 3 and given by a meromorphic integrable 1-form cu admit- 
ting a 1-form r] such that du = TJACJ. Assume that there exists an irreducible 
codimension 2 analytic subset S C sing J7 satisfying condition (b) and the 
following condition: (e) S (1 K^J7) is a certain Kupka component K which 
has a transverse type admitting a meromorphic first integral. 
Then J7 admits a projective triple (a;, 77, £); defined in a neighborhood of S. 

Remark 2. A few words should be said related to the hypothesis we make 
in Theorems A, B and C above. 
(i) Theorem A generalizes one of the main results of [5]. 
(ii) According to [3], the existence of the closed form Slq required in condi- 
tion (c) is always fulfilled if the germ of singularity q € sing (J7)^^) can 
be desingularized with ordinary (punctual) blow-ups. In [3] one can also 
find a connectivity hypothesis on the germ of sing (J7) at 9, which implies 
the existence of a closed meromorphic Qq as in condition (d). 
(iii) The hypothesis of complete intersection for S is essential and cannot 
be removed. A counterexample can be obtained as follows: Take a foliation 
To with hyperbolic singularities in CP(2). Let P: CP(3) -> CP(2) be a 
linear submersion in general position with respect to To. Then the pull- 
back foliation J7 := P*(^r) on CP(3) exhibits singularities that are either of 
kupka type or isolated non kupka singularities that are also simple in the 
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sense of [1]. In particular we may choose P and To in such a way that 
conditions (b),(c) and (d) are fullfiled for a suitable S C sing^7. However, 
since To is generic it is not given by a closed rational 1-form and T may not 
satisfy the conclusion of Theorem A. 
(iv) Given a codimension one foliation T on a projective (algebraic) man- 
ifold Mk there exists an integrable rational 1-form CJ on M such that T is 
defined by u in M — (uijoo- Now, given such a 1-form UJ there exists a 1-form 
77 such that dco = 77 A LJ [20]. In fact the existence is trivial if k = 2 and is a 
consequence of the integrability of u for k > 3. 

Acknowledgments. This work was partially conceived during a postdoc- 
torade of the first author at the Universite de Rennes I - IRMAR. He ex- 
presses his gratitude to the IRMAR and specially to D. Cerveau for the 
kind hospitality. The authors are grateful to the referee for his reading and 
suggestions. We thank O. Calvo for valuable conversations. 

2. The Kupka Set. 

Let T be a codimension one singular holomorphic foliation on a fc- 
dimensional complex manifold M, given by an integrable meromorphic 1- 
form u outside the polar set of u. 

Lemma 2.1. Let K C K^) be a nondicritical Kupka component of T. 
Assume that for a point q £ K — K there exists a meromorphic closed 1- 
form VLq which defines T in a neighborhood of q, minus its polar set (f^)oo- 
Then K is analytically normalizable. 

Proof. Denote by 9 = A (re, y)dx + B(x, y)dy the transverse type of T at 
K. Then 0 = 0 defines a germ of reduced singular foliation {TK)

1
' at the 

origin 0 G C2. According to [2] there exists a germ separatrix W of (TK)
1

', 

through this singularity 0 £ C2. We can assume that W = (y = 0), because 
G = 0 is reduced. Moreover we will also take W to be the strong manifold 
if (FK)^ is a saddle-node. First we assume that 0 is nondegenerate and 
in the Poincare domain. In this case by Poincare-Dulac Theorem it follows 
that (TK)

±
 is either analytically linearizable and diagonalizable or it can 

be put in the Poincare-Dulac form 0 = ydx — (nx + yn)dy, n € N. In 
both cases it is analytically normalizable by Definition 2. Assume now 
that © is either nondegenerate in the Siegel domain or it is a saddle-node. 
According to [14], [15] and [16] the holonomy of this separatrix classifies 
analytically this germ of foliation. But since the germ of foliation of T at q is 
defined by a closed meromorphic 1-form it follows that the form 0 admits a 



