Degeneration of Kähler-Einstein Metrics on Complete Kähler Manifolds

CONAN N. LEUNG AND PENG LU

0. Introduction.

According to algebraic geometers, a degeneration of projective varieties is a smooth holomorphic family $\pi: \mathcal{X} \to \Delta$ with the following property: the fiber $X_t = \pi^{-1}(t)$ are smooth except for t = 0. Assume that the central fiber X_0 is a reduced divisor with normal crossings. In [T], G. Tian proved the convergence of complete Kähler-Einstein metrics as $t \to 0$ for two cases: 1) On X_t when X_t has ample canonical line bundle for $t \neq 0$, 2) On $X_t \setminus \mathcal{D}$ when $K_{X_t} + \mathcal{D} \cap X_t$ is ample for $t \neq 0$, where \mathcal{D} is a divisor of \mathcal{X} . In case 1) the result can be stated as

Theorem (Tian). Let $g_{E,t}$ be Kähler-Einstein metric with

$$Ric(g_{E,t}) = -g_{E,t}$$

on X_t . Assume that the central fiber X_0 is the union of smooth hypersurfaces, say X_{01}, \dots, X_{0m} , with normal crossings and each line bundle $K_{X_{0i}} + \sum_{j \neq i} X_{0j}$ is ample on X_{0i} , $1 \leq i \leq m$. Further assume that no three of divisors X_{0i} have non-empty intersection.

Then $g_{E,t}$ converge to a complete Kähler-Einstein metric on $X_0 \setminus \operatorname{Sing}(X_0)$ in the sense of Cheeger-Gromov.

In this paper, we prove the same result without assuming that no three divisors have nonempty intersection. The key observation is that Lemma 1.5 in [T] can be weakened. We will prove our result in a larger setting. Before stating the main theorem of this paper we make several definitions.

Definition 0.1. Let M be a complex manifold of dimension n and C_j are smooth hypersurfaces in M $(j = 1, \dots, n_2)$ such that $\sum_{j=1}^{n_2} C_j$ is a normal crossing divisor. Let m_j be natural numbers. Complex V-manifold $M\left(\sum \frac{1}{m_j} C_j\right)$ is defined in the following way.

- (i) As a topological space, $M\left(\sum \frac{1}{m_j}C_j\right)$ is M,
- (ii) For a point $p \in M \setminus \cup C_j$, we take a small neighborhood U disjoint from $\cup C_j$, and consider (U, id) as a local uniformization,
- (iii) For a point p in some C_j , without loss of generality, assume $p \in (\bigcap_{1}^{k} C_j) \setminus (\bigcup_{k+1}^{n_2} C_j)$ for some k. We take a small neighborhood U of p with coordinate system (z^1, \dots, z^n) such that C_j is defined by $z^j = 0$ for $j = 1, \dots, k$, and $C_j \cap U = \emptyset$ for $j = k+1, \dots, n_2$. We define the uniformization of U to be $p_U : \tilde{U} \to U$ with

$$p_U(w^1, \dots, w^n) = ((w^1)^{m_1}, \dots, (w^k)^{m_k}, w^{k+1}, \dots, w^n).$$

Given a Kähler metric g, we will denote its Kähler form by ω_g and its Ricci form by $\operatorname{ric}(g)$.

Definition 0.2. Let $M\left(\sum \frac{1}{m_j}C_j\right)$ be a complex V-manifold.

- (i) A Kähler metric g on $M \setminus \cup C_j$ is called a Kähler V-metrics on $M\left(\sum \frac{1}{m_j}C_j\right)$ if for each $p \in \cup C_j$, p_U^*g can be extended smoothly to \tilde{U} as a metric.
- (ii) A family of Kähler V-metrics g_t on $M\left(\sum \frac{1}{m_j}C_j\right)$ is said to converge in C^2 -topology if g_t converge in C^2 -topology on $M\setminus (\cup C_j)$ and $p_U^*g_t$ converge in C^2 -topology on \tilde{U} for each $p\in \cup C_j$.
- (iii) A Kähler V-metric g on $M\left(\sum \frac{1}{m_j}C_j\right)$ is called complete if g is a complete metric on $M\setminus \cup U$ with boundary $\partial(\cup U)$ and the extension of p_U^*g is a complete metric on \tilde{U} with boundary $p_U^{-1}(\partial U)$.
- (iv) A Kähler V-metric g on $M\left(\sum \frac{1}{m_j}C_j\right)$ is called Kähler-Einstein if $\mathrm{ric}(g) = -c \cdot \omega_g$ on $M \setminus \cup C_j$ for some constant c.

Definition 0.3. Let M be a smooth projective variety of dimension n and D be a \mathbb{Q} -divisor on M.

(i) D is called numerically effective(nef in short) if for any curve C in M the intersection number $D \cdot C$ is non-negative. Such a divisor is called big if $D^n > 0$.

(ii) D is called to be ample modulo another divisor E if for every effective reduced curve C on X which is not contained in E, $D \cdot C > 0$.

Let m_j be a family of natural numbers $(1 \leq j \leq n_2)$. Let $\pi : \mathcal{X} \to \Delta$ be a degeneration of projective varieties with two divisors \mathcal{C} and \mathcal{D} satisfying the following assumptions.

- (1) X_t is smooth for $t \neq 0$ and X_0 is a union of smooth hypersurfaces $X_{0i} (1 \leq i \leq n_1)$ in \mathcal{X} with normal crossings,
- (2) C + D is a reduced divisor with normal crossings. Divisor C consists of smooth components C_1, \dots, C_{n_2} and divisor D consists of smooth components D_1, \dots, D_{n_3} . We further assume that the restriction maps $d\pi|_{C_j}$ and $d\pi|_{D_k}$ are surjective $(1 \le j \le n_2, 1 \le k \le n_3)$,
- (3) The divisor C + D intersects both central fiber X_0 and its singular part $\operatorname{Sing}(X_0)$ transversally.
- (4) Let $C_t = X_t \cap C$, $C_{jt} = X_t \cap C_j$ and $D_t = X_t \cap D$, $D_{kt} = X_t \cap D_k$, then each C_{jt} and D_{kt} is smooth. For $t \neq 0$, line bundle

$$K_{X_t} + \sum_{k=1}^{n_3} D_{kt} + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} C_{jt}$$

is nef, big and ample modulo D_t , $t \neq 0$. It follows that there is a unique complete Kähler-Einstein V-metric $g_{E,t}$ on

$$(X_t \setminus D_t) \left(\sum_{j=1}^{n_2} \frac{1}{m_j} C_{jt} \right)$$

with $ric(g_{E,t}) = -\omega_{g_{E,t}}$ (see [TY], Theorem 2.1 for existence and [Y2], p.474 for completeness).

The following is the main theorem of this paper which provides a sufficient condition on the convergence of this family of metrics $g_{E,t}$ as t goes to 0.

Theorem 0.1. Let $\pi: \mathcal{X} \to \Delta$ be the degeneration family with properties (1)-(4) given above. We assume that for each $i, 1 \leq i \leq n_1$, line bundle

$$K_{X_{0i}} + \sum_{l=1, l \neq i}^{n_1} X_{0l} + \sum_{k=1}^{n_3} D_{k0} + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} C_{j0}$$

is nef, big and ample modulo $\sum_{k=1}^{n_3} D_{k0}$ on X_{0i} . Then the complete Kähler-Einstein V-metric $g_{E,t}$ on $(X_t \setminus D_t) \left(\sum_{j=1}^{n_2} \frac{1}{m_j} C_{jt} \right)$ converges to the unique complete Kähler-Einstein V-metric $g_{E,0}$ on

$$(X_0 \setminus (\operatorname{Sing}(X_0) \cup D_0)) \left(\sum_{j=1}^{n_2} \frac{1}{m_j} C_{j0} \right)$$

in the sense of Cheeger-Gromov: there are an exhaustion of compact sets $F_{\beta} \subseteq X_0 \setminus (\operatorname{Sing}(X_0) \cup D_0)$ and diffeomorphisms $\phi_{\beta,t}$ from F_{β} to into X_t satisfying:

- i) $X_t \setminus (D_t \cup (\cup_{\beta} \phi_{\beta,t}(F_{\beta})))$ consists of finite union of submanifolds of real codimension 1.
- ii) $\phi_{\beta,t}$ maps C_0 into C_t and $\phi_{\beta,t}^*g_{E,t}$ is a V-metric on F_{β} ,
- iii) for each fixed β , V-metrics $\phi_{\beta,t}^*g_{E,t}$ converge to $g_{E,0}$ on F_{β} in C^2 topology as t goes to 0.

