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A Dehn surgery is called a Seifert fibering surgery if it yields a 
Seifert fibered manifold. It has been conjectured that nontrivial, 
Seifert fibering sugeries on knots in the 3-sphere are integral surg- 
eries unless the knot is a trivial knot, a torus knot, or a cable of a 
torus knot. We first prove an analogous result for knots in a solid 
torus. As a corollary it is shown that the conjecture holds if a reg- 
ular or exceptional fiber of the resulting Seifert fibered manifold is 
unknotted in the (original) 3-sphere; this assumption is verified for 
many Seifert fibering surgeries. As another application, we show 
that except for trivial examples, no periodic knots with period 
greater than 2 produce a Seifert fibered manifold with an infinite 
fundamental group by surgery. 

1. Introduction. 

Let K be a knot in a 3-manifold M. A slope of K is the isotopy class 
of a simple closed curve on dN(K). The manifold obtained from M by 
Dehn surgery on a knot K with slope 7 is denoted by M(K] 7); if M = S'3, 
for simplicity we denote M(K]j) by (If; 7). If M C S3, then using the 
preferred meridian-longitude pair of if C S'3, we parametrize slopes 7 of 
if by r 6 Q U {00}; then we also write M(if;r) for M(K]j). A slope 
of if is integral if a representative of it intersects a meridian of if exactly 
once; for knots in S3 integral slopes correspond to integers. A cable of a 
knot if is an essential, simple closed curve in N(K) which is isotopic to a 
non-longitudinal curve in dN(K). 

If if is a trivial knot, a torus knot, or a cable of a torus knot, then (if; r) 
is a Seifert fibered manifold for infinitely many r e Q — Z. (Throughout this 
paper a trivial knot is not a torus knot.) It has been conjectured that: 
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Conjecture 1.1. // (K;r) (r ^ oo) is a Seifert fibered manifold, then 
either r is an integer, or K is a trivial knot, a torus knot or a cable of a 
torus knot 

The conjecture is proved for 2-bridge knots (Brittenham-Wu [6]) and satellite 
knots (Boyer-Zhang [5], Miyazaki-Motegi [25]). (See also [3].) The conjec- 
ture is also verified if {K\ r) admits a Seifert fibration over RP2 (Gordon- 
Luecke [16]), or a fibration over S2 with less than three (Culler-Gordon- 
Luecke-Shalen [7]) or greater than three [5] exceptional fibers. 

In this paper we first prove a result analogous to Conjecture 1.1 for 
knots in a solid torus. A 0-bridge braid in a solid torus V is an essential 
simple closed curve isotopic to a curve in the boundary of V. A core of V 
is a 0-bridge braid, so that any other 0-bridge braid is a cable of a 0-bridge 
braid. 

Theorem 1.2. Let K be a knot in a solid torus V such that K is not 
contained in a 3-ball in V. Suppose that V(K; 7) is a Seifert fibered manifold 
where the slope 7 is not meridional.  Then one of the following holds. 

(1) K is a core ofV or a cable of a 0-bridge braid in V. 

(2) 7 is an integral slope. 

Remark. Refer to Bleiler-Hodgson [2, Section 5] and Proposition 6.4 in 
Section 6.3 for examples of Seifert fibering surgeries on a knot in a solid 
torus. 

This theorem implies Conjecture 1.1 under some hypothesis about "the 
position of a fiber" (Corollary 1.4 below). The hypothesis arises from the 
following question and examples: Suppose that (K]r) is a Seifert fibered 
manifold. If a fiber in (Kir) is contained in 53 - intiV(iir), then it can be 
regarded as a knot in 53. Which knot in S3, then, becomes a fiber in (K; r)l 

Example 1. Let K be a torus knot on the boundary of an unknotted solid 
torus in S'3, and c the core of the solid torus. If (K\r) is a Seifert fibered 
manifold, it admits a Seifert fibration in which the trivial knot c is a fiber. 

Example 2. Let K be the figure eight knot. Then (K\ r) is a Seifert 
fibered manifold if and only if r = ±1, ±2, ±3. The trivial knot ci in Figure 
1.1 becomes an exceptional fiber in some Seifert fibrations of (K\r) for 
r = -1, -2, -3; see Section 6.1 for proofs. The trivial knot C2 also has this 
property. 
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Figure 1.1 

Example 3. Let K be a satellite knot such that (K] r) is Seifert fibered. 
If (K\r) is non-simple or Tii{{K\r)) is finite, then [25] or [4], respectively 
shows that a torus knot is a companion of K\ the Seifert fibration of the 
torus knot exterior extends over (if; r). Thus, as in Example 1 a trivial knot 
in 53 becomes an exceptional fiber. 

Keeping these examples in mind, we conjecture that: 

Conjecture 1.3. Let K be a knot in Ss. If (K]r) is a Seifert fibered 
manifold, then it admits a Seifert fibration such that a fiber of it is unknotted 
in (the original) S^. 

Corollary 1.4. Let K be a knot in 53
; and (K]r) (r ^ oo) Seifert fibered. 

If (K\r) satisfies Conjecture 1.3, then it satisfies Conjecture 1.1. 

In Section 6, Conjecture 1.3 will be verified for some Seifert fibering 
surgeries on the following knots: 2-bridge knots, Eudave-Muiioz' hyperbolic 
knots with non-hyperbolic surgeries [9], and some twisted torus knots. How- 
ever, these surgeries are already known to be integral ones. 

Concerning Seifert fibering surgery on hyperbolic knots, experiments 
via the computer program SnapPea written by Jeffrey Weeks suggest that 
shortest geodesies in knot complements become fibers (Section 7). 

Remark. Hayashi [18] and Hayashi-Motegi [19] also obtained some esti- 
mates on Seifert fibering slopes under some assumption of the position of 
fibers. 

Proof of Corollary 1.4.    Let c be a trivial knot in 53 given by Conjecture 
1.3.   Take a tubular neighborhood of c so that N(c) 0^ = 0, and let 
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V = S3 — intiV(c). Since V is an unknotted solid torus in S'3, a 0-bridge 
braid in V is a trivial knot or a torus knot in S3. We denote the natural 
image of c in (K; r) by the same symbol c. Since (K; r) admits a Seifert 
fibration in which c is a regular or exceptional fiber, {K\ r) — int iV"(c) is 
Seifert fibered. Since (ifjr) = V{K\r) U iV(c), we see that V{K\r) is a 
Seifert fibered manifold. 

If K is not contained in a 3-ball in V, Corollary 1.4 directly follows from 
Theorem 1.2. If K is contained in a 3-ball in V, then V{K\r) 9* (K]r)#V. 
Since V(K; r) is a bounded Seifert fibered manifold, it is irreducible, so that 
[K] r) = S3 where r ^ oo. By [15] if is then a trivial knot in 53 as claimed 
in Conjecture 1.1. □ 

Another application of Theorem 1.2 is the study of Seifert fibering surg- 
eries on periodic knots. A knot K in S3 is called a periodic knot with period 
p if there is a homeomorphism / : S3 —> S3 such that f(K) = K, /p = id 
(p > 1), Fix(/) £ S1, and Fix(/) n if = 0, where Fix(/) is the set of fixed 
points of /. We show that periodicity greater than 2 resists infinite, Seifert 
fibering surgery. 

Theorem 1.5. Let K be a periodic knot in S3 with period p > 2. If (K]r) 
is a Seifert fibered manifold with an infinite fundamental group, then K is 
a trivial knot, a torus knot, or a cable of a torus knot. 

