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0. Introduction. 

According to algebraic geometers, a degeneration of projective varieties 
is a smooth holomorphic family TT : X —» A with the following property: the 
fiber Xt — 7r~1(t) are smooth except for £ = 0. Assume that the central 
fiber XQ is a reduced divisor with normal crossings. In [T], G. Tian proved 
the convergence of complete Kahler-Einstein metrics as t —* 0 for two cases: 
1) On Xt when Xt has ample canonical line bundle for t ^ 0, 2) On Xt\V 
when Kxt +'DC\Xt is ample for t ^ 0, where V is a divisor of X. In case 1) 
the result can be stated as 

Theorem (Tian). Let QEJ be Kahler-Einstein metric with 

Ric(££,t) = -grj^t 

on Xt. Assume that the central fiber XQ is the union of smooth hyper- 
surfaces, say Xoi,--- ,Xom; with normal crossings and each line bundle 
Kxoi + Ylj^iXoj is ample on Xoi, 1 < i < m. Further assume that no 
three of divisors XQI have non-empty intersection. 

Then gE,t converge to a complete Kahler-Einstein metric on XQ \ 
Sing(Xo) in the sense of Cheeger-Gromov. 

In this paper, we prove the same result without assuming that no three 
divisors have nonempty intersection. The key observation is that Lemma 
1.5 in [T] can be weakened. We will prove our result in a larger setting. 
Before stating the main theorem of this paper we make several definitions. 

Definition 0.1. Let M be a complex manifold of dimension n and Cj 
are smooth hypersurfaces in M (j = 1, • • • ,77,2) such that Y^jLi^j is a 

normal crossing divisor. Let rrij be natural numbers. Complex V-manifold 

M (Y^ ^Cj) is defined in the following way. 
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(i) As a topological space, M \J2 ^-Cjj is M, 

(ii) For a point p e M \ UCj, we take a small neighborhood U disjoint 
from UCj, and consider (U,id) as a local uniformization, 

(iii) For a point p in some Cj, without loss of generality, assume p e 
(niCj) \ (u/c+iCj) for some k. We take a small neighborhood U of p 
with coordinate system (z1,-- , zn) such that Cj is defined by zi = 0 
for j = 1, • • • , &, and Cj fl C/ = 0 for j = k + 1, • • • ,722. We define the 
uniformization of U to be pjj : U —> ?7 with 

P£,(«;1,-..,«;n) = ((«;1rS...>(ti;fcr*>«;fc+1,. ••,«;"). 

Given a Kahler metric 5, we will denote its Kahler form by ujg and its 
Ricci form by ric(^). 

Definition 0.2. Let M f ]£ ^-Cj j be a complex V-manifold. 

(i) A Kahler metric g on M \ UCj is called a Kahler V-metrics on 

M [y^^—CA if for each p G UCj, p^g can be extended smoothly 

to U as a metric. 

(ii) A family of Kahler V-metrics gt on M {JT^^-CA is said to converge 

in C2-topology if gt converge in C2-topology on M \ (UC^) and p^gt 
converge in C2-topology on U for each p E UCj. 

(iii) A Kahler V-metric g on M [V^^CA is called complete if g is a 

complete metric on M \ UU with boundary d(uU) and the extension 
of p^g is a complete metric on U with boundary pu1(dU). 

(iv) A Kahler V-metric g on Mf^Z^C^J  is called Kahler-Einstein if 

ric(^) = — c • ujg on M \ UCj for some constant c. 

Definition 0.3. Let M be a smooth projective variety of dimension n and 
D be a Q-divisor on M. 

(i) Z) is called numerically eflfective(nef in short) if for any curve C in M 
the intersection number D • C is non-negative. Such a divisor is called 
big if Dn > 0. 
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(ii) D is called to be ample modulo another divisor E if for every effective 
reduced curve C on X which is not contained in E, D • C > 0. 

Let rrij be a family of natural numbers(l < j < 712). Let TT : X —> A be 
a degeneration of projective varieties with two divisors C and V satisfying 
the following assumptions. 