In section 1 we construct families of Kähler V-metrics on $(\mathcal{X} \setminus (\mathcal{D} \cup \operatorname{Sing}(X_0))) \left(\sum_{j=1}^{n_2} \frac{1}{m_j} C_{j0}\right)$ with prescribed asymptotic behavior near $X_0 \setminus (\operatorname{Sing}(X_0) \cup D_0)$. In section 2 we prove Theorem 0.1 using the estimates in [TY] and results from section 1.

The authors thank Gang Tian for helpful discussions.

1. Construction of family of Kähler V-metrics with asymptotic behavior.

In this section we adopt the notations used in introduction. For each $i(1 \leq i \leq n_1)$, we choose a neighborhood U_i of X_{0i} in \mathcal{X} such that $\bar{U}_{i_1} \cap \bar{U}_{i_2} = \emptyset$ when $X_{0i_1} \cap X_{0i_2} = \emptyset$, where \bar{U}_{i_1} and \bar{U}_{i_2} denote the closure of U_{i_1} and U_{i_2} respectively. We fix a relative volume \tilde{V} on \mathcal{X} . Without loss of generality, we assume $\mathcal{X} = \bigcup_{i=1}^{n_1} U_i$. Let \tilde{V}_i be the local representation of the relative volume form \tilde{V} on U_i , in particular, for each $t \in \Delta$, $\tilde{V}_i|_{X_t}$ is the volume form of $X_t \cap U_i$. We denote by $U_{i_1 \cdots i_l}$ the intersection $U_{i_1} \cap \cdots \cap U_{i_l}$ for each tuple (i_1, \cdots, i_l) . It is a neighborhood of $X_{0i_1 \cdots i_l} = X_{0i_1} \cap \cdots X_{0i_l}$.

Now we begin to construct a family of Kähler V-metrics with the asymptotic behavior. Let s_i be the defining section of line bundle $[X_{0i}]$. By Lemma 1.1 and 1.2 in [T], there are Hermitian metrics $\| \|_i$ of line bundles $[X_{0i}]$ on \mathcal{X} satisfying $(1 \leq i \leq n_1)$:

- (1) $||s_i||_i \equiv 1$ outside U_i ,
- (2) $||s_1||_1 \cdots ||s_{n_1}||_{n_1} \equiv |t|$ on \mathcal{X} ,

(3)
$$\| \|_{i_1}^2 \cdot \tilde{V}_{i_1} = \| \|_{i_2}^2 \cdot \tilde{V}_{i_2} \text{ on } U_{i_1} \cap U_{i_2}, 1 \leq i_1, i_2 \leq n_1.$$

Without loss of generality, we may assume $||s_i||_i^2 \leq 3$ in \mathcal{X} . Assume the defining sections of C_j and D_k in \mathcal{X} are u_j and v_k respectively. We equip line bundles $[C_j]$ and $[D_k]$ with Hermitian metrics $|| ||_{j,2}$ and $|| ||_{k,3}$ respectively. Let μ_1, \dots, μ_{n_3} be rational numbers in [0,1] and ε be a small positive number. We will specify them later. Now we define a relative volume V on $\mathcal{X} \setminus (\mathcal{C} \cup \mathcal{D} \cup \operatorname{Sing}(X_0))$ as follows. For $t \in \Delta \setminus \{0\}$,

$$V_{it} = \frac{\tilde{V}_{i}}{\prod_{k=1}^{n_{3}} \left[\varepsilon \|v_{k}\|_{k,3}^{2\mu_{k}} \cdot (-\log \varepsilon \|v_{k}\|_{k,3}^{2})^{2}\right]} \cdot \frac{1}{\prod_{j=1}^{n_{2}} \left[\varepsilon \|u_{j}\|_{j,2}^{\frac{2m_{j}-2}{m_{j}}} \cdot \left(1-\varepsilon \|u_{j}\|_{j,2}^{\frac{2}{m_{j}}}\right)^{2}\right] \cdot \prod_{l=1,l\neq i}^{n_{1}} \varepsilon \|s_{l}\|_{l}^{2}} \cdot \prod_{l=1,l\neq i}^{n_{1}} \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \|s_{l}\|_{l}^{2}}{2 \log \varepsilon |t|}\right]^{2} \cdot \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \prod_{l=1,l\neq i}^{n_{1}} \|s_{l}\|_{l}^{2}}{2 \log \varepsilon |t|}\right]^{2} \cdot \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \prod_{l=1,l\neq i}^{n_{1}} \|s_{l}\|_{l}^{2}}{2 \log \varepsilon |t|}\right]^{2}$$
on $U_{i} \cap (X_{t} \setminus (C_{t} \cup D_{t}))$

and

$$V_{i0} = \frac{2^{2n_1}V_i}{\prod_{k=1}^{n_3} \left[\varepsilon \|v_k\|_{k,3}^{2\mu_k} \cdot (-\log \varepsilon \|v_k\|_{k,3}^2)^2\right]} \cdot \frac{1}{\prod_{j=1}^{n_2} \left[\varepsilon \|u_j\|_{j,2}^{\frac{2m_j-2}{m_j}} \cdot \left(1 - \varepsilon \|u_j\|_{j,2}^{\frac{2}{m_j}}\right)^2\right] \cdot \prod_{l=1,l\neq i}^{n_1} \varepsilon \|s_l\|_l^2} \cdot \frac{1}{\prod_{l=1,l\neq i}^{n_1} (-\log \varepsilon \|s_l\|_l^2)^2 \cdot (-\log \varepsilon \prod_{l=1,l\neq i}^{n_1} \|s_l\|_l^2)^2}$$
on $U_i \cap (X_0 \setminus (C_0 \cup D_0 \cup \operatorname{Sing}(X_0)))$.

In order to see that these volume forms V_{it} can be glued together to give a global volume form V_t , we simply observe that on

$$U_{i_1} \cap U_{i_2} \cap X_t \qquad (1 \le i_1, i_2 \le n_1),$$

$$\begin{split} V_{i_1t} &= \frac{\tilde{V}_{i_1}}{\varepsilon \|s_{i_2}\|_{i_2}^2} \cdot \frac{1}{\prod_{k=1}^{n_3} \left[\varepsilon \|v_k\|_{k,3}^{2\mu_k} \cdot \left(-\log \varepsilon \|v_k\|_{k,3}^2\right)^2\right]} \\ &\cdot \frac{1}{\prod_{j=1}^{n_2} \left[\varepsilon \|u_j\|_{j,2}^{\frac{2m_j-2}{m_j}} \cdot \left(1-\varepsilon \|u_j\|_{j,2}^{\frac{2}{m_j}}\right)^2\right] \cdot \prod_{l=1,l \neq i_1,i_2}^{n_1} \varepsilon \|s_l\|_l^2} \\ &\cdot \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \|s_{i_2}\|_{i_2}^2}{2 \log \varepsilon |t|}\right]^2 \prod_{l=1,l \neq i_1,i_2}^{n_1} \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \|s_l\|_l^2}{2 \log \varepsilon |t|}\right]^2 \\ &\cdot \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \prod_{l=1,l \neq i_1}^{n_1} \|s_l\|_l^2}{2 \log \varepsilon |t|}\right]^2 \\ &= \frac{\tilde{V}_{i_2}}{\varepsilon \|s_{i_1}\|_{i_1}^2} \cdot \frac{1}{\prod_{k=1}^{n_3} \left[\varepsilon \|v_k\|_{k,3}^{2\mu_k} \cdot \left(-\log \varepsilon \|v_k\|_{k,3}^2\right)^2\right]} \\ &\cdot \frac{1}{\prod_{j=1}^{n_2} \left[\varepsilon \|u_j\|_{j,2}^{\frac{2m_j-2}{m_j}} \cdot \left(1-\varepsilon \|u_j\|_{j,2}^{\frac{2}{m_j}}\right)^2\right] \cdot \prod_{l=1,l \neq i_1,i_2}^{n_1} \varepsilon \|s_l\|_l^2} \\ &\cdot \left[\frac{-\pi}{\log \varepsilon |t|} csc \left(\pi - \frac{\pi \log \left(\varepsilon \prod_{l=1,l \neq i_2}^{n_1} \|s_l\|_l^2\right)}{2 \log \varepsilon |t|}\right)\right]^2 \\ &\cdot \prod_{l=1,l \neq i_1,i_2}^{n_1} \left[\frac{-\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \|s_l\|_l^2}{2 \log \varepsilon |t|}\right]^2 \cdot \left[\frac{-\pi}{\log \varepsilon |t|} csc \left(\pi - \frac{\pi \log \varepsilon \|s_i\|_{i_1}^2}{2 \log \varepsilon |t|}\right)\right]^2 \\ &= V_{i_2t}. \end{split}$$

