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Geometric Residue Theorems for Bundle Maps 

SUNIL NAIR 

In this paper we prove geometric residue theorems for bundle maps 
over a compact manifold. The theory developed associates residues 
to the singularity submanifolds of the map for any invariant poly- 
nomial. The theory is then applied to a variety of settings: smooth 
maps between equidimensional manifolds, CR-singularities, finite 
singularities and singularities of odd forms as spinor bundle maps. 

1. Introduction. 

The prototype of residue theorems in geometry is the classical theorem 
of Hopf 's [H] which relates the zeroes of a vector field on a compact manifold 
to its Euler characteristic. In general, residue theorems associate topological 
or curvature invariants to the singularities of geometric objects. The aim of 
this paper is to study singularities of maps between bundles over an oriented 
manifold, in particular, to obtain residue theorems for such singularities. 

The theory of generic bundle maps has been studied in great detail by 
Harvey-Lawson [HL1], [HL2] and by Harvey-Semmes [HS]. This paper uses 
several key ideas developed in the papers above, namely the notion of push- 
forward connections and the universal setting for residue theorems, but takes 
a different point of view. While the authors above study atomic maps be- 
tween bundles, for which the singularities are of the expected codimension, 
we allow the singularities to be nongeneric, asking only that they be closed 
submanifolds. 

A natural class of examples of such bundle maps is the following: Let X 
be a compact riemannian manifold equipped with an action of a finite group 
T. Suppose that for some g e T, X/Z171 is a smooth manifold, where Zm 

is the cyclic subgroup generated by g. Let p : X i—> X/Z™ be projection. 
Then the differential map dp : TX i-> p*TX/Zm is a bundle map over X with 
singularities Fg, the fixed point set of g. By an elementary exponential map 
argument one can see that Fg is a union of smooth, closed submanifolds of X, 
possibly of different dimensions (see [S] for a large collection of examples). 
This class includes branched coverings over a smooth codimension 2 branch 
locus. 
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The main result of the paper can be summarized as follows. Let a : E h-> 
F be a vector bundle map between vector bundles E and F with connection 
over a compact, oriented manifold X. Suppose that a is injective on X — E, 
where E is a union of smooth closed submanifolds E^ possibly of different 
dimensions. Let / = Im(a) be the image subbundle of a in F. Suppose also 
that a is normalizable at each E;, in a sense to be described later . Then for 
each invariant polynomial 0, there is an equation between currents on X: 

(i.i) (j>(nF) - <i>(nE © iv) = £/fe^py + dT. 

Here <f)(£l) denotes the (^-characteristic form of a connection, T is an Ljoc 

transgression form on X which is smooth on X — E and the residue Res^i 
is a smooth form on E defined by the fiber integral 

Resfr = - / T 
J^i\dNije 

where dNi^ is the boundary of an 6-tubular neighborhood TT : Niie H-> E7; 
of E;. Equation (1.1) should be viewed as a natural generalization of the 
Poincare-Hopf Index Theorem to vector bundle maps. 

The concept of normalization can be briefly described as follows. A 
vector bundle map a : E h-» F is called normalizable at E if a and the 
connections of E and F are radially constant with respect to the natural 
radial projection p : Ne — E »-> dN€. Normalization is not a strong condition 
because we show that any bundle map which is injective outside a union of 
closed, smooth submanifolds E is homotopic to a map which is normalized 
at E. Furthermore, at the cohomology level, equation (1.1) is homotopy 
invariant when rank(E) = rank(F). 

This approach leads to many interesting formulae and applications. To 
name a few, we obtain a generalized Hopf index theorem for bundle maps 
with finite singularities, a generalized Riemann-Hurwitz formula for smooth 
maps between manifolds of the same dimension, residue formulae for CR- 
singularities and residue formulae for Clifford and spin bundles. 

The author wishes to thank Blaine Lawson for introducing him to the 
subject and for his invaluable help in shaping the results obtained in his 
thesis, from which this paper stems. Also, he wishes to thank ICTP, where 
a part of this work was realized. 

2. Pushforward Connections. 

In this section we review the concept of a pushforward connection intro- 
duced in [HL1]. The material covered in §2 to §4 can be found in the above 
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paper in much greater detail. 
A notational convention: Throughout this paper X will denote a mani- 

fold which is oriented and E a submanifold of X. 
Suppose E and F are vector bundles (real or complex) over an oriented 

manifold X. Let DE, respectively Dp, be a smooth connection on E, re- 
spectively F. Let a be a bundle map between E and F that is injective 
outside a submanifold E of X. Then we can transplant the connection DE 

to define a pushforward connection on F outside the singularity set E by 

(2.1) D = OLDEP + DF{1 - a/3). 

Here (3 is the 'inverse of a\ This is made precise below. Suppose E and F 
are equipped with metrics, not necessarily compatible with the connections 
DE and Dp. On the complement of E let / = Ira (a) denote the image 
subbundle of F. We can now choose /? to be the orthogonal projection of F 
onto / followed by the inverse of the map 

a :E»I. 

The transplanted connection D is singular because the map (3 is singular on 
E. A more concrete formula for (3 is given by 

0 = (aVpV 

where a* denotes the adjoint of a. 
For the most part, this paper will concentrate on the equirank case, i.e, 

when rank(E) = rank(F). Then the singular pushforward connection D on 
F is given by the simple formula 

D = aDEOt"1    on   X - E. 