Remarks. (1) The assumption p > 2 cannot be deleted. For example, 
the ±1, ±2, ±3-surgeries on the figure eight knot, which is with period 
2, is a Seifert fibered manifold with an infinite fundamental group. 

(2) Using the orbifold geometrization conjecture, we can extend the the- 
orem to manifolds with finite fundamental groups (Propositions 5.6, 
5.9). 

The paper is organized as follows. If a surgery of a solid torus is a Seifert 
fibered manifold, then homology calculation shows that the base space is the 
disk or the Mobius band. The former case is dealt with in Sections 2, 3, and 
the latter in Section 4. In Section 5, we discuss Seifert fibering surgeries on 
periodic knots. Using Theorem 1.2 and the geometric structures of Seifert 
fibered manifolds, we prove Theorem 1.5. In Section 6, we show that some 
Seifert fibering surgeries satisfy Conjecture 1.3. In Section 7, we consider 
Conjecture 1.3 from viewpoints of hyperbolic geometry. 
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2. The case when base spaces are disks. 

In Sections 2 and 3, we prove the following. 

Proposition 2.1. Let K be a knot in a solid torus V such that K is not 
contained in a 3-ball in V. Suppose that V(K] 7) is a Seifert fibered manifold 
over the disk, where the slope 7 is not meridional. Then one of the following 
holds. 

(1) K is a core of V or a cable of a 0-bridge braid in V. 

(2) 7 is an integral slope. 

Proof If V(K] 7) contains at most one exceptional fiber, then V(K] 7) = 
S1 x D2. Hence, by [11], [12] either K is a 0-bridge braid in V or 7 is 
integral. In what follows we thus assume that V(K] 7) is Seifert fibered over 
a disk with n(> 2) cone points. 

For convenience, we regard that V is a standardly embedded solid torus 
in S3. Let (M, L) be a preferred meridian-longitude pair of V C S3. A 
regular fiber on dV(K',j)(= dV) represents pM + qL for some coprime 
integers p and q.   We distinguish three cases whether q = 0, \q\ = 1 or 

\q\ > 2. 
Attach a solid torus W to V in such a way that the meridional slope 

of W is identified with the slope pM + qL. Then we obtain a 3-manifold 
V U W and denote the image of K in V U W by If. The 3-manifold V U W 
is homeomorphic to S2 x S1 if q = 0, S3 if \q\ = 1, or a lens space L(q,p) if 

\q\ > 2- 
Let (//, A) be a preferred meridian-longitude pair of K, and /jf a meridian 

of K'. On dN(K) = dN(Kf), we have /x = ^u7, so that an integral slope on 
dN(K) is also an integral slope on dN(Kf) and vice versa. 

In this paper, we exclude S3 and S2 x S1 from lens spaces. 

Lemma 2.2. (V U W)(K'\^) = V(K\i) U W is a connected sum of n lens 
spaces. 
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Proof. Let TT : V{K; 7) —> D2 be a Seifert fibration. Take n — 1 mutually 
non-parallel essential arcs a; in I?2 — { cone points } {i = 1,..., n — 1). Let 
Ai be the vertical annulus TT

-1
^). Then the 2-spheres Si obtained from Ai 

by capping off with two meridian disks of W define the required connected 
sum decomposition of {V U W){K'\ 7) = V{K\ 7) U W. D 

For two slopes 71, 72 of a knot, the distance A(7i,72) between 71 and 
72 is defined to be their minimal geometric intersection number. 

Lemma 2.3. If q = 0, then 7 is integral 

Proof Notice that V(K; //) U W = V U W ^ S2 x S1, and (F U W) {Kf', 7) = 
F(X; 7) U W is a connected sum of n(> 2) lens spaces. If V U W - int TV^7) 
is reducible, then the primeness of S2 x i?1 implies that Kf is contained in 
a 3-ball mVuW. Therefore (V U W^K'-^) has S2 x Srl as a connected 
summand, a contradiction. Thus V U W — int N(K') is irreducible. Apply 
[17] to conclude that A(7, n') = A(7, /x) = 1; the slope 7 is integral. □ 

Lemma 2.4. // |g| = 1, then 7 is integral 

Proof In this case V U W = S3, and (V U W)(i(:/;7) is a connected sum of 
n(> 2) lens spaces. Hence by [14], A(7,//) = A(7,/z) = 1. Thus 7 is an 
integral slope. □ 

The last and the most difficult case is \q\ > 2. 

Lemma 2.5. Suppose \q\ > 2. T/ien either 7 is integral or K is a cable of 
a 0-bridge braid in V. 

Proof For simplicity set X = V U W - intiV^7)-  Recall that VuW = 
Lfap)- We divide the proof into three cases: 

(1) X = £(gsp) — intiV(if/) is irreducible and not an atoroidal Seifert 
fibered manifold. 

(2) X is an atoroidal Seifert fibered manifold. 

(3) X is reducible. 
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In this section we settle cases (1) and (2). (In fact, we show that 7 is 
an integral slope whatever K is.) Case (3) will be dealt with in the next 
section. 

First we observe that 

• (VUW){K'',lJ,,)=VuW = L{q,p). 

• (V U W)^']7) = V(K] 7) U W is a connected sum of n lens spaces. 

Case (1). A recent result of Boyer and Zhang states that: 

Theorem 2.6 ([3, Theorem F(l)]). Let M be a closed, orientable 3- 
manifold and K a knot in M such that the exterior M — int N(K) is ir- 
reducible. Assume that M — int N(K) is not an atoroidal Seifert fibered 
manifold. If M{K\^i) is a reducible manifold and M(K;j2) has a cyclic 
fundamental group, then A (71,72) < 1. 

Hence, if L(q,p) — intN^') is irreducible and not an atoroidal Seifert 
fibered manifold, the above observation and the theorem prove Lemma 2.5. 
Case (2). Since X is an atoroidal Seifert fibered manifold, its base orbifold 
is either a disk with at most two cone points or the Mobius band with no 
cone points. In the second case, X is the twisted I-bundle over the Klein 
bottle, and hence X admits also a Seifert fibration over the disk with two 
cone points of indices 2, 2. Thus the second case reduces to the first. 

If X has at most one exceptional fiber, then it is a solid torus. Hence 
L(q1p)(K/] 7) cannot be a connected sum of two lens spaces, a contradiction 
to Lemma 2.2. It follows that X has exactly two exceptional fibers. Let t be 
the slope of a regular fiber in dN(Kf) C X. Then, for any slope a on dN(K)^ 
L(q^p)(K/')a) is (i) a connected sum of two lens spaces if A (a, t) = 0, (ii) a 
lens space if A (a, t) = 1, or (iii) a Seifert fibered manifold over the 2-sphere 
with three cone points if A(a:,£) > 2. The Seifert fibered manifolds in (iii) 
are neither lens spaces nor reducible (see [21]). Thus, we see that A(7, t) = 0 
and A(//,£) = 1, so that A(7,//) = 1 as claimed in Lemma 2.5. 

3. Knots in lens spaces with reducible exteriors. 

In this section we prove Lemma 2.5 in the case where X = V U W — 
intN(Kf) is reducible, and complete the proofs of Lemma 2.5 and Proposi- 
tion 2.1. 