Define

$$\omega_t = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log V_t \qquad \text{on } X_t \setminus (C_t \cup D_t) \qquad (t \neq 0),$$

$$\omega_0 = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log V_0 \qquad \text{on } X_0 \setminus (C_0 \cup D_0 \cup \operatorname{Sing}(X_0)).$$

Simple computations show: for $t \neq 0$, on $U_i \cap (X_t \setminus (C_t \cup D_t))$,

$$\omega_{t} = -\operatorname{ric}(\tilde{V}_{t}) + \sum_{k=1}^{n_{3}} \mu_{k} \operatorname{ric}(\|\cdot\|_{k,3}) + \sum_{j=1}^{n_{2}} \frac{m_{j} - 1}{m_{j}} \operatorname{ric}(\|\cdot\|_{j,2}) + \sum_{l=1,l\neq i}^{n_{1}} \operatorname{ric}(\|\cdot\|_{l}) + \sum_{k=1}^{n_{3}} \left[\frac{2\operatorname{ric}(\|\cdot\|_{k,3})}{\log \varepsilon \|v_{k}\|_{k,3}^{2}} + \frac{\sqrt{-1}}{\pi} \cdot \frac{\partial \log \|v_{k}\|_{k,3}^{2} \wedge \bar{\partial} \log \|v_{k}\|_{k,3}^{2}}{(-\log \varepsilon \|v_{k}\|_{k,3}^{2})^{2}} \right]$$

$$\begin{split} &+\sum_{j=1}^{n_2} \left[\frac{2\varepsilon \cdot \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \|u_j\|_{j,2}^{\frac{2}{m_j}}}{1-\varepsilon \|u_j\|_{j,2}^{\frac{2}{m_j}}} + \frac{2\varepsilon^2 \cdot \frac{\sqrt{-1}}{2\pi} \partial \|u_j\|_{j,2}^{\frac{2}{m_j}} \wedge \bar{\partial} \|u_j\|_{j,2}^{\frac{2}{m_j}}}{(1-\varepsilon \|u_j\|_{j,2}^{2})^2} \right] \\ &+\sum_{l=1,l\neq i}^{n_1} \frac{\pi}{\log \varepsilon |t|} ctg \frac{\pi \log \varepsilon \|s_l\|_l^2}{2\log \varepsilon |t|} \cdot \mathrm{ric}(\|\cdot\|_l) \\ &+\sum_{l=1,l\neq i}^{n_1} \left(\frac{\pi}{2\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \|s_l\|_l^2}{2\log \varepsilon |t|} \right)^2 \cdot \frac{\sqrt{-1}}{\pi} \partial \log \|s_l\|_l^2 \wedge \bar{\partial} \|s_l\|_l^2 \\ &+ \frac{\pi}{\log \varepsilon |t|} ctg \frac{\pi \log (\varepsilon \prod_{l=1,l\neq i}^{n_1} \|s_l\|_l^2)}{2\log \varepsilon |t|} \cdot \sum_{l=1,l\neq i}^{n_1} \mathrm{ric}(\|\cdot\|_l) \\ &+ \left(\frac{\pi}{2\log \varepsilon |t|} csc \frac{\pi \log (\varepsilon \prod_{l=1,l\neq i}^{n_1} \|s_l\|_l^2)}{2\log \varepsilon |t|} \right)^2 \\ &\cdot \frac{\sqrt{-1}}{\pi} \partial \log \prod_{l=1,l\neq i}^{n_1} \|s_l\|_l^2 \wedge \bar{\partial} \prod_{l=1,l\neq i}^{n_1} \|s_l\|_l^2, \end{split}$$

where $\operatorname{ric}(\tilde{V}_t)$, $\operatorname{ric}(\|\cdot\|_i)$, $\operatorname{ric}(\|\cdot\|_{j,2})$, and $\operatorname{ric}(\|\cdot\|_{k,3})$ denote the curvature tensor of the volume forms $\tilde{V}_t = \tilde{V}|_{X_t}$ and the Hermitian metrics $\|\cdot\|_i, \|\cdot\|_{j,2}$, and $\|\cdot\|_{k,3}$ respectively. Also, on $X_{0i} \setminus (C_0 \cup D_0 \cup \operatorname{Sing}(X_0))$,

$$\begin{split} \omega_0 &= -\operatorname{ric}(\tilde{V}_0) + \sum_{k=1}^{n_3} \mu_k \operatorname{ric}(\|\cdot\|_{k,3}) + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} \operatorname{ric}(\|\cdot\|_{j,2}) + \sum_{l=1,l \neq i}^{n_1} \operatorname{ric}(\|\cdot\|_l) \\ &+ \sum_{k=1}^{n_3} \left[\frac{2\operatorname{ric}(\|\cdot\|_{k,3})}{\log(\varepsilon \|v_k\|_{k,3}^2)} + \frac{\sqrt{-1}}{\pi} \cdot \frac{\partial \log \|v_k\|_{k,3}^2 \wedge \bar{\partial} \log \|v_k\|_{k,3}^2}{(-\log \varepsilon \|v_k\|_{k,3}^2)^2} \right] \\ &+ \sum_{j=1}^{n_2} \left[\frac{2\varepsilon \cdot \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \|u_j\|_{j,2}^{\frac{2}{m_j}}}{1 - \varepsilon \|u_j\|_{j,2}^2} + \frac{2\varepsilon^2 \cdot \frac{\sqrt{-1}}{2\pi} \partial \|u_j\|_{j,2}^{\frac{2}{m_j}} \wedge \bar{\partial} \|u_j\|_{j,2}^{\frac{2}{m_j}}}{(1 - \varepsilon \|u_j\|_{j,2}^2)^2} \right] \\ &+ \sum_{l=1,l \neq i}^{n_1} \left[\frac{2 \cdot \operatorname{ric}(\|\cdot\|_l)}{\log \varepsilon \|s_l\|_l^2} + \frac{\frac{\sqrt{-1}}{\pi} \cdot \partial \log \|s_l\|_l^2 \wedge \bar{\partial} \log \|s_l\|_l^2}{(\log \varepsilon \|s_l\|_l^2)^2} \right] \\ &+ \frac{2 \cdot \sum_{l=1,l \neq i}^{n_1} \operatorname{ric}(\|\cdot\|_l)}{\log \varepsilon \prod_{l=1,l \neq i}^{n_1} \|s_l\|_l^2} \\ &+ \frac{\sqrt{-1}}{\pi} \partial \log \prod_{l=1,l \neq i}^{n_1} \|s_l\|_l^2 \wedge \bar{\partial} \log \prod_{l=1,l \neq i}^{n_1} \|s_l\|_l^2}{(\log \varepsilon \prod_{l=1,l \neq i}^{n_1} \|s_l\|_l^2)^2}. \end{split}$$