632 Cesar Camacho and Bruno Scardua 

holomorphic integrating factor say, h(x,y) £ O^z,?/} such that d(^Q) = 0. 
This implies that the holonomy local diffeomorphism (p(y) associated to W 
is either analytically linearizable or analytically normalizable in the sense of 
[21] and [14],[15]. Thus this implies that the germ of foliation (^)J- is 
analytically normalizable in the sense above. This proves the lemma.      □ 

When the transversal type of a component K C K(T) is analytically nor- 
malizable, there exists a transverse (affine or projective) structure for F in 
a neighborhood of K in M minus eventually the local separatrices of J7, (see 
also [20], [21]). 

Proposition 2.2. Let k > 3, F, K(F) be as above. Let K C K(F) be 
a connected component with analytically normalizable transversal type 0. 
Then we have the following possibilities: 
(1) 9 is linearizable dicritical 0 = nxdy - mydx,n/m e Q+ then T is 
transversely projective in a neighborhood U{K) of K in CP(k). 
(2) 0 is not as in (1) and nondegenerate: there exists a neighborhood U{K) 
of K such that T is given in U{K) by a closed meromorphic 1-form SIK, 

with (n^)oo consisting of the local separatrices sep^if) of T through K. 
(3) © is a normal form saddle-node © = x(\ + Xyk)dy - yk+1dx and T is 
given by a closed meromorphic 1-form ClK in some neighborhood U(K) of K 
in CP(fc), minus the polar set which consists of the set of local separatrices 
sep^^K). 

Proof. Let us assume that k = 3, (this only simplifies the notation). 

Proof of (1): It is enough to prove the following claim. 

Claim 2.3. Let (f,g)i(f,g): U —> C2 be holomorphic submersions such 
that nfdg - mgdf = Oand nfdg - mgdf = 0 define the same foliation T 
on U.   Then we have f^jg71 = S{frn/gn) for some Mobius transformation 

cz+d' S(z) = m± 

Proof of the Claim. The foliation F has 5n//m and gn/fm as meromorphic 
first integrals and has leaves of the form A-#n-//-/m = 0 and A^n-/i-/m = 0, 
A,/x G C. In particular {g = 0}, {g = 0}, {/ = 0} and {/ = 0} are leaves 
of J7. Therefore it is easy to see that there exists a Mobius transformation 
S(z) = &,«,d,b,ce C,     ad-bc= 1, such that f- = S (jp-) = ^±br 

\   t        cz+d? ? 5 jm V/m/ cgn+df™ 

defines a meromorphic first integral for F and the leaves {/ = 0} and {/ = 
0} coincide, the same holding for the leaves {g = 0} and {g = 0}. Now we 
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only have to prove that g™/'f171 = A- gn/f™ for some locally constant A € C*. 
In fact we have / = u • / and g = v • g for some holomorphic nonvanishing 

u, v in U. This implies that -^ = fn/frnl is a quotient of first integrals and 
therefore vn/um is a holomorphic first integral for J7 in U. Since vn/urn is 
holomorphic we conclude that vn/um is locally constant in ?7. This proves 
the assertion and thus case (1). 

Proof of (2): 0 = Xxdy — fiydx + h.o.t.. 

• 0 is in the Poincare domain: First we assume that A//x ^ Q+. Then 0 is 
linearizable by Poincare Linearization Theorem. Thus given any point q G K 
we can choose an open set U 3 q and local coordinates (x^y^z) G U centered 
at q such that J7^ is given by the closed meromorphic 1-form Qu = ^jr — -jj- 
and Knf7 = {x = y = 0}. Suppose now that q E K is anotherjDoint, 
(x, y, z) G E/, Sly — ^jjr — -^ are chosen in the same way and U fl U •=£ (f). 