Since a lens space L(q,p) is irreducible, the reducibility of Z/(g,p) — 
intiV(.K7) implies that K' is contained in a 3-ball B C L(q,p). Let S = dB. 
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Since V — mtN{K) is irreducible by the assumption of Proposition 2.1, S 
is not contained in V. Hence, we may assume that E intersects W with 
(non-empty) meridian disks of W. Now let us take such a 2-sphere S so 
that |E fl W\ (= the number of components of E D W) is minimal. Since E 
separates VuW, |ErW| is an even integer (> 2). Set P = En(Vr-int #(#)), 
a planar surface. 

Lemma 3.1.  \dP\ = 2 (i.e.; P is an annulus) or 7 is integral. 

Proof. Assume that \dP\ > 4. Since E separates L(q,p) = V UW, P also 
separates V. Cutting V along P, we obtain two 3-manifolds Mi and M2. 
We assume that Mi contains K. The minimality of |E fl W\ guarantees 
that P is incompressible and boundary-incompressible in V — mtN(K). In 
particular P is incompressible in both Mi — mtN(K) and M2. There are 
two possibilities: (1) P is incompressible in Mi (if 57), (2) P is compressible 
in Mi (if; 7). 

(1) P is incompressible in Mi (if; 7). Then P is also incompressible in 
the Seifert fibered manifold V(K]j) = Mi (if; 7) Up M2. Since \dP\ > 4, 
P is boundary-incompressible in V(if;7). Hence P is isotopic to a vertical 
(i.e., consisting of fibers) or a horizontal (i.e., transverse to fibers) surface 
[31]. Since each component of dP is a regular fiber in y(if;7), P cannot 
be isotopic to a horizontal surface. Thus P is isotopic to a vertical surface, 
and so P is an annulus, a contradiction. 

(2) P is compressible in Mi (if; 7). 

Claim 3.2. P is compressible also in Mi = Mi(if;/x). 

Proof. If P is incompressible in Mi, then P is also incompressible in V = 
Mi Up M2. This implies that a solid torus V contains an incompressible 
planar surface P with \dP\ > 4, a contradiction. □ 

If there is no incompressible annulus in Mi—int N(K) with one boundary 
component in P and the other in dN(K), then Wu [33, Theorem 1] shows 
that A(7,/i) = 1, and hence 7 is integral as claimed in Lemma 3.1. In the 
following we thus assume that there is such an annulus, say A, in Mi — 
intiV(if). Write dA = C1U C2, where d C dN(K) and C2 C P(C E). 
Since C2 bounds a disk on the 2-sphere E, Ci bounds a disk in the 3-ball 
B. This implies that if' is a trivial knot in P, and dA fl cW^if') has the 
preferred longitudinal slope, A7, of if7 C B. 
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Then, [7, Theorem 2.4.3(b)] shows that Afr, V) < 1 or Mi -int N(K) ^ 
S1 x S1 x 1. The latter implies that the incompressible surface P in Mi — 
int N(K) is a disk or an annulus, which contradicts our assumpton \dP\ > 4. 
It follows that A(7,A/) < 1. This together with the triviality of K' C B 
implies that either B(Kf]-f) = B(K,'11/n) ^ B3 or ^(i^7^) = S^O) ^ 
(S2 x S'1 with a puncture). Hence, L^p^K''^) = (L(q,p) - B)uB(K,;j) 
is not a connected sum of n(> 2) lens spaces. This contradicts Lemma 2.2, 
and proves Lemma 3.1. □ 

Lemma 3.3. Suppose \dP\ = 2 (i.e., P is an annulus).   Then one of the 
following holds. 

(1) K is a cable of a 0-bridge braid in V. 

(2) 7 is integral. 

Proof. Recall that each component of dP hats the slope pM + qL. Since 
|g| > 2, P is incompressible in V, so it is a boundary-parallel annulus in V. 
The closure of the component of V — P containing K is a solid torus. By 
shrinking it, we obtain a solid torus V C int V such that K C V7; V is a 
tubular neighborhood of a (p, </)-cable of the core of V. Since V — int N(K) 
is irreducible and boundary-irreducible, so is V/ — mtN(K). 

First we assume that T = dV'(K; 7) is incompressible in V'^K; 7). Then 
T is incompressible in V^JK^). Since V(K;j) is a bounded Seifert fibered 
manifold, T cannot be isotopic to a horizontal torus, and hence T is isotopic 
to a vertical torus. (By isotoping Seifert fibration of V(K; 7), we may assume 
that T is vertical.) It follows that T splits V(K\ 7) into two Seifert fibered 
manifolds C and V'^K^j), where C is a cable space. This implies that 
V^K'ij) is also a Seifert fibered manifold over the disk. Moreover, a fiber 
on dV'(K]j) C dC represents pq^y + Ay, where (fiy^Xy) is a preferred 
meridian-longitude pair of V'(cV C S3). Applying Lemma 2.4 to V'^Kn) 
shows that 7 is integral. 

Next assume that dV'(Km^) is compressible in V^K^j). Then 
V'iKn) £ (S1 x D2)#M for some closed 3-manifold M. The irreducibility 
of V{K\-f) implies that M ^ S3. It follows that V^K'.j) ^ S1 x D2, and 
[11] shows that K is a 0- or 1-bridge braid in V. If if is a 1-bridge braid 
in V7, then by [12, Lemma 3.2] 7 is integral. If if is a 0-bridge braid in V, 
then K C V is a cable of a 0-bridge braid in V. □ 
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Combining Lemmas 3.1 and 3.3 proves Lemma 2.5 in case (3), thus 
Lemma 2.5 is proved. Proposition 2.1 follows from Lemmas 2.3, 2.4 and 
2.5. □□ 

4. The case when base spaces are Mobius bands. 

Theorem 1.2 follows from Propositions 2.1 and 4.1 below. □ 

Proposition 4.1. Let K be a knot in a solid torus V. Suppose that V(K] 7) 
is a Seifert fibered manifold over the Mobius band. Then one of the following 
holds. 

(1) K is a 0-bridge braid in V. 

(2) 7 is integral. 

Example 1. Let K be the (1,2)-cable of the core of V. Then V(K; (2n ± 
2)/n) is a Seifert fibered manifold over the Mobius band with no cone points 
for any odd integer n. 

Example 2. Let K be a (2pq ± 1, 2)-cable of a (p, g)-cable of the core of 
V. Then V(K; Apq) is a Seifert fibered manifold over a Mobius band with 
one cone point. 

Proof. If K is contained in a 3-ball in V, then V(K] 7) ^ V#(K] 7) cannot 
be a Seifert fibered manifold over the Mobius band. Thus we assume that 
K is not contained in a 3-ball in V. We consider the torus decomposition 
of V — mtN(K) ([22],[23]). Let P be the decomposing piece containing 
dV. Notice that P is Seifert fibered or hyperbolic (i.e., admits a complete 
hyperbolic structure in its interior) and that P is possibly V — int N(K) 
itself. Furthermore, if P is Seifert fibered, then P is a cable space or a 
composing space, each of which has a unique Seifert fibration [22]. 

Attach a solid torus W to V along their boundaries so that the slope 
L + nM bounds a meridian disk Dw of W, where (M, L) is a meridian- 
longitude pair of V, and n £ Z. We denote by Kn the image of K in the 
new 3-sphere V U W £ Ss. Then (Kn] 7) = V(K] 7) UL+nM=dDw W admits 
a Seifert fibration over MP2 unless L + nM is the fiber slope of V^K]^). 
Assume that 7 is not integral. [26, Corollary 1.4] states that if a surgery on 
a non-torus knot yields a Seifert fibered manifold over the projective plane, 
then the surgery slope is integral. Hence, Kn is a torus knot except possibly 
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for one value of n. In the following we show that if is a 0-bridge braid in 
V, i.e., V — mtN(K) is a cable space. 

