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Introduction. 

Recently, Seiberg and Witten have introduced new invariants for smooth 
4-manifolds which have led to dramatic progress in understanding the C00 

properties of algebraic surfaces. Just as with Donaldson theory, the new 
invariants are computed from a moduli space which, in case the underlying 
4-manifold is a Kahler surface X, can be identified with a moduli space of 
holomorphic objects. In Donaldson theory, the holomorphic moduli space is 
the space of holomorphic structures on a fixed C00 complex vector bundle 
over X satsifying an additional nondegeneracy condition, stability. Such 
moduli spaces have a rich geometric structure even for very simple Kahler 
surfaces, such as P2, and seem to become more progressively complicated 
as the surface becomes more complicated. In Seiberg-Witten theory, the 
relevant moduli spaces are the spaces of complex curves D on X, which 
are thus parametrized by the Hilbert scheme of X, such that D satisfies an 
additional numerical condition akin to stability. Now the structure of the 
Hilbert scheme of curves on a smooth surface is an interesting problem in 
algebraic geometry. However, it turns out for rather trivial reasons involving 
the Hodge index theorem that the geometric interest of the Seiberg-Witten 
moduli spaces of a surface X is in a certain sense inversely proportional 
to the interest in X itself as an abstract surface. Thus for example if X 
is a minimal surface of general type the Seiberg-Witten moduli spaces are 
two reduced points corresponding to the trivial (empty) curve. Of course, 
it is this fact which enables one to prove that the first Chern class of the 
canonical bundle of a minimal surface of general type is a C00 invariant up 
to sign. At the other extreme, if X is a ruled surface over a curve C of genus 
at least 2, then the Seiberg-Witten moduli spaces are connected with the 
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Brill-Noether theory of special divisors on C, if X = P1 x C is a product 
ruled surface, and to various interesting questions concerning stable bundles 
over C in general. Our goal in this paper is to discuss these and other related 
examples. 

The outline of this paper is as follows. In Section 1 we construct the 
Hilbert scheme of a complex surface via 8 methods. To our knowledge, such 
a construction has not appeared in the literature. In Section 2 we identify the 
deformation complex for the Seiberg-Witten equations of a Kahler surface 
in holomorphic terms and show that the Kuranishi model for the Seiberg- 
Witten equations is the same as the Kuranishi model for the equations 
defining the Hilbert scheme. In other words, the natural homeomorphism 
from the Seiberg-Witten moduli space to the Hilbert scheme of "stable" 
divisors on X is an isomorphism of real analytic spaces. In Section 3 we 
discuss how to make computations in case the moduli space is smooth but 
does not have the expected dimension, using the Euler class of the obstruc- 
tion bundle. These arguments and various generalizations are well-known 
to specialists in many different contexts. In Section 4 we apply this study to 
elliptic surfaces. There is a substantial overlap of the material in Sections 
2-4 with the paper of Brussee [2]. 

The remainder of the paper is concerned with ruled surfaces. We discuss 
the infinitesimal and analytic structure of the moduli space for product ruled 
surfaces in Section 5, and then compute the invariant in the special case 
where the curve involved is a section of the surface (possibly with some fiber 
components). In Section 6, we deform the surface to a general ruled surface 
and show that the Hilbert scheme of sections is much better behaved: it is 
always smooth of the correct dimension. Using this result, we give another 
computation of the invariants in the case of a section. This computation 
goes back to Corrado Segre in 1889 [11] and was given a modern proof, 
for the case of the O-dimensional invariant, by Ghione [6]. (Note that Segre 
considered the case of moduli spaces of sections of arbitrary dimension.) We 
shall give a quick description of these and related results. These methods 
generalize to compute the invariant in general homologically; the problem is 
that it is not known whether, for a general ruled surface, the Hilbert scheme 
always has the correct dimension. Finally we remark that the computation 
of the invariant is a special case of the transition formula for Seiberg-Witten 
invariants for 4-manifolds with ftjj" = 1. This formula has been computed by 
the authors, by methods quite reminiscent of those in Section 6, as well as 
by Li and Liu [9]. Thus our goal in Sections 5 and 6 has been, not so much 
to compute the invariant (although it is amusing to see the connections with 
the enumerative calculations of Brill-Noether theory) as it has been to see 
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the relationship between the study of the Seiberg-Witten moduli spaces for 
ruled surfaces and questions in Brill-Noether theory as well as the theory of 
rank two stable bundles on curves. 

1. Structure of the Hilbert scheme. 

Let X be an algebraic (or complex) surface, and let Do be an effective 
divisor on X. We do not assume that DQ is smooth or even reduced. Let 
HDO,X be the Hilbert scheme of all effective divisors D on X such that 
ci(6x(D)) = ci(Ox(Do)) in H2(X',Z). As a set, HD^x consists of all 
effective divisors D homologous to Do, i.e. algebraically equivalent to DQ. 

There is a morphism HDO,X -* PicX whose fibers are projective spaces. 
Over X x Hj)0jx there is a tautological divisor V whose restriction to each 
slice X x {t} is the divisor Dt on X corresponding to t. A general reference 
for the construction of HD0,X and its properties is [10]. 

The infinitesimal structure of Hj)Q^x is given as follows: from the natural 
exact sequence 

0 _ ox - OxiDo) - 0DQ{DO) -> 0, 

we have the associated long exact cohomology sequence. The Zariski tan- 
gent space to HD0IX is naturally the space of sections of the normal bundle 
H

0
(DQ] OD0(DQ)). Note that the long exact cohomology sequence gives 

0 - i/0(X;Ox(Do))/i/0(X;Ox) - H0(Do;0Do(Do)) 

->H1(X]Ox)->H1(X;Ox(Do)). 

Here H0(X] Ox(Do))/H0(X] Ox) is the space of sections of Ox(Do) mod- 
ulo the line through a nonzero section vanishing along Do, and is thus 
naturally the tangent space to the linear system |Do| at DQ. The map 
H

0
(DO]OD0(DO)) —> ^(X^Ox) represents the infinitesimal change in the 

line bundle Ox(Do). We let KQ denote the image of H0(Do]0Do(Do)) 
in JJ^XjOx), so that KQ is the kernel of the map from iI1(X;(9x) to 
iJ1(X;(9x(Do)) defined by CTQ. Thus there is an exact sequence 

0 - H0(X; Ox(D0))/H
0(X; Ox) - H0(D0] 0Do(Do)) - K0 - 0. 

The obstruction space to the deformation theory of HD0,X is given as 
follows: let Ki be the image of fl1^; OX(DQ)) in ff^Do; 0Do(Do)), or in 
other words the cokernel of the map from ^(X'^Ox) to Hl(X; OX(DQ)) 

defined by CTQ. Then Ki is the obstruction space to the functor corresponding 
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to HDO,X- If Ki = 0, then HD0,X is scheme-theoretically smooth at DQ of 
dimension equal to dimH0(Do]OE)0(Do)). (The converse is not necessarily 
true.) We say that Do is semiregular if Ki = 0, or in other words if the map 
H^X; Ox (Do)) - H0(Do; 0Do{D0)) is zero. 

The following theorem was proved by Kodaira-Spencer [7] in the semireg- 
ular case (and was claimed by Severi): 

Theorem 1.1. Let DQ be a curve on X.   Then the Zariski tangent space 
T to HDQ^X at Do fits into an exact sequence 

0 - H0(X; Ox(Do))/H0(X; Ox)-+T^K0^ 0, 

where KQ = Ker{xao : H1(X;Ox) -»• i^p^^MA)))}- Locally analyti- 
cally in a neighborhood of Do, HDO,X is defined by the vanishing of a con- 
vergent power series without constant or linear term from T to 

Id - Coker { xa0 : H^X; Ox) -+ H^X; Ox(Do))} . 

To prove Theorem 1.1, one can analyze the deformation theory and ob- 
struction theory for HDQ,X 

via power series as in [7] and [10], and apply 
Schlessinger's theory. Here we give a C00 proof of Theorem 1.1. Given DQ, 

let Lo denote the C00 complex line bundle defined by OX{DQ). From this 
point of view, the scheme HDO,X is the set (with real analytic structure) of 
all C00 sections of LQ which are complex analytic for some choice of holo- 
morphic structure on LQ, modulo the action of the nowhere zero functions 
acting by multiplication. We fix a given holomorphic structure on LQ with 
<9-operator simply denoted by <9, and we also fix a given nonzero holomorphic 
section ao of LQ for this holomorphic structure. 

The equations which say that s is a holomorphic section for some holo- 
morphic structure on LQ read as follows: there exist a <9-closed (0, l)-form 
A such that (5 + A)(s) = 0. Thus HDO,X is the zero set of the function 

Fo : Kevd®n0(Lo) C fi0'1^) 0 fi0(Lo) -> ft0'1^) 

defined by 
Fo(A, s) = (d + A)(s) = ds + As, 

modulo the action of Qc, the complex gauge group, where Qc is the multi- 
plicative group of nowhere vanishing C00 functions on X and A E Gc acts on 
(A, 5) via (A — <9A/A, A • s). An easy calculation shows that Fo o A = XFQ. Of 
course, in order to analyze the equations, we need to pass to an appropriate 
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Sobolev completion of all of these spaces, but we shall leave the details of 
this standard procedure to the reader. 

Next we calculate the linearized complex. The space Q0(Lo) of all C00 

sections of LQ is a vector space, and we may thus identify the tangent space 
to 00(Lo) at a given section CTQ vanishing at Do with Q

0
(LQ) again. The 

space of all (0, l)-conections on LQ is an affine space over fi0,1(X), with 
origin the 3-operator corresponding to the given complex structure, and so 
its tangent space is Q;0,1(X). The nowhere zero functions on X may be 
(locally) identified with ^0(X), the set of all C00 functions on X, via the 
exponential, and the differential at s = CTQ, A = 0 of 

A e n0PO ■-> eA • 5 

is multiplication by CTQ: A i—► A • CTQ. Taking the differential of the ^-action, 
we obtain a complex CQ: 

0 -> Q0{X) -^ Kevd®Q0(Lo) -^ QP^Lo). 

Here the map di : f20(X) —> Ker B © fi0(Z/o) sends A to (—<9A, A • tro) and cfo : 
Ker9®00(Lo) —> fl0,1(Lo) sends (A, s) to 95 + ^4.cro. However, this complex 
is not elliptic. Thus, the restriction of Fi to (Imdi)-1- is not Fredholm. 

To remedy the above problem, consider instead the function F(A, 5) = 
TT o Fo(A, s), where TT : fi0,1(Lo) -> Ker 9 is orthogonal projection onto the 
kernel of d. (Note that F is not in fact equivariant with respect to the action 
of 0c.) 

Lemma 1.2. For A in a neighborhood of zero in Ker <9; -F(-A, s) = 0 if and 
onlyifFo(A,s) = 0. 

Proof Clearly, if Fo(A, s) = 0, then JF(-A, 5) = 0. Conversely, suppose 
that F(AJ s) = 0. This says that JFb(A s) is orthogonal to Ker 5, so that 
Fo(A, s) = {d + A)(s) = 9*7 for some 7 e 00'2(Lo). By hypothesis^ = 0, 
so that (d + A)2 = 0. Applying 5 + A to Fo, we obtain (<9 + A)d*~/ = 0, 
or in other words dd*j + Ad*^ = 0. We claim that, in this case, if A lies 
in some neighborhood of zero, then <9*7 = 0 and thus Fo(A, s) = 0. We 
may restrict 7 to (KerS*)-1 = Im<9, and in this case 35* is an isomorphism 
from Im<9 to itself (after taking appropriate completions). Likewise, if TTQ 

denotes orthogonal projection from fi0'2(Lo) to Im<9, then TTQ O (dd* + Ad*) 
is a bounded map from Imd to itself, after taking appropriate completions, 
which is invertible for A = 0 and so for A in a neighborhood of zero.   It 
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follows that for A in some neighborhood of zero, and for an arbitrary 7 e 
00'2(Lo), tf 00*7 + ^9*7 = 0, then for 7o_the projection of 7 to (Ker a*)-1, 
we have 9*7 = 5*70 and TTQ O (53* + AS*)(70) = 0, so that 70 = 0 and 
7 G Ker <9*. Hence 3*7 = 0 and so ^(A $) = 0 as claimed. □ 

1 The linearization of the equation F and the gauge group action at (0, CTQ) 

gives a complex Ci defined by the top line of the following commutative 
diagram: 

0  ► ft0(X) —5->    Keraefi0(Lo)    ^^->     Ker d     > 0 

n0(X)  > QP^(X)®n0(Lo)  > Sl^iLo), 

where the vertical maps are the natural inclusions, and the differentials are 
given by ei(A) = (—<9A, ACTQ) and 62(A, 5) = Bs+Aao. There is a subcomplex 
C defined by 

n0(Lo) -i Ker { 8 : Q^Lo) -> n0'2(Lo) } , 

shifted up a dimension, with differential <9, and the quotient complex is 
isomorphic to the complex C" defined by: 

n0(X) -^ Ker { d : QP'^X) -> fi0'2(A:) } . 