Assume that $K_{X_t} + \sum_{k=1}^{n_3} D_{kt} + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} C_{jt}$ is nef, big and ample modulo D_t , $t \neq 0$. By a result of Y. Kawamata([K]), there are constants $0 < \mu_k < 1 (1 \leq k \leq n_3)$ such that for properly chosen volume \tilde{V} ,

$$-\operatorname{ric}(\tilde{V}_t) + \sum_{k=1}^{n_3} \mu_k \operatorname{ric}(\|\cdot\|_{k,3}) + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} \operatorname{ric}(\|\cdot\|_{j,2})$$

is a Kähler V-metric on $(X_t \setminus D_t) \left(\sum \frac{1}{m_j} C_{jt} \right)$. Assume that for each $i, 1 \le i \le n_1$, line bundle

$$K_{X_{0i}} + \sum_{k=1}^{n_3} D_{k0} + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} C_{j0} + \sum_{l=1, l \neq i}^{n_1} X_{0l}$$

is nef, big and ample modulo D_0 on X_{0i} , then

$$-\operatorname{ric}(\tilde{V}_0) + \sum_{k=1}^{n_3} \mu_k \operatorname{ric}(\|\cdot\|_{k,3}) + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} \operatorname{ric}(\|\cdot\|_{j,2}) + \sum_{l=1,l \neq i}^{n_1} \operatorname{ric}(\|\cdot\|_l)$$

is a Kähler V-metric on $(X_{0i} \setminus (D_0 \cup \operatorname{Sing}(X_0))) \left(\sum \frac{1}{m_j} C_{j0}\right)$ for the same reason. The following lemma follows directly from the formulas of ω_t and ω_0 above.

Lemma 1.1. Assume that $K_{X_t} + \sum_{k=1}^{n_3} D_{kt} + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} C_{jt}$ is nef, big and ample modulo D_t , $t \neq 0$, and assume that for each $i, 1 \leq i \leq n_1$, line bundle

$$K_{X_{0i}} + \sum_{k=1}^{n_3} D_{k0} + \sum_{j=1}^{n_2} \frac{m_j - 1}{m_j} C_{j0} + \sum_{l=1, l \neq i}^{n_1} X_{0l}$$

is nef, big and ample modulo D_0 on X_{0i} .

Then by choosing the volume form \tilde{V} properly and a small ε , ω_t is the Kähler forms of complete Kähler V-metrics g_t for t sufficiently small. Moreover, the Kähler V-metrics g_t converges to g_0 outside $D_0 \cup \operatorname{Sing}(X_0)$ in the sense of Cheeger-Gromov: there are an exhaustion of compact subsets $F_\beta \in X_0 \setminus (D_0 \cup \operatorname{Sing}(X_0))$ and diffeomorphisms $\phi_{\beta,t}$ from F_β into X_t satisfying:

- (1) $X_t \setminus \bigcup_{\beta} \phi_{\beta,t}(F_{\beta})$ consists of finite union of submanifolds of real codimension 1,
- (2) $\phi_{\beta,t}$ map $F_{\beta} \cap C_0$ into C_t and $\phi_{\beta,t}^* g_t$ are V-metrics,

(3) for each fixed β , $\phi_{\beta,t}^*g_t$ converge to g_0 on F_β in C^2 -topology on the space of V-metrics as t goes to 0.

Before we state the next lemma, we need a couple of definitions.

Definition 1.1. Let $M\left(\sum \frac{1}{m_j}C_j\right)$ be the V-manifold in Definition 0.1. Let B be a ball in \mathbb{C}^n and ψ is a holomorphic map from B into M. ψ is called a quasi-coordinate map if either $\psi(B)\cap(\cup C_j)=\emptyset$ and ψ is of maximal rank everywhere, or $\psi(B)$ is contained in some uniformizing neighborhood U, the lifting $\psi_U:B\to \tilde{U}$ is of maximal rank everywhere, and ψ satisfies $\psi=p_U\circ\psi_U$. (B,ψ) is called a local quasi-coordinate of the V-manifold.

Definition 1.2. Let $M\left(\sum \frac{1}{m_j}C_j\right)$ be a V-manifold and g is a smooth Kähler V-metric on it. We call that $\left(M\left(\sum \frac{1}{m_j}C_j\right),g\right)$ has bounded geometry of order $k+\beta$, where $k\in\mathbb{N},\beta\in[0,1)$, if the following conditions hold: There are a system of quasi-coordinates $\{(B_\alpha,\psi_\alpha)\}$ such that:

- (i) Every $x \in M$ is the image of the center of some B_{α} ,
- (ii) There are positive numbers ε and δ independent of α such that the radius of B_{α} is between ε and δ .
- (iii) There exists constant C such that

$$0 < C^{-1}(\delta_{ij}) \le (g_{\alpha i\bar{j}}) \le C(\delta_{ij})$$

$$\left| \frac{\partial^{|p|+|q|} g_{\alpha i\bar{j}}}{\partial z_{\alpha}^{p} \partial \bar{z}_{\alpha}^{q}} \right|_{C^{\beta}(B_{\alpha})} \le C$$

for all multi-indexes p, q with $|p| + |q| \le k$, where $g_{\alpha i\bar{j}}$ is the pullback metric on B_{α} and $|\cdot|_{C^{\beta}(B_{\alpha})}$ is the standard Hölder norm.

Lemma 1.2. Same assumptions as Lemma 1.1. Then

- (i) the Kähler V-metric g_0 in Lemma 1.1 has bounded geometry of order $4 + \beta$.
- (ii) the Kähler V-metrics g_t in Lemma 1.1 have uniformly bounded curvature tensors on the uniformization coordinate systems of the V-manifold for $t \neq 0$.

Proof. (i) we prove that $(X_{0i} \setminus (D_0 \cup \operatorname{Sing}(X_0))) \left(\sum_j \frac{1}{m_j} C_{0j}\right)$ has bounded geometry of order $4 + \beta$ for each $i = 1, \dots, n_1$. In [TY] it has been proved that g_0 has bounded geometry on $(X_{0i} \setminus (D_0 \cup U(\operatorname{Sing}(X_0)))) \left(\sum_j \frac{1}{m_j} C_{0j}\right)$, where $U(\operatorname{Sing}(X_0))$ is a small neighborhood of $\operatorname{Sing}(X_0)$ in X_{0i} . We only need to prove that g_0 has bounded geometry on $U(\operatorname{Sing}(X_0))$.

Pick up a point $x_0 \in \text{Sing}(X_0) \cap X_{0i}$, for simplicity, we assume that

$$x_0 \in \left(\bigcap_{l=1}^{i_1} X_{0l}\right) \cap X_{0i} \cap \left(\bigcap_{j=1}^{j_1} C_{j0}\right) \cap \left(\bigcap_{k=1}^{k_1} D_{k0}\right),$$

 $x_0 \notin X_{0l}$, for $l > i_1, l \neq i$, $x_0 \notin C_{j0}$, for $j > j_1$, and $x_0 \notin D_{k0}$, for $k > k_1$. Take a neighborhood U_{x_0} of x_0 with coordinate system (z^1, \dots, z^n) of X_{0i} such that X_{0l} is defined by $z^l = 0, l = 1, \dots, i_1, D_{k0}$ is defined by $z^{i_1+k} = 0, k = 1, \dots, k_1$, and C_{j0} is defined by $z^{i_1+k_1+j} = 0, j = 1, \dots, j_1$. If we choose U_{x_0} small enough, we may assume that $||s_l||_l = 1, l = i_1 + 1, \dots, n, l \neq i$. On the uniformization $p_{x_0} : \tilde{U}_{x_0} \to U_{x_0}$ we have coordinate system (w^1, \dots, w^n) . Let $\Delta_{\delta}^* = \{w \in \mathbb{C} : 0 < |w| < \delta\}$ and $\Delta_{\delta} = \{w \in \mathbb{C} : |w| < \delta\}$, then we may identify \tilde{U}_{x_0} with $(\Delta_{\delta}^*)^{i_1+k_1} \times (\Delta_{\delta})^{n-i_1-k_1}$, where $\delta > 0$ only depends on X_0 , C_0 , and D_0 . We will construct quasi-coordinate on \tilde{U}_{x_0} such that the pullback of g_0 has bounded geometry. The following two lemmas are well-known (see e.g. [TY, p. 602]).