If P is hyperbolic, then for sufficiently large n, P UL-^nM=dDw W ^s a^so 

hyperbolic [30]. This implies that some torus knot exterior 53 — int N(Kn) 
is hyperbolic (when P = V — mtN(K)) or S3 — mtN(Kn) contains an 
essential torus (c dP — dV). Since a torus knot exterior is an atoroidal 
Seifert fibered manifold, this is a contradiction. It follows that P is Seifert 
fibered. Let us assume that P ^ V — mtN(K). Since torus knot exteriors 
contain no essential tori, P \JL+nM=dDw W is boundary-reducible and thus 
is a solid torus for infinitely many n. Then P is a cable space, and the 
distance between L + nM and the slope of a fiber of P on dV is one; the 
latter shows that the fiber slope on dV must be M. But this implies that 
52 x S1 = V VM=:dDw W contains a lens space summand of P ]JM=dDw W^ 
which is absurd. Hence, P is Seifert fibered and P = V — mtN(K). It 
follows that V — int N(K) is a cable space as desired. □ 

5. Seifert fibering surgery on periodic knots. 

Let if be a periodic knot in S3 with an automorphism / with period 
p as described in the Introduction. By the positive answer to the Smith 
conjecture [27], / is a rotation of 53 about the unknotted circle Fix(/). Let 
N(K) be an /-invariant tubular neighborhood of K in 53. Then we have a 
Zp-action on E(K) = S3 - mtN(K) generated by f\E(K). We denote by 
/ a periodic extension of f\E(K) over (if; r), which has also period p. 

Proposition 5.1. Let K be a periodic knot with an automorphism f with 
period p. Suppose that (K;r) (r ^ oo) admits a Seifert fibration with Fix(/) 
a fiber, and f preserves the Seifert fibration of (if;r). Then K is a trivial 
knot, a torus knot, or a cable of a torus knot. 

If K is one of those knots stated in the conclusion, then Fix(/) is an 
exceptional fiber in a Seifert fibered manifold (if;r). 

Proof. By taking some power of /, if necessary, we may assume that / has 
a prime period p. (This / also satisfies the condition of Proposition 5.1.) 

For simplicity, set c = Fix(/). Let K* be the core of the glued solid torus 
in (K; r). The circle c is fixed under /, and we may assume Fix(fl) C cUK* 
(i = 1,.. .p — 1). Express r = m/n. In the following, (m,p) denotes the 
greatest common divisor of p and m. Since the period p is a prime number, 
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there are two possibilities: 

(1) (m, p) = 1; then K* is not fixed under fl for any integer i = 1,... ,p— 1. 

(2) (ra,p) = p; then if* is fixed under /, so that Fix(/) = c U-K*. 

Case (1). Choose an /-invariant tubular neighborhood iV(c) of c so that 
N(c) H N(K) = 0. Let V be the solid torus S3 - intiV(c). Then the 
periodic map / induces p-fold coverings V -+ Vf and K —> Kf\ f induces 
a p-fold covering V(K\r) —> V/(if/;rj), where 77 = r/p. Since V(if;r) 
admits a Seifert fibration, Vf{Kf\rf) also admits a Seifert fibration [22, 
II.6.3.Theorem]. By Theorem 1.2, either (i) if/ is a core of Vf or a cable of 
a 0-bridge braid in V/, or (ii) r/ is an integer. In case (i) the pull-back K 
is a core of V or a cable of a 0-bridge braid in V. Since V is unknotted in 
iS3, if is such a knot as claimed in the proposition. If 77 is an integer, then 
m = nprf is a multiple of p, contradicting (ra,p) = 1. Case (ii) does not 
occur. 

Case (2). Let TT : (if;r) —» 5 be a Seifert fibration. Take any fiber r in 
(if;r) meeting if*. Since / fixes if* and preserves the Seifert fibration of 
(if;r), it follows /(r) = r. Note that f\r : r —> r is the identity or a 
reflection. 

Case (2)-(a).  TTie fcase space B is S2. 

Claim 5.2. /|r is the identity. 

Proof. It suffices to show / preserves the orientation of r. The fiber preserv- 
ing map /induces the automorphism ip of B. Then /|r preserves orientation 
if and only if y? preserves the orientation of i? = 52. Since /|c = id, (p re- 
stricts to a rotation (possibly an identity) on a small disk neighborhood of 
7r(c), and hence cp preserves orientation. □ 

By Claim 5.2 if* = r. It follows that S3-int N(K) = (if; r) -int N(K*) 
is Seifert fibered. Hence if is a trivial knot or a torus knot in S3. 

Case(2)-(b). B isRP2. 
We shall show that this case does not happen. 

Claim 5.3. /|r is a reflection of T, and the period of f is 2. 
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Proof. If /|r is the identity, then as in case (2)-(a) we see that K* = r and 
thus K is a trivial knot or a torus knot in S3. However, the assumption 
of case (2)-(b) implies that Ss - mtN(K) = (Kir) - mtN(K*) admits a 
Seifert fibration over the Mobius band. This is absurd. Since p fixes r, f2 

has a fixed point disjoint from c U K*. Hence / and / are with period 2. □ 

The automorphism ipofB induced from / is the identity or an involution. 
If <p is the identity, the proof of Claim 5.2 shows that / fixes r, contradicting 
Claim 5.3. Thus ip is an involution such that ir(K*) U7r(c) C Fix((p). Smith 
[29, p.414] shows that the fixed point set of an involution of RP2 consists of 
a point and a 1-sided simple loop. Hence ^(if*) is a 1-sided simple loop on 
B, and Fix(^) = 7r(jK'*) U n(c). 

Let D be a (^-invariant disk in B — 7T(K*) such that 7r(c) E .D, and no 
cone point lies in D — {7r(c)}. B — D is a Mobius band with TT(K*) a cen- 
terline. Let a be a non-separating arc properly embedded in B — D—{cone 
points} such that <p(da) = da, and a meets IT(K*) in a single point. Then 
7r~1(a) is a vertical annulus properly embedded in (if;r) — int 7r~1(JD), and 
meets K* in two points by Claim 5.3. Note that / exchanges the bound- 
ary components of 7r~1(a). Let A = 7r_1(a) — intiV(jK'*), an annulus with 
two holes. Considering that 7r-1(.D) is a tubular neighborhood of c in S'3, 
set V = S3 — int 7r~1(Z)), a solid torus. Then, A is properly embedded 
in V — mtN(K) so that A n dV = d7r~1(a). The slope of a component 
of A fl dN(K) on dN(K) is the surgery slope r = m/n. Since a U /? is 
an orientation-reversing loop on B where /3 is a component of <9JD — 9a, 
7r~1(a U (3) is a Klein bottle. Hence the oriented curves A fl SF are parallel 
on dV. 