Thus the deformation complex is elliptic and so the restriction of F to a slice 
for the Qc action is Predholm. Taking the long exact cohomology sequence 
associated to the exact sequence of complexes 

0 -» C7 -► Ci -> C" -> 0, 

we see that the cohomology of Ci fits into the exact sequence 

0 -» iI0(C?x) - #0(£o) - ffHCi) -» H^Ox) - i?1^) -> ^(Ci) -» 0. 

A routine calculation shows that the induced maps Hl{Ox) —► Hl(Lo) are 
given by multiplication by CTQ. Thus H1^) satisfies the exact sequence for 
T given in Theorem 1.1 and H2(Ci) = Ki. This concludes the proof of 
Theorem 1.1. □ 

The following identifies the quadratic term of the obstruction map: 
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Proposition 1.3. Let £ E H0(Oj)Q(Do)) be an element of the Zariski tan- 
gent space to HD0JX' Then the quadratic term in the obstruction map is 
equal toS^U^e H^OD^DQ)), where 6 : H0(0Do{Do)) -> H^Ox) is the 
coboundary map in the natural long exact sequence. 

Proof. It is easy to give the quadratic term of the obstruction map using 
the power series approach of [7]. In terms of the approach outlined here, 
the quadratic term of F(A, s) is 7r(A • s), where 8A = 0 and ACTQ = —ds. If 
we identify the class of (A, 5) in H^Ci) with an element £ G H0

(OD0(DQ))^ 

then it is easy to see that the class of A in H0,1(X) = Hl(Ox) is exactly <5£. 
One then checks that the projection of A • 5 to Ker d corresponds to (S£ U £. 
□ 

Note that, if we apply 8 : H
1
{0DQ{DQ)) -+ H2(Ox) to the element 

6£ U f, we obtain S^US^e H2{Px), which is zero since 6% U 6£ = -6% U 5£, 
as C?x is a sheaf of commutative rings. Thus <S£ U £ lies in the image of 
H^XiOxiDo)) in H\DQ;0DQ[pQ)). 

There is also clearly a universal divisor V C X x F_1(0) defined by the 
vanishing of 5. This completes the analytic construction of Hz)0ix and the 
discussion of semiregularity. Note that we have not strictly speaking shown 
that V is a divisor on the complex space X x HDQ^X- This would need a 
discussion of relative <9-operators similar to, but easier than, the discussion 
in [4], Chapter IV, 4.2.3. In other words, we would need to show that V 
is a Cartier divisor in the possibly nonreduced complex space X x HDQ^X-, 

which follows by showing that locally on X x HD0}X, there is a holomorphic 
embedding of the complex space X x i?£>0?x in X x C^ for some iV so that V 
is locally the restriction of a complex hypersurface. Finally, to identify this 
construction with the usual construction of HD0iX) and to make a geometric 
identification of i?Do,x possible, we would have to show that HDQ^X has a 
universal property. In other words, given a complex space T, not necessarily 
reduced, and a Cartier divisor on X x T, flat over T, we need to exhibit a 
morphism of complex spaces from T to HD0,X' This again can be done along 
the lines of [4], Chapter IV. In the cases described in this paper, i?Do,X will 
be smooth or a union of generically reduced components, and the arguments 
needed are substantially simpler than the arguments in the general case. 

The divisor V is a Cartier divisor and so there is a holomorphic line 
bundle OXXHD^XO^) oveTXxHDOfx. Slant product with c^OxxH^xi^)) 
defines a map Ho(X) —>• H2

{HDO,X)^ and we let /x be the image of the natural 
generator of Ho(X', Z) under this map. Clearly /x = ^2*ci(OxxHD x(P)) = 
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7r2*p}]. For a fixed p E X, there is the inclusion of the slice {p} x HDO,X 

in X x HDQ,X'> and clearly /i is the first Chern class of the line bundle 
OxxHD ,x(^))lfr} x HDQIX, under the natural identification of {p} x HDO,X 

with Hj)0iX' If 2? meets {p} x HD0}X properly, or in other words if there 
is no component M of HD0IX such that p lies in every divisor in M, then 
Vn{p} x HD0,X is a Cartier divisor in {p} x HDQ^X — HD0IX, whose support 
is the set of divisors D such that p e D, and this divisor is a geometric 
representative for /x. In fact, the divisor n is an ample divisor on HDQ^X-, 

which can be shown for example by using the method of Chow schemes 
described in [10], Lecture 16, and identifying the numerical equivalence class 
of fi up to a positive rational multiple with the natural ample divisor on the 
Chow scheme. 

There is another description of the complex line bundle corresponding 
to ii. For p G X, let C/£ C Gc, the based gauge group, be the set of A e QQ 

such that A(p) = 1. Thus the quotient of Q^ by Q^ is C*, and if instead of 
dividing out F_1(0) by the local action of Q^ we divide out by <?£, the result 
is a C*-bundle over HD0:XI which thus corresponds to a complex line bundle 
Co(p). We claim that this line bundle has first Chern class equal to /i. First 
note that there is a universal C00 complex line bundle CQ over X x HDO,X 

whose restriction to the slice {p} x HD0,X is £o(p)- Here Co is defined as 
follows: let A^LQ) be the set of pairs (A, 5) where A is a (0, l)-connection on 
Lo and 5 is a nonzero section of LQ. Then Qc acts freely on AQ(LO)] let the 
quotient be denoted B£(LQ). Since Qc also acts as a group of automorphisms 
of Lo, there is a line bundle CQ over X x Bc(Lo) obtained by dividing out 
LQ x AQ(LO) by the action of Gc- We also denote the restriction of this line 
bundle to X x F~1(0) by CQ. SO we must identify Co with ci(OxxHDoix(^)) 
(at least on the reduction of HD0:X)' The point is that the tautological 
section (5, (A, s)) of the pullback of LQ to X x AQ(LQ) is C/c-equivariant and 
so descends to a section of CQ over X x BC(LQ). Restricting to X x F~1(0), 
we see that CQ has a section vanishing at £>, and this identifies CQ with 
OxxHDoiX(V). 

2. Deformation theory for Seiberg-Witten moduli spaces 
of Kahler surfaces. 

In this section we recall the description of Seiberg-Witten moduli spaces 
for Kahler surfaces and compare this description to the discussion of the 
Hilbert scheme in the previous section. For general references on Seiberg- 
Witten moduli spaces of Kahler surfaces, see [12], [3], as well as [5]. 
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For a given metric g on X and Spinc structure £ on X with determinant 
L, the (unperturbed) Seiberg-Witten equations for a pair (A, -0), where A 
is a connection on L and ^ is a section of §+(£), the plus spinor bundle 
associated to £, are 

M = 0; 
Ml2 

We let A/lp(£) be the corresponding moduli space. In case X is a Kahler 
surface and g is a Kahler metric with associated Kahler form a;, §+(£) = 
n0(Lo) 0 ^0'2(Lo) for a complex line bundle LQ, and §"(£) ^ ^^(LQ). 

Moreover LQ
12
 = L^Kx, where L = det £. We assume that u; •ci(L) 7^ 0, so 

that there are no reducible solutions, and for simplicity we fix cu • ci(L) < 0. 
In this case, writing ip in components (a, /?), where a is a section of Q0(Lo) 
and (3 is a section of f20'2(Lo), the Seiberg-Witten equations become 

F0,2 = QA0,1 = &p. 

^a + 5^/? = 0. 
(n)1,1 = ^(l«l2 - l/?l V; 

(Here the metric g defines a Hermitian metric on LQ and thus a conjugate 
linear isomorphism fi0(Lo) —> 00(Lo), and a denotes the image of a under 
this isomorphism.) Under the assumption that a 7^ 0, the equations dA0,1 = 
a/? and 9^(9^a+9^/?) = 0 imply that (3 = 0, and that A is a (1, l)-conection 
on L [12, 3, 5]. Hence L and LQ have given holomorphic structures, and 
9^a = 0, so that a is a nonzero holomorphic section of LQ. Thus a defines 
an effective divisor D with LQ = (!?x(-D)- Taking gauge equivalence defines 
a up to scalars, or in other words as an element of \D\. Thus to each element 
of Mg({;), there is a well-defined element of HDO,X for some fixed divisor Do 
such that the C00 line bundle underlying OX^DQ^K^ is L. Conversely, to 
every point of HDQ^X we can associate an irreducible solution of the Seiberg- 
Witten equations mod gauge equivalence, in other words a point of Mg{£)i 
which essentially follows from a theorem of Kazdan-Warner. It is easy to 
see that the map from Mg(ti) to HD0IX is a homeomorphism, and we shall 
show that it is an isomorphism of real "analytic spaces in a suitable sense. 
As in the previous section, we shall pass to Sobolev completions of all of the 
spaces of C00 sections involved without making the choice of completions 
explicit. 



460 Robert Friedman and John Morgan 

We begin by discussing the deformation complex associated to the 
Seiberg-Witten equations for a Kahler surface. For a general Riemannian 
4-manifold X, at an irreducible solution (AQ, ip) to the Seiberg-Witten equa- 
tions, the appropriate deformation complex C is 

0 -► ^0(X; R) -^ iQ^X; M) 0 S+(0 ^ iO^X; R) 0 §"(0 -> 0. 

Here ft+(X) is the space of C00 self-dual 2-forms. The differentials are as. 
follows: <5i(A) = (—2d\,\ip) and 

62(A, rj) = (d+A - Dq^rj), pr, + ±A • ipY 

Here d+ is the self-dual part of d, Dg^, is the differential of the quadratic 
map q in the SW equations, evaluated at ^ on ?/>, and ^A • ^ is the linear 
term of pA+Aoip- A calculation shows that 

Dqtpiv) =ri®il)* + il;®ri*- Re(^, 77) Id. 

In general, it seems to be somewhat difficult to analyze this complex. In the 
case of a Kahler surface X, however, we can give a very explicit description 
of the cohomology of the deformation complex. First we recall the notation 
of the previous section: 

KQ = Ker {xao : H^Ox) -+ H^LQ)} ; 

Kx = Coker{x<7o : H^Ox) -> H^Lo)} ; 

K2 = Kev{xao : H2(Ox) -* H2(Lo)} . 

(Note that XCTQ : H2(Ox) —> H2
(LQ) is surjective.) 

Theorem 2.1. Suppose that X is a Kahler surface with Kahler metric g 
and associated Kahler form to. Let CTQ be a nonzero holomorphic section of LQ 

corresponding to an irreducible solution (cro,0) of the Seiberg-Witten equa- 
tions. Then the Zariski tangent space Hl(C) to the Seiberg-Witten moduli 
space sits in an exact sequence 

0 -> H0(Lo)/Cao -► H^C) -> Ko -> 0 

and the obstruction space H2(C) sits in an exact sequence 

0 -> tfi -> H2(C) -^K2^0. 
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Proof. The complex C has the following complex as its symbol complex: 

0 -+ ^0(X;R) ^ i&iXiR) @§+(£) ^^ inl(X',R) 0 §"(0 - 0. 

Thus it is elliptic and its (real) index is the same as the index of the above 
complex, namely 

1 - hiX) + b+(X) - 2(h0(Lo) + h2(L0) - h^Lo)) = 2x(Ox) - 2x(Lo). 

Here we have used the identification of p with d + d* up to a factor of 
V2. Note that Si(X) = 0 if and only if A is constant and ACTQ = 0. Thus 
H0(C) = 0, which just says that the point (A, (CTQ, 0) is an irreducible solution 
to the Seiberg-Witten equations, and we must identify the terms iI1(C) and 
H2(C). Identify ifi^XjR) with fi0'1^), S+(0 with fi0(Lo) © ^0'2(^o), 
in%(X]R) with iCt0(X;R)uj © O0'2(X), and §-(0 with n0-1^). Under 
these identifications, for A € zQ0(X;K), SiX = (-9A,Acro,0) which has 
image inside il0^(X) © n0(Lo)- Moreover, 62(A0'1,a,P) is given by 

((BA0'1 + dA0'1)* - Re(<7o, a)iu, OA0'1 - a0(3, da + d*? + ^A0'1^) . 