Lemma 1.3. The map $\rho_{\theta}: \Delta_{\delta} \to \Delta_{\delta}^*$ with $\rho_{\theta}(w) = \delta \exp\left(\frac{w+\delta}{w-\delta} + \sqrt{-1}\theta\right)$ is a universal covering map of Δ_{δ}^* , where $\theta \in [0, 2\pi)$. The fundamental domain over $\Delta_{\delta}^* \setminus \{te^{\sqrt{-1}\theta}: 0 < t < \delta\}$ is $\{w \in \Delta_{\delta}: 0 < \delta \operatorname{Im}(w) < \pi | \delta - w |^2\}$.

Lemma 1.4. For $\eta \in (0,1)$, $\phi_{\eta} : \Delta_{\delta} \to \Delta_{\delta}$, with $\phi_{\eta}(w) = \delta \frac{w - \delta \eta}{\delta - \eta w}$, is an automorphism mapping $\eta \delta$ to the origin. Furthermore

$$\{w \in \Delta_{\delta} : 0 < \delta Im(w) < \pi |\delta - w|^2, |w|^2 + (-\log r)|\delta - w|^2 < \delta^2\}$$

$$\subset \bigcup_{0 < \eta < 1} \phi_{\eta}^{-1} \left(\Delta_{\frac{1}{2}\delta}\right),$$

when r is chosen small enough.

If we shrink \tilde{U}_{x_0} to $(\Delta_{r\delta}^*)^{i_1+k_1} \times (\Delta_{r\delta})^{n-i_1-k_1}$, then it is covered by

$$\bigcup_{\substack{0 < \eta_{i} < 1 \\ \theta_{l} \in [0, 2\pi) \\ t = 1, \dots, i_{1} + k_{1}}} \rho_{\theta_{1}} \circ \phi_{\eta_{1}}^{-1} \left(\Delta_{\frac{1}{2}\delta}\right) \times \dots \times \rho_{\theta_{i_{1} + k_{1}}} \circ \phi_{\eta_{i_{1} + k_{1}}}^{-1} \left(\Delta_{\frac{1}{2}\delta}\right) \times \left(\Delta_{\frac{1}{2}\delta}\right)^{n - i_{1} - k_{1}}.$$

Consider immersion $F: \Delta^n_{\frac{1}{2}\delta} \to \tilde{U}_{x_0}$, with

$$F(v^{1}, \dots, v^{n})$$

$$= \left(\rho_{\theta_{1}} \circ \phi_{\eta_{1}}^{-1}(v^{1}), \dots, \rho_{\theta_{i_{1}+k_{1}}} \circ \phi_{\eta_{i_{1}+k_{1}}}^{-1}(v^{i_{1}+k_{1}}), v^{i_{1}+k_{1}+1}, \dots, v^{n}\right).$$

Then by some simple computations, we get

$$(1.1) w^l = \rho_{\theta_l} \circ \phi_{\eta_l}^{-1}(v^l) = \delta \exp\left(\frac{(1+\eta_l)(v^l+\delta)}{(1-\eta_l)(v^l-\delta)} + \sqrt{-1}\theta_l\right),$$

(1.2)
$$\frac{\partial}{\partial v^{l}} = -\frac{2\delta^{2}(1+\eta_{l})}{(1-\eta_{l})(v^{l}-\delta)^{2}} \exp\left(\frac{(1+\eta_{l})(v^{l}+\delta)}{(1-\eta_{l})(v^{l}-\delta)} + \sqrt{-1}\theta_{l}\right) \frac{\partial}{\partial w^{l}}$$
(1.3)
$$\log|w^{l}|^{2} = 2\log\delta + 2\frac{(1+\eta_{l})(|v^{l}|^{2}-\delta^{2})}{(1-\eta_{l})|v^{l}-\delta|^{2}}$$

for $l = 1, \dots, i_1 + k_1$.

On \tilde{U}_{x_0} , we can write $\omega_0 = \omega_0' + \omega_0''$, where

$$\begin{split} \omega_0'' &= \sum_{k=1}^{k_1} \frac{\frac{\sqrt{-1}}{\pi} \cdot \partial \log \|v_k\|_{k,3}^2 \wedge \bar{\partial} \log \|v_k\|_{k,3}^2}{(\log \varepsilon \|v_k\|_{k,3}^2)^2} \\ &+ \sum_{l=1}^{i_1} \frac{\frac{\sqrt{-1}}{\pi} \cdot \partial \log \|s_l\|_l^2) \wedge \bar{\partial} \log \|s_l\|_l^2}{(\log \varepsilon \|s_l\|_l^2)^2} \\ &+ \frac{\frac{\sqrt{-1}}{\pi} \cdot \partial \log \prod_{l=1}^{i_1} \|s_l\|_l^2 \wedge \bar{\partial} \log \prod_{l=1}^{i_1} \|s_l\|_l^2}{(\log \varepsilon \prod_{l=1}^{i_1} \|s_l\|_l^2)^2} \\ \omega_0' &= \omega_0 - \omega_0'' = \frac{\sqrt{-1}}{2\pi} \sum_{i,j=1}^n b_{i\bar{j}} dw^i \wedge d\bar{w}^j. \end{split}$$

Then ω_0' is a positive (1,1)-form on \tilde{U}_{x_0} . By the choice of (w^1, \dots, w^n) , we may assume $\|v_k\|_{k,3}^2 = h_{i_1+k}|w^{i_1+k}|^2$ and $\|s_l\|_l = h_l|w^l|^2$ for some positive functions h_i on \tilde{U}_{x_0} , $i = 1, \dots, i_1 + k_1$. Substituting (1.1), (1.2) and (1.3) into $F^*\omega_0$, we obtain

$$F^*\omega_0 = \frac{\sqrt{-1}}{2\pi} \sum_{i,j \ge i_1 + k_1 + 1} b_{i\bar{j}}(F(v^1, \dots, v^n)) dv^i \wedge d\bar{v}^j$$

$$+ \frac{\sqrt{-1}}{\pi} \sum_{l \le i_1 + k_1} \left[\frac{1}{\left(\delta^2 - |v^l|^2 - \frac{(1 - \eta_l)|v^l - \delta|^2}{2(1 + \eta_l)} \cdot \log(\varepsilon \delta^2 h_l)\right)^2} \right]$$

$$\cdot \left(\delta^{2} dv^{l} - \frac{(1 - \eta_{l})(v_{l} - \delta)^{2}}{2(1 + \eta_{l})} \cdot \partial \log h_{l} \right)$$

$$\wedge \left(\delta^{2} d\bar{v}^{l} - \frac{(1 - \eta_{l})(\bar{v}_{l} - \delta)^{2}}{2(1 + \eta_{l})} \cdot \bar{\partial} \log h_{l} \right) \Big]$$

$$+ 4\delta^{4} \sum_{i,j \leq i_{1} + k_{1}} b_{i\bar{j}} (F(v^{1}, \dots, v^{n})) \frac{(1 + \eta_{i})(1 + \eta_{j})}{(1 - \eta_{i})(1 - \eta_{j})(v^{i} - \delta)^{2}(\bar{v}^{j} - \delta)^{2}}$$

$$\cdot \exp\left(\frac{(1 + \eta_{i})(v^{i} + \delta)}{(1 - \eta_{i})(v^{i} - \delta)} + \sqrt{-1}\theta_{i} + \frac{(1 + \eta_{j})(\bar{v}^{j} + \delta)}{(1 - \eta_{j})(\bar{v}^{j} - \delta)} - \sqrt{-1}\theta_{j} \right)$$