On X — E the pushforward connection D can be written in block form with 
respect to the splitting F = / © J1. The matrix form of D blocks as an 
upper triangular matrix with diagonal terms OLDEP and (1 — P)DF{1 — P). 
Here P denotes the orthogonal projection of F onto /. Therefore for any 
Ad-invariant polynomial <^, on the Lie algebra fl^n(R), or fl^n(C), we have 

<j)(D) = <t)(aDE(3®{l-P)DF{l-P))    on    X-E 

where to simplify notation we write 
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This denotes the invariant polynomial evaluated on the appropriate curva- 
ture. This will be the notational covention adopted throughout the paper 
unless stated otherwise. 

When restricted to sections of /, aDE/S = aZ^g-a-1 is gauge equivalent 
to DE and this implies that 

(2.2) (/)(D) = (f)(DE®DI±)    on   X-E 

where D^ = (1 - P)DF(1 - P) is the connection induced on I1- C F by 
Dp. 

3. Families of Pushforward Connections 
and Transgressions. 

To obtain a transgression formula relating (j)(D) to (J)(DF) via Chern- 
Weil theory we want to introduce a family of connections on F. There is a 
nice way of doing this by using the notion of an approximate one. By an 
approximate one we mean a function x with the following properties: 

X:[0,oo]^[0,l] 

which is C00 on [0 , oo] and satisfies 

X(0) = 0 , x(oo) = 1 

and 

Given a bundle map a we can define approximations to the inverse of a 
based on x by setting 

where p(t) = ^(t). 
The family of bundle maps (3S is smooth for 0 < s < +oo on X with 

/^ = 0 on X and /?o = /? on X — S. We can now define a family of smooth 
connections Ds over the entire manifold X including E for 0 < s < +oo by 

Ds = aDEPs + DF(l-a(3s). 

Note that .Doo = DF on X and A) = D on X - S. 
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We then have a family of curvature forms fis corresponding to the family 
of connections Ds. Using standard Chern-Weil theory (see [BoC]) we can 
write 

(ftDoo) - <f>(D) = dT   on   X-E 

and using (2.2) we can rewrite this as 

(3.1) <}>{DF)-<i)(DE®DI±_) = dT   on   X - E. 

Here T denotes the transgression form for this family of connections. The 
explicit form of T is given by 

Jo 
^{bt'^t)dt 

where (f)(bt\£lt) = -^^(^t + sDt) |s=o is the complete polarization of </>. The 
formula for T above should be read as written and not with the notational 
convention ^(D) = 4>(^t) introduced in §2. The aim of this paper is to extend 
equation (3.1) across the singularity set E to the entire manifold X, thereby 
obtaining residue formulae. 

Remark 3.1. We can also consider the case where a : E —> F is a surjec- 
tive map outside E. Let K = Ker(a) be the kernel subbundle of the map 

a. The pullback connection D on E is defined by 

D=pDFa + (l-(3a)DE 

where f3 denotes the inverse of the map a : K1 »-» F. Again, by considering 
families of connections, we obtain, for any invariant polynomial </>, 

(3.2) <l>(DE)-<f>(DF@DK) = dT   on   X - E. 

For the sake of clarity we omit mentioning the surjective case explicitly 
in the exposition that follows. The formulae are the same in both cases; 
the reader just has to replace (3.1) with (3.2) to obtain the result for the 
surjective case. 

4. The Universal Setting. 

It is often useful to consider the above setting universally. By this we 
mean transplanting the given data to Homx(E,F), the bundle of injective 
maps from E to F. 
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Let TT : Homx(E, F) ^ X be the projection map onto the manifold X. 
Then we can pull back the bundles E and F by TT to obtain the bundles 7r*E 
and 7r*F over Homx(E, F). There is a tautological bundle map 

a : 7r*E i-> 7r*F, 

which at a point a e Horn* (Ex, Fx) above x e X is simply defined to be a. 
This tautological map is injective everywhere. We can pull the connections 
on E and F back to n*E and Tr*^ and apply Chern-Weil theory to this 
setting as we did in the previous section. We then have the universal formula 

(4.1) (/>(D7r*F)-(/)(D7r*E®D!±) = df   on   Homx(E,F). 

A smooth bundle map a : E h-> F which is injective outside S C X 
defines a cross-section of Horn* (E, F) on X - £ and we have that 

a*(<jr*E) = E 

and 
a*(7r*F) = F 

over X — £ as bundles with connections. Furthermore, 

a*(a) = a    on    X — E. 

Thus, every case is a pullback of the universal one. In particular, (4.1) pulls 
back to give (3.1) on X — E. 

5. Residue Formulae. 

In this section we study equation (3.1) in more detail. We show how 
to obtain residue formulae when both the transgression form T and the 
characteristic form <f>(DF) - ^(DE © D/±) in the equation above extend as 
Ljoc forms across the singularities of the bundle map a. 

Suppose that we are in the setting outlined in §3, where a : E \-> F is a 
bundle map, defined and injective outside IJ E^. Each E^ is assumed to be a 
submanifold of X, disjoint from the others, but not necessarily of the same 
dimension. The submanifolds £; will be referred to as the singularities of 
the map a. By equation (3.1) we can write down the following: 

(f>(DF)-(f)(DE®DI±) = dT   on   X -[JE;. 

Suppose that the transgression form T and the characteristic form ^(Dp) — 
(/)(DE © Djx) in the equation above extend as Ljoc forms across the singu- 
larities. 
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Theorem 5.1. Let a : E H-> F be a map which is injective outside (J^i; 
where each E* is a closed submanifold of a compact, oriented manifold X. 
Suppose that T and ^(Dp) — <f>(DE © -D/J-) extend as Ljoc forms on X for 
a given invariant polynomial <j>. Furthermore, assume that the extension of 
<I>(DF) — (J>{PE © Dji) is d-closed on X. Then 

l 

(5.1) (l){DF)-(l)(DE®DI±) = Y2Res<t>AZi} + dT    on   X 

where 

Res^ i = — lim / T 

is a closed current supported on Ej given by fiber integration and 

deg(Res(j)ii) = 2deg((f)) — codim^i). 