(1) Xt is smooth for t 7^ 0 and XQ is a union of smooth hypersurfaces 
Xoi(l <i< ni) in X with normal crossings, 

(2) C + V is a reduced divisor with normal crossings. Divisor C consists 
of smooth components Ci, • • • ,Cn2 and divisor D consists of smooth 
components Di, • • • , Pns- We further assume that the restriction maps 
dirlc- and dir\K>k are surjective(l < j < 712,1 < k < ns), 

(3) The divisor C + V intersects both central fiber XQ and its singular part 
Sing(Xo) transversally. 

(4) Let Ct = XtnC}Cjt = XtnCj &nd Dt = XtHV,Dkt = XtnVk, then 
each Cjt and Dkt is smooth. For t ^ 0, line bundle 

^3 ^2 -, 

k=i     i=i m^ 

is nef, big and ample modulo Dt, t ^ 0.   It follows that there is a 
unique complete Kahler-Einstein V-metric QE t on 

^Hl^*) 
with nc(gE,t) = —WgEit (see [TY], Theorem 2.1 for existence and [Y2], 
p.474 for completeness). 

The following is the main theorem of this paper which provides a suffi- 
cient condition on the convergence of this family of metrics QEJ as t goes to 
0. 

Theorem 0.1. Let TT : X —► A be the degeneration family with properties 
(1)-(4) given above.  We assume that for each z, 1 < i < ni, line bundle 

KXM+ E ^+E^o+E!!VI^o 



434 Conan Leung and Peng Lu 

is nef, big and ample modulo Y^kLi ^ko on XQI. Then the complete Kdhler- 

Einstein V-metric QEJ on (Xt \ Dt) (J]j=i ^T^jt) converges to the unique 
complete Kdhler-Einstein V-metric gEfi on 

(Xo \ (Sing(Xo) U Do)) ( JT ^-Cj-o 

in the sense of Cheeger-Gromov: there are an exhaustion of compact sets 
Fp (£ XQ \ (Sing(Xo) U Do) crnd diffeomorphisms (frp^ from Fp to into Xt 
satisfying: 

i) Xt\(DtU (Up(f)pj(Fp))) consists of finite union of submanifolds of real 
codimension 1, 

ii) (j)p^ maps Co into Ct and (/)% tgE,t is a V-metric on Fp, 

iii) for each fixed (3,   V-metrics (j)%tgE,t converge to gEfi on Fp in C2- 
topology as t goes to 0. 

In section 1 we construct families of Kahler V-metrics on {X \ (V U 

Sing(Xo))) (XIj=i ^^o) with prescribed asymptotic behavior near XQ \ 

(Sing(Xo) U Do). In section 2 we prove Theorem 0.1 using the estimates in 
[TY] and results from section 1. 

The authors thank Gang Tian for helpful discussions. 

1. Construction of family of Kahler V-metrics 
with asymptotic behavior. 

In this section we adopt the notations used in introduction. For each 
i(l<i<ni), we choose a neighborhood Ui of XQI in X such that U^DU^ = 
0 when XQ^ n Xoi2 = 0, where U^ and Ui2 denote the closure of U^ and Ui2 

respectively. We fix a relative volume V on X. Without loss of generality, 
we assume X = U^C/i. Let Vi be the local representation of the relative 
volume form V on Ui, in particular, for each t E A, Vi\xt is the volume form 
of Xt fl Ui. We denote by U^...^ the intersection U^ fl • • • D U^ for each tuple 
(hi " ' IH)- It is a neighborhood of XQ^...^ = XQ^ n • • • Xoii. 

Now we begin to construct a family of Kahler V-metrics with the asymp- 
totic behavior. Let s; be the defining section of line bundle [Xw]. By Lemma 
1.1 and 1.2 in [T], there are Hermitian metrics || ||; of line bundles [Xoi] on 
X satisfying(l < i < ni): 
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(1) ||si||i = 1 outside Ui, 

(2) ||«1||1...||sni||ni = |t|onAr, 

(3) II \\l ■ % = II \\l ■ Vi2 on Uh n Ui2, 1 < ilyi2 < m. 