$$\cdot \frac{\sqrt{-1}}{2\pi} dv^{i} \wedge d\bar{v}^{j}$$

$$- 4\delta^{2} \operatorname{Re} \left[\sum_{\substack{i \leq i_{1} + k_{1} \\ j \geq i_{1} + k_{1} + 1}} b_{i\bar{j}} (F(v^{1}, \dots, v^{n}) \frac{1 + \eta_{i}}{(1 - \eta_{i})(v^{i} - \delta)^{2}} \right.$$

$$\cdot \exp\left(\frac{(1 + \eta_{i})(v^{i} + \delta)}{(1 - \eta_{i})(v^{i} - \delta)} + \sqrt{-1}\theta_{i} \right) \frac{\sqrt{-1}}{2\pi} dv^{i} \wedge d\bar{v}^{j} \Big]$$

$$+ \frac{\sqrt{-1}}{\pi} \cdot \frac{1}{\left(\sum_{l \leq i_{1}} \frac{2(1 + \eta_{l})(|v^{l}|^{2} - \delta^{2})}{(1 - \eta_{l})|v^{l} - \delta|^{2}} + \log(\varepsilon \delta^{2i_{1}} \prod_{l \leq i_{1}} h_{l}) \right)^{2} }{\cdot \sum_{l \leq i_{1}} \left(\frac{-2\delta^{2}(1 + \eta_{l})}{(1 - \eta_{l})(v^{l} - \delta)^{2}} d\bar{v}^{l} + \partial \log h_{l} \right) }$$

$$\wedge \sum_{l \leq i_{1}} \left(\frac{-2\delta^{2}(1 + \eta_{l})}{(1 - \eta_{l})(\bar{v}^{l} - \delta)^{2}} d\bar{v}^{l} + \bar{\partial} \log h_{l} \right)$$

From the fact that $\lim x \to \infty x^p \exp(-x) = 0$ for any real number p, it is east to see that in (1.4) the first two terms are equivalent to a Euclidean metric on $\Delta_{\frac{1}{2}\delta}^n$, the next two terms are very small since we may choose η_l close to 1, the last term is positive and bounded. It is straight forward to check that $F^*\omega_0$ has bounded geometry.

(ii) We show that g_t has uniformly bounded curvature tensor for $t \neq 0$ small. It is known that outside a neighborhood of $\operatorname{Sing}(X_0)$, g_t has uniformly bounded geometry ([TY]). It suffices to bound curvature tensor $Rm(g_t)$ on some neighborhood of $\operatorname{Sing}(X_0)$. For any $x_0 \in \operatorname{Sing}(X_0)$, for simplicity, we assume that $x_0 \in (\cap_{l=1}^{i_1} X_{0l}) \cap (\cap_{j=1}^{j_1} C_{j0}) \cap (\cap_{k=1}^{k_1} D_{k0})$, $x_0 \notin X_{0l}$, $l > i_1$, $x_0 \notin C_{j0}$, $j > j_1$, and $x_0 \notin D_{k0}$, $k > k_1$. Take a neighborhood of x_0 with

coordinate system (z^1, \dots, z^{n+1}) in \mathcal{X} such that X_{0l} is defined by

$$z^{l} = 0, l = n + 2 - i_{1}, \cdots, n + 1,$$

 D_k is defined by

$$z^k = 0, k = 1, \cdots, k_1,$$

and C_j is defined by

$$z^{k_1+j}=0, j=1,\cdots,j_1.$$

On the uniformization $p_{x_0}: \tilde{U}_{x_0} \to U_{x_0}$ we have coordinate system (w^1, \dots, w^{n+1}) . We may identify \tilde{U}_{x_0} with $(\Delta_{\delta}^*)^{k_1} \times (\Delta_{\delta})^{n-k_1}$, where $\delta > 0$ only depends on \mathcal{X}, \mathcal{C} , and \mathcal{D} . Then

$$\tilde{U}_{x_0} \cap p_{x_0}^{-1}(X_t)$$

$$= \{ (w^1, \dots, w^{n+1}) : w^{n+2-i_1} \dots w^{n+1} = t, |w^l| < \delta, l = 1, \dots, n+1 \}.$$

Assume $||v_k||_k = h_k |w^k|^2$ and $||s_l||_l = h_l |w^l|^2$ for $k = 1, \dots, k_1$, $l = n + 2 - i_1, \dots, n+1$. By the definition of metric g_t , we have (here we take i = n+1 in the definition of V_{it})

$$p_{x_0}^* \omega_t = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log \left[\frac{b}{\prod_{k=1}^{k_1} \varepsilon |w^k|^{2\mu_k} (-\log(h_k|w^k|^2))^2} \cdot \frac{1}{\prod_{j=1}^{j_1} \varepsilon |w^{k_1+j}|^2 \prod_{l=n+2-i_1}^n \varepsilon |w^l|^2} \cdot \prod_{l=n+2-i_1}^n \left(\frac{\pi}{\log \varepsilon |t|} csc \frac{\pi \log \varepsilon h_l |w^l|^2}{2 \log \varepsilon |t|} \right)^2 \cdot \left(\frac{\pi}{\log \varepsilon |t|} csc \frac{\pi \log (\varepsilon \prod_{l=n+2-i_1}^n h_l |w^l|^2)}{2 \log \varepsilon |t|} \right)^2 \right]$$

where b is a smooth function of

$$w^1, \bar{w}^1, \cdots, w^n, \bar{w}^n, \frac{t}{\prod_{l=n+2-i_1}^n w^l}, \frac{\bar{t}}{\prod_{l=n+2-i_1}^n \bar{w}^l}$$

with $\frac{\sqrt{-1}}{2\pi}\partial\bar{\partial}\log b$ positive definite. By exchanging w^{n+1} with one of w^{n+2-i_1},\cdots,w^n if necessary, we may assume $|w^l|\geq \sqrt{|t|},\ l=n+2-i_1,\cdots,n$. Then simple computations show

$$\omega_t = \frac{\sqrt{-1}}{2\pi} \sum_{\alpha,\beta=1}^{n+1} h_{\alpha\bar{\beta}} dw^{\alpha} \wedge d\bar{w}^{\beta} - \frac{\sqrt{-1}}{2\pi} \sum_{k=1}^{k_1} \partial\bar{\partial} \log(\log \varepsilon h_k |w^k|^2)^2$$