Here dNi^ denotes the boundary of an e-tubular neighborhood JV^e of E* and 
TTi : dNi^ —> Ei is projection. 

Proof. Choose e-tubular neigborhoods N^ of E;. Write 

X = (X-[JNi,e)u[JNi>e. 

Since <P(DF) — (J>{DE © Di*-) extends as an L\oc form on X, we have 

lim(0(^) - <t>{DE © ZV)) A [X - (J JViie" 

= (^(I>F)-^(I>B©I>/j.))A[A-]. 

Then we can write 

(^(DF) - ^(I>E © 2V)) A [X] = lim dT A [X - (J JVi>6] 

= hmd(TA[X-\jNi^ 

i 

Here [X], [X — \jNiie] and [9iVij€] denote the currents associated with X, 
X — (J JVijC and 5iVi)€ respectively. 
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Since T extends as an Ljoc form on X, the family T A [X — \J Nii€] 
converges to T extended by zero, as currents on X. We now use the following 
convergence property which can be easily deduced from the characterization 
of flat cochains found in Federer [F;4.1.19]. 

If a€ —> a and b€ —> b as Ljoc forms, then da€ + be —> da + b in flat norm. 
Applied here, this implies that Li = limT A [dNit€] exists in flat currents 

on X. 
Since supp(Li) C E;, this current is intrinsic to E*, by Federer's Flatness 

Theorem found in Federer [F;4.1.15], i.e , TT^LJ = Li where TT; : iViie —> Si is 
the fibration of the tubular neighborhood over E;. Now 

Li = TTi^Li 

^ Tti* 

= )im>Ki*[TAdNi,e) 

= lim / T A [Ei] 

= —ResfolZi]. 

We note that if E^ is nonorientable then integration over the fiber defines a 
current with twisted coefficients in the orientation bundle of Niie. Since X is 
orientable, Res^^ and [£»] lie in the same orientation class, hence iZes^pJ 
is well-defined as a current on X. 

If (^{Dp) — <J>{DE © Ar-O extends as a closed L^ form and each £; is 
a closed submanifold then applying the exterior derivative on both sides of 
(5.1) gives that each Res^^ is a closed current. □ 

Remark 5.2. We now explain integration over the fibers a little more care- 
fully. If Ei is orientable, integration over the fibers gives a closed current 
ReScj)^ on X supported on E;, which defines an element of H*(X;M). Sup- 
pose now that £; is nonorientable. We write ATE; 0 TE; = TX (j^, where 
iVEi is the normal bundle to £». Note that the residue Res^^ is given by 
integration over the fibers of the o(iV£i)-twisted e-sphere bundle in iVE;, 
where o(NTli) denotes the orientation bundle of iV£i. Since X is orientable, 

o(NZi) ® o(TEi) = 1 

where o(iV£j) and o(rSi) are the orientation bundles of TVEi and Ej respec- 
tively, and R is the trivial bundle. Hence E^ is in the same orientation class 
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as Res^^, so the pairing Res^^i] defines a closed current on £». Here [Si]. 
denotes the current associated with E; with twisted coefficients in o(£j). 

With this in hand, it is clear that when we say currents and differential 
forms, it is to be understood that we mean currents and differential forms 
with twisted coefficients when £; is nonorientable. 

The hypotheses of the theorem recur again throughout the paper, so for 
convenience we make the following definition. 

Definition 5.3. We say that a bundle map a with singularities £; which 
are closed submanifolds is extendable if for any invariant polynomial </> the 
smooth forms T and (^(Dp) — ^(DE ® DI±) in X — (J £; extend as L[oc forms 
on the manifold X. 

Remark 5.4. If rank(E) = rank(F), then J-1- does not appear in the equa- 
tion above. Since DE and Dp are smooth connections, </>(JDF) — (^(DE) 

extends as a closed smooth form on X. Therefore, the only hypothesis 
needed in this case is that T extend to be L}^ on X. 

6. Normalized Maps and Normalized Bundles. 

In this section we discuss when the transgression form T and the char- 
acteristic form ^{DF) - (t>{PE © Dji.) extend as L\oc forms on X. This 
involves the notions of normalized bundles and normalized maps which we 
define below. 

First we define a tubular neighborhood structure of a closed submanifold 
£ to be an e-tubular neighborhood Ne of £ with a given smooth identification 
with the normal disk bundle to £. By an abuse of notation we will also use 
N to denote the normal disk bundle to £. Let TT : N —> £ denote the 
bundle projection and p : N — £ -> ON denote the radial projection onto 
the boundary induced from the vector bundle structure of TT : iV —> £. 

Definition 6.1. We say that a bundle E with connection DE over a man- 
ifold X is normalized at a submanifold £, if for some tubular neighborhood 
structure N of £, the pair (2?, DE) can be written as a pullback from £ , 
i.e., 

(E,DE)\N   =    **(E,DE)\I> 

where TT : N —> £ is projection. 
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Since E is the retract of N, any bundle over iV is equivalent to a pullback 
of a bundle on E. However, the pullback connection is only homotopic to 
the original one. The condition that a bundle be normalized at E ensures 
that the pullback connection is equal to the original one. If E is a point on 
X then the normalization condition implies that E is flat in a neighborhood 
of the point. In general, normalization can be viewed as 'flatness' in radial 
directions. 