Without loss of generality, we may assume ||s;||? < 3 in X. Assume the 
defining sections of Cj and Dk in X are Uj and vk respectively. We equip 
line bundles [Cj] and [Dk] with Hermitian metrics || ||j?2 and || ||fc?3 respec- 
tively. Let /xi, • • • , ijLn3 be rational numbers in [0,1] and s be a small positive 
number. We will specify them later. Now we define a relative volume V on 
X \ {C U V U Sing(Xo)) as follows. For t E A \ {0}, 

Vit 
Vi 

and 

i 

n-ii '■3= 
£\\U ■J\\j,2 l-e||«ill3 •ffii^eNI? 

n 
J=l,/#i 

^iO- 

-TT        7rlogellat||f 
loge|t|        21oge|t| 

on^n(Xt\(CiuA)) 

22niFi 

_^    7riogenrii,^ii^iir 
C5C—      -     —     --    --    -- 

T2 

loge|«| 21oge|t| 

mLi[4vk\\l>;3
k-(-loge\\vk\\l3)Z 

1 

n-ii e m,- 
•3 llj,2 l-e||tiiQ nSi^ells,!!? 

mi^c-iogeii-iii?)2 • (-log^nrii,^ ikdiF)2 

on Ui n (Zo \ (Co U D0 U Sing(Xo))). 

In order to see that these volume forms Vu can be glued together to give a 
global volume form Vt, we simply observe that on 

C/i! n Ui2 nXt       (1 < h, 12 < ni), 
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^1t = 
Vt n 

e\\s. I>2\\i2       TTn3 n^i e\\vk\&-(-loge\\vk\\l3y 
1 

mil £   U 'J\\j,2 

2  x 2 
1 ll      ll ^i 

-TT 7rloge||5i2 
7C5C- 

loge|t| 2lpge|t| 

ni 

n 
1=1,1^11^2 

'  Tll=l,lJ:iUi2£\\Sl\\l 

-TT         Trlogellszllf 
rC5C        

loge|t| 2loge\t\ 

-TT Trlog^nriwn Ikill? 
T2 

loge|t| 
CSC 

2ioge|t| 

Vt 12 1 

elMft ■ (-togeWvkWlt)' 

1 

n-ix em. 'J\\j,2 

2   N  2 

i-^ll^-lQ nrii^^iNii 

^log(s^^il^2ll^llz2), 

loge^r^^"        2iogei^i 

-. 2 

—TT 
rCSC      TT 

ni 

n i 
Z=lJZ^2l,t2 

TT        7rloge||sj||,2 2   f   -TT 
rCSC r-h loge|t|        21oge|*|   J    Lloge|t| 

j-C5c(7r — 
TrIogellaiJI?    2 

21oge|t| )]' 

Define 

Lot = ——<9dlogT4 
27r 

CJQ 
27r 

5<9 log VQ 

onXt\(CtUDt) (t^O), 

onXo\(CoUi?oUSing(Zo)). 

Simple computations show: for t ^ 0, on 17* n (Xt \ (Ct U A)), 

ns 712 

M) + E 
m,- — 1 

nc 

3=1 
rrij 

u}t = -ric(yt) + ]r^fcriqi|| • ||fc 
k-l 

m  r2ric(||-|M + v/ZT   ^loglKllMA^loglKII|3 
+ E 

k=l 

ni 

jt2) + £  ricdl • III) 
1=1,1^1 

2 

log ^K 111,3 *" (-l0ge||^||?3) 2    ^2 
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n2 

+ E 
2   -I 

2e-^dd\\uj\g      2e*.^d\\uj\gAd\\uj\\™i 

i-^ii^e 
711 
ETT Trlogslls/ll?     .   .,,    .. s 

m 

+ £ 
TT 

+ 

7 I    CSC  
*=wA21oge|t|        21og6|«| 

^    7riog(enriwiiNi?)  ni 

^^'im'.vEIaiogNiiFASii.!!!? 

loge|t| 
ctg- 

21oge|t| E ric(ii-ii') 

+ I x^ rrrcsc- —  
21oge|t| 21oge|t| 

y/=la,__   Pr   „   ,|2 
TT 

^ log n ii««ii?Aa n ii" ii?. 