Now homological arguments lead us to a contradiction. Let (/xy, Ay) 
(resp. (HK^K)) be a preferred meridian-longitude pair of V (resp. N(K)) 
in S'3. We denote the winding number of K in V by UJ. Notice that A^ = 
cjAy, fiy = vfiK in Hi(V—K) where Ay and [AK generate Hi(V-K) = Z©Z. 
Each component of ADdV is essential in dV, and represents, say xfiy + yXy. 
If [Ana^(if)] = 0 e H^dNiK)), then AnaF represents zero in HiiV-K). 
It follows 2(xuJiJLK + yXv) = 0 in Hi (V — K), and hence u = 0. This violates 
the fact that the linking number of a knot with period 2 and its 7r-rotation 
axis is an odd number. (To observe this fact consider the 2-fold coverings 
V —» Vf and K —> if/ induced by /. Notice that a;, the linking number of 
K and c, is also the winding number of Kf in V/. If a; is even, then the 
preimage of Kf has two components, a contradiction.) Hence, the oriented 
components of AC\dN(K) are parallel on dN(K)\ each component represents 
muK + n^K- The surjectivity of TT* : -Hi((If; m/n)) —> Hi(B) = Z2 implies 
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that m is even. On the other hand, since / rotates V keeping a preferred 
longitude invariant and exchanges the components of A fl dV, we see that x 
is an odd integer. Then the homology A between A fl dV and A fl dN(K) 
gives m = —XUJ, nu = — y. Prom the first equation and the parity of m and 
x, we see that u is even. This again contradicts the fact that K is with 
period 2, and thus the proof of Proposition 5.1 is completed. □ 

Proof of Theorem 1.5. Assume that (K] r) is a Seifert fibered manifold with 
an infinite fundamental group. If (if;r) is reducible, then since {K\r) is 
Seifert fibered and Hi{{K\r)) is cyclic, (i^r) ^ S2 x Sl [21, VI.T.Lemma]. 
Then K is a trivial knot and r = 0 [10, Corollary 8.3]. So we may as- 
sume {K;r) is irreducible. From [28], such a manifold possesses a geometric 

structure modelled on E3, Nil, H2 x R or SZ^R- The geometry of {K\r) is 
determined by x(-X"), the Euler number of the base orbifold X and by 6(77), 
the Euler number of the Seifert bundle 77 whose total space is (K\r). See 
the following table [28]. 

x{X) = 0 x(*)^o 
e{r,) = 0 E3 H2xR 

6(7?) ^0 Nil SX2M 

Lemma 5.4. Le£ K be a knot in S3. If (K\r) is a Seifert fibered manifold 
with the E3-geometry, then its base space is the 2-sphere, K is the trefoil 
knot, and r = 0. 

Proof If the base orbifold X is RP2, the fact x(X) = 0 implies that X 
has two cone points of index 2. Then a homology calculation shows that 
Hi(K;r) is non-cyclic, a contradiction. It follows that the base space is 5'2. 
Regarding the Euler number of the bundle 77 : (K; r) —> X, a homology cal- 
culation shows that \e(r])\ = \Hi((K;r))\/ai • • • an, where ai are the indices 
of cone points of X. Thus e(ri) = 0 if and only if r = 0. 

Let S be a non-separating incompressible surface in (if;0). Since S is 
non-separating, it is isotopic to a horizontal surface. Therefore (K; 0) is a 
surface bundle over 51 with a fiber S. On the other hand, since x(X) = 0, 
the branched cover S over X is a torus. Prom [10, Corollary 8.23], we 
see that K is the trefoil knot or the figure eight knot. If K is the figure 
eight knot, then (K;0) is a torus bundle over 51 with hyperbolic mon- 
odromy. Such a manifold possesses the Sol-geometry by [28, Theorem 5.5], 
a contradiction. D 
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Next we consider the case where (K]r) is modelled on Nil, H2 x R 

or SL2R. By the hypothesis of the theorem, (K]r) admits a Zp-action 
generated by /, where p > 2. Under these geometries Meeks-Scott [24, 
Theorem 2.2] shows that (K;r) has an /-invariant Seifert fibration (see 
also [24, p.289]). Take a fiber t in such a fibration of (ifjr) so that t 
meets c = Fix(/). Since c is fixed by /, we have /(£) = £. If c were not 
a regular or exceptional fiber, then f\t would be a reflection. It follows 
p = 2, a contradiction. Hence c is a regular or exceptional fiber. Then, by 
Proposition 5.1 K is a trivial knot, a torus knot, or a cable of a torus knot 
as claimed in Theorem 1.5. □ 

In 1982, Thurston announced that: 

Assertion 5.5. // a closed, irreducible (S-manifold M admits an effective 
action of a finite group G with dimFix(G) = 1, then M has a geometric 
decomposition. Furthermore, if M is also atoroidal, then G preserves the 
geometric structure of M. 

Using this, we can extend Theorem 1.5 to all Seifert fibered manifolds 
{K\r). In fact, we prove: 

Proposition 5.6. Assume that Assertion 5.5 is valid. Let K be a periodic 
knot in S3 with period greater than 2. If iri((K',r)) is finite, then K is a 
trivial knot, a torus knot, or a cable of a torus knot. 

Remark. Using Assertion 5.5, Wang and Zhou [32] showed that a non- 
torus knot with a symmetry other than a strong inversion does not admit 
nontrivial, cyclic surgery. 

Proof. Let / : S3 —» Sz be a periodic map of K given in the hypothesis of 
the proposition, and / : (K\r) —► (K\r) a periodic extension of f\E{K). 

If (K\ r) is reducible, then K is a trivial knot, a torus knot, or a cable 
knot by the positive solution to the cabling conjecture for symmetric knots 
(Gordon and Luecke, and Hayashi and Shimokawa [20]). But 7ri((K;r)) are 
infinite for such K. (If K is a (p, g)-cable of a knot k (q > 2), then r = pq 
and {K',pq) = (A;;p/q2)#(lens space). Then by [7] 7ri((jK») is infinite.) 
So assume that (K]r) is irreducible. Then, by Assertion 5.5 (K;r) with 
a finite fundamental group is geometric, so that (K]r) is Seifert fibered. 
Assertion 5.5, together with the lemma below, implies that / preserves a 
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Seifert fibration of (K^r). Then, the proof is completed by applying the 
arguments in the last paragraph in the proof of Theorem 1.5. □ 

Lemma 5.7. Let M be a 3-manifold with the S3-geometry which admits a 
periodic automorphism g with dimFix(^) = 1. If g is an isometry of M, 
then it preserves a Seifert fibration of M. 

Proof. Let G = TT^M), the group of covering translations of S'3 —► M. Note 
that G is an isometry of the unit sphere S3 C M4, i.e., G C S'0(4). Let 
C C Ss be the preimage of a component of Fix(g). Since g is an isometry 
of M, C consists of geodesies of 5'3. Identify S3 with the group of unit 
quaternions so that a component of C is the unit complex numbers S1. Let 
g : iS3 —> S3 be the lifting of g such that Fix(g) = 51; then g is a rotation 
about S1. It suffices to prove: 

Claim 5.8.   There is a Seifert fibration of S3 which is preserved by g and 
the action of G. 