We now go on to define normalized maps. 

Definition 6.2. A bundle map a : E —> F defined over X—E is normalized 
at E, a submanifold of X, if there exists a tubular neighborhood structure 
N for which (JE?, DE) and (F, Dp) are normalized and such that a is radially 
constant, i.e., 

p*(a : E |dJV-> F \dN) = (a : E -» F) in N - E 

where p : N — E —> dN is radial projection onto the boundary. 

With these definitions in hand we prove the main extension theorem. 

Theorem 6.3. Let a : E —> F be an injective map outside (JEi. Suppose 
that a is normalized at each Ej. Then for any invariant polynomial </>, the 
forms T and (/>(DF) — <1>(DE © DI±) extend as Ljoc forms over the manifold 
X, i.e., a is extendable. 

Proof. Since a is normalized at each E;, the family of pushforward connec- 
tions Ds is also a pullback from dNi^ i.e., 

{F)Ds)\Ni^i=p\F,Ds)\dNi^ 

Here iVij€ denotes the e-disk bundle of E; and dN^ its boundary. 
This immediately implies that the transgression form is also a pullback 

from dNi,e, i.e., 

T \Niie-Xi= P*(T \dNiie)- 

Now we want to show that this pullback property implies that T extends 
as an Lj form. Since this is a local property we need only construct a 
local argument. Without loss of generality we can assume that each Si is of 
dimension 0. 
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Let / : Rn - {0} -> S71'1 be radial projection and p be a form on 5n~1. 
We now have to show that f*ip e L[0C(R

n). In coordinates f(x) = ^ where 

x = (x*, ...iXn). Then 

rdr1 - d (   Xi   \ -   dXi   - V  XiXj dx- 

This is a homogeneous form of degree 0 and the coefficients of f^dx1 are 
bounded by A. Therefore the coefficients of pdx1\ for a multi-index / are 

bounded by (TCT)'/'. Hence it is L}oc if | / |< n - 1. For any form (p on S71-1 

where 

¥> = J^a/dx7 \Sn-i,     | I \< n- 1, 

the coefficients of /*y> are bounded by Y1SUP I a/ I luiin-i > where c is a 

constant. Here the sup is taken over the sphere. Hence f*<p is L^. 
Applied to the transgression form this implies that T extends as an Ljoc 

form. 
If 2deg((f)) < dimX then the same argument as above implies that 

4>{DF) — (f>(DE © Dj±) extends as an Ljoc form. If 2deg(<j)) = dimX then 
4>{DF) — (f)(DE © Dj±) = 0 in iVij€ — Si since it is a form of degree higher 
than the dimension of dNiie. Hence it extends by zero as an Ljoc form on 
X. ' □ 

7. Residues. 

The residue is in general a current supported on the singularities of the 
bundle map. However, when a is normalized at the singularities the residue 
is a smooth form. 

Lemma 7.1. Let a : E —> F be an injective map outside (J S^. Suppose that 
a is normalized at each E^. Then the residue Res^^ is a smooth differential 
form supported on E; and is given by 

Res^i = - / 
•/TT, 

T 

where TT; : 5A^)€ —> Ei is projection. Furthermore if either rankE = rankF 
or 2deg{(/)) = dimX then Res^^ is closed. 
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Proof. The normalization condition implies that the transgression form T 
is a pullback from dN^ This radial invariance makes T \dNie essentially- 
independent of 6. In particular 

lim I T =  / T 

for any sufficiently small e. Since T is a smooth form outside the singular- 
ities, integrating over the fibers of the projection map TT^ yields a smooth 
closed form on £*. 

As mentioned in Remark 5.4, if rank(E) = rank(F), then ^{DF) — (J>{DE) 

extends as a closed smooth form on X, hence Res^^ is closed. Also, as 
observed in the proof of Theorem 6.3, the normalization of a implies the 
(^{Dp) — ^(DE © Dj±) is a pullback from dNi^. If 2deg((f)) = dimX then 
(J){DF) — (I>(DE © Dj±) = 0 in Niie — Ei, since it is a form of degree higher 
than the dimension of dN^e- So (J)(DF) — (J)(DE © DI±) extends by zero to 
be a closed current and Res^j is closed. □ 

8. Homotopy, Normalized Maps, and Normalized Bundles. 

We showed in §6 that a, E and F had to be normalized at the singular- 
ities Ei for T and dT to extend as L[oc forms over the manifold X. We now 
show that normalization is not a strong condition. More precisely we prove 
that any bundle E with connection is smoothly homotopic to a normalized 
bundle at Ej and that any bundle map a with singularities E* is smoothly 
homotopic to a normalized map on X — \JEi. We also show that any two 
normalized maps with singularities E; are homotopic through normalized 
maps. 

Lemma 8.1. Any pair (2?, DE) is smoothly homotopic to a normalized bun- 
dle at a submanifold E of X. 

Proof. Let Ne/2 be a tubular neighborhood of E. Define a map p : X —► X 
as follows. 

P(v) = A(|| v \\)v 

where A : [0, oo] —* [0,1] is a smooth function with the properties 

\(s) = 0    for    s < e/2 , 

A(s) = 1    for    5 > e 
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and 

A'OO > 0. 

Then p |jVe/2
= n • N€/2 —> S, where TT is projection onto E. Hence p*(JE, -DE) 

is equivalent to JE and is normalized at E. 
Now let pt(v) = (1 - t)i; + tp(v) for 0 < t < 1. Define 

(Et,Dt)=p*t(E,DE). 