After identifying ifi0(X;M)a; with fi0(X;R) by taking -i times the contrac- 
tion A with OJ, we can write this as 

62(A
0>l,a,(3) = (T1(A

0'\a),T2(A0<1,a) + Sm, 

where (since w A OJ is twice the volume form) 

Ti^0'1,^) = -^(Aal0'1 +AdA0'1) -2Re(ao,a) E fi0(X;M); 

Ta^0'1, a) = (dA0'\ Ba + ^0>1<xo) € fi0'2(X) 0 O0'1^); 

S((3) = (-500,9*0) E n0'2(X) © O0'1^)- 

T\ms62(A0'1,a,P) = 0 if and only if Ti(A0'1, a) = 0andT2(A0'1,a)+5(/?) = 
0. Next we claim: 

Lemma 2.2. T2(A0>\a) + S((3) =_0 */ond onfy t//3 = 0 andTs^0'1,^) = 
0. Moreover, dA0'1 = ao(3 and d(da + d*(3 + £J4

0>1
<7O) = 0 t/ ond onZy if 

(3 = 0 and dA0*1 = 0. 
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Proof. Clearly, if /? = 0 and ^(A0'1,**) = 0, then ^(A0'1,**) + S(P) = 0. 
Conversely, suppose that T2(-A0,1,a) + 5(/3) = 0, or in other words that 
dA0'1 = (Jo/3 and da + d*(3 + ^A0,1ao = 0. Taking 5 of the second equation, 
we find that 

dA0'1 • ao + dd*(3 - \ao\2(3 + dd*(3 = 0. 

Taking the inner product with /3 shows that 

/ |c7o|2|/3|2 + ||a*/?||2 = 0. 
Jx 

Hence (3 = 0, and clearly then T2(.A0,1,a) = 0 as well. The proof of the 
second assertion is similar. □ 

Now we exhibit an isomorphism from Hl(C) to Hl(Ci), where Ci is the 
complex defined in the previous section, up to a factor of 2 (which arises 
because in our point of view A0,1 is a connection on L®2 <g> Kx rather than 
on Z/Q)* Hl{Ci) is the quotient of 

| (A0'1, a) : &40'1 = 0, da + \A0
>
X
GO = 0 } 

by the subgroup of elements of the form (—25/,/CTQ), where / is a com- 
plex valued C00 function. To exhibit this isomorphism, given a class 
in Hl{C) represented by (A0,1, a,/?), then, by Lemma 2.2, (3 = 0 and 
da + ^A0,1ao = 0. Moreover (A0,1, a) is well-defined up to the subgroup of 
the form (—2<9A, Aero), where A is a purely imaginary C00 function. Thus 
(A0,1,.a) defines an element of H1^). 

Conversely, start with a representative (A0,1, a) for an element of H1^). 
Then (A0'1, a, 0) satisfies T2(A0'1, a) = 0 but not necessarily T^A0'1, a) = 0. 
On the other hand, we can change (A0,1, a) by an element of the form 
(—2dh,h(jQ), where h is a real C00 function, without affecting T2(A0,1,a). 
If we set 7 = T^A0'1, a), then 

T^A0'1 - 2dh, a + hao) = <y- 2i(Addh + Xddh) - 2\a0\2h. 

Prom the Kahler identities, A<9 = — i<9* and similarly A<9 = id*. Thus 

i{\ddh + Xddh) = 2Red*dh = -Ah, 

where A is the negative definite Laplacian on X, and we seek to solve the 
equation 

2Ah-2\ao\2h = -7. 
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(Note that this equation is the linearized version of the Kazdan-Warner equa- 
tion used in identifying the Seiberg-Witten moduli space with the Hilbert 
scheme.) Now we have the following: 

Lemma 2.3.  The operator A — |ao|2 is an isomorphism from O0(X;R) to 
itself. 

Proof If Ah — \<Jo\2h = 0, then taking the inner product with h we find 
that \\dh\\2 = \ao\2h2 = 0. Thus h is constant and |cro|2/i2 = 0, so that 
h = 0. Hence the operator A — |<7o|2 is injective. It is an elliptic operator on 
ft0(X] R) whose index is the same as the index of the Laplacian on functions, 
namely zero. Thus it is also surjective. □ 

Thus given the initial representative (A0,1, a), there is a unique choice 
ofh such that T^A0'1 - 2dh,a + hao) = 0. Mapping (A0'1, a) to (A0'1 - 
2dh,a + /M7O,0) then gives a well-defined map from Hl(Ci) to iJ^C), and 
clearly the maps constructed are inverses. We have therefore showed that 
Hl(C) = .ff^Ci). By the proof of Theorem 1.1, there is an exact sequence 
as claimed in the statement of Theorem 2.1. 

We turn now to the identification of i?2(C). Given 7 e ft0(X;R), it 
follows from Lemma 2.3 that we can solve the equation Ah — |cro|2/i = 
7. Thus there exists an h such that Ti(—2dh,h<Jo,Qi) = 7, and moreover 
(—2dh, hao, 0) is in the kernel of T2 + S. We can therefore identify the 
cokernel of 62 with the cokernel of 

T2 + S: n0'1^) e n0(Lo) e fi0'2(Lo) -* n0>2(X) ® n0'1^)- 

Let /C denote the image of T2 + S, so that /C is the set 

I (dA0'1 - <7o/?,Ba + d*(3 + ^A^ao) : 

A0'1 e ^1(X),ae ft0(Lo),/3 e ft0'2(Lo) } • 

First consider the subgroup 0©Ker d C Q0>2(X) ®Q0^(Lo). For an element 
in /C fl (0 0 Ker 8) which is the image of (A0'1, a, /?), we have dA0'1 = ao/3 
and 5(9a + 9*/? + ^A0,1cro) = 0. By Lemma 2.2, this condition is equivalent 
to 13 = 0 and dA0'1 = 0. Thus 

(0 0 Ker a)//C n (0 0 Ker 8) ^ Ker d/lda+ ^A0*1^ : SA0'1 = 0 ] . 
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This is clearly the same as H1
{LQ)/(JQ • Hl(Ox) = Ki. So we have found 

the subspace of H2(C) described in Theorem 2.1. The quotient i^ of H2(C) 
by #1 is the same as ft0'2(X) 0 Im<9/(Id©<9)(/C). Now (Ide<9)(/C) is the 
subgroup 

| (dA0'1 - (T0(3,dd*[3 + ^BA^ao) : A0'1 e fi0'1^),P € fi0'2(Lo) | • 

If we consider the projection of this subgroup to the factor Im<9 C ri0'2(Lo), 
it is surjective since 55* is an isomorphism on Im<9. Thus K2 is isomorphic 
to 

fi0'2(X)/ I 5A0>1 - aop : 55*(3 + ^5A0^a0 = 0 1. 

Let /C7 = { aA0'1 - ao/3 : 59*/? + ^dA^ao - 0 }. We claim: 

Lemma 2.4. JC' n Ker a* = { -ao/3 : 9*/? = 0 }. 

Proof. Suppose that 

5*5A0>1 = 5*aofc        55* (3 = -\5A^ W 

Taking the inner product with A0,1, we find: 

= (A^A0'1) = -2{pMP) = -2||5*/?||2. 

It follows that ^A0'1 = 0 and that 5*(5 = 0, and that K' n Ker^* is as 
claimed. □ 

Using Lemma 2.4, there is an injection of Kera*/(/C/ n Ker^*) into 
K'2. Now KerS* C fi0'2(X) is naturally i?2(Ox), and {-ao/? : a*/? = 
0} = {-CTQ/? : a*/3 = 0} is the image of H2(Lo) under OQ. The quotient 
H

2
(OX)/O-QH

2
(LO) is isomorphic to the orthogonal complement of Imoo, 

namely the kernel of multiplication by CTQ on H2{Ox), which we have de- 
noted by Kz- So there is an injection of K2 into i^- The real index of C 
is — dimR ff1 (C) + dim^H2{C)^ and we have shown that one half the real 
index is at least 

-h0(Lo) + 1 - dime KQ + dime Ki + dime K2. 
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Moreover equality holds only if K!} is exactly equal to Ker5*/(/C/ PlKer <9*), 
and thus is isomorphic to K2 = Ker{x<7o • H2(Ox) -» H

2
(LQ)}. On the 

other hand, the above alternating sum is the same as x(^x) — x(Lo) (take 
the alternating sum of the dimensions in the cohomology exact sequence 
associated to multiplying by CTQ), which as we have seen is one half the real 
index of C. It follows that K'2 = Ker<97(/C' n Ker<9*) ^ K2 and that we 
have the desired exact sequence for H2(C). □ 

Corollary 2.5. If in the above notation X is a Kdhler surface, L = K^- 
with the Spinc structure corresponding to the trivial line bundle LQ, then the 
Zariski tangent space is zero-dimensional and the obstruction space is zero. 

Proof. In this case H0(Lo) = Cao, XCTQ : i?1((9x) —► H1
{LQ) is an isomor- 

phism, and aoH0(Kx) = H0(Kx)> Thus both the Zariski tangent space 
and the obstruction space are zero. □ 

Next we compare the Kuranishi model of the Seiberg-Witten moduli 
space to the Kuranishi model of the Hilbert scheme described in the previous 
section. In what follows we assume that i72(Ox) = 0. In fact, if X is a 
minimal surface with H2(Ox) 7^ 0, then either X is of general type or it is 
elliptic, a K3 surface, or a complex torus. In case X is of general type, the 
relevant Seiberg-Witten moduli spaces are smooth points corresponding to 
±Kx of the appropriate dimension, and the Kuranishi obstruction space is 
zero by Corollary 2.5 above. In case X is elliptic, the moduli space need 
not be of the expected dimension, and the Kuranishi obstruction space need 
not be zero, but we shall see in the next section that the obstruction map 
is always identically zero and hence that the map from Mg(£) to HD0,X is 
a diffeomorphism between two smooth manifolds. The other cases involve 
reducible solutions to the Seiberg-Witten equations, and thus are slightly 
exceptional from our point of view. The case of a nonminimal surface may 
then be reduced to the minimal case, at least for an open set of Kahler 
metrics; we omit the details. Thus essentially the only interesting case to 
consider is the case where H2(Ox) = 0. 

Theorem 2.6. Suppose that H2(Ox) = 0.   Then the natural homeomor- 
phism from Mg(^) to i?Do,X is an isomorphism of real analytic spaces. 

Proof. We keep the convention that A is a connection on L = Lf2 ® Kx, 
rather than on LQ, and that it induces a connection on LQ once we have fixed 
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once and for all a Hermitian connection on Kx> Recall that HD0,X is locally 
defined as the zeroes of the Predholm map F(A, a) = 7rKev§(dA + ^A • a), 
restricted to a slice of the complex gauge group action on Ker <9© ft0(Lo) C 

fi0'H£o)e«0(£o). 
As for M.g(£), it is locallly defined by the zero set of the three equations 

G = (Fj)1'1 - |(|a|2 - \f3\2)uj, dA0>1 - a/S, and dAa + d*A[3. Setting the 
first equation G equal to zero on a slice S' for the real gauge group gives a 
slice for the complex gauge group: indeed, the differential of G is the map 
Ti defined in the proof of Theorem 2.1, and Lemma 2.1 shows that, given 
(A0,1, a), there is a unique real-valued C00 function h such that TI(J4

0,1
 — 

2dh, a + hao) = 0. Thus 

Tf^O) 0 iTG^ = Q0'1^) © fi0(Lo) 0 00'2(Lo). 

In particular 5/ n G~1(0) is a slice for the complex gauge group in a neigh- 
borhood of the origin; denote this slice by S. 

Consider now the remaining two equations. Defining 

•F(A, a, 13) = (dA0*1 - a/?, dAa + d\p), 

we can view J7 as a section of the trivial vector bundle over ri0'1(X) © 
n0(Lo) © ft0'2(Lo) with fiber n0'2(X) © fi0'1^) whose restriction to the 
slice 5 is Fredholm and locally defines Mg(£). 

By our assumption that H2(Ox) = 0, and since H2(Ox) surjects onto 
H2(Lo)i ^ follows that d : ri0'1(Lo) —»• £}0'2(£o) is surjective. Hence the 
natural map 

O0'2(X) ©^(Lo) -> Ker<9©O0'2(X) ©fi0'2(Lo) 

defined by (^,r/) »-> (7rKerg77, ip.dr]), is an isomorphism. Thus for small A, 
the map 

(^,77)^(7rKer37^,<9A7?) 

is again an isomorphism. We may then view this map as an automorphism 
of the trivial vector bundle over fi0|1(X) © ^(LQ) © n0'2(Lo) (or an appro- 
priate neighborhood of the origin) with fiber i70'2(X)©Jl0'1(Lo)- Under this 
automorphism,\F corresponds to the section (Fi,^), where 

F2 = (8A0'1 - *(3,d2
Aa + dAd*A(3). 