where ric(Vi), ric(|| • jji), ric(|| • ||j?2), and ric(|| • H^) denote the curvature 
tensor of the volume forms Vt = V\xt and the Hermitian metrics || • ||i, || • || j^ 
and || • Hfc^ respectively. Also, on Xoi \ (Co U Do U Sing(Xo)), 

wo = - ric(yo) + X>fc ric(|| • ||M) + E ^^ ric(|| • Hj- 2) + ^ 

+ E 
k=l 

712 

+ E 
ni 

fc=l 

2ric(||.||fci3) 

m^- 

 „,     y^  Qlog lklll,3 A aiogKii^' 

log^lKHy +    TT    " (-log elMiy2 

i-eii«.in (i-siM?,*)2 1
      £lPjllj,2 

+ E 
1=1,1^1 

l0g^ll^ll/2 
^^log|h||z

2Aaiog|h|lF 
n ii « II2\9 

2Tic(||.y 
(log£||^||?)2 

:rii,^ric(ii.|io 
12 logenCllf^||5,||? 

^aiognrii,^ ikiii? A aiognrii,^ iia'ii? 
oogenrii^iMi?)2 
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Assume that Kxt + YJk=i Dkt + Y,%i ^^Cjt is nef, big and ample modulo 
Dt, t ^ 0. By a result of Y. KawamataQK]), there are constants 0 < /x*. < 
1(1 < k < ns) such that for properly chosen volume V, 

m 712        _ -* 

- ric(^) + Y,K ric(ll' HM) + E — ric(ll • lli.2) 
k=i 3=1    mj 

is a Kahler V-metric on (Xt \ A) fe ^^jt)• Assume that for each z, 1 < 
i < ni, line bundle 

k=l j=l j l=l,l& 

is nef, big and ample modulo DQ on Xw, then 

-iic(Vo) + EA*fcric(i|.|k3) + E!^r-ric(ii-iii,2)+ E ric(ii-iii) 
k=l j=l J l=l,l^i 

is a Kahler V-metric on (Xoi \ (Do U Sing(Xo))) (j2 ^^jo) for the same 
reason. The following lemma follows directly from the formulas of cjt and 
CJO above. 

722    m3-i. Lemma 1.1. Assume that Kxt+J2k=i ^kt + YllLi m^n.   ^jt is nef, big ana 
ample modulo Dt, t ^ 0; and assume that for each i, 1 < i < ni, line bundle 

ns 712 -* ni 

^+E^o+E!^^o+ E x* 
k=i j=i       j i=i,i^i 

is nef big and ample modulo DQ on XQI. 

Then by choosing the volume form V properly and a small e, ut is the 
Kahler forms of complete Kahler V-metrics gt fort sufficiently small More- 
over, the Kahler V-metrics gt converges to go outside DQ U Sing(Xo) in 
the sense of Cheeger-Gromov: there are an exhaustion of compact subsets 
Fp (£ XQ \ (DQ U Sing(Xo)) and diffeomorphisms </)pit from Fp into Xt sat- 
isfying: 

(1) Xt \ Up(/)pj(Fp) consists of finite union of submanifolds of real codi- 
mension 1, 

(2) (j)pt rnap Fp D Co into Ct and <f)pitgt are V-metrics, 
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(3) for each fixed f3, (j)%tgt converge to go on Fp in C2-topology on the 
space of V-metrics as t goes to 0. 

Before we state the next lemma, we need a couple of definitions. 

Definition 1.1. Let M [Y^-^-CA be the V-manifold in Definition 0.1. 

Let B be a ball in Cn and ^ is a holomorphic map from B into M. ip is 
called a quasi-coordinate map if either iJj(B)r)(uCj) = 0 and ^ is of maximal 
rank everywhere, or ip(B) is contained in some uniformizing neighborhood 
[/, the lifting ipu : B —► U is of maximal rank everywhere, and ^ satisfies 
ip — pjj o ipu. (B, ip) is called a local quasi-coordinate of the V-manifold. 

Definition 1.2. Let M (^^-Cj) be a V-manifold and g is a smooth 

Kahler V-metric on it. We call that (M [^2-^-Cj) ,g) has bounded geom- 

etry of order k + /3, where k 6 N, /3 G [0,1), if the following conditions hold: 
There are a system of quasi-coordinates {(BQ,,^)} such that: 

(i) Every x G M is the image of the center of some Ba, 

(ii) There are positive numbers e and 6 independent of a such that the 
radius of Ba is between £ and 6. 