Then ^ ^ E for 0 < t < 1 and PI(E,DE) = P*{E,DE)* Hence p*t is the 
required homotopy. □ 

Lemma 8.2. Any bundle map a : E —> F mt/i singularities E; is homotopic 
to a normalized map on X — IJ^i- 

Proof. Let iVi}€ be an €-tubular neighborhood of E^. We first normalize £7 
and F at each E;. Define a map p : X — {jT,i -* X — |JEi as follows. For 
v € Ni:€ - Ei, set 

p(t;) = i(||t;||)t; 

where I : (0, oo] —> [1, oo] is a smooth function with the properties 

l(t) = -    for   t < e/2 , 

and 

l(t) = 1    for   t > e 

/'(t) < 0. 

Then p |iviie/2-Si' ^2,€/2 — E^ -^ dNi^/2 is radial projection in the sense of 
Definition 6.2, and extends smoothly to be the identity outside Nii€. Hence 
p*a is normalized at E*. Now let pt(v) = (l — t)v + tp(v) for 0 < t < 1. Then 
Pt(oi) is the required homotopy between a and /?*a defined on X — (J E;. D 

By the same argument as above we have the following lemmas. 

Lemma 8.3. Let ai : E —* F and a<i : E —> F he normalized at E*, with 
the same tubular neighborhood structure such that 

ai = a2    on   X - [J Arije. 

Then there is a homotopy between ai and OL^ on X—(J E^ through normalized 
bundle maps. 
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Lemma 8.4. Let (EI^DET) and (E^-Dg^)  be normalized at E;; with the 
same tubular neighborhood structure such that 

(E1,DE1) = (E2,DE2)    on   X-ljN^. 

Then there is a homotopy between {EI,DEI) and (.E^-D^) on X through 
normalized bundles. 

9. Invariance of Residues under Homotopy. 

We discuss what happens to the residue when we homotope a through 
normalized maps at the singularities E;. First we recall a double transgres- 
sion formula found in [HL1]. 

Lemma 9.1. Let Dsj be a 2-parameter family of connections, 0 < 5 < oo; 

and a < t < b, with DSja = Da and Ds^ — D^ for all 0 < s < oo. Then the 
two transgressions, Ti and TQ, determined by Dij an d DQJ satisfy 

Ti - To = dR 

with 

where 

R=        /     ^ ( diWs'U d~Ws^ ^s,t) dsdt 

</>(A, B; C) = -^t<f>(C + sA + tB) \aM . 

The lemma above allows us to prove the following invariance of the 
residue classes for the equirank case. 

Theorem 9.2. Let ao : E —> F and ai : E —► F be normalized maps at 
singularities Si. Assume that rank(E) = rank(F). Then the residues, Res^ 
and Resl}, define the same cohomology class on S*. 

Proof Since E and F are of the same rank and the normalization conditions 
are satisfied we have that 

l 

cj>{DF) - 4>{DE) = J2 ResliPi] + dTo     for     ao 
2=1 



and 
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4>(DF) - 4>{DE) = ^ Res1^ pi] + m     for     ^ 

Res0^ = - / To 

and 

4,i = - / 

JlTi 
Res\; = -\ Ti. 

Note that we are allowed to drop the limit lim in the formulae above for the 

residues Res^ and Res1^ by Lemma 7.1. 
By Lemma 8.3 we can write a smooth homotopy at between ao and 

ai through normalized maps, hence Tt extends as an L\oc form on X for 
all 0 < t < 1. The initial and end points for the two parameter family of 
pushforward connections defined by the homotopy are Dp and DE- Thus 
we are in the setting of the double transgression lemma above and we can 

write 

(9.1) To-T^dR   on   X -\J^i 

as smooth forms on X - (J Si, and hence on dNi,€. 
Since R is smooth on dNi}€ and <9iVij€ is compact without boundary, the 

exterior derivative d commutes with fiber integration. Integrating equation 
(9.1) then gives 

R. Resl, - Reaii = [ To - 7 Tx = / dR = df 
J^i\dNiie JnAdN^ J^i\dNite ^i 

Hence they define the same cohomology class. □ 

10. The Universal Transgression Form. 

In §4 we wrote down the following transgression formula which is valid 
on iIomx (25, F\ the bundle of injective maps from E to F. 

<i)(D7r*F)-<j>(DiT*E®DI±) = df   on   Homx(E,F) 
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where TT : Horn* (E, F) —> X is the projection map. If a : E —» F is an 
injective map outside E* then the equation above pulls down by a to give 

</>(DF)-<f>(DE®DI±) = dT   on   X-jjE^. 

In particular, the transgression form T is just a pulllDack of the universal 
transgression form T outside the singularities, i.e., 

T = a*f   on   X-ljEi. 

This implies that the residues can be expressed universally in terms of T 
and the map a : X — (JE^ —■> Homx(E,F), considered as a section of 
Homx(E)F) outside the singularities. More precisely, 

(10.1) ites^ = -Um / a*r. 

In a sense, this is a generalization of the notion of the index of a vector field, 
in that the residue measures the twisting of the map a. 

11. Obstructions. 

The most interesting applications of the main residue formula (5.1) arise 
when rank(E) = rank(F). For any invariant polynomial (/>, the character- 
istic form ^(Dp) — (J){DE) extends as a closed, smooth differential form 
on X. Suppose the singularities E; of the bundle map a : E i-> F are 
orientable, closed submanifolds of X. Furthermore, assume that a is ex- 
tendable. The condition that the Si's are orientable arises in many nat- 
ural settings, for instance, orientation preserving finite group actions on a 
compact manifold. The residues Res^^ are then closed currents on X (see 
Remark 5.4). More precisely, by Theorem 5.1, Res^i G H2de9^-ei(X;R), 
where e; = codimRes^i. We then have the following immediate corollary. 