Thus the Kuranishi model for T on the slice 5 is the same as that for the pair 
(JPI, F2) on S. It is easy to check that the differential of the map F2 is the 
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same as the differential of T followed by (Id, <9). In other words, the cokernel 
of the differential of F^ is exactly the group K<i of Theorem 1.1, namely the 
kernel of multiplication from H2(Ox) to H2(Lo). Since H2(Ox) = 0 by 
assumption, the differential of F2 is onto and F^1 (0) is a smooth submanifold 
of a neighborhood of the origin in ^(X) e00(Lo) efi0'2(Z/o). Now F2 = 0 
if and only if dA0'1 = a/S and d\a + BAB^/S = 0. As we mentioned earlier, 
these equations imply that (3 = 0 and hence that dA0*1 = 0. Conversely, if 
f3 = 0 and ^A0'1 = 0, then ^(A, a, /?) = 0. Solving the equation J7 = 0 on 
the slice 5 is the same then as solving the equation ^^§(9^) = 0 on the 
slice S n (Ker<9 ® fi0(Lo)), at least in a neighborhood of the origin. This 
is exactly the equation F(A, a) on the slice S fi (Ker9 © fi0(I/o)) for the 
complex gauge group. A standard argument (see for example [4], Chapter 
4, proof of Theorem 3.8) shows that this is the same as the usual Kuranishi 
model for F, in other words that this model is isomorphic to the Kuranishi 
model formed by taking any other slice for the ^c-action. Thus the two 
Kuranishi models are isomorphic as complex spaces. □ 

3. Obstruction bundles. 

Fix an oriented 4-manifold X with a Riemannian metric g (not necessar- 
ily a Kahler surface). Let A*(L) denote the spaces of pairs (A, i/;), where A 
is a connection on L and ^ is a nonzero section of S+(£) as in the previous 
section. The real gauge group Q acts on *4*(L), and we denote the quotient 
by B(L). The trivial Hilbert space bundle iO^(X;R) © §""(£) descends to a 
Hilbert bundle H over #(£), and the moduli space M.g(£) is the zero set of 
the Fredholm section F(AJ ip) defined by the Seiberg-Witten equations. As 
such M.g(^) has a real analytic structure and in particular a Zariski tangent 
space. In this section, we are concerned with the following situation: sup- 
pose that the space Mg(^) is a smooth compact manifold, not necessarily 
of the expected dimension. Thus the dimension of the Zariski tangent space 
of Mg(^) at every point is equal to the dimension of Mg(£) at that point, 
and these tangent spaces fit together to form the tangent bundle TMg(^) to 
Mg(€). Note that the tangent bundle is in fact just KerdF : TA*(L) —> H. 
It follows that the obstruction spaces have locally constant rank on Mg(^) 
and thus, by standard elliptic theory, fit together to form a vector bundle 
O over Mg(^). In case g is a Kahler metric on the complex surface X, 
the arguments of the previous section show that the fiber of O over a point 
(AoiCro) may be canonically identified with the middle cohomology of the 
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elliptic complex 

where the first map is (A0,1, a) i-+ (dA0,1, da + ^A0,1ao) and the second map 
is ((flip) ^ dip — T^p - ao). Again by a slight modification of the standard 
theory for the 5-operator, it follows that the bundle O is a holomorphic 
vector bundle over Mg(£). In fact, letting £ be the complex OxxM (0 "* 
OxxMg(Z)(Vo)i it is easy to see that O is the C00 vector bundle associated 
to the hyperdirect image R27r2*£ = -R1/7r2*Op0(I

)o)- To use this information 
to evaluate Seiberg-Witten invariants, we have the following: 

Theorem 3.1. In the above notation, suppose that the expected real dimen- 
sion of Mg(€) is 2d, and let n be the natural class in H2(B(L)). Then the 
value of the Seiberg-Witten function on £ is JM ,^ e(O) U /z6*, where e(0) 
is the Euler class of the vector bundle O. In case X is a Kdhler surface 
and Mg{^) is equidimensional, this is the same as jM ,^ cn(0) U fid, where 
n = rankO. 

In particular we need to calculate cn{0)\ 

Lemma 3.2. In the above notation, suppose that X is a Kdhler surface 
and that M.g{i) is smooth. Then cn{0) is the degree n term in 

c{^PXxMg{0{Vo))-lc{TMg{0)' 

Proof. We need to calculate cn(0) = cn(i217r2*OD0(©o)). Now the mor- 
phism VQ —> Mgiji) has relative dimension one, and so ^IOVQCDQ), 
which is by definition the alternating sum of the it^^O^^o), is just 
R07r2*0Vo(Vo) - R^OvoiVo). Furthermore, R0n2*0Vo(Vo) is just the 
tangent bundle TMg(^) to Mg(£). Thus 

c(0) = c{Rl^OVo{VQ)) = c(ir2iOvo(Vo))'1c(TMg(0)' 

Using the exact sequence 

0 - OXXM,® -> 0XxMgii)(Vo) ^ Ov0(Vo) -> 0, 

it follows that, in the K-theory of Mg(ti), 

^2\Ovo(Po) = ^lOxxMgffiCDo) - ^2\OxxMg{^)' 
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Since ^OxxMgit) ^s a trivial vector bundle, 

c(7r2\0VQ(Vo)) = c(7r<2iOxxMg(t;)(Po))- 

Putting this together with the above formula for c(0) gives the statement 
of (3.2). □ 

Proof of (3.1). Consider quite generally the following situation: H —> B is 
a Hilbert vector bundle over the connected Hilbert manifold i3, and a is a 
smooth section of H. Let Z = cr-1^), assumed connected for the sake of 
simplicity, and suppose that the differential da is Fredholm of index e, at 
least in a neighborhood of Z. Suppose moreover that Z is a smooth compact 
submanifold of B of finite dimension ef and that Ker daz has constant rank 
for every z 6 Z and that the corresponding subbundle of TB\Z is the tangent 
bundle to Z. Define the obstruction bundle O —> Z by O = Coker(<icr|Z), 
of rank e' — e. Theorem 3.1 is then a consequence of the following lemma, 
which implies that the class of a small generic perturbation of Z is the same 
as the class of a generic section of 0, in other words that the Euler class 
of O represents the same cohomology class as the Seiberg-Witten class of a 
generic moduli space. □ 

Lemma 3.3. In the above situation, suppose that ai is a small nonlinear 
Fredholm C1 perturbation of a, with crj~ (0) = Zi, and that ai is transverse 
to 0 in the sense that dai is surjective at every point of Zi. Then there 
exists a section s of O —» Z which is transverse to 0 and a small isotopy in 
B froms-^O) to Zi. 

Proof Since Z is compact, standard arguments show that there is a neigh- 
borhood v of Z in B which is diffeomorphic to a Hilbert disk bundle over Z. 
Let TT : z/ —> Z be the retraction. Over Z, there is an orthogonal splitting 
H\Z = Imda © O. Using TT, we can pull this decomposition back to a split- 
ting ofH\i/ = I®0. Let TTI : H\u -> / and 7r2 : H\u -» O be the projections. 
Consider the composed map TTI O a : u —> /. At z E Z, the differential of 
this map is just dcr, and so restricted to a fiber TT

-1
 (2), the differential is an 

isomorphism. It follows that, if v is sufficiently small, then TTI O a\7r~1(z) is 
an open embedding for all z G Z. 

Now let ai be a small perturbation of a. If ai is sufficiently close to <7, 
then aj" (0) = Zi C v. Consider the map TTI O ai : v —■> /. If we restrict 
this map to a fiber TT"

1
^) of the map TT : u —> Z, TTI O CTIITT

-1
^) is close to 
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an open embedding. Thus, as long as <7i is close to a, TTI O ai\7r~1(z) is also 
an open embedding. In particular, (TTI ocri)~1(0) = Zi is again a section of 
TT : u —> Z, and it is close to the zero section a. Thus Zi is isotopic to Z via 
a small isotopy in u C B. 

Clearly Zi = af 1(0) = fa o crilZi)"1^). Moreover fa o ai\Zi) is a 
section s of the restriction C? —> Zi, and, if ai is transverse to 0, then s 
is also transverse to 0. Using the isotopy constructed above to identify the 
section s with a section of O —» Z, we see that we have indeed identified Zi 
up to isotopy with a transverse section of O —> Z, as claimed. D 

There are obvious generalizations of Lemma 3.3, and so of Theorem 3.1. 
For example, we might only assume that Z is a stratified space with K 
a compact subset contained in an open subset U of Z, such that U is a 
smooth manifold and Ker dau = TUU for all u € U. Then a generic small 
perturbation o"i of a has the property that there exists a neighborhood N 
of if such that crj"1(0) fl iV is a smooth manifold isotopic to a transverse 
section of the obstruction bundle over AT. For example, we might take for 
K a subset of the form //i fl • • • fl //*., where the /x; are generic geometric 
representatives for the ^-divisor. However, we shall not try to formulate the 
most general possible result along these lines. 

4. Elliptic surfaces. 

Let X denote an elliptic surface. Suppose that / is the divisor class 
of a general fiber, the multiple fibers are F^ and that the multiplicity of 
Fi is rrti. Thus Kx = (pg — l)f + J2i(mi ~ 1)-Fi- We first consider the 
much simpler case where X is regular, since this case arises in the smooth 
classification of elliptic surfaces (see for example [5], [2]). Then we will 
discuss the multiplicities for a general elliptic surface. 

If X is regular, Hl{Ox) = 0 and the Seiberg-Witten obstruction space 
involves only the two terms H1

(OX{DQ)) and H2(Ox(Do)). The divisor DQ 

is semiregular if and only if H1 (Ox (Do)) = 0. It follows from (2.3) of [5] that 
the Do are exactly the effective divisors which are numerically equivalent to 
^-Kx, for a rational number r < 1. In particular Do • Kx = 0. Another 
way to describe the Do is that they are the effective divisors numerically 
equivalent to a rational multiple of Kx such that Kx — 2Do has positive 
fiber degree (is a positive rational multiple of the fiber, or equivalently of 
Kx)- A similar statement holds if X is not necessarily assumed to be regular. 
As L2 — 0, the expected dimension of the moduli space is always zero, i.e. 
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X is of simple type.  We now compute the dimensions of the cohomology 
groups: 

Lemma 4.1. Suppose that X is regular, and let Do = af + Y^i^iFi w^h 
a > 0 and 0 < fe; < rrii — 1.  Then: 

h0(Do) = a + l] 

[a-pg,    ija>pg. 

[0, tfa^LVg- 

Proof. The statements about /i0(A)) and h2(Do) are clear and the rest fol- 
lows from Riemann-Roch, since x{^x(Do)) = l+pg. □ 

Thus we see that Do is semiregular if and only if a < pg. However, since 
X is regular and thus i?r>0,x is equal to the linear system \DQ\, which is a 
projective space Pa, i?Do,X is always smooth and the Zariski tangent space 
is the actual tangent space. To calculate the value of the Seiberg-Witten 
invariant on L, we take the top Chern class of the obstruction bundle. Now 
the moduli space is X x Pa, where Pa = |A)|. Over X x Pa, there is 
the incidence divisor V. The obstruction bundle over Pa has two terms 

R^OxxviV) and R^OxxF-CD)- 

Proposition 4.2. Suppose in the above notation that a < pg — 1.   Then 
fp  — 1N 

the multiplicity of the Seiberg-Witten invariant is (—l)a[   g 

Proof. By Lemma 4.1, the first term of the obstruction bundle is zero, and 
we must compute the top Chern class ca of i?27r2*C?xxPa(^)))- Next we 
calculate the class of V in Pic(X x Pa) ^ TT^ PicX 0 Z • 7r|0Pa(l). Since V 
is the incidence divisor, its restriction to the slice ^{D} is the divisor D, 
whereas its restriction to any slice {p} x Pa such that p is not in the base 
locus of Do is a hyperplane in Pa. Thus Oxx^{V) = TrJOxCA))®^^1)- 
So we have 

R2^Oxx^{V)) = R2
TT2* ^lOx{Do) ® 7r2*0Pa(l)) = Opa(l)^-a. 
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Setting h = ci(Opa(l))) we want to take the term of degree a in 

((1 + h)p'-ay1 = {1 + h)-^-a\ 
By the binomial theorem (see below for our conventions on binomial coeffi- 

cients), this is ("^ a)) = {-If fa " l\ D 

A similar argument shows: 

Proposition 4.3. Suppose in the above notation that a > pg. Then the 
multiplicity of the Seiberg- Witten invariant is 1 if pg = 0 and is otherwise 
0. 

Proof Since H2(D) = 0, by Lemma 4.1, we seek ca (i2
17^2*C?xxPa(^>))• 

Using the calculation OxxFa(T^) — ^iOx(Do) ® 7r2Pipa(l) given above, we 
need to find ca of 

R1^* «Ox{Do) ® 7r2*0Pa(l)) = H^DQ) ®c ^(1) = (C?P-(l))a-^. 

Upg = 0, then c((0Fa(l))a) = (1 + /i)a, and thus ca((0Pa(l))a) = 1. Oth- 
erwise, the multiplicity is ca of a bundle of rank less than a, and so is zero. 
□ 

Remark. If pg = 0, then the multiplicity is always 1, although we can 
have a > 0 if there are more than two multiple fibers. If pg > 0 and there 
are at most two multiple fibers (the case of finite cyclic fundamental group), 
then it is easy to check that a < pg — 1. In general however both of the 
terms in the exact sequence for the obstruction bundle can be nonzero. 