(iii) There exists constant C such that 

0 < C-^Sij) < (gai]) < C(5y) 

d\P\+\q\gi 
CLIJ 

dz^dzi 

for all multi-indexes p, q with |p| + \q\ < fc, where gaij is the pullback 
metric on Ba and | • ICP^) ^s ^he standard Holder norm. 

Lemma 1.2. Same assumptions as Lemma 1.1.  Then 

(i)  the Kahler V-metric go in Lemma 1.1 has bounded geometry of order 
4 + /?. 

(ii) the Kahler V-metrics gt in Lemma 1.1 have uniformly bounded cur- 
vature tensors on the uniformization coordinate systems of the V- 
manifold for t ^ 0. 
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Proof, (i) we prove that (Xoi \ (DQ U Sing(Xo))) fc ^JC0j) has bounded 

geometry of order 4 + (3 for each i = 1, • • • , ni. In [TY] it has been proved 

that #o has bounded geometry on (XQI \ (Do U U(Smg(Xo)))) fej ^jC'oA 

where i7(Sing(Xo)) is a small neighborhood of Sing(Xo) in Xoi. We only 
need to prove that go has bounded geometry on [/'(Sing(Xo)). 

Pick up a point XQ G Sing(Xo) fl XQI, for simplicity, we assume that 

xoe \\\Xoi) n Xoi n 

^o ^ ^oz5 for Z > ii,l ^ i, XQ £ CJQ, for j > ji, and xo £ Dko, for 
k > hi. Take a neighborhood Uxo of ^o with coordinate system (z1, • • • , zn) 
of Xoi such that XQI is defined by zl = 0, Z = 1, • • • , ii, D^o is defined by 
2*1+* = 0, fe = 1, • • • , fci, and CJO is defined by zil+kl+J = 0, j = 1, • • • , j1. 
If we choose UXQ small enough, we may assume that \\si\\i = 1,Z = ii + 
1, • • • , n, I 7^ i. On the uniformization p^ : L^Q ^> Uxo we have coordinate 
system (w1, • • • ,t(;n). Let AJ = {^ G C : 0 < |w| < 6} and A^ = {w G 
C : |ty| < 6}, then we may identify Uxo with (A^)il+A:i x (A^)71-^"*1, where 
5 > 0 only depends on Xo, Co, and Do- We will construct quasi-coordinate 
on Uxo such that the pullback of go has bounded geometry. The following 
two lemmas are well-known (see e.g. [TY, p. 602]). 

Lemma 1.3. The map po : As -> A£ with po(w) = 6exp (^f + V—IO) is 

a universal covering map of A|; where 6 G [0,2/7r). The fundamental domain 

over A*s \ {te^6 : 0 < t < 6} is {w G A^ : 0 < 6Im(w) < 7r\6 - w\2}. 

Lemma 1.4. For rj G (0,1), ^ : A$ —► A^; with ^(w) = 8™~w> ^ an 

automorphism mapping r)6 to the origin. Furthermore 

{w e As :0 < SIm(w) < 7r\6 - w\2, \w\2 + (- log r) \6 - w\2 < 62} 

c u ^O^)' 
0<r;<l 

when r is chosen small enough. 

If we shrink Uxo to (A*g)il+kl x (ArS)n-il-kl, then it is covered by 

U   peio K1 (A^)x • • •x ^1+*!o K+n (A^)x (A^)n n ' • 

^G[0,27r) 
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Consider immersion F : A?, —► Uxo, with 

Then by some simple computations, we get 

(1.1)        «■ = Pei o ^(^) = 5exp (g!gg!g + ^) , 

(1.2) 

-»»)(^-«)2 exp U-tj.)^-*)+^ v St;' (1 - rit){vl - 6)2     ^ \(1 - rnXv1 - 6)      v       lJ dwl 

for I = 1, • • • ,ii + fci- 
On C/xo, we can write LJQ = U)Q+LU0, where 

kl      \/ziI   . ^l^rr IU„  112        A   ^IrurlLi.  ||2 ^•9iog||Vfc||
2

MAmog|H||3 

^   S 0oge||«fcll2,3)2 

Z=l 

^^r-oiogl|Jt||?)AaiogM? 
(log^ll^ll?)2 

(log^niiiii^n?)2 

Then a;0 is a positive (l,l)-form on UXQ. By the choice of (it;1, • • • , i(;n), we 
may assume ||^/c||fc3 = ^u+fclw21"1"^2 and ||5;||/ = hilw1^ for some positive 

functions hi on L^o, i = 1, • • • ,ii + fci. Substituting (1.1), (1.2) and (1.3) 
into F*UJQ, we obtain 