Corollary 11.1. Let a : E i-» F be an extendable bundle map with sin- 
gularities Ei that are orientable, closed submanifolds of X. Assume that 
rankE = rankF. Let codimT,i = e^. Suppose that the cohomology groups 
H2de9<t>-ei(X',R) = 0 for each i. Then ^(DF) and (/)(DE) are cohomologous. 

Proof By (5.1) we have that 

l 

(f>(DF) - <I>(DE) = J^Restopi] + dT. 
2=1 
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Since iJ2cZe^-ei(X;R) = 0, each Resfo is exact, i.e., 

Res^i = dSi 

for some Si G ^^-^^(X-.R). Hence 

l 

cf)(DF) - $(DE) = dC^SilRes^} + T) , 
i=l 

which proves the assertion. □ 

This corollary can be viewed as an obstruction theorem to the existence 
of bundle maps with orientable singularities of a certain codimension. 

Corollary 11.2. Let E and F be vector bundles over X where rankE = 
rankF. Suppose that (^(DE) and (J)(DF) are not cohomologous for a given 
invariant polynomial (/). Also suppose that H2de9^~k(X;R) = 0 for some 
k < 2deg(f). Then there cannot exist a bundle map a : E >—> F with an 
orientable, closed singularity S of codimension k. 

Proof. Assume that such an a exists. We can always homotope a such that it 
becomes extendable with the same singularity E. By Corollary 11.1 (J){DE) 

and (J){DF) are cohomologous, which contradicts the assumptions. □ 

We also the have the following. 

Corollary 11.3. Let a : E i-» F be an extendable bundle map with singu- 
larities Ei, where rankE = rankF and codimT.i = e^. Let (j) be an invariant 
polynomial such that 2deg(f) < max codimY.i. Then (J){DE) and ^(AF) are 
cohomologous. 

Proof. Again by Theorem 5.1, if 2deg4> < max codimHi then Res^i = 0 for 
each i. Hence 

4>(DF) - <f>(DE) = dT. 

U 
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12. Singularities of Maps. 

Let X and Y be smooth Riemannian manifolds of equal dimension and 
consider a smooth mapping 

/ : X - Y. 

Consider the differential map 

df : TX -» f*TY. 

Here we endow TX and f*TY with the standard riemannian connections, 
normalized at the singularities of df. We are now in the standard setting 
where E = TX and F = f*TY. Let pk(Y) and pk(X) be the k-th Pontry- 
jagin forms in the normalized riemannian curvatures of X and Y. 

A straightforward application of the main residue theorem yields the 
following result. 

Theorem 12.1. Suppose that f : X —> Y is a smooth map between compact 
oriented riemannian n-manifolds. Suppose that the differential map df has 
submanifold singularities S^ and is extendable.  Then for any k < n/4 

I 

rPk{Y)-pk{X) = ^ite^pj + dT 
»=! 

and Res^i = 0 if codimHi > 4k. 

Proof. We just observe that pk(f*TY) = f*pk(TY) and apply Theorem 
5.1. □ 

An interesting special case occurs when n = 4k. This yields a 4k-dimen- 
sional analogue of the classical Riemann-Hurwitz theorem [M1],[M2],[R]. 

Corollary 12.2. Suppose that f : X —» Y is a smooth map between compact 
oriented 4k-manifolds. Suppose that the differential map df has submanifold 
singularities Ej and is extendable.  Then 

Mfpy - px = V /   ResPk}i 

where Mf is the degree of the map f and py and px are the top Pontryjagin 
numbers of the manifolds X and Y respectively. 
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More generally we consider p, a homogeneous polynomial of weight k in 
k indeterminates. The associated Pontryjagin number to p of a compact, 
oriented manifold X of dimension 4k is defined to be 

p(X)= [ p(p1(X)9...,pk(X)). 
Jx 

Then we have the following corollary. 

Corollary 12.3. Suppose that f : X —> Y is a smooth map between compact 
oriented 4-k-manifolds. Suppose that the differential map df has submanifold 
singularities Si and is extendable. Then 

Mfp<y)-p(X) = J2[ Resp, 

where Mf is the degree of the map f and p(X) and p(Y) are the Pontryjagin 
numbers associated to p of the manifolds X and Y respectively. 

For a topological approach to these formulae see [N], [GGV]. 
In particular, by the Hirzebruch signature formula [MS] which states that 

the signature of a compact, oriented manifold of dimension 4k is expressible 
as a polynomial in the Pontyjagin classes through the L-class, we have the 
following. 

Corollary 12.4. Suppose that f : X —> Y is a smooth map between compact 
oriented J^k-manifolds. Suppose that the differential map df has submanifold 
singularities E^ and is extendable. Then 

Mfsig(Y) - sig(X) = V /   Res 
i=l Jlj* 

^sig,! 

where Mf is the degree of the map f and sig(X) and sig(Y) are the signatures 
of the manifolds X and Y respectively. 

Remark 12.5. The results in this section apply naturally to branched 
coverings 

branched along a submanifold S of codimension 2 in Y and also to finite 
group actions on a compact manifold. In a subsequent paper we study these 
important cases where the singularities are of nongeneric codimension in 
more detail, providing explicit calculations of the residues that appear in 
the formulae above. 
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Remark 12.6. It is clear that similar formulae hold for the case of maps 
between complex manifolds. 

13. CR-Singularities. 

The methods introduced above yield interesting results in CR-geometry. 
Consider an immersion / : X *-> Z of a real manifold X into a complex 
manifold Z where 

dim  {X) — n = dim  (Z). 