Then in UnU we have Qy = f.Stjj for some meromorphic function /. Since 

flu and fly have order one polar divisors coinciding in U fl U it follows that 

/ is holomorphic in U Pi U and since 0 = dQjj = dfi^. it follows that / is a 
holomorphic first integral for ^lu^- But since flu and fi^ do not depend 
on z and z it follows that / does not depend on the variable z. Now, since 
A ^ Q, the the transversal type of K does not admit a holomorphic first 
integral. It follows that / is locally constant in UD U. Finally since fly and 

flu have residue equal to 1 along {x = 0} fl U fl U = {x = 0} fl U fl U it 
follows that / = 1 and therefore fly = Sly in 17 fl U. 

Now we assume that A G Q and 0 is not linearizable (excluding this way 
case (1)). In this case it follows by Poincare-Dulac Theorem ([5]), that A 
or j G N and we can write 0 = xdy — (ny + xn)dx = xdy — (ny + xn)dx = 
xn+l(d{jL) - ^). Thus we define locally fl = d{^) - % and proceed as 
above. The glueing of these local models follows from the fact that © as 
above does not admit a local nonconstant meromorphic first integrals as it 
is easily verified using Laurent series. 

If 0 is linearizable with A//i G Q+ then we are in the situation of case 
(1) already considered. 

• 0 is in the Siegel domain: A G R_. If A ^ Q_, then (since 0 is analytically 
normalizable by hypothesis) the transverse type is linearizable and admits no 
meromorphic first integral. Using arguments similar to the ones used above 
we conclude that we may define closed 1-forms with simple poles defining J7 

in open sets U that cover K and such that fly = Sly in U fl U. 
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Assume now that © admits a holomorphic first integral. We use the 
same notation as above. By Mattei-Moussu Theorem G is linearizable [16] 
and we have A//i = —n/m G Q_, n, m G N, (n, m) = 1. Therefore we have 
f(x,y) = ^p{xnyrn) for some holomorphic function 9?. On the other hand, 
since the leaves of the transversal type are of the form xnyrn = c, c e C, 
it follows that there are only two of these leaves which define separatrices 
namely (x = 0) and (y = 0). Therefore we can assume that x = ux and 
y = vy for some u9veO*(UnU). It follows from ^ = fQu that ~ + 
di + ~ + v = (/ - i)(£f + f) = (^nym) - !)(£* + f )•So 

that V7 = ^n/ym is also a holomorphic first integral for ^\Un^' But this is a 
nonvanishing function so that necessarily we must have it locally constant 
and therefore (/- 1)(£*J + ^) = 0. Thus / = 1. Again we have Qu = ^ 

inUnU. 
Finally we assume that A//2 E Q_ but © is not linearizable. In this 

case since it is analytically normalizable, it follows that it is analytically 
conjugated to the Martinet-Ramis normal form [14] defined by Un/m,k,\ — 
n[l + (A — nl)uk](nydx + mxdy) + n[jLk{lydx + txdy) „u = xnyrn, A G C, k € 
N, < n, m >= 1; where Z, t G N are such that ml — nt = 1. Again we may 
define closed meromorphic 1-forms flu in open sets that cover K. These 
1-forms QJJ have nonsimple poles and admit no meromorphic first integral 
[14],[21] as it can be checked via Laurent Series, or by the use of [16]. 
Since the transverse type admits no meromorphic first integral these 1-forms 
flu may be chosen in such a way that ftjj = cte.Qy. in each U fl U / 0. 
Arguing with residues along the set sep(^r, K) we conclude that Qu = Qfj 

in U n U i=- 0 which proves this case. This ends the proof of (2). 

Proof of (3). Given any point q G K we can choose an open set U 3 q 
and local coordinates (x, y, z) G £7, centered at g, such that J7)^ is given by 
a;(x, y) = ^(^(l + Xyn)dy — yn+1dx) for some meromorphic function g. We 
define fit/--f + Af + ^r. 

Claim 2.4. // (x, y,z) £ U is another such system of coordinates with U D 

U ^ <f>, then Q,1y = Qu inU D U. 