Next we turn to elliptic surfaces which are not necessarily regular. To 
state the result, let us record the following convention on binomial coeffi- 
cients (made so that the binomial theorem holds): For m > 0, the binomial 

coefficient (     ) = —-n(n — 1) • • • (n — m + 1). Thus it is 1 if m — 0, by the 
KmJ      ml 

usual conventions on the empty product, and it is 0 if 0 < n < m and m / 0. 

Moreover  (~^\  = (-W™+ ^" ^   For example,   (~£\  = (-1)™ 

With this said, suppose that X is a minimal elliptic surface over a smooth 
curve of genus g and DQ = af+^2i biFi is a basic class for X. Then the value 
of the Seiberg-Witten invariant on Do is given by the following formula, due 
independently to Brussee [2]: 
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Proposition 4.4. Let ir : X —» C be a minimal elliptic surface over a 
smooth curve C of genus g and let Do be an effective divisor corresponding 
to a Seiberg-Witten basic class. Suppose that DQ = 7r*d + YliaiFi, where 
d is an effective divisor on C of degree d, the Fi are the multiple fibers on 
X, of multiplicity mi, and 0 < a; < ra; — 1.   Then the multiplicity of the 

Seiberg-Witten invariant is (—1)  I 1. 

Proof. If Do = 7r*d + Yli aiFi as above, there is a natural morphism from 
Sym C = Cd to HD0ix obtained by pulling back the universal divisor on 
C x Cd to X x Cd- Slightly tedious arguments left to the reader show that 
this identifies HDQ^X &

S
 
a set with Cd- To calculate Zariski tangent spaces, it 

is easy to see that H0
(ODQ(DO)) has dimension d by using the fact that the 

normal bundle of Fi is torsion of order exactly ra;. Thus the dimension of 
the Zariski tangent space to HDQ,X is equal to the dimension of HD0,X = Cd, 
and the map Cd —» HDO,X is an isomorphism. 

Let TC2 : X x Cd -> Cd be the second projection, let p : X x Cd —> Cd 
be the map induced by TT, and let p2 : C x Cd —► Cd be second projection. 
Over C x Cd we have the incidence divisor J defined by J = {(£, d) : 
t G Suppd}. Thus the universal divisor V on X x Cd is just p*X. Let 
ip2 '• C xCd —> Cdbe projection onto the second factor. By flat base change, 
R1"K2*p*OcxCd(Z) — Rl^2*OcxCd(^)^ and in particular this is zero for i = 2. 
Recall that the multiplicity of the Seiberg-Witten invariant is then given by 
evaluating ca(R

17r2^0x>(V)) over Cd- Prom the exact sequence 

0 - Oxxcd - 0Xxcd(V) - 02,(2?) -* 0, 

we see that, in the iC-theory of Cd, 

i 

agrees with ^2\OxxCd{T^) up to the trivial element ^OxxCd, and thus they 
have the same Chern classes. Moreover 

C{R
1
TT2*OV{V)) = c(*2\0Xxcd{T>))-1c(lfi'K2*Ov{V)). 

Finally W^^O^V) is just the tangent bundle Tcd to Cd. By [1], p. 322, 

c{Tcd) = {l + x)d+l-9e-6ll+x, 
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where x is the class of the divisor Cd-i C C^ and 6 is the pullback of the 
theta divisor on Picrf C under the natural map. We also have the formula 

nk   d-k 9]' 

(g-ky: 
To find c(7r21 Ox xCd (£>)), we first apply the Grothendieck-Riemann-Roch 
theorem to find di(ir2\OxxCd(T^))' 

ch(7r2lOxxcdm = 7r2* (ch(OxxCd(©))7r1*ToddX). 

If 6 = [X] is the class of I on C x Cdl then ch(OxxCd(^)) = P*e6. Moreover 
ToddX = 1 + rf + x(^x) * pt for some rational number r. By [1], p. 
338, 6 = n[pt] <8> 1 + S1,1 + 1 ® x, where x is the class defined above and 
($i,i)2 = _2[pt] ® 0, ((51'1)2 = ((51'1) • [pt] ® 1 = 0. Since 7r*[pt] - / with 
f2 = 0, an easy calculation shows that 

ch(7r2!(9Xxcd(P)) - 7r2* (ch(OxxCd(©))^ToddX) = xiPx) • ^ 

and thus (setting x(^x) = X for brevity) 

Finally, then, the multiplicity of the Seiberg-Witten invariant is the term of 
degree d in 

(1 + x)-x(l + x)d+1-9e-ell+x = (1 + x)d+1-9-xe-6'1+x. 

Let N = d+l-g-X' Then 

(i+,)».-/i« = E (") E jji-W E (7) 
j    J k 

3 E E (7H<-V-* 9! 

Thus the degree d term is 

a   i+j+k=a   v    / ^ \/v^J/ 

= E E (-^(^f 

D-^E^G^^-r1))©- 
To evaluate the term in parentheses above, we have the straightforward 
combinatorial lemma: 
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Lemma 4.5.   We have: 

(By our conventions on binomial coefficients, this is 1 if a = 0 and is zero 
for —a < e < 0 and a ^ 0.) 

Proof. This follows by comparing the coefficient of ta in the two different 
power series expansions of (1 + t)a+e = (1 + t)a+e+i(l + t)-j. D 

Returning to the proof of (4.4), the lemma shows that the term in paren- 
/   N-j   \ 

theses is ( .        1, where e = 1—g — x (take a = d—j and N = a+j + e). 

Thus we obtain 

N-j  \(g\_\^,  ^jfd-j + l-g-x\fg 

-(-^i:(x:!j%*). 
which is just (-l)d times the coefficient of td in (1 + t)^+^-2(l + t)g = 

(i + t)x+2p-2j nameiy (_i)d fx + tg - 2\ as claimed n 

5. Product ruled surfaces. 

In this section we shall consider the ruled surfaces X of the form P1 x C, 
where C is a curve of genus g > 1. We shall also always assume that C is 
a generic curve in the sense of Brill-Noether theory, and shall use [1] as a 
general reference for the theory of special divisors on curves. 

Let TTI : X = P1 x C —> P1 be the projection onto the first factor and 
let 7T2 : P1 x C —> C be the projection onto the second. Let Fi = Tr^ip} 
be a fiber isomorphic to P1 and let F2 = 7rJ'1{p} be a fiber isomorphic 
to C. Thus F? = 0 and Fi • F2 = 1. In general we shall refer to a divisor 
numerically equivalent to nFi+rai^ as a divisor of type (n, m), and similarly 
for a complex line bundle. Thus for example Kx is of type (2g — 2, —2). 
Hence K^ = — S(g — 1).  Let L be a line bundle of type (2a, 26), so that 
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ci(L) = Kx mod 2. Then L2 = 8a6, and so L2 > K^ if and only if 
ab>l-g. Next suppose that LQ = (Kx ® i)1//2 has a holomorphic section 
for some holomorphic structure on LQ. AS LQ is of type (g — 1 + a, 6 - 1), 
we must have 6 > 1 and a > 1 - g, and we can write LQ = Cbc(A)), where 
A) is linearly equivalent to (6 - l)7r*(pt) + Tr^d for some divisor d on C of 
degree d = g — 1 + a. 

Next we turn to the condition that L • LJ < 0 for some Kahler form LJ. 

The real cohomology classes of Kahler metrics are exactly the classes CJ of 
type (:r, y) with x, y e R, and x, y > 0. Thus 

to - L = 2xb + 2ay. 

Since 6 > 1, we must have a < 0, and it is clear that by choosing x/y < —a/6, 
we can then arrange w • L < 0. (Note conversely that if x/y > —a/6, then 
L does not correspond to a basic class. Since — a < g — 1 and b > 1, if we 
choose x/y > # — 1, then there are no basic classes.) The final conditions 
on a and b are: 

6>1; ^^<a<0. 
b 

We note that the expected (complex) dimension of the Seiberg-Witten mod- 
uli space is g — 1 + ab. However, as we shall see, the actual dimension is 
equal to the expected dimension only for b = 1. 

Given a curve DQ of type (g — 1 + a, b — 1) = (d, b — 1), its irreducible 
components correspond to curves of type (e^, Q) with ^ e; = d and J^ Q = 
6—1. For example, if Do is irreducible, then Do is simultaneously a cover 
of P1 of degree d and a cover of C of degree 6—1. If 6 = 1, then necessarily 
Do is a union of d copies of C, or more precisely a divisor of the form Tr^d 
for some divisor d of degree d on C. In this case, HD0IX is just C^, the cPh 

symmetric product of C with itself. Note that — Kx is a divisor of this type, 
with a = 1 — g. In general, for such divisors, we have: 

Proposition 5.1. In case ci(L) = 2aFi + 2F2, then HDO,X = Cj and the 
value of the Seiberg-Witten invariant is 1. 

Proof. We have seen that Hf)0ix = Cj as sets. There is an obvious uni- 
versal divisor on X x Cj which is the pullback of the universal divisor on 
C x Cj. Thus there is a morphism from Cd to HDQ.X- TO see that this 
morphism is an isomorphism of schemes, it will suffice to show that HDQJX 

is smooth of dimension d. It is an easy exercise to identify H1
(OD0(DO)) 

with ^(P1;^0^) (2) Opi) ='Jff
i(P1;Opi) ® H0(Od). This has dimension 
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d for i = 0 and is zero for i = 1. Thus HDQ^X is smooth of dimension d, and 
is therefore isomorphic to Cj. Note that X is not of simple type if d > 0. 

Clearly, for p G X with ^(p) = £ € C, the incidence divisor for HD0IX 

and p G X may be identified with the incidence divisor for Cd and t e C, 
along with multiplicities. Let x be the class of the divisor in Cd- By choosing 
d distinct points ti,..., td and checking that the intersections are transverse, 
we see that xd = 1. Thus //* = 1 for the Seiberg-Witten moduli space as 
well, so that the value of the invariant is 1. □ 

For the remainder of this section, we shall mainly be interested in the 
case 6 = 2. In this case every curve Do of type (d, 1) can be written either as 
DQ = Di + TT!d2, where Di is the graph of a map C —> P1 of degree di and 
6.2 is a divisor of degree cfe — d—di on C, or DQ = 7r*(pt) -l-Trld, where d is a 
divisor of degree d on C. More generally, an irreducible divisor Do C P1 x C 
of type (d, b— 1) which is a section of the line bundle 7rJ(9Fi (b— 1) ® n^Ocid) 
corresponds to a map C —► Sym6-1 P1 = P6"1. In this case it is easy to check 
that the pullback of 0Pb-i(l) to C is just Oc(d). Moreover, let V be the 
smallest linear subspace of Cb such that P(V) C P6-1 contains the image 
of C. Then V is naturally a quotient of iJ0(d)*, of dimension r + 1, say, 
corresponding to a linear subseries of |d|. Note in particular that we always 
have r < b- 1. 

Next suppose that Do is not necessarily irreducible. Then DQ still corre- 
sponds to a linear system V C #0(d)* with P(V) C Sym6"^1 ^ P6-1. 
In fact, if DQ is defined by the section CTQ G iir0(b) ® i?0(d), write 
(TQ = Y2iai®/3i, where the ai G iJ0(b) and the # G i?0(d) are linearly inde- 
pendent. For p G C, the morphism C —> Sym6~1P1 sends p to ^ &(#)(*{, 
after choosing a coordinate for 0c (d) at p. This is well-defined if p is 
not in the base locus of the span of the $, and extends to a unique mor- 
phism C -> Sym6"1 P1. Now ao G H0(b) ® H0(d) defines a homomorphism 
^(d)* -> ff0(b) whose image F is spanned by the a.. Thus F* C iJ0(d) 
is a linear series. 

At one extreme, consider divisors DQ of the form Tr^b + TrJ-Jd, where 
deg b = b— 1 and deg d = d. In this case, V has dimension 1, the linear series 
corresponding to V is the single divisor d, which is the base locus for the 
series, and the map C —► Sym6-1 P1 = P6-1 is constant, with image equal to 
b. In this case, let DJIQ = P6-1 x Q, thinking of this space as parametrizing 
all divisors of the form 7r|b + Tr^d. Then we have an obvious divisor on the 
product X xQJlo, and thus there is an injective morphism P6"1 x Cd —► #£>o,x- 
In particular, HDQ^X has dimension at least d + b— 1 = g — \ + a + b — 1 = 
g + a + b — 2, whereas the expected dimension of HD0^X is g + ab — 1. In this 



478 Robert Friedman and John Morgan 

case the difference between dimSJlo and the expected dimension of HDO,X 

is (6 — 1)(1 — a). Since a < 0 we see that the actual dimension is always 
greater than the expected dimension as long as b > 1. To see the image of the 
tangent space to 9Jto inside the Zariski tangent space of H^^x-, note that the 
Zariski tangent space of HDO,X is H0

(ODQ(DQ)). In case Do = Trjb + Tr^d, 
there is an map H0{O^ih) 0 HPip***) -> H0(0Do(Do)) given as follows: If 
we set Ei — Tr^b and E2 = Trjd, then this is just the natural map 

(Oxm/Ox) ® (Oxm/Ox) ^ Ox(E1 + E2)/Ox. 