$$\begin{split} &+\frac{\sqrt{-1}}{2\pi}\sum_{l=n+2-i_{1}}^{n}\partial\bar{\partial}\log\left(\frac{\pi}{\log\varepsilon|t|}csc\frac{\pi\log\varepsilon h_{l}|w^{l}|^{2}}{2\log\varepsilon|t|}\right)^{2}\\ &+\frac{\sqrt{-1}}{2\pi}\partial\bar{\partial}\log\left(\frac{\pi}{\log\varepsilon|t|}csc\frac{\pi\log\left(\varepsilon\prod_{l=n+2-i_{1}}^{n}h_{l}|w^{l}|^{2}\right)}{2\log\varepsilon|t|}\right)^{2}\\ &=\frac{\sqrt{-1}}{2\pi}\sum_{\alpha,\beta=1}^{n+1}h_{\alpha\bar{\beta}}dw^{\alpha}\wedge d\bar{w}^{\beta}\\ &+\frac{\sqrt{-1}}{\pi}\sum_{k=1}^{k_{1}}\frac{\left(\frac{dw^{k}}{w^{k}}+\partial\log h_{k}\right)\wedge\left(\frac{d\bar{w}^{k}}{\bar{w}^{k}}+\partial\log h_{k}\right)}{\left(\log\varepsilon h_{k}|w^{k}|^{2}\right)^{2}}\\ &+\frac{\sqrt{-1}}{\pi}\sum_{l=n+2-i_{1}}^{k_{1}}\frac{\partial\bar{\partial}\log h_{k}|w^{k}|^{2}}{\left(-\log\varepsilon h_{k}|w^{k}|^{2}\right)}\\ &-\frac{\sqrt{-1}}{\pi}\sum_{l=n+2-i_{1}}^{n}\frac{\pi}{2\log\varepsilon|t|}\cdot ctg\frac{\pi\log\varepsilon h_{l}|w^{l}|^{2}}{2\log\varepsilon|t|}\cdot\frac{\partial^{2}\log h_{l}}{\partial w^{\alpha}\partial\bar{w}^{\beta}}dw^{\alpha}\wedge d\bar{w}^{\beta}\\ &+\frac{\sqrt{-1}}{\pi}\sum_{l=n+2-i_{1}}^{n}\left(\frac{\pi}{2\log\varepsilon|t|}csc\frac{\pi\log\varepsilon h_{l}|w^{l}|^{2}}{2\log\varepsilon|t|}\right)^{2}\\ &\cdot\left(\frac{dw^{l}}{w^{l}}+\partial\log h_{l}\right)\wedge\left(\frac{d\bar{w}^{l}}{\bar{w}^{l}}+\bar{\partial}\log h_{l}\right)\\ &-\frac{\sqrt{-1}}{\pi}\cdot\frac{\pi}{2\log\varepsilon|t|}\cdot ctg\frac{\pi\log(\varepsilon\prod_{l=n+2-i_{1}}^{n}h_{l}|w^{l}|^{2})}{2\log\varepsilon|t|}\\ &\cdot\frac{\partial^{2}\log\prod_{l=n+2-i_{1}}^{n}h_{l}}{\partial w^{\alpha}\partial\bar{w}^{\beta}}dw^{\alpha}\wedge d\bar{w}^{\beta}\\ &+\frac{\sqrt{-1}}{\pi}\left(\frac{\pi}{2\log\varepsilon|t|}csc\frac{\pi\log(\varepsilon\prod_{l=n+2-i_{1}}^{n}h_{l}|w^{l}|^{2})}{2\log\varepsilon|t|}\right)^{2}\\ &\cdot\sum_{l=n+2-i_{1}}^{n}\left(\frac{d\bar{w}^{l}}{w^{l}}+\partial\log h_{l}\right)\wedge\sum_{l=n+2-i_{1}}^{n}\left(\frac{d\bar{w}^{l}}{\bar{w}^{l}}+\bar{\partial}\log h_{l}\right), \end{split}$$

where $h_{\alpha\bar{\beta}}$ and $\frac{\partial^2 \log h_i}{\partial w^{\alpha} \partial \bar{w}^{\beta}}$ are smooth functions of

$$w^1, \bar{w}^1, \cdots, w^n, \bar{w}^n, \frac{t}{\prod_{l=n+2-i_1}^n w^l}, \frac{\bar{t}}{\prod_{l=n+2-i_1}^n \bar{w}^l}$$

and $h_{\alpha\bar{\beta}}$ is positive definite on \tilde{U}_{x_0} .

Define

$$\omega_t' = \frac{\sqrt{-1}}{2\pi} \sum_{\alpha,\beta=1}^{n-1} h_{\alpha\bar{\beta}}(w^1, \bar{w}^1, \cdots, w^n, \bar{w}^n, 0, 0) dw^{\alpha} \wedge d\bar{w}^{\beta}$$

$$+ \frac{\sqrt{-1}}{\pi} \sum_{k=1}^{k_1} \frac{dw^k \wedge d\bar{w}^k}{(|w^k| \cdot \log \varepsilon h_k |w^k|^2)^2}$$

$$+ \frac{\sqrt{-1}}{\pi} \sum_{l=n+2-i_1}^{n} \left(\frac{\pi}{2 \log \varepsilon |t|} csc \frac{\pi \log \varepsilon h_l |w^l|^2}{2 \log \varepsilon |t|} \right)^2 \frac{dw^l \wedge d\bar{w}^l}{|w^l|^2},$$

and

$$\omega_{t}^{"} = \omega_{t}^{'} + \frac{\sqrt{-1}}{\pi} \left(\frac{\pi}{2 \log \varepsilon |t|} csc \frac{\pi \log(\varepsilon \prod_{l=n+2-i_{1}}^{n} h_{l} |w^{l}|^{2})}{2 \log \varepsilon |t|} \right)^{2}$$

$$(1.6) \qquad \cdot \sum_{l=n+2-i_{1}}^{n} \frac{dw^{l}}{w^{l}} \wedge \sum_{l=n+2-i_{1}}^{n} \frac{d\bar{w}^{l}}{\bar{w}^{l}}.$$

Let g_t' and g_t'' be the metric corresponding to ω_t' and ω_t'' respectively. Using the fact that $|w^l| \geq \sqrt{|t|}, l = n+2-i_1, \cdots, n$, g_t' has uniformly bounded curvature tensor. g_t'' is equivalent to g_t' uniformly in t, and their difference is bounded in C^3 -norm defined by g_t' . So g_t'' has uniformly bounded curvature tensor. One can check that $\omega_t - \omega_t''$ are uniformly small in C^3 -topology with respect to the metric g_t' when we choose ε small. So g_t has uniformly bounded curvature tensor on \tilde{U}_{x_0} . Lemma 1.2 is proved.

Lemma 1.5. For the metric g_t in Lemma 1.1, there is a smooth function f on $\mathcal{X} \setminus (\mathcal{C} \cup \mathcal{D} \cup \operatorname{Sing}(X_0))$ compatible with the V-manifold structure and bounded from above such that

$$\operatorname{ric}(g_t) + \omega_t = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} f_t,$$
$$\operatorname{ric}(g_0) + \omega_0 = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} f_0,$$

where $f_t = f|_{X_t \setminus (C_t \cup D_t)}$ and $f_0 = f|_{X_0 \setminus (C_0 \cup D_0 \cup \operatorname{Sing}(X_0))}$. Furthermore $-\Delta_{g_t} f_t \leq C$ for some constant C independent of t.

Proof. We define f by (t may be 0)

$$f_t = -\log \frac{\omega_t^n}{V_t}.$$

It suffices to show that f_t and $-\Delta_{g_t} f_t$ are uniformly bounded from above near $\mathcal{D} \cup \text{Sing}(X_0)$. Here we only show that they are uniformly bounded from above near $\operatorname{Sing}(X_0)$, near \mathcal{D} the proof is similar and easier. First we prove that f is bounded from above near $Sing(X_0)$. Using the coordinate system (w^1, \dots, w^{n+1}) in the proof of Lemma 1.2(ii), we have $\omega_t^n = (\omega_t'')^n (1+h)$, where h is a function with very small values. So we need to prove that $-\log \frac{(\omega_t'')^n}{V_t}$ is uniformly bounded from above. Since $(\omega_1 + \omega_2)^n \ge \omega_1^n$ when both ω_1 and ω_2 are non-negative (1,1)-forms,

observing that last term in (1.6) is non-negative, we have

$$\begin{split} \frac{(\omega_t'')^n}{V_t} &\geq \frac{(\omega_t')^n}{V_t} \\ &\geq C \cdot \prod_{k=1}^{k_1} \frac{1}{|w^k|^{2(1-\mu_k)}} \cdot \left(\frac{-\pi}{2\log\varepsilon|t|} csc \frac{\pi\log\varepsilon \prod_{l=n+2-i_1}^n h_l |w^l|^2}{2\log\varepsilon|t|} \right)^{-2}, \end{split}$$

where C is a constant independent of t. Since $u \sin \frac{x}{u} \geq \frac{1}{2}x$ for $0 < x \leq u$, using the fact that $|w_l| \geq \sqrt{|t|}$, we have

$$\left(\frac{-\pi}{2\log\varepsilon|t|}csc\frac{\pi\log\varepsilon\prod_{l=n+2-i_1}^nh_l|w^l|^2}{2\log\varepsilon|t|}\right)^{-2} \ge C\cdot\left(\sum_{l=n+2-i_1}^n\log\varepsilon h_l|w^l|^2\right)^2.$$

So f is bounded from above by a positive constant independent of t.