Proof of the claim. In UnU we have ^y^^ + A^-f) = 5xy"+1d(- 

^ + Alogy - logx) = « = Py^1^ + Af - f) = S^+M - ^r - 
A log y + log ^). 

Therefore d(g££) A d( - ^ + A logy - log a?) = 0. Thus gp^ is a 

meromorphic first integral for the foliation d( — ^ + A logy — logx) — 0. 
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However this last does not admit such a first integral (see [14] for instance) 

so that ^iKtl is locally constant mUnU. This implies that -^ + A^ + 

-% = a (-& + A# + A) for some a e C*. Comparing the residues 
y \ y      y     j 
along (x = 0) an d (x = 0) we conclude that a = 1 proving the claim. j—-] 
Now we state a first consequence of our approach (see [5]): 

Theorem 2.5. Let J7 be a foliation on CP(k), k > 3. Suppose there is a 
compact component K C K^F) which is a transverse complete intersection. 
Then T has a rational first integral. 

Proof. Let © be the transversal type of K. Using Theorem 1.1 (iv), we can 
assume that 0 = nxdy — mydx, n, m E N. According to Proposition 2.2 this 
implies that J7 is transversely projective in Vk for some open neighborhood 
Vk of K in CP(fc). Using [20],[21] and Proposition 2.2 we prove that T is 
transversely projective in CP(fc). The proposition follows now from the fact 
that CP(fc) is simply-connected (see [20],[21]). [—I 

This theorem is originally proved in [5] in a different way. 

3. Proof of the main results. 

Let J7 be as in Theorem B. Let S = Si U • • • U Sr be the decomposition of S 
in irreducible components. We recall that since K(J7)r]S is dense and open 
in S and both 5, K^J7) are analytic, it follows that cods(Sj — K^)) > 1, so 
that SjDK^) is connected. We will denote therefore by G^ the transversal 
type of J7 at SjOK^J7). 

Lemma 3.1. Given any component K C K^J7) with transverse type QK, 

and a meromorphic integrable 1-form u that defines J7, we have according 
to the possibilities of Proposition 2.2: 

i) QK is Unearizable dicritical (i.e., of type (1); given any meromorphic 1- 
form r] such that dcu — 77 A UJ, there exists a 1-form ^K on a neighborhood 
VK of K such that (CJ, 77, £#) is a projective triple and defines a transverse 
projective structure for J7^ . 

(ii) Gjf is of type (2) or (3); there exists a neighborhood Vj of Sj := 
K fl S where it is defined a meromorphic 1-form rjj such that (UJ^TJJ) is 
an affine pair.    The pair (a;,7jj) defines an affine transverse structure for 

^IVjXsepiJ7^)' 
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Proof. By the hypothesis if q G S\K{!F) then F is given by a closed 
meromorphic 1-form fi^ in a neighborhood of q. 

Proof of (ii). Fix a point q' G !£(?), close to q. This point qf belongs to 
a certain Kupka component K. Using Proposition 2.2 we obtain a closed 
meromorphic 1-form Q.K which defines F in a neighborhood UK of iiT. We 
may write u = HK^K and obtain this way a meromorphic function IIK 

which is an integrating factor for LO in £/#, that is, ■%-><+) is closed.   We 

define the 1-form r]K in neighborhood UK as TJK = x^- ^^s ^s a closed 
meromorphic 1-form satisfying dw = rjK hu>. Moreover we have (77^)00 = 
sep(^r, if) and it has order one. We define r]q = -j

2- where a; = ^ • ^ in 
a neighborhood of g. The function / = hx/hq is therefore a meromorphic 
first integral for the transverse type along K: indeed, this is a quotient of 
integrating factors so, as it is easy to verify, we have df A UJ = 0. Since 
the transverse type of K does not admit a nonconstant holomorphic first 
integral it follows that / is constant and then hq = cte.fiK so that TJK = Vg 
in a neighborhood of q. 