Locally for R = C{zi, 22}, this is the same as the map 

R/z?R 0 R/ztfR -> R/z^zpR 

defined by (f,g) f—> z(%f + z^O, which is an inclusion since z*1 and z%2 

are relatively prime. Thus the image of the tangent space of DJIQ is LQ = 
H0(On*b) © ^(C^Trjd), of dimension b — 1 + d, and the map from dJto to 
HDQ,X is an immersion. 

Concerning the structure of HD0JX at a divisor DQ of the form Tr^b+Tr^d, 
where deg b = b — 1 and deg d = d = g — 1 + a, we have the following result: 

Lemma 5.2. The scheme HD0,X is smooth of dimension (b — 1)(1 — a) at 
the divisor Do = Trj^b + Tr^d if and only if hP{C\ d) = 1, or in other words 
if and only if d is an effective divisor which does not move in a nontrivial 
linear system. More generally, i/dim |d| = r and ifT is the Zariski tangent 
space of HD0ix 

at DQ, then there is an exact sequence 

0 -> (^(P^bJOf^CCjdJJ/Cao -► T -> KeriH^Oc) -► H^Ocid))} -> 0, 

where the map Hl{Oc) —> Hl(Oc{d)) is given by multiplying by the section 
coresponding to d.  Thus 

d\mT = b{r + l)-l + d-r. 

Finally, the image ofDJlo is a component of HDQ^X- 

Proof First note that H0(X;Ox(Do)) = fl^P^Opifa " 1)) ® #0(C;d). 
Thus if h0(C]d) — 1, then every nonzero section of H0

(X]OX(DQ)) is of 
the form Tr^b+Tr^d for some divisor b of degree 6-1 on P1. Hence /i0( A)) = b 
and I Do I = IP6"1. In general, setting r + l = h0(d), 

dimH0(Ox(Do))/C • ao = b(r + 1) - 1. 
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Now H^Ox) = H0(OFi) ® H^Oc). Given a section CTQ of Ox(Do) of the 
form (7i ® (72, multiplication by CTQ is just multiplication by <T2 from iJ1((9c) 
to i?1(d), followed by multiplication by ai. On the other hand, using the 
exact sequence 

0 _> Oc -> Oc(d) -> Od -> 0, 

where the map Oc —> C?c(cL) is multiplication by (72, it follows that the 
dimension of the kernel of the map Hl(Oc) —> -ff1(d) is d — r (and the 
dimension of the cokernel is g — d + r). So the dimension of the Zariski 
tangent space is b(r + 1) — 1 + d — r, whereas the actual dimension of 9Jlo is 
b—l + d. For the generic divisor d G C^, r = 0, since d = g + a — 1 < g. For 
such a divisor d, the map 3Jlo —► HD0,X is an embedding near d. Thus the 
image of 97to is a component of HD0IX' Finally HD0JX is smooth at d € DJlo 
if and only if r = 0. □ 

The same argument identifies the obstruction space at DQ: 

Lemma 5.3. Suppose as above that DQ = Tr^b + Tr^d.  Then 

Coker {xao : H^Ox) - H^OxiDo))} 

is equal to H0(OFi(b—l))/C-(7i®iJ1(d) and has dimension (b—l)(g—d+r). 
a 

We can put Lemma 5.3 in a more intrinsic global form as follows. The 
tangent bundle to P6-1 is naturally 0Fb-i(l)b/Of>b-i. Over C x Cj we have 
the incidence divisor I defined by 

l={(t,d) :te Suppd}. 

Let ^2 • C x Cd —> Cd be projection onto the second factor. Then using the 
exact sequence 

0 -> OCXQ -^ 0Cxcd(X) -. PrCI) - 0, 

we have an exact sequence of direct image sheaves by applying Rlip2*> Here 
ip212" is a d-sheeted cover, and in particular it is finite. Moreover J is a 
hypersurface in C x Cd and Jfl V,2"1(d) is identified with the divisor d on 
C. It is easy to see that i2O/02*C?j(X) is canonically the tangent bundle Tcd 

of C^. Since it is torsion free, and R0ip2*OcxCd —> R0ftp2*OcxCd(I) is an 
isomorphism at a general d, R0ilJ2*OcxCd — R0i>2*OcxCd(Z) and we have 
an exact sequence 

0 - Tcd -> Rlih.OcxCi -> tfih.OcxcAZ) -+ 0- 
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Here Rlfip2*OcxCd = Hl{Oc) x Ocd is a trivial bundle of rank g on C^ and 
we set £ = i?1V;2*^CxCd(2^)- Note that the Chern classes of £ are given by 
c(S) = ciTc,)'1. 

Lemma 5.4. Let pi : P6-1 x Cj —> P6-1 6e projection onto the first factor 
and let P2 : P6-1 x Cd —> Cj be projection onto the second factor. We then 
have a map pfTpb-i Qp^ —> ^^xOxxWloity/R^^OxxWlo, and it is an 
isomorphism over those points (b, d) ofVJlo where h0(d) = 1. D 

Let us study the obstruction space for a divisor -Do which is not neces- 
sarily in QJIQ. 

Lemma 5.5. Let Do C P1 x C be a divisor of type (d,b— 1), corresponding 
to a morphism C -> Sym^P1 ^ P6"1. Let V C #0(d)* be the linear 
subspace corresponding to the image of C. Then the obstruction space for 
HDO,X 

at DQ is zero if and only if the map C —> P6-1 is nondegenerate and 
the map 

lxo-V*®H\Kc-a)^H0{Kc) 

given by cup product is injective, which holds for a generic curve C. 

Proof. The obstruction space is given as the cokernel of the map Hl{Px) —> 
^{OxiDo)) which is multiplication by (JQ. Here Hl(Ox) = H0\o¥i) 0 
Hl{Oc) and Hl{Ox(Do)) = H0(OFi(b - 1)) ® H^Ocid)). Let V be 
the quotient of jff0(d)* corresponding to the map CTQ G H0(b) ® H0(d) = 
Hom(il0(d)*, iJ0(b)), and let ai,..., an be a basis for V viewed as a sub- 
space of i?0(b). It follows that we can write (JQ = Ysi ai ® A for A ^ ^0(ci) 
which are linearly independent. In this case, {$} must also be a basis 
for y* C H0{d). Multiplication by CTQ is equivalent to the map send- 
ing f G Hl{Oc) to X^ai ® (A0- This map is surjective if and only if 
V = H0(Ori (b — 1)) and the natural map 

H^Oc) -> H0(Ori(b- 1)) ® ff^d) 

is surjective. After composing with an invertible linear map from H0(OFi (b— 
1)) to itself, we can assume that a* = A*? ^^e dual basis to /%. In this case 
multiplication by CTQ is easily seen to be the adjoint of the map fiQ. Thus 
multiplication by CTQ is surjective if and only if V = H0(Of>i(b — 1)) and fj,o 
is injective. □ 
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We note that, in case /XQ is injective, and in particular for a generic curve 
C, (5.5) identifies the obstruction space as (H0(OFi(b - 1))/V) ® ff^d). 
For example, in case CTQ = 7r*b + Tr^d, V is a line in H0(Ori(b — 1)) and 
the obstruction space has dimension (b— l)(g — d + r) as given by Lemma 
5.3. In case b = 2 and /ZQ is injective, the only possibilities are dimy = 
1 corresponding to CTQ = Tr^b + TT^CI, and dimF = 2, V = iJ0(Opi(l)), 
corresponding to Do = Di + Tr^d7, where Di is the graph of a nonconstant 
map from C to P1. Thus the obstruction space is necessarily zero in this 
case, provided that /ZQ is injective. 

Let us now describe all of the components of HDQ^X in the case b — 2. 
In this case 0 < — a < (g — l)/2 and so d > (g — l)/2. Now suppose that 
Do = Di + 712 d', where Di is the graph of a map from C to P1 of degree di 
and d' has degree d' = d — di. Thus Di corresponds to a linear subseries of 
Id71, which we can write as P(V*) for some vector space V of dimension two, 
together with a choice of isomorphism V = P1. In general we can think of 
DQ as corresponding to a sublinear system of |d| with base points. If C is 
generic in the Brill-Noether sense, then for there to exist a map from C to 
P1 of degree di, we must have the Brill-Noether number p = 2di —g — 2 > 0, 
in which case the set G\ of all linear series of degree d and dimension one 
has dimension exactly p. Moreover for a generic curve C, if p = 0 then 
Gj consists of reduced points, whereas if p > 0 then G^ is smooth and 
irreducible of dimension of dimension p and the generic linear series in G\ 
is complete. We see then that if d = (g — l)/2,p/2, (g + l)/2, then 9Jlo 
is the unique component of HD0,X' For d = (g + 2)/2 the components of 
HDO,X are QJlo together with a number of components isomorphic to P3 = 
P(ij'0((9Pi (l)(8)i?0(d)), one for each g^ on C. For d > (ff+2)/2, there are two 
components, dJlo and a smooth component of dimension p + 3 = 2d — </ + 1, 
which is essentially a P3-bundle over Gj. 

Next we discuss the analytic structure of the moduli space in a neighbor- 
hood of a singular point in case b = 2, in other words how the components 
meet. Recall from Proposition 1.3 that the obstruction map has an intrin- 
sically defined quadratic term given by a U da. 

Lemma 5.6. Let DQ be given by the section CTQ = ^ a* <S> $ 6 il0(b) ® 
il0(d); where the a; and /% are linearly independent and V = span{ai} is a 
quotient o/i?0(d)* with dual space V* C H0(d). Suppose that V* ^ H0(d) 
and that the map p,o is injective for d. Then cup product induces a surjective 



482 Robert Friedman and John Morgan 

map 

H0(Ox(Do))/Cao ® d(H0(0Do(Do)) -> H1(Ox(Do))/aoH1(Ox) 

More precisely, for every T<I $. V* C i?0(d); i/ie mop 

(^(b) ® Cr2) ® d(H0{0Do(Do)) ^ (il0(b)/y) ® ff^d) 

is surjective. 

Proof. The image of 9 : H0(0Do(Do)) -> ff1^) = ^(Opi) ® ff1^) 
is the set of all 1 ® £, where ^ a ® £/?* := 0- Since the a* are linearly 
independent, this condition is equivalent to the condition that f/% = 0 for 
all i. Cup product of such a class 1 ® £ with 

ri (8) r2 G H0(Ox(Do)) = iy0(b) ® iJ0(d) 

is ri 0 (r2 • 0 € il^C^A))). For the projection of this map to 

Hl{Px{Po))laoH\Ox) = (H0(b)/V) 0 H^d) 

to be surjective, it suffices that, setting 

(V*)1 = { £ € ff^Oc) : $ ' A = 0 for all t} , 

the induced cup product map H0(d) ® (F*)-1 —> -ff^d) is surjective. Now 
by assumption, the adjoint //Q of the /XQ map is surjective, where 

l4 : ff^Oc) -^ ^(d) ® iJ0(d)* = Hom(i?0(d), i?1^)). 

Since i?0(d) / F, there exists a T2 ^ V. Given r; G ^(d), there exists a 
linear map F : H0(d) -> ^(d) such that F(V) = 0 and Ffa) = 77. The 
surjectivity of the map /XQ implies that .F is given by taking cup product 
with a £ such that £ • # = 0 for all i and £ • T2 = 77. Thus the image 
of H0(Ox(Do))/Cao ® d(H0(0DQ(Do)) contains every element of the form 
ri ® 7?, where ri and 77 are arbitrary, and so is all of (H0(b)/V) ® -H'1(d). D 

Using Lemma 5.6, we can describe the local structure of HDQ^X m case 

6 = 2 near a reducible divisor Trjb + Tr^d, provided that d is generic in the 
sense that hP{d) is exactly 2. 
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Corollary 5,7. With assumptions on the {IQ map as above, suppose that 
b = 2 and that Do = Trjb + Tr^d, where h0(d) = 2. Then an analytic 
neighborhood of H£)Qjx near DQ is biholomorphic to a neighborhood of the 
origin in LQULI C Cd+2, where LQ is a hyperplane and Li is a linear space 
of dimension 2d — g + 1, not contained in LQ. 