+ ^E TT . (^-l^l^-^y-log^/i,))^ 
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(1.4) 

w_(i-^:*)2.alog/tf 

A    S'dV 

2(1 +W) 

2^     {l-riJVi-S? 
2(1 + ^) 

5 log hi 

+ 4<54    J]    i^^t;1,- 

'(l + rtitf + S) 

,vn)) 
(l + »K)(l + »?j) 

a-^a-^o^-^v-^)2 

•exp 

27r 

+ VCT^ + -l^- 

dul A dw7 

462Re J]     %(^1,...,^) l + *7i 
(l-^)(t,*-5)2 

z<il4-/ci 
Li>H+/ci+l 

+ v^T 1 

27r 

Z<ti 
(1-^)^-^ 

A E -2^(1 + 7?/) 

(1-W)(e'-*)2 
dvl + d\oghi 

From the fact that limx —> ooxp exp(—x) = 0 for any real number p, it is 
east to see that in (1.4) the first two terms are equivalent to a Euclidean 
metric on A^, the next two terms are very small since we may choose rji 

2° 
close to 1, the last term is positive and bounded. It is straight forward to 
check that F*LJO has bounded geometry. 

(ii) We show that gt has uniformly bounded curvature tensor for t / 0 
small. It is known that outside a neighborhood of Sing(Xo), gt has uniformly 
bounded geometry ([TY]). It suffices to bound curvature tensor Rm(gt) on 
some neighborhood of Sing(Xo). For any XQ G Sing(Xo), for simplicity, we 
assume that XQ G (nji^oj) n (^jLi^jo) n (^LiAco), ^o £ XQIJ > n, 
xo £ CjQij > ji, and XQ £ Dko.k > fci.  Take a neighborhood of XQ with 
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coordinate system (21, • • • , z714"1) in X such that X^i is defined by 

zz = 0, Z = n + 2 - ii, • • • , n + 1, 

.Dfc is defined by 
zk = 0,k = I,--- ,fci, 

and Cj is defined by 

On the uniformization p^ : UXQ —> C/^Q we have coordinate system 
(n;1, • • • , wn+1). We may identify UXo with (AJ)*1 x (As)71-*1, where 6 > 0 
only depends on Af, C, and P. Then 

uxonp£(Xt) 
= {(w1,-- ■ ,wn+1) : wn+2-h ■ ■■wn+1 = t, \wl\ < 8, I = 1, • • • ,n+ 1}. 

Assume \\vk\\k = ^fcl^l2 and ||sj||/ = hi\wl\2 for k — 1, ■ ■ ■ ,ki, I = n + 2 — 
ii, ■ ■ ■ , n +1. By the definition of metric gt, we have (here we take i = n +1 
in the definition of Vn) 

HfcLi^l^l^K-log^fcl^l2))2 

1 
2 

i=n+2-n ^l0g£lil 21og£ltl 

Z|2^ 2 

r    TT ^log(enLH-2-i1^KI2) 
'{\oge\t\CSC 2\ogs\t\ 

where b is a smooth function of 

1-1 n     -n t t 

IL=n+2-ii w     nz=n+2-ii w 

with ^^ddlogb positive definite. By exchanging wn+1 with one of 
icn+2~n,--- ,wn if necessary, we may assume |u7Z| > ->/ji[, / = n + 2 — 
zi, • • • , n. Then simple computations show 

ut = v^T^1,    _.,._.,    v/=Tfcl 
^  fcajgd«;« A d^ - ±— ^aSlogOoge^l^l2)2 

27r    V    ap 27r 
a,/3=l fc=l 
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^1 + 

2 

+ ^i^,„g f.-£_ae»
l°«(-n^.*'i^i') 