Then the differential map df : TX —► f*TZ extends to a complex bundle 
map 

df   :TX®   C->fTZ. 

Assume that the bundle map df has submanifold singularities £». This cor- 
responds to the loci of points where f*TxX contains a complex subspace hav- 
ing 'excess' dimensions, i.e., more complex tangency than expected. Specif- 
ically we have (see [HL2;10.3] for a proof) 

Lemma 13.1. 

(jEi = {x e X : dim (Tx n JTXX) > 0} 

where J denotes the complex structure of Z. 

We now suppose that X carries a Riemannian metric and Z carries a 
hermitian metric and a complex connection, and we normalize these con- 
nections at each £». Let jPi(-X') and Ci{Z) be the i-th Pontryjagin and Ghern 
forms of X and Z resp ectively. 

Applying Theorem 5.1 yields the following result. 

Theorem 13.2. Let f : X ^ Z be an immersion of a real m-manifold into 
a complex m-manifold. Assume that df has submanifold singularities E^ 
and that it is extendable.  Then 

l 

f*C2i(Z) -pi(X) = ^flcs^pi] + dT. 
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Proof. Apply Theorem 5.1 to the bundle map df   and observe that 

{-l)iC2i{TX®C)=pi{X). 

D 

Consider the case when Z = Cn. This gives the following. 

Corollary 13.3. Let f : Xn ^-> Cn be an immersion with the property that 
df   has submanifold singularities E* and that it is extendable.  Then 

pi{X) = Y,Res<t>AZi} + dT. 
i=i 

14. Finite Singularities and a Generalized 
Hopf Index Formula. 

The finite singularity sets of r-vector fields and r-plane fields were studied 
extensively by E.Thomas [T1],[T2], Atiyah [A], and Atiyah-Dupont [AD]. In 
certain cases they managed to relate these singularities to algebraic invari- 
ants of the manifold. We continue the study of finite singularities in the 
general setting of bundle maps over a compact manifold. 

In §9 we discussed the universal transgression form T. We now use the 
universal construction to prove the following theorem. 

Theorem 14.1. Let a : E —> F be a bundle map over a compact manifold 
X with isolated finite singularities {xi}. Assume that a is normalized at each 
Xi. Let rank(E) — m and rank(F) — n.  Then for any invariant polynomial 

[ cj)(DF) - ^{DE 0 Dji.) = J2[a*f 
Jx •=1 Js* 

where T G ^0^(1^)m). Here Vn,m is the Stiefel manifold of m-frames in Rn 

and the Sl are small spheres around the points {xi}. 

Proof. We recall that T = a*T outside xi. Since E and F are normalized at 
xi then near x^ 

Homx(E,F) = iJom*(Rm,Rri) = Vntm. 
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Now we apply Theorem 5.1 and integrate over the manifold. Since a is 
normalized at each x^ by Lemma 7.1 we do not need to take a limit for the 
residue. □ 

This theorem is a bundle map analogue of the classical Hopf index for- 
mula. It has the following interesting corollary. 

Corollary 14.2. Consider a map a : E —> F over a compact manifold X 
of dimension 4n with isolated finite singularities, where rank(E) = 2 and 
rank(F) = n. Suppose that a is normalized at the singularities.  Then 

L Pn(F)-p1(E)pn-1(I
A-) = 0. 

x 
In particular, if pi(E) = 0 then Pn(F) = 0. Here pi denotes the i-th Pon- 
tryjagin class. 

Proof. This is just a consequence of dimension. By the theorem above T is 
a differential form of degree 4n - 1 on V4n,2- But dimV^2 = 4n — 3 and 
hence f = 0. ' D 

Remark 14.3. The result above is not a consequence of obstruction theory 
because in general, TT^-IXV^^) 7^ 0. 

We would like to know when T is closed near Xi. Then the residue can 
be interpreted using cohomology of Vnim. For this we use the following 
construction. 

Let Gn^m be the Grassmann manifold of m-planes in Rn and let p : 
Vn}m —> Gnjn be the standard fiber map. Also let r be the tautological 
bundle over Gnjm and T-

1
 be its dual. Give r1- the connection induced by 

projection. This construction yields the following lemma. 

Lemma 14.4. f is closed near xi iff ^{T
1

-) = 0 on Gn^m. 

Proof We can write 

<£(Mn) - <KRm © r-1) = df   on    Gn?m. 

By construction f — p*T. The equation above reduces to 

^(r1) = df. 
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Therefore, if ^(T-
1
) = 0 on Gn)m, then T is closed and hence T is also 

closed. D 

The lemma above yields the following corollary. 

Corollary 14.5. Let a : E —> F be a bundle map over a compact manifold 
X with isolated finite singularities {xi}. Assume that a is normalized at 
each xi. Let rank(E) = m and rank(F) = n. 

(1) If2i > n - m and $ = pi, then f G H^^iy^m)- 

(2) If (f) is a multiplicative polynomial and fa is its i-th degree term such 
that 2i > m(n - m), then f G H2^1 (V^m). 

Proof For (1) we observe that ranfc(r-L) = n — m. If 2i > n — m then 

0 = pi(r
J-) = df. 

Hence f is closed and f G H41'1 (V^m). 
(2) is again a consequence of dimension. Note that dimGnjrn = m(n—m). 