Proof The dimension of the Zariski tangent space T to HDQ.X is 2 • 2 — 
1 + d—l = d + 2. The dimension of P1 x Q is d + 1, and so the image 
Lo of the tangent space to P1 x Cd at DQ has the expected dimension of a 
hyperplane in T. In fact, we have seen in the discussion prior to Lemma 5.2 
that Lo is indeed a hyperplane, defined by the linear form £, say. Thus if 
$ : T —» C^~d+1 is the Kuranishi obstruction map, defined in a neighborhood 
of the origin, then there exists a holomorphic function / with differential £ 
such that $ = /\I>, and the quadratic term in $ is equal to t- d^o- The span 
of a U da over all a is thus contained in the image of d^o and this span is 
the same, after polarizing, as the image of a U 9/3 + /? U da over all a, /?. 
Using Lemma 5.6, there exists a choice of c^, fa with eta; = 0 such that the 
obstruction space is generated by a* U dfa. Thus d^o has the same image 
as the map of Lemma 5.6 and so is surjective. It follows that $~1(0) = 
LQ U \fr_1(0), where ^r~1(0) is a smooth submanifold of T of codimension 
g — d + 1. If it does not meet Lo transversally, then Kerd^o Q LQ. But 
Loniyo(0x(A)))/CGro is the tangent space to the Segre embedding of P1 xP1 

in PiJ0(Ox(Do)) = P3. Thus H0(Ox(Do))/Cao is not contained in LQ. On 
the other hand, H0(Ox(Do))/C(Jo is the tangent space to ¥H0(Ox(Do)) 
and so is unobstructed, so that it must be contained in Kerd^o- Thus 
Kerd^o is not contained in LQ, and so \I/-1(0) meets Lo transversally. This 
concludes the proof. □ 

Finally, for a generic curve C, we shall use the description of the com- 
ponents of the moduli space above to make some calculations in case 6 = 2 
and d is small. We do not need the description of the analytic structure 
of the moduli space. In this case the moduli space always has the compo- 
nent DJIQ = P1 x Sym^C. For d = g - l/2,g/2,g + 1/2, 9Jto is the unique 
component, whereas in general the moduli space is equal to WIQ U 9Jti. For 
d = g + 2/2, 9Jli is a union of k copies of P3, where k is the number of g^s 
on C, and for d > g + 2/2 DJli is irreducible and smooth, of the expected 
dimension p + 3 = 2d — g + 1. 

To calulate the value of the Seiberg-Witten invariant, we shall first cal- 
culate the contribution from WIQ and then the contribution from SDti. Note 
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that DJlo does not have the expected dimension, which is 2d—g+l. Moreover 
the moduli space is in general singular. However it is easy to see that we can 
choose incidence divisors ^i,..., ^d-g+i which meet properly in the smooth 
part of the moduli space. Following the procedure of Section 3 (see the com- 
ments at the end of the section), we first calculate the top Chern class of the 
obstruction bundle over SPTo, which we have seen (Lemma 5.4) is the bundle 
pflpi x p^S^ at least after cutting down by n2d~9Jtl. Here the pi are the pro- 
jections of P1 xSymd C to the ith factor and £ is the bundle RlilJ2*OcxCd{Z), 
of rank g — d. The top Chern class of the tensor product of p^ w^h ^e 

line bundle p*TPi is: cN[p\Tpi x p*£) = Y^L^MT^Yp^N-i^)^ If h 
is the hyperplane class on P1, in other words the class of a point, then 
PiCi(Tpi) = 2plh and pJc^Tpi)* = 0 for i > 1. Thus 

CN(PITFI x pffi = plcN{£) + 2pihp2CN-i(£). 

By [1], p. 322, c(£) = c^)"1 = (l+a:)^"1"^/1^, where x is the class 
of the divisor Cd_i C Cj and 6 is the pullback of the theta divisor on Pic^ C 
under the natural map, and moreover 9kxd~k = T-^TJT- TO calculate the 
Seiberg-Witten invariant, we take c/vOPiIpi xp^)? where N = g — d= 1 —a. 
This gives a class in i?2^(P1 x SymdC), and then we further multiply by 
^d+i-N ancj evaiuate over the fundamental class. On P1 x Symd C, it is clear 
that /JL = plh + p^x, since (t,p) € 7r*{s} + Tr^d if and only if either t = s 
or p e d, and it is easy to see that the multiplicity is one. Thus we must 
calculate 

(pth + P*2x)d+1-Np*2cN(S) + 2P*1hp*2cN-1(£)) 

= (2p*1h)p*2(cN-1(£)xd+1-N + (d+ 1 - N)pthp*2(cN(£)xd~N 

= 2cN-1(£)xd+1-N + (d + 1 - N)cN(£)xd-N. 

Plugging in for c(£), we have 

c(£) = (1 + x)"-1-^0'1** = (1 + xf-W1** 

i=0   V /       j=0J        k=0  v 
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Thus for example the term involving c/v-i(£) becomes 

where we have used g = N + d. 
Applying Lemma 4.5 with e = 0 to the inner sum above, where we 

let a = N — 1 — j for a fixed j, we see that the expression reduces to 

»"£(r 
A very similar manipulation with the term (d+ 1 — N)cN(£)xd~N gives 

(d + 1 - iV)^)*^ = (d + 1 - AT) ^ + ^. 

The final contribution for the component Tto is therefore 

Note that 9Jto is the unique component for N — d+1, d, d— 1 corresponding 
to the cases g = 2d + 1,2d, 2d — 1. Plugging in, we find that the value of the 
invariant in case N = d + 1 is 

Similar calculations handle the cases N — d,d — l, and again give the value 
29. 

For d = g + 2/2, AT = d — 2, g = 2<i — 2, the set SJti consists of k copies 
of P3, where k is the number of g^s on C. This number has been computed 
by Castelnuovo [1] p. 211: it is 

1 1 (2d-2)! 
9'- {g-d+l)[{g-d + 2)\      (d-l)\dV 
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In this case, the restriction of V to each piece X x P3 is the incidence divisor, 
so that /J, restricts to the hyperplane class in each P3. Thus the final answer 
is 

nt^(2d-2\     j2d-2\       (2d-2)1 

which after a brief manipulation becomes Y^ (      .     j = (1 + l)2c?_2 = 2P. 
j=o  \    3    / 

Somewhat more involved methods handle the case iV = d — 3, and pre- 
sumably might be pushed, using excess intersections, to give the general 
case.   However, we shall give a simpler method for the calculation in the 
next section. 

6. Deformation to more general ruled surfaces. 

In this section, we shall study Seiberg-Witten moduli spaces, or equiva- 
lently the Hilbert scheme, for more general ruled surfaces P(10> where V is 
a general (and in particular stable) rank two bundle over C. We shall deal 
with the case where det V has even degree, and thus assume that ci(V) = 0. 
Also, we shall only discuss the case of sections of V. However, it will be 
clear that our methods generalize to handle the case of odd degree as well 
as more general cases of multisections, and thus suffice for the homological 
calculations of the invariants in general. We will outline this approach at 
the end. Throughout this section, we fix a smooth curve C of genus g > 2. 
it will not be necessary to assume that C is generic in the Brill-Noether 
sense. 

Recall that there is a one-to-one correspondence between irreducible sec- 
tions Do of P(F) and line bundles A such that V®\ has a nowhere vanishing 
section, as follows: given a section DQ of P(V), apply iZV* to the exact se- 
quence 

0 _> ox - Ox(Do) - 0Do(Do) - 0 

to obtain the exact sequence 

0 _> Oc - R07r*Ox(Do) -* 0Do(D0) -+ 0. 

Here R^Ox = 0 since the fibers are P1 and we can write R07r*Ox(Do) = 
Vw ® A = V <g> A. Note that the normal bundle 0Do(Do) is naturally A2. 
The inverse map sends the section of Vv® A to the homogeneous degree one 
subvariety of F(V) that it defines. 
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If JDQ is not irreducible, then Do = Eo + 7r*e. In this case the map Ox —> 
Ox (Do) factors through Ox(Eo) and the induced map Oc -* R0/

K^OX{DO) 

factors as 

Oc -+ R07T*Ox(Eo) - R07r*Ox(Eo) ® Oc{e) = lPir*Ox(Do). 

Thus Do still corresponds to a section of yv(8)A for an appropriate A, but the 
section vanishes exactly along e. Again such a section defines a subvariety 
of P(V), which is exactly Do since the section vanishes along e. In this way, 
we can identify |Do| with FH0(VV ® A), including the reducible fibers. 

Proposition 6.1. Let e be an positive integer. For every line bundle A on 
C of degree e, 

(i)   There exist stable bundles V on C together with an exact sequence 

0 -> A"1 -► V -> A -> 0. 

(ii) For e < (g — l)/2, and V a generic stable bundle satisfying (i); if fi 
is a line bundle of degree d < e and H0(V ® n) ^ Q, then JJL — A and 
H^iy ® A) has dimension one. 

(hi) For e = (g — l)/2 and V general, there are exactly 29 distinct A with 
H®(V ® A) ^ 0; and for each such X, dimiJ0(V' <g> A) = 1. Moreover, 
if deg IJL < (g - l)/2, then H0(V (g) fi) = 0. 

Proof. For a line bundle A of degree e > 0, Ext1 (A, A-1) = il^A-2) which 
has dimension 2e + g — 1, by Riemann-Roch. Let V be a rank two bundle 
corresponding to an extension class £ E iT1(A~2). Suppose that there exists 
a nonzero map /x —► V, where deg// = d < e, and that /x ^ A in case d = e. 
Since H0(fi<S> A-1) = 0 since /x<g> A-1 either has negative degree or has degree 
zero and is not trivial, there must exist a nonzero section of // <g) A which lifts 
to a section of /z ® V\ Note that (5), the divisor of zeroes of 8, has degree 
d + e, and we can identify the set of all pairs (//, s) such that fi is a line 
bundle of degree d and s is a nonzero section of /x ® A, mod scalars, with 

The section s lifts to a section of /i <g> V if and only if the coboundary 
map d(s) = 0, where ds e Hl(n ® A-1). Now ds = £ • 5, the cup product of 
s e H0

(IJL® X) with £ € iJ1(A~2). Consider the exact sequence 

0 _> A"2 -^ A"1 (8) M -> Of -> 0, 
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where f = (s) G Cd+e. By assumption, ds = 0 if and only if f • s = 0 if and. 
only if the image of £ in iJ^A-1 ® /x) is zero, if and only if £ is in the image 
of H0(Of). By assumption either deg(A_1 ® //) < 0 or deg(A~1 ® /x) = 0 
but A-1 (g) /x is not trivial. In either case iJ^A"1 ® /x) = 0, and so the 
image of il0((9f) has dimension d + e. Thus the set of possible extension 
classes £ for which a given 5 lifts has dimension d + e, and so corresponds 
to a Pd+e-i c Pil^A-2) = P2e+s-2. The set of all £ for which some 5 lifts 
is then the union over all s of a linear subspace of p2e+2-2 of dimension 
d + e — 1. Since the set of all 5 is just Cd+e, the dimension of the set of all 
possible £ is at most 2d + 2e — 1. This number is less than 2e + g — 2 exactly 
when d < (g — l)/2. Choosing a bundle V coresponding to an extension class 
£ in the complement of this set gives a bundle V, written as an extension 
of A by A-1, such that, if H0(V ® /x) 7^ 0 and deg/x < A, then /x = A. In 
particular, V is stable, proving (i) and (ii), except for the statement that 
dimH0(V®\) = l. 

To see the statement about dimH0(V® A), if 5 is a nonzero section of A2 

which lifts to a section of V ® A, then arguments similar to those above show 
that the orthogonal complement of s-H0(Kc) in firl(A2) has dimension 2e—1 
and so gives a linear space of dimension 2e — 2 inside p2e+£-2. Moreover, the 
possible s correspond to the case /x = A, and so form a proper subvariety of 
Cd+e = C2e- In all? the £ for which some s lifts, such that the corresponding 
line bundle /x = A, form a subvariety of p2e+0-2 of dimension at most 4e — 3. 
Now Ae — 3<2e + g — 2 provided that e < (g + l)/2, and thus certainly if 
e < (g — l)/2. This establishes the last statement of (ii). 

The remaining assertion (iii) is a classical formula due to Corrado Segre 
[11]. It follows from our formulas in the previous section for the zero- 
dimensional invariant, and will be reproved in more generality shortly.     □ 

We now fix a bundle V which will later be assumed generic in an appro- 
priate sense. For each cf, we consider the following varieties of Brill-Noether 
type: 

W^d(V) = { A e PicdC : h0(V ® A) > 1 } ; 

GM00 = { (5, A) : A e Picd C, s e F(H0(V ® A)) } . 

Thus there is a natural map Gi^{V) —> W^diY). I* is also clear ^at, with 
X = F(V), G^diY) *s exactly the Hilbert scheme of X corresponding to 
sections (possibly reducible) of the appropriate degree and that the map 
Gi,d(V) —> Witd(V) can be identified with the map from the Hilbert scheme 
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to PicX. We wish to give another construction of the Hilbert scheme in this 
context; in other words, we will put another scheme structure on Gi^V) and 
then claim that it is in fact the usual one. To do so, we make a construction 
similar to the usual construction of Brill-Noether theory: fix a divisor D on 
C of degree m > 0 such that ^(V ® A <g> Oc(D)) = 0 for all line bundles 
A of degree d. We can assume that D is an effective divisor consisting of 
reduced points of C if we wish. Consider the restriction sequence 

0^V®\->V®\® Oc(D) -> V ® A ® OD(D) -► 0. 