Proof of Claim 5.8. Define ip : S3 x S3 -> 50(4) to be (p(j>,q)(x) = pxq 
(x G S3). Without loss of generality there is a one parameter subgroup H 
of S3 such that <p(H x S3) D G [28, Theorem 4.10]. We define H = {1} 
if ^({1} x S3) D G. Since Ker^ = {±(1,1)} [28, p.452], if H ^ {!}, then 
HxS3Dip'1(G). 
Case 1. H = {!}. 
Since G acts on the components of C transitively, each component of C is 
written as S1q for some q e S3.   Hence the Hopf fibration S3 —> S^S3 

contains C as fibers. Any rotation about 5'1 leaves the fibration invariant. 
So the fibration is preserved by G and g. 
Case 2. H ^ {!}. 
Let r be the circle fibration S3 -> H\S3. Since (p(H x S3) D G, the action 
of G leaves r invariant. Let us show that g leaves r invariant. Recall that 
g is a rotation about 51, and thus g(x) = e^xe'10, where 0 is a half of the 
rotation angle of g. By the covering space theory, if ^(p, q) is a covering 
translation of S3 —> M, i.e., ^(p, q) G G, then so is g o ^(p, q) o g~l. Note 
go<p(P,q)og-1(x) = eiepe-i9xei9qe-i9 = (p{eiepe-i6 ,ei9qe-ie){x). Since 
H x S3 D tp-^G), it follows flf(p) = eiepe-ie G fl". In Case 2 there is 
p e H - {±1} such that y>(p, q) e G for some g G 53, so the two geodesies 
g(H) and H have more than 2 points in common. Hence g(H) = H. This 
implies that g(Hq) = Hg(q), i.e., <? preserves r invariant. DD 
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If 7ri((if;r)) is isomorphic to the fundamental group of the Poincare 
homology 3-sphere, Proposition 5.6 is improved as follows. 

Proposition 5.9 (Property I for periodic knots). Assume that As- 
sertion 5.5 is valid. Let K be a periodic knot in S3. If 7ri((K]r)) is the 
binary icosahedral group /120; then K is the trefoil knot. 

Remark. Using Assertion 5.5, Zhang [34] proved Proposition 5.9 for any 
periodic knot with period other than 2, 3, 5. 

Proof. The proof of Proposition 5.6 shows that (K; r) is Seifert fibered. We 
follow the proof of Claim 5.8. Recall that the group of unit quaternions S3 

contains a subgroup isomorphic to /120 as the pull-back of an icosahedral 
subgroup in 50(3). Since two free, isometric actions of J120 on S3 are 
conjugate in 0(4) ([28, Theorems 4.10, 4.11]), Case 1 in the proof occurs. 
Therefore, without assuming that K is with period greater than 2, Fix(/) 
is a fiber in (K] r). By Proposition 5.1 K is a trivial knot, a torus knot, or 
a cable of a torus knot. It then follows from [34, Propositions 3.6 and 3.7] 
that K is the trefoil knot. □ 

6. Seifert fibering surgeries satisfying Conjecture 1.3. 

6.1. Surgeries on 2-bridge knots. 

Brittenham and Wu [6] showed that if a Dehn surgery on a non-torus 
2-bridge knot produces a Seifert fibered manifold over S2 with at most 3 
exceptional fibers, then the knot is a twist knot K±2,2n illustrated in Fig- 
ure 6.1. We show that such surgeries satisfy Conjecture 1.3. 
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±2,2n 

1 = 

Figure 6.1 

Proposition 6.1. Let K±2,2n be the twist knot in Figure 6.1. 

(1) [6]  M   =   (K±2,2n]r)  is a small Seifert fibered manifold for r 
=Fl,T2,T3. 

(2) The trivial knot c in Figure 6.1 is an exceptional fiber in M if r 

Tl,=F2,T3. 
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(c) 

(d) 

Figure 6.2 (a), (b), (c), (d) 

Proof. Since K_2,-2n is the mirror image of ^2,271, it suffices to consider 
r-surgeries of .K2,2n for r = —1, —2, —3. Furthermore assume r = —1, —2. 
The proof for r = — 3 is similar to the case r = —2. We follow the arguments 
in [6] which prove (1) of the above proposition. Let Ki U K2 be the link in 
Figure 6.2(a), and L(ri, r2) the manifold obtained from Ss by r^-surgeries on 
Ki. Note that K2 becomes -K^n in L(—^,00) = S3; a preferred longitude 
of ifi becomes c in L(-™,oo). Since lk(Ki,K2) = 0, we have (if252n;r) — 
L(—^,r). We show that a preferred longitude of Ki is an exceptional fiber 
of the Seifert fibered manifold L(—^,r) for r = —1, —2. First exchange the 
position of ifi and K2 by ambient isotopy of S3 (Figure 6.2(b)). 
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Suppose r = — 1. After the — 1-surgery on ^2, Ki becomes the left 
handed trefoil K' in L(oo, —1) = 53; then the framings of Ki and Kf are 
the same. It follows that L(—i,— 1) = (K']—^) is a Seifert fibered man- 
ifold. The glued solid torus in (if';— £) is a tubular neighborhood of an 
exceptional fiber of (if7; — ^). Since a preferred longitude of K' intersects a 
representative of the surgery slope — ^ in a single point, it is a longitude of 
the glued solid torus in (if'; —jj), and so isotopic to its core. Hence a pre- 
ferred longitude of ifi is an exceptional fiber in L(—^ —1) after isotoping 
the fibration. 

Suppose r = -2. The longitude d of if2 in Figure 6.2(c) bounds a 
meridian disk in the glued solid torus in L(oo, —2). Hence, in L(oo, —2) ifi 
is isotopic to a band sum of if 1 and c7. Let if{ be the band sum of ifi and 
cf via the band described in Figure 6.2(c). Isotope ifi to if( in L(oo, -2). 
Then a preferred longitude of ifi becomes a longitude, A, of if{ with slope 
—2; the surgery coefficient for if( becomes — ^ — 2. An isotopy of if^ U if2 
in S'3 gives Figure 6.2(d). The exterior of 1/ = if{ U if2 is a Seifert fibered 
manifold. It is checked in [6] that 2/(-± - 2,-2) ^ L(-i,-2) is also a 
Seifert fibered manifold. Each glued solid torus in M = Z/(—^ — 2, -2) is 
a tubular neighborhood of an exceptional fiber. Since the distance between 
the slopes — - — 2 and —2 equals 1, A is isotopic to an exceptional fiber in 
M. After isotoping the fibration of M, A becomes an exceptional fiber.    □ 

6.2. Surgeries on Eudave-Munoz' knots. 

Eudave-Mufioz [9] obtained a family of hyperbolic knots each of which 
has at least two integral, Seifert fibering surgeries and at least one non- 
integral surgery giving a toroidal manifold. His idea is to find a 2-string 
tangle which forms a trivial knot, a Montesinos link, or a sum of two prime 
tangles by adding adequate rational tangles. Then the double branched 
covering of such a tangle will be a knot exterior with several exceptional 
Dehn fillings. 

The Eudave-Mufioz construction [9] starts with Figure 6.3. fc is a trivial 
knot in S'3. Assume that p or n is 0, and / ^ 0, ±1, m ^ 0. If p = 0, assume 
that (Z, m) ^ (2,1), (-2, -1), and (m, n) ^ (1,0), (-1,1). If n = 0, assume 
that m^l, (Z, m,p) ^ (-2, -1,0), (2,2,1). B is a 3-ball such that (5, Bnk) 
is a 2-string trivial tangle, in particular, the 1/0-rational tangle according 
to the Bleiler's notation [1]. Let TT : S3 -> S3 be the double covering of 53 

branched along k. Let k(l, m, n,p) C S3 be a core of the solid torus TT"
1
^), 

and c'i C S3 be a component of 7r_1(ci). 
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Figure 6.3 
The letters in the boxes indicate the numbers of half twists as in Figure 6.1. 

Proposition 6.2. Let l,m,n and p be integers satisfying the above condi- 
tions. If p = 0 and (1)171) n) ^ (2,2,0), set c — c^; otherwise, set c = c^. 
Then the following hold. 

(1) c is a regular or exceptional fiber in any Seifert fibered manifold 
(/c(Z,m,n,p);7) obtained in [9, Theorem 2.1]. 