If 2i > m{n — m) then 
0 = (j>{rL) = df , 

because it is a differential form of degree higher than the dimension of Gn}m. 
Therefore f is closed and hence f G'ff2*"1^,™). ' □ 

15. Clifford and Spin Bundles. 

Let TT : F \-+ X be a 2n-dimensional vector bundle with spin structure 
(for a complete discussion of the following constructions see [LM]). Assume 
that F is provided with a connection D. Let S denote the complex spinor 
bundle associated to F and let Ds be the connection on S induced from the 
one on F. There is a canonical decomposition 

s = s+®s- 

by the complex volume form.   Suppose that we are given an odd form a, 
i.e., a G r(/\0   {F)). Then a is a bundle map from <S+ to S~. Assume that 
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has closed submanifold singularities Ej. Then again we are in the setting of 
Theorem 5.1, with rank «S+ = rank S~ . Furthermore , if E is any complex 
vector bundle with complex connection DE, we let 

DS®E = Ds®l + l®DE 

denote the tensor product connection on <S®E and normalize this connection 
at Si. This connection observes the splitting of the spinor bundle. The odd 
form a is again a bundle map from S+ ® E to S~ 0 E and we have the 
following. 

Corollary 15.1. Let (F^D) and (S <g> E,DS®E) be as above. Suppose that 

a G r(/\0 {F)) has closed submanifold singularities Si as a bundle map 
a : <S+ >—> S~ and is extendable.  Then 

l 

ch{Ds+®E) - ch(Ds-®E) = J2ReschA^i} + dT' 
i=l 

Remark 15.2. The same formula holds when JP is spinc. 

Even if F is not spin or spinc, we can derive an interesting residue 
formula by considering the complex Clifford bundle C£ associated to F. 
Again we have a decomposition 

a = ct © cr 
and an odd form a G T{/\odd(F)) acts as a bundle map 

a\Ct-®E>-+Cr®E 

where E is any complex vector bundle with complex connection DE- Again 
we let 

DcmE = Dee ®1 + 1®DE 

denote the tensor product connection on Cl ® E and we normalize this con- 
nection at Si, the submanifold singularities of a. As before this connection 
preserves the splitting of CL We immediately have 

Corollary 15.3. Let (F, D) and (C£ ® E, DCI®E) be as above. Suppose 

that a G T([\odd{F)) has closed submanifold singularities as a bundle map 
a : C^+ (g) E v-> Ctr % E and is extendable .  Then 

l 

ch(DC£+®E) - cHDce-®E) = ^Resch^Hi] + dT. 
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Remark 15.4. An explicit calculation of the residue in these two cases 
would be useful because it would yield analogues of Grothendieck - Riemann 
- Roch [AH]. 

References. 

[A] M.F. Atiyah, Elliptic Operators and Singularities of Vector Fields, Actes 
Congres Inter. Math., Tome 2, 207-209. 

[AD] M.F. Atiyah and S.L. Dupont, Vector Fields with Finite Singularities, Acta 
Math. 128 (1972), 1-40. 

[AH] M.F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic 
embeddings, Topology 1 (1962), 151-166. 

[BoC] R. Bott and S.S. Chern, Hermitian vector bundles and the equidistribution 
of the zeros of their holomorphic sections, Acta. Math. 114 (1968), 71-112. 

[F]      H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. 

[GGV] S. Gitler, J.F. Glazebrook and A. Verjovsky, On the Generalized Riemann- 
Hurwitz Formula, Bol. Soc. Mat. Mexicana 30,1 (1985), 1-11. 

[H] H. Hopf, Vectorfelder in n-dimensionalen Mannigfaltigkeiten, Math Ann. 96 
(1927), 225-260. 

[HL1] F.R. Harvey and H.B. Lawson, A Theory of Characteristic Currents Asso- 
ciated with a Singular Connection, Asterisque 213 (1993), 1-268. 

[HL2] Reese Harvey and H. Blaine Lawson, Geometric Residue Theorems, Ameri- 
can J. Math 117 (1995), 829-873. 

[HS] F.R. Harvey and S. Semmes, Zero Divisors of atomic functions, Ann.Math 
135 (1992), 567-600. 

[LM] H.B. Lawson and M. Michelsohn, Spin Geometry, Princeton University Press, 
Princeton, New Jersey (1989). 

[Ml] R. MacPherson, Singularities of Vector Bundle Maps, Proceedings of Liver- 
pool Singularities Symposium, I, Lect. Notes in Math., vol. 192, Springer- 
Verlag, 316-318. 

[M2] R. MacPherson, Generic Vector Bundle Maps, Dynamical Systems, Pro- 
ceedings of Symposium-University of Bahia, Salvador 1971, Academic Press 
(1973), 165-175. 



608 Sunil Nair 

[MS] J. Milnor and J.D. Stasheff, Characteristic Classes, Princeton University 
Press, Princeton, New Jersey (1974). 

[N] Ngo Van Que, Generalization de la formula de Riemann-Hurwitz, Canad. J. 
Math. 24 (1972), 761-767. 

[R] F. Ronga, Le calcul da la classe de cohomologie duale a S, Proceedings 
of Liverpool Singularities Symposium, I, Lecture Notes in Math., vol. 192, 
Springer-Verlag, 1971, 313-315. 

[S] P. Shanahan, The Atiyah-Singer Index Theorem, An Introduction, Lect. 
Notes in Math. 638, Springer-Verlag, New York, 1978. 

[Tl] E. Thomas, Vector Fields on Manifolds, Bull.Americ.Math.Soc. 75 (1969), 
643-683. 

[T2] E. Thomas, Fields of Tangent k-Planes on Manifolds, Invent.Math 3 (1967), 
334-347. 

57 SHELTON STREET 

COVENT GARDEN 

LONDON WC2H 9HE 
ENGLAND 

E-mail: smiil@wspc.demon.co.uk 