Proof of (i). According to Proposition 2.2 (i), there exists a projective 
transverse structure for J7 in some neighborhood UK of K. Thus it follows 
from [20],[21] that, given any rational 1-form 7? satisfying du = r] A a;, 
we can find on UK a meromorphic 1-form £K which satisfies drj = UJ A £K 

and d^K = €K A 77. This triple (a;, 77, £#) defines the transverse projective 
structure for ^lifrK)- □ 

According to Lemma 3.1 above, given any component Sj of S whose 
transversal type Qj is not of the (dicritical) form nxdy — mydx = 0 (that 
is, not of type (1) of Proposition 2.2), we can define a 1-form 77^ in a neigh- 
borhood Vj of Sj such that (OJ.TJJ) is an affine pair. Let Ki and Kj be two 
nondicritical Kupka components with Vi n Vj ^ (/>. 

Lemma 3.2. For rji,  r)j as above we have rji = 77^ in a neighborhood of 
ViHVj. 

Proof. Indeed, we may assume that u> is not closed (otherwise J7 is already 
given by a closed meromorphic 1-form) and fix q G Vi D Vj. As we have seen 
there exists a closed meromorphic 1-form 77^ = -^ defined in a neighborhood 
of q and satisfying also dou = 7]q A to. We have seen in the proof of Lemma 3.1 
that, as a consequence of the fact that Kj does not admit a meromorphic 
first integral, we have 77^ = r]q in a neighborhood of q. The same holds for 
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rji so that we have rji = rjj around q. □ 

Proof of Theorem B. According to Lemma 2.1, conditions (b) and (c) 
imply that the the transverse type of any Kupka component is analytically 
normalizable so that we may apply Proposition 2.2 and Lemmas 3.1 and 3.2 
in order to construct the affine pair (a;, 77) in a neighborhood Vi U ... U Vr of 
S as in Theorem B. The last part is a consequence of the extension result 
Theorem 1.2. ^ 

Proof of Theorem C. Theorem C follows from Proposition 2.2 and Lemma 
3.1 (i). □ 

Proof of Theorem A. According to Theorem B we may construct 77 in a 
neighborhood of S in CP(fc) such that (u;, 77) is an affine pair. Using the 
extension result Theorem 1.2 we extend 77 to a rational 1-form in CP(fc). 
Now, we know that 77 is a closed rational 1-form that has simple poles and 
integer residues (for it is locally of the form 77 = ^ with h meromorphic). 
Using the Integration Lemma [20],[5] (see Example 2) we can write 77 = ^ 
for some rational function h on CP(k). The relation du = TJALJ is equivalent 
tod(^)=0. □ 

Remark 3. According to a theorem of Sernesi ([22]) and to some stabil- 
ity theorems for regular singularities ([1]), we have that a small analytic 
perturbation of a foliation J7 having a quasiprojective complete intersection 
Kupka component (see Theorem A, condition (a)), and with regular singu- 
larities along this component, still exhibits a Kupka component with these 
same properties. However we recall that the normalization property of the 
transverse type may disappear. 

We give now an application of our main result (Theorem A) to foliations 
onCP(2). 

Theorem 3.3. Let T be a foliation having nondegenerate singularities on 
CP(2) and assume that the singular set sing (F) is a complete intersection 
of two algebraic curves Ci and C2. Assume also that the singularities of T 
are analytically normalizable, and nonresonant. Then T is given by a closed 
rational 1-form Q on CP(2). 

Proof. Given the foliation J7 we consider a linear embedding CP(2) —> 
CP(?) and for a point p0 e CP(3) \ CP(2) we construct the "cone" F in- 
duced by J7 on CP(3) in the usual way having p0 as vertex. It is clear that 
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T satisfies the hypothesis of Theorem A (the point p0 will be a simple sin- 
gularity in the sense of [1]). Therefore we can obtain a closed meromorphic 
1-form £7 which defines T on CP(3). The restricted 1-form Vt = Cl\ p,2, is 
closed and rational, and defines ^r. [—| 
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