27r Uoge|t| 21oge|t| 

n+l 

- ]P hapdwa A dw13 

27r      a a,/3=l 

TT   ^ (loge^|u;fc|2)2 

TT    ^ (-loge/ifc|i(;fc|2) 

-     E     -^- ■ ct/yy ■ f l0fid^ A ^ 
TT    ,   ^-f     21oge|i|      a    21oEe*        dwadwP 

l=n+2- 

El  v 

T + dlogfH) A I -^ + dloght) 

i-^V1**6!*!        21og£|i| 

^+2-H   ^2l0g£ltl 2l08el*l 

I.   *   . rf^iog(gnr=n+2-H^kf) 
TT      21oge|t|      3 21oge|i| 

, v^ir ^     ^iog(^nr=n+2-H^kf)V 
TT    ^21oge|t|CSC 21oge|t| j 

•     £     (^log^A    £     (^^log^), 
Z=n+2-zi   V /       Z=n+2-u   V / 

where ^^ and QJ^^ are smooth functions of 

.1  ,T.1 n.Ji   -n t ' w ,w , — - ,w ,w , 
nz=n+2-zi ^     nz=n+2-ii ^ 

and h^p is positive definite on UXQ. 
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Define 

I—=-   n—1 

Jt = y^—  ^ /ia^(«;1)tD1
)---,«;n,u;n,0>0)<iwO!AdtD/3 

., „. A/-! X^ dwk A du;fc 

(i-5)        +-T-E- 
/c=l 

V^     ^      /      TT 7rlog£/ii|t(;z|2\    dwl Adw1 

7C5C 

and 

t^+2-ii   v2l0g£l*l 2l0gel*l      / l^l2 

^log^nr^^-n^i^i^V 
UJt   = (jJf -\ —; —CSC 

TT    l21oge|t| 21oge|*| 

^   *   ^ ^        ly^ ^        wl 

l=n-{-2—ii Z=n+2—ii 

Let gt and gt be the metric corresponding to ujt and (jJt respectively. Using 
the fact that \wl\ > ^/jtf, I = n + 2 — ii, - — , n, gt has uniformly bounded 
curvature tensor. gt is equivalent to gt uniformly in £, and their difference is 
bounded in C3-norm defined by gt. So gt has uniformly bounded curvature 
tensor. One can check that Ut — ujt are uniformly small in C3-topology 
with respect to the metric gt when we choose e small. So gt has uniformly 
bounded curvature tensor on UXQ. Lemma 1.2 is proved. □ 

Lemma 1.5. For the metric gt in Lemma 1.1, there is a smooth function 
f on X \ (C U P U Sing(Xo)) compatible with the V-manifold structure and 
bounded from above such that 

nc(gt)+ujt = -T>—95 ft, 
ZTV 

ric(ffo) + ^o = -r—ddfo, 
ZTT 

where ft = f\xt\(ct\jDt) and fo = /lxo\(CoUJDoUSing(Xo))- Furthermore 
—Agtft < C for some constant C independent oft. 

Proof. We define / by(t may be 0) 
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It suffices to show that ft and —Agtft are uniformly bounded from above 
near DUSing(Xo). Here we only show that they are uniformly bounded from 
above near Sing(Xo), near V the proof is similar and easier. First we prove 
that / is bounded from above near Sing(Xo). Using the coordinate system 
(tu1, • • • , wn~{~1) in the proof of Lemma 1.2(11), we have o^1 = (a;^)n(l + h), 
where h is a function with very small values.   So we need to prove that 

— log v y   is uniformly bounded from above. 
Since (CJI+O^)

77,
 > w™ when both UJI and UJ2 are non-negative (l,l)-forms, 

observing that last term in (1.6) is non-negative, we have 

(j;r > (4)n 

n - vt 

-       JUL |wfc|2(i-/i*)    ^21oge|i|CSC 21oge|t| )     ' 

where C is a constant independent of t. Since usin ^ > ^x for 0 < x < u, 
using the fact that \wi\ > \/pj, we have 

/_^cac^£i|^^!y2
>c.f £ log£MV2 

[2loge\t\ 21og£W ^     -       ^_. 