Next we prove $-\Delta_{g_t} f_t \leq C$. Using the same coordinate system (w^1, \cdots, w^{n+1}) as above. Then by some computations we find

$$f_{t} = -\log \frac{(\omega_{t}^{"})^{n}(1+h_{t})}{V_{t}}$$

$$= \log \prod_{k=1}^{k_{1}} |w^{k}|^{2(1-\mu_{k})} - \log \left(\frac{\pi}{2\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \prod_{l=n+2-i_{1}}^{n} h_{l}|w^{l}|^{2}}{2\log \varepsilon |t|}\right)^{-2} + \tilde{h_{t}},$$

where \tilde{h} has uniformly bounded C^3 -norm with respect to metric g_t . However further computations show that both

$$-\Delta_{g_t} \log \prod_{k=1}^{k_1} |w^k|^{2(1-\mu_k)}$$

and

$$-\Delta_{g_t} \left[-\log \left(\frac{\pi}{2\log \varepsilon |t|} csc \frac{\pi \log \varepsilon \prod_{l=n+2-i_1}^n h_l |w^l|^2}{2\log \varepsilon |t|} \right)^{-2} \right]$$

are bounded from above. So the lemma is proved.

2. Proof of Theorem 0.1.

We adopt the notations of section 1. Now let $g_{E,t}$ be the Kähler-Einstein V-metrics on $(X_t \setminus D_t \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{jt}\right)$ for each $t \in \Delta$. Then there are smooth V-functions φ_t on $(X_t \setminus D_t \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{jt}\right)$ such that

$$\omega_{E,t} = \omega_t + \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \varphi_t,$$

where $\omega_{E,t}$ are the Kähler forms associated with $g_{E,t}$. Furthermore, the following equation follows from $ric(g_{E,t}) = -\omega_{E,t}$,

$$\omega_{E,t}^n = e^{f_t + \varphi_t} \omega_t^n,$$

where f_t is defined in Lemma 1.5.

Lemma 2.1. There is a uniform constant C independent of t such that $\sup |\varphi_t + f_t| \leq C$ on $(X_t \setminus D_t \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{jt}\right)$.

Proof. It follows from maximal principle since by Lemma 1.2

$$(X_t \setminus D_t \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{jt}\right)$$

has uniformly bounded geometry.(See [TY] or [B])

- **Lemma 2.2.** (i) There are two constants c and C both independent of t and x such that $e^{-c\varphi_t(x)}(n + \Delta_{g_t}\varphi_t(x)) \leq C$.
- (ii) For any compact set $K \subset \mathcal{X} \setminus (\mathcal{D} \cup \operatorname{Sing}(X_0))$, there is a uniform constant C_K depending on K but independent of t and x such that $n + \Delta_{g_t} \varphi_t \leq C_K$.

Proof. (i) Let x_0 be the point where $e^{-c\varphi_t(x)}(n+\Delta_{g_t}\varphi_t(x))$ attains its maximum. Note that in [Y1] this second-order derivative estimate of φ is bounded by a constant depending only on supf and $sup(-\Delta_g f)$ for the complex

Monge-Apmére equation $(\omega_g + \partial \bar{\partial} \varphi)^n = e^{f+\varphi} \omega_g^n$. Using Lemma 1.2 and 1.5, we have the following estimate $n + \Delta_{g_t} \varphi_t(x_0) \leq C$ by the same computations as the second-order derivative estimate in [Y1] using quasi-coordinate system. On the other hand, from Lemma 2.1 and Lemma 1.5, we have $-\varphi_t(x) \leq f_t(x) + C \leq C' + C$. So $e^{-c\varphi_t(x_0)}(n + \Delta_{g_t}\varphi_t(x_0))$ is uniformly bounded.

(ii) From Lemma 2.1, for any compact set $K \subset \mathcal{X} \setminus (\mathcal{D} \cup \operatorname{Sing}(X_0))$, we can find C_K such that for any x in K, $|\varphi_t(x)| \leq C_K$. Now (ii) follows form (i). \square

Corollary 2.1. For any compact set $K \subset \mathcal{X} \setminus (\mathcal{D} \cup \operatorname{Sing}(X_0))$, there is a constant C_K depending on K but independent of t such that

$$\sup_{X_t \cap K} \{ |\varphi_t|, |\nabla_{g_t}^k \varphi_t| : 1 \le k \le 3 \} \le C_K.$$

Proof. By working in the quasi-coordinate system, we can show that $\varphi_t + f_t$ has uniformly bounded $C^{2,\alpha}$ -norm on any compact set K (the proof is the same as the proof of Lemma 1.4 in [TY]). In the proof we need to use Lemma 2.1 above. The third derivative estimate of φ_t follows using Lemma 2.2 and the arguments in [Y1].

Now we conclude the proof of Theorem 0.1. For any sequence φ_{t_i} , by a diagonalizing argument using Corollary 2.1, we can find a subsequence which converges in the sense of Cheeger-Gromov under $C^{2,\frac{1}{2}}$ -topology on $(X_0 \setminus D_0 \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_i} C_{j0}\right)$. Let φ_{t_i} be any convergent sequence and φ_{∞} be the limit on $(X_0 \setminus D_0 \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{j0}\right)$, then by Lemma 1.1 $g_{E,t}$, will converge to a Kähler-Einstein V-metric $\tilde{g}_{E,0}$ outside $\mathrm{Sing}(X_0)$ in the sense of Cheeger-Gromov. We now prove that V-metric $\tilde{g}_{E,0}$ is complete. Fix a point P on $(X_0 \setminus D_0 \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{j0}\right)$, let Q be another point close to $\operatorname{Sing}(X_0)$ and $\phi_{\beta,t}$ be defined as in Lemma 1.1. Then the distance between $\phi_{\beta,t_i}(P)$ and $\phi_{\beta,t_i}(Q)$ defined by metric g_{t_i} can be chosen arbitrary large if Q is close enough to $Sing(X_0)$ and i is large enough. This is also true for the distance between $\phi_{\beta,t_i}(P)$ and $\phi_{\beta,t_i}(Q)$ defined by metric g_{E,t_i} . On the other hand if we choose i large enough, this distance approaches the distance between P and Q defined by metric $\tilde{g}_{E,0}$. So $\tilde{g}_{E,0}$ is complete ([Y2], p.474). However, the complete Kähler-Einstein Vmetric on $(X_0 \setminus D_0 \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{j0} \right)$ is unique([TY]), $\tilde{g}_{E,0} = g_{E,0}$.

This shows that φ_t converges to the unique smooth V-function φ_0 on $(X_0 \setminus D_0 \cup \operatorname{Sing}(X_0)) \left(\sum \frac{1}{m_j} C_{j0}\right)$ in the sense of Cheeger-Gromov, so $g_{E,t}$ converge to $g_{E,0}$ in the sense of Cheeger-Gromov.

Remark. In [T], Tian proved that for degeneration $\pi: \mathcal{X} \to \Delta$, the Peterson-Weil metrics bounded from above by $\frac{C \cdot |dz|^2}{|z|^2(-\log|z|^2)^3}$ on the punctured disc $\Delta \setminus \{0\}$ for some constant C. However we can not prove it for the degeneration family in Theorem 0.1 because we do not have $g_{E,t} \leq C \cdot g_t$ for some C independent of t.

References.

- [B] S. Bando, Einstein Kähler Metrics of Negative Ricci Curvature on Open Kähler manifolds, in Advanced Studies in Pure Mathematics, 18-II, Academic Press Inc. 1990, 105–136.
- [K] Y. Kawamata, Pluricanonical Systems on Minimal Algebraic Varieties, Inv. Math. 79 (1985), 567–588.
- [T] G. Tian, Degeneration of Kähler-Einstein Manifolds, I, Proc. Symp. in Pure Math. 54 (1993), 595–609.
- [TY] G. Tian and S.T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, in Mathematical Aspects of String Theory, World Scientific 1987, 574–628.
- [Y1] S.T. Yau, On The Ricci Curvature of a Compact Kähler Manifold and the Complex Monge-Ampére Equation, I*, Comm. Pure Appl. Math. 31 (1978), 339–441.
- [Y2] S.T. Yau, A splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces, Comm. Analy. and Geom. 1 (1993), 473–486.

University of Minnesota Minneapolis, MN 55455