(2) c is a trivial knot in 53. 

Proof. We only consider the case when p = 0 and (Z, rn, n) ^ (2,2,0). Other 
cases can be settled in a similar manner. 

Proof of (I).   Replace the tangle (B^Bnk) in k with the 0/1-rational tangle 
as in Figure 6.4(a). 
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(a) 

(b) 

Figure 8.4(a), (b) 

The resulting knot k' is a Montesinos link formed with three rational 
tangles (Bu BiDk') (Figure 6.4(b)). Let TT

7
 : W -► S* be the double branched 

covering of 53 along k'. Then W is obtained from 53 by an integral surgery 
on k(l,m,n,0), and is a Seifert fibered manifold over a 2-sphere with at 
most three cone points. Let / be a core of TT

7-
 (SI); then / is a regular or 

exceptional fiber of W. We show that a component of TT
7-
 (CI) is isotopic 

to /. B[ in Figure 6.5 is a 3-ball containing "n-half twists" with ci C dB[. 
It is easy to see that (Si — int^, (Bi — int i?J[) fl k') is homeomorphic to 
(S'2 x I, {piiP2iP3iP4} x I) where pi € S2. Hence, the solid torus 7r/~1(Bi)(c 
TT

7-
 (Bi)) is a tubular neighborhood of a core of 7r/_ (Si). Since ci is 

a lattitude of the trivial tangle (J3i,Si fl A/), a component of TT'
-
 (CI) is 
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isotopic to the core / of TT'^ (-Bi)- Hence, c^ becomes an exceptional fiber 
after isotoping the fibration of W slightly. This proves (1) for the Seifert 
fibering surgery in Theorem 2.1(c) of [9]. In the same way, we can prove 
that c is a fiber for other Seifert fibering surgeries in [9]. 

Figure 6.5 

Proof of (2). Following [9], we will obtain an explicit description of 
k(l,m, n, 0). In Figure 6.6, the circles a; (i = ±Z, ±ra, n,p) indicate that 
we perform z-half twists along the disks bounded by the circles. The knot 
k in Figure 6.3 is the trivial knot fco in Figure 6.6 with these twistings. 
Note that the circles ci, C2 in Figure 6.3 are preferred longitudes of an, ap in 
Figure 6.6, respectively. 

Figure 6.6 
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B 

Figure 6.7 

Now take the double covering of S3 branched along ko. The preimage of 
ai (i = ±Z, ±m, n) consists of two simple closed curves, and let J; denote one 
of them; ap is deleted since p is assumed to be 0. Let B be the preimage of 
B. Eudave-Mufioz [9] obtained Figure 6.7. Let ki be a core of the unknotted 
solid torus B in 53. The preimages of the evident disks bounded by ai are 
annuli. Using these annuli, define framings of J;. Note that Ji (i = ±Z,n) 
are then given 0-framings. Hence ci, a preferred longitude of an, lifts up to 
a preferred longitude of Jn. The knot fc(Z, m, n, 0) is obtained from ki by 
doing — l/i-Dehn surgeries on Ji in terms of the meridian-longitude pairs 
determined by the framings of Ji. The curve c = c^ is thus obtained from 
a preferred longitude of Jn after performing the above surgeries. Eudave- 
Muiioz observes that these surgeries can be simplified as follows. The curves 
Ji and J_/ bound an annulus L intersecting B in a disk. Similarly, Jm and 
J_m bound an annulus M such that M n B = 0, and L fl M is an arc. 
The annulus L (resp. M) also gives framings to Xy (resp. J±m). However, 
these framings coincide with the ones we defined before.  Therefore, doing 
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qpl/Z-surgeries on J±i is equivalent to Z-twisting along the annulus L (cf. 
Figure 6.8). The similar statement holds for the annulus M. We now have 
the following result. 

Figure 6.8 
Twisting just once along the annulus L. 

Lemma 6.3 (A special case of [9, Theorem 3.2]).The knot k(l,m,n,0) 
is obtained from the trivial knot ki in Figure 6.9 by doing l-twisting along the 
annulus L, m-twisting along the annulus M, and then —1/n-Dehn surgery 
on J<n. 

^ 

Figure 6.9 
The arrows indicate the directions of twistings. 
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Since Jn does not intersect the annuli L, M, a preferred longitude of Jn 

is still a trivial knot after the operations in the lemma. This implies that c 
is a trivial knot in 53. □ 

6.3. Surgeries on twisted torus knots. 

Let W be a standardly embedded solid torus in Ss. Let KPjq be a 
simple loop on dW which winds around p times meridionally and q times 
longitudinally (q > \p\ > 2). Given r, take an arc a in dW such that 
danKpjq = 0, and a meets Kpiq in 7" points of the same sign. We furthermore 
assume that a is disjoint from a meridian of W meeting Kp^ in exactly q 
points. Note that two such a are isotoped to each other in dW so that 
da keeps away from Kpiq during the isotopy. Let D = a x [— 1,1] be an 
embedded disk in 53 such that D intersects dW transversely in a x 0 = a. 
Let V be the unknotted solid torus S3 — int N(dD) containing Kp^q in its 
interior; a meridian disk of V intersects Kpiq in r points. 

Definition (twisted torus knot). Twist V n times along a meridian 
disk. Then the image of Kpiq in the twisted solid torus Vn (c S'3) is called 
the twisted torus knot K(p,q,r,n). Note that K(p,q,r10) is just the torus 
knot Kpiq. 

Recently in his thesis [8] Dean has studied Seifert fibering surgery of 53 

on K{p,q,r,n) for 0 < r < max{|p|,g} and n = ±1. In [25], we studied 
surgery of V on Kp,q for r = p + q. Lemma 9.1 of [25] implies that: 

Proposition 6.4. Let K = K(p, q,p+q, n) C Vn. Let (M, L) be a preferred 
meridian-longitude pair of Vn in S3. Then X = Vn(K;pq + (p + q)2ri) is a 
Seifert fibered manifold over the disk with two exceptional fibers of indices 
|p|, q. Furthermore, L + nM C dX is a regular fiber of X. 

By extending the Seifert fibration of X to the complementary solid torus 
Sz - int Vn, we see that (K',pq+ {p + q)2n) is a Seifert fibered manifold over 
52 with three exceptional fibers of indices |p|,g, \n\.   Note that a core of 
53 - int Vn, which is unknotted in S3, is an exceptional fiber of index |n|. 

Claim 6.5. A twisted torus knot K = K(p, q,p + q, n) in S3 is hyperbolic 
if p + q > 2 and \n\ > 5. 
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Proof. [25, Claim 9.2] states that V — KPA admits a complete hyperbolic 
structure of finite volume in its interior. The manifold 53 — K is obtained 
from V — Kp^ by (—nji + A)-Dehn filling on dV', where (/x, A) is a preferred 
meridian-longitude pair of V C S3. If n = 0, then K is a torus knot and thus 
its complement is not hyperbolic. Since V — mtN(KPjq) has two boundary 
components, by [13, Theorem 1.3] S3 — K admits a complete hyperbolic 
structure of finite volume for |n| > 5. □ 

7. Does a geodesic become a fiber after surgery? 

Let K be a hyperbolic knot in S'3. If the hyperbolic structure of S3 — K 
degenerates to a Seifert fibering structure of {K\r)^ then which curves in 
Ss — K become fibers of (if;r)? Conjecture 1.3 states that a trivial knot 
in Ss becomes a fiber. Experiments via Weeks' computer program SnapPea 
suggest that a closed geodesic in the hyperbolic manifold S3 — K becomes a 
fiber. This section is a report on these experiments. In the following, verify- 
ing hyperbolicity, detecting geodesies, and calculating fundamental groups 
are done by using SnapPea unless otherwise indicated. 