Taking global sections, there is a map 

ip : H0(V ® A ® Oc(D)) -> iI0(V ® A ® OD(£>))• 

The first vector space has dimension 2m+2d—2g+21 by Riemann-Roch, and 
the second has dimension 2m, and A £ Wi^(V) if and only if ip has a kernel. 
In this case, the fiber over A in Ghd(V) is just P(Ker^) = P(iI0(V ® A)). 
Globally, let V be a Poincare line bundle for C x Pic^ C, and let TTI be the 
projection of C x Picd C to the 2th factor. Set 

£' = 7r2* (^ ® 7rJ(y ® Oc(£>))); 

£" = 7C2*(r®iri(V®0D{D))), 

so that there is a natural evaluation map $ : £' —> f^77. Then Wi^V) is 
the scheme where $ fails to be injective. We can define G^diV) similarly: 
let p : F£' —> Pic^C be the projection. We have the inclusion of Of>£t(—l) 
inside p*£f. Consider the composition 

If we denote this composition by <&, then <J> = 0 at a point (5, A), where 
A G Picd C and s e ¥H0(V ® A ® Oc(D)), if and only if 5 is in the image of 
¥H0(V ® A). Thus the vanishing of <S defines Gljd(V) as a set inside F£'. 
Note that P^7 is itself a Hilbert scheme: it is the same as Gijd+m(V), corre- 
sponding to the set of all sections of X of degree 2d+2m. Moreover Gi^V) 
is the subset of ¥£f consisting exactly of those sections containing 7r*D. We 
leave it to the reader to work through the details that the subscheme defined 
by $ represents the functor corresponding to Gi^(V) (see [1] pp. 182-184 
for the Brill-Noether analogue) and that indeed this identifies Gi^V) with 
the Hilbert scheme as schemes. 

Next suppose that (5, A) is a point of Gi^V) such that the section 
s does not vanish.    Standard arguments (cf.  [1],  pp.  185-186)  identify 
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the Zariski tangent space to Gi}d(V) at the point (5, A) with iJ0(A2) = 
Hom(A~1

? F/A-1), via the exact sequence 

0 -> H0(Oc) -> H0(V ® A) -+ H0(X2) -> H^Oc) ^ ^(^ ® A). 

Moreover the differential of the map from G?i^(F) to Witd(V) is the obvious 
map iJ0(A2) —► Hl{Oc). Finally, a standard cocycle calculation identifies 
the obstruction space as i71(A2). Note that, if A corresponds to the section 
Do of X, then iJ1(A2) = H1

{OD0{DQ)) is the same obstruction we would 
have found via the Hilbert scheme, as well it must be since Gi^V) represents 
the same functor as the Hilbert scheme. 

For a general section 5, suppose that the map Oc —> V ® A vanishes 
along the divisor e, so that there is a factorization 

Oc -* V ® A ® Oc{-e) -+ V ® A. 

Let AQ = A ® Oc{—e). Then there is a commutative diagram 

0  ► Oc  > V®X®Oc{-e)  >      \l       ►  0 

0 > Oc >   '   ^^A        > Ager >.o. 
Here T is a skyscraper sheaf isomorphic to V ® OB, and so has length 
2 deg e = 2e, say. We can again identify the Zariski tangent space to Gi^iV) 
at (5, A) with 

Hom(A-1, V/\-1) = H0(V ® A/5 • Oc) - H0(\% e T) = iJ0(Ag) e iJ0(T). 

Moreover the obstruction space is 

Ext^A"1, V/X-1) = H^Xl 0 T) = ffH^o)- 

This again corresponds to the deformation theory and obstruction theory 
for the Hilbert scheme: let Do = So+7r*e, where EQ is an irreducible section 
of X. Apply i?V* to the exact sequence 

0 _> Ox - OxCA)) ^ oDo(Do) -> 0, 

using i?1^*^ = i^Tr.OjrCA)) = 0. We obtain 

0-+Oc->V®\-* Tr*0Do(Do) -»0, 

and 1217r,C?jD0(Z?o) = 0. Thus 

WiOn^Do)) = IP^OD^DO)) = H\V ® A/s • Oc). 

Summarizing, we have shown the following: 
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Proposition 6.2. Let(s,\)beapointofGi^(i(V). Suppose that the section 
s vanishes exactly along the effective divisor e; and set \Q = A (g) Oc{—e). 
Then the Zariski tangent space to Gi^iY) is H0(V ® A/5 • Oc), which has 
dimension ^0(Ao) + 2e; and the obstruction space is iJ1(Ao). □ 

Assuming for simplicity that s does not vanish at any point, and so 
A = AQ in the above notation, the group iJ^A2) arises in yet another 
way as follows: the universal extension over PiJ1(A2) of A by A-1 gives 
rise to a Kodaira-Spencer map from the tangent space of Piif1(A~2) at a 
nonzero point £ G iJ^A"2), namely il^A"2)/^, to il^ad V). A diagram 
chase identifies the cokernel of this map with iJ^A2) under the natural map 
H^odV) -> H1^2). Thus tf^A2) = 0 if and only if the map from the set 
of extensions to moduli is a submersion at £. If d > (g — l)/2, then for a 
generic choice of A we will indeed have iJ1(A2) = 0, and so the map from 
extensions to moduli will be a submersion where defined. 

We now show that, for a generic choice of V, the Hilbert scheme is always 
smooth: 

Proposition 6.3. For a generic stable bundle V with ci(V) = 0 and for 
all d, the Hilbert scheme of sections of X = P(V) of square 2d is everywhere 
smooth of the expected dimension 2d — g + 1. 

Proof. Fix a value for d corresponding to the degree of a line subbundle A 
of V. We have seen that, for generic V, the space of sections is empty if 
d < (g — l)/2, and if A has degree > g — 1, then /i1(A2) = 0 by Serre duality. 
For (g - l)/2 < d < g - 1, let V be the Poincare line bundle over C x Picd C 
and let V = iZ1^*^®"2. Note that, as degA = d > 0, then h0(\®-2) = 0 
and /i1(A<g>~2) = 2d + g — 1. Hence V is a vector bundle of rank 2d + g — 1 
over Pic^C and PV is a P2d+^-2-bundle over Pic^C. The space PV is a 
moduli space for vector bundles V given as extensions. There is an open 
subset U of PV corresponding to stable bundles, which is nonempty by (i) of 
(6.1). The remarks prior to the statement of (6.3) imply that the morphism 
U —> 9Jl(C) is dominant, where 9Jt(C) is the moduli space of stable rank two 
bundles V over C with ci(V) = 0. Let 

B= |AGPicdC:/i1(A2)^o} 

Since ft,1 (A2) ^ 0 if and only if h0(Kc ® A 2) ^ 0, B is the inverse image 
in Picd C of the set of effective divisors in Pic

2^-2-2d c under the obvious 



492 Robert Friedman and John Morgan 

(etale) map A \-+ Kc ® A~2. Thus B has the same dimension as the set of 
effective divisors in Pic2^-2-2d C, namely 2g - 2 - 2d. Hence if p : PV -> 
Pic^ C is the projection, then 

dimp'1 (B) = 2g-2-2d + 2d + g-2 = 3g-4. 

It follows that the image of p*1^) n W in VJl(C) cannot be all of 9Jt(C). 
Thus we can choose a stable bundle V such that, if deg A < (g — l)/2, then 
there is no nonzero section of V ® A, and if deg A > (g — l)/2 and there is a 
nowhere vanishing section 5 of V <g) A, then /i1(A2) = 0. It follows that (5, A) 
is a smooth point of Gi}d(V) (or of the Hilbert scheme), and the discussion 
prior to Proposition 6.2 shows how to extend this to all nonzero sections. 
Thus the Hilbert scheme of sections is everywhere smooth. □ 

Next we turn to the enumerative geometry of the Hilbert scheme. Since 
Of>£'(—l) is a line bundle, $ is equivalent to a section of 0p£/(l) <S> £ff and 
the class of its zero set, namely Gi^(y), is given by C2m(0p£/(1) ® ^//)- If 
we set £ = ci(0p£/(l)) and use the fact that £" is a topologically trivial 
bundle of rank 2m [1] p. 309, then C2m((9p£'(l) ® £") is the term of degree 
2m in (1 + C)2771? namely C2m. In particular, the class of Wi^V) is given by 
p*C2?n5 which is the appropriate Segre class of £f. To find it, take c(£f)~l. 
Topologically £' is two copies of 7r2* {V ® Tr^OcC-D)), and using [1] p. 336, 
this last bundle has total Chern class e~e. Thus c(£f) = e~2e and c(<?/)_1 = 
e26>. Taking the term of degree 2g — 2d — 1, we find [6]: 

(25-2d-l)!" 

In particular, when 2d+l = g we obtain (29)9/g\ = 29, giving the formula 
of Segre for the case of the zero-dimensional invariant. (In fact, Segre stated 
the formula for all values of d.) 

To handle the general case, we use: 

Proposition 6.4.  The fi divisor on Gi^V) is algebraically equivalent to 
the restriction of ( = ci(0p£/(l)). 

Corollary 6.5.  The value of the Seiberg-Witten invariant is 29. 

Proof of the corollary. We need to compute £2771+2^-22+1^ rp^ js ^ top 
Segre class of £', and by the calculations above it is equal to the degree g 
term in e29, namely 29. □ 
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Proof of (6.4). Keeping our previous notation, note that ¥£' is itself a 
Hilbert scheme, namely the scheme of all sections of X of degree 2d + 2m, 
and the Hilbert scheme is the subscheme of all sections which are of the form 
A) + 7r*jD. Thus, choosing a point p G X not lying in 7r*D, the incidence 
divisor //(p) for the Hilbert scheme is the restriction of the corresponding 
incidence divisor on P57. Recall that £' = ^(P ® TTJ(V (8) Oc(D))). Let 
t = 7r(p), and suppose that we have chosen the Poincare line bundle V so 
that V\{t} x Pic^C is trivial. Fix the line £ C Vt corresponding to p E X. 
Identifying the space (Vt/i) ®c Oc(D)t with C, there is then a surjection 

V 0 7rJ(V ® Oc(£>)) -* ^ ® 7r?(V ® C7c(£>))|{t} x Picd C -> 

->P|{t}xPic^-(!?pic,c. 

Applying 7r2*, we get a map F : £' —> Op[cdC, which is nonzero if D is 
sufficiently ample. Clearly F(sJ A) = 0 exactly when s(t) G £ C Vt. In other 
words, the zero set of F is the incidence divisor V corresponding to the point 
p. Now 

F G Hom(^, OpicdC) = ff0(Picd C; (£')*) 

= if0(PicdC;p*OP^(l)) = ^(PfjOp^a)). 

Running through the identifications above, we see that the zero set of F is 
exactly the zero set of the induced section of CW(1), and a straightforward 
argument also checks the multiplicity. Thus V is the zero set of a section of 

Qre/(1), andso m = C- O 

We can apply the methods above to handle enumerative questions not 
directly related to Seiberg-Witten theory. For example, there is the following 
calculation via the Grothendieck-Riemann-Roch theorem: 

Theorem 6.6. Suppose that g is even. Then the set of stable rank two 
bundles V with det V = 0 such that there exists a line bundle A of degree 
(g — 2)/2 with /i0(V ® A) 7^ 0 is an irreducible divisor in the moduli space 
9Jt(C). Its class, at least as a divisor on the moduli functor, is 2gA, where 
A is the first Chern class of the determinant line bundle, which again exists 
on the moduli functor. 

Finally let us give the general formula for the Seiberg-Witten invariant: 

Theorem 6.7. Let X = P1 x C be a product ruled surface and let L be a 
line bundle on X of type (2a, 2b), with b > 1 and (1 — g)/b < a < 0.   Then 
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for a Kdhler metric u such that CJ • L < 0, the value of the Seiberg- Witten 
invariant on L is b9. 

Note that this formula is a special case of a general transition formula 
for Seiberg-Witten invariants, which has been established by Li and Liu [9] 
as well as the authors (unpublished). It would also follow, by copying the 
arguments above for the case of sections, but working with Symm V (for 
m = b — 1) instead of V, if we knew that, for a general ruled surface, the 
Hilbert scheme was always smooth of the expected dimension. We state this 
as a conjecture: 

Conjecture. Let X be a general ruled surface. Then every component 
of the Hilbert scheme is smooth of the expected dimension. Here, since 
H2(Ox) = 0, the expected dimension of the Hilbert scheme at a curve D is 

±{IP-D-KX). 

Without assuming this conjecture, one can deduce the result from the 
methods of Section 3 in case the Hilbert scheme is smooth but does not have 
the expected dimension, and with more work in general, again by reducing 
it to a homological calculation in a space along the lines of IPS'. 

Note added in proof. Another and more general proof of the wall- 
crossing formula has been given by C. Okonek and A. Teleman, Seiberg- 
Witten invariants for manifolds with b+ = 1 and the universal wall crossing 
formula, Internat. J. Math. 7 (1996), 811-832. 
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