Question 7.1. Suppose that K is a hyperbolic knot in S3, and (K\r) is 
Seifert fibered. Is there a closed geodesic c in S3 — K such that: 

(1) c is unknotted in S3, and 

(2) c is a fiber in some Seifert fibration of (K; r) ? 

Example 1. Let K be the figure eight knot. For r = —1, —2, --3, (Kir) 
is a Seifert fibered manifold over S2 with three exceptional fibers; the triple 
of indices are (2, 3, 7) for r = -1; (2, 4, 5) for r = -2; (3, 3, 4) for r = -3. 
Let ci and C2 be the knots in S3 — K depicted in Figure 1.1. Then ci is the 
shortest geodesic and C2 is the second shortest geodesic in S3 — K. 

Clearly both Q are trivial knots in S3. We can check by surgery calculus 
that each ci becomes an exceptional fiber in (K\r) for r = —1, —2, —3; the 
indices of CJ are as follows. (Cf. Section 6.1.) 

S* (ff;-i) (tf;-2) (K- -3) 

ci 

C2 

unknot 

unknot 

fiber of index 7 

fiber of index 7 

fiber of index 5 

fiber of index 4 

fiber of index 4 

fiber of index 3 
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As in this example, a shortest geodesic in Ss — K often serves as c in 
Question 7.1. We give more examples of this kind. 

Example 2. Let ^2,2™ be the twist knot and c the trivial knot described 
in Figure 6.1; it is known that K2,2n is hyperbolic for n ^ 0,1. As shown in 
Proposition 6.1, (K2^n] r) is a Seifert fibered manifold with c an exceptional 
fiber in (if2,2n; 0? where r = — 1, —2, —3. Note that i^oUc is the Whitehead 
link, and Jf2,2n is obtained as the image of 1^2,0 by performing — 1/n-surgery 
on c. From Thurston's hyperbolic Dehn surgery theory, c is the unique 
shortest geodesic in S3 — if2,2n if M is sufficiently large, and the length of c 
tends to 0 as |n| —> 00. This result, together with tests by SnapPea for small 
n, suggests that c is the shortest geodesic in S3 — Kz^n for any n ^ 0,1. 

Examples. Let / ^ 0,±1, m ^ 0, and (Z,m,n) ^ (2,2,0). Let 
&(/, m, n, 0) and c be the knots in Proposition 6.2. Set Kn = &(7, m, n, 0). 
Then c is a trivial knot and a regular or exceptional fiber of any Seifert 
fibered manifold (Kn;j) given in [9]. By Lemma 6.3 and Figure 6.9, Kn is 
obtained from KQ after doing —1/n-surgery on c. We denote the core of the 
filled solid torus also by c. Using the fact that Kn (n ^ 0,1) is hyperbolic 
[9, Proposition 2.2], we prove that: 

Claim 7.2. KQ U C is a hyperbolic link in S3. 

Hence, as in Example 2 above, after hyperbolic Dehn surgery the cusp c 
is the shortest geodesic in S3 — Kn if |n| is sufficiently large. 

Proof. As pointed out in [9], KQ is a closed braid in the solid torus S3 — 
int JV(c). Since Zfc(lfo, c) = 2lm - 1 ^ 0, S3 - KQ U C is irreducible. 

Let M = S3 - mtN(Ko U c); 53 - mtN(Kn) is obtained from M by 
(//—nA)-Dehn filling on cWV(c), where (/x, A) is a preferred meridian-longitude 
pair of c. Take the torus decomposition of M and let P be the piece con- 
taining dN(c). First assume P = M. If P is hyperbolic, this is the desired 
case. If P is Seifert fibered, then KQ C S3 - int iV(c) is a 0-bridge braid. So 
Kn is a torus knot for any n, a contradiction. 

Next assume P 7^ M for a contradiction. Denote by P(n) the manifold 
obtained from P by (/i - nA)-Dehn filling on dN{c). If P is hyperbolic, 
P(n) is hyperbolic for sufficiently large n [30]. Since P(n) is boundary- 
irreducible, S3 — int N(Kn) contains an essential torus, a contradiction. Now 
assume that P is Seifert fibered. Since KQ is a closed braid in S3 — int iV(c), 
any incompressible torus in M separates dN(c) and dN(Ko).   It follows 
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dPndM = dN(c). By choosing n so that a fiber slope on <9JV(c) C P is not 
H — nA, P(n) is Seifert fibered for infinitely many n. If P(n) is boundary- 
irreducible for some n, then the hyperbolic manifold 53 — int N(Kn) contains 
an essential torus, a contradiction. Hence, P(n) is boundary-reducible and 
thus a solid torus for infinitely many n. By the assumption on P, it is a 
cable space. A fiber of P on dN(c) represents, say X/J, + yX. Since P(n) is 
a solid torus for infinitely many n, the distance between the fiber slope and 
the surgery slope \x + yn\ is one for such n. It follows that x = ±1, y = 0; 
a fiber is a meridian of c. Then P(oo) contains a lens space summand, a 
contradiction. □ 

The following example shows that we cannot always take a shortest 
geodesic as the trivial knot c in Question 7.1. 

Example 4. Let K be the twisted torus knot 1^(3,7,10, —1) in Section 6.3, 
which is a hyperbolic knot. Then (if; —79) is a lens space (see Proposition 
6.4). Calculation of the fundamental group of complements implies that 
in S'3, the shortest geodesic ci in 53 — K is a trefoil knot and the second 
shortest geodesic C2 is a trivial knot. In (K] —79), ci is an exceptional fiber 
and C2 is a regular fiber. Hence C2 serves as c in Question 7.1. 

Question 7.3. Let K be a hyperbolic knot in S3, and (K\r) is Seifert 
fibered. Then does there exist a shortest geodesic in S3 — K which is a fiber 
in some Seifert fibration of (K', r) ? In particular, is a shortest geodesic in 
S3 — K a trivial knot or a torus knot viewed in S3 = {K\ oo) ? 

Remarks.     (1) Shortest geodesies in S3 — K are unknotted for any hy- 
perbolic knot K with up to 11 crossings. 

(2) Let K be the (-2,3,7)-pretzel knot. Then (K; 17) is a Seifert fibered 
manifold. The shortest geodesic in S3 — K is an exceptional fiber in 
some Seifert fibration of (K\ 17), however the 5th shortest geodesic C5 
m S3 — K is not a fiber in any Seifert fibration of (K; 17). In fact, 
(K\ 17) — C5 is hyperbolic. 

Added in proof 
A recent partial solution to Thurston's orbifold geometrization conjecture 
(Assertion 5.5) improves some results in this paper: Theorem 1.5 holds if 
{K\r) has a finite fundamental group; and Propositions 5.6 and 5.9 hold 
without assuming Assertion 5.5. Assertion 5.5 is proved in the case when 
Fix (G) is a 1-manifold by Cooper, Hodgson and Kerckhoff [lecture series 
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given at the Third MSJ Regional Workshop on Cone-Manifolds and Hyper- 
bolic Geometry, July 1-10, 1998, Tokyo Institute of Technology, Tokyo] and 
Boileau and Porti [Geometrization of 3-orbifolds of cyclic type, preprint]. 
This case of Assertion 5.5 is what we need to prove Proposition 5.6. 
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