So / is bounded from above by a positive constant independent of t. 
Next we prove  —Agtft   <   C.     Using the same coordinate system 

(w1, • • • , it/1"1"1) as above. Then by some computations we find 

/t=_logKm±M 

where h has uniformly bounded C3-norm with respect to metric gt. However 
further computations show that both 

ki 

-Ag.lOgYllW^1'^ 
k=l 

and 

-A. 9t — log   ——rrC5C —  
/|2\ "2 

21oge|t| 21og£|£| 
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are bounded from above. So the lemma is proved. □ 

2. Proof of Theorem 0.1. 

We adopt the notations of section 1. Now let gE,t be the Kahler-Einstein 

V-metrics on (Xt \ A U Sing(Xo)) fe ^]Cjt) for each t e A. Then there 

are smooth V-functions (pt on (Xt \DtU Sing(Xo)) f ]£ ^-Cjt) such that 

VE,t =Wt + -Z dd(PU 
ZTT 

where CJEJ are the Kahler forms associated with QEJ- Furthermore, the 
following equation follows from ric^^) = —UJE^I 

where ft is defined in Lemma 1.5. 

Lemma 2.1.   There is a uniform constant C independent of t such that 

sup\<pt + ft\<C on (Xt \ Dt U Sing(Xo)) (E ^Cjt). 

Proof. It follows from maximal principle since by Lemma 1.2 

{Xt \ Dt U Sing(Xo)) far ±-Cjt\ 

has uniformly bounded geometry. (See [TY] or [B]) D 

Lemma 2.2.      (i)   There are two constants c and C both independent oft 

and x such that e-c^x\n + Agt(pt(x)) < C. 

(ii) For any compact set K C X \ (V U Sing(Xo)); there is a uniform 
constant CK depending on K but independent of t and x such that 
n + Agt(pt < CK. 

Proof (i) Let XQ be the point where e~Cipt(x\n + Agtipt(x)) attains its maxi- 
mum. Note that in [Yl] this second-order derivative estimate of cp is bounded 
by a constant depending only on supf and sup(—Agf) for the complex 
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Monge-Apmere equation (ujg + dd(p)n = e^^ujg. Using Lemma 1.2 and 1.5, 
we have the following estimate n + A^^(^o) ^ C by the same computa- 
tions as the second-order derivative estimate in [Yl] using quasi-coordinate 
system. On the other hand, from Lemma 2.1 and Lemma 1.5, we have 
-Mx) < Mx) + C < C + C. So e-<*P**o){n + A^^t^o)) is uniformly 
bounded. 

(ii) Prom Lemma 2.1, for any compact set K C X \ (V U Sing(Xo)), we can 
find CK such that for any x in K, \<pt(x)\ < CK> NOW (ii) follows form (i). 
□ 
Corollary 2.1. For any compact set K C X \ (V U Sing(Xo)); there is a 

constant CK depending on K but independent of t such that 

sup {I^UVj^l : 1 < k < 3} < CK. 
XtDK 

Proof. By working in the quasi-coordinate system, we can show that (pt + ft 
has uniformly bounded C2'a-norm on any compact set if (the proof is the 
same as the proof of Lemma 1.4 in [TY]). In the proof we need to use 
Lemma 2.1 above. The third derivative estimate of ipt follows using Lemma 
2.2 and the arguments in [Yl]. □ 

Now we conclude the proof of Theorem 0.1. For any sequence <^., by 
a diagonalizing argument using Corollary 2.1, we can find a subsequence 
which converges in the sense of Cheeger-Gromov under C2,2 -topology on 

(Xo \DoU Sing(Zo)) fe ^CjoY Let cpt. be any convergent sequence and 

(pco be the limit on (XQ \DOU Sing(Xo)) fe ^jCjo\ tlien by Lemma 1.1 

gEt. will converge to a Kahler-Einstein V-metric gE,o outside Sing(Xo) in 
the sense of Cheeger-Gromov. We now prove that V-metric gE,o is com- 

plete. Fix a point P on (XQ \DOU Sing(Xo)) (j2 ^C
JO) , let Q be another 

point close to Sing(Xo) and ^jt be defined as in Lemma 1.1. Then the 
distance between ^/^(P) and <^(Q) defined by metric gt. can be cho- 
sen arbitrary large if Q is close enough to Sing(Xo) and i is large enough. 
This is also true for the distance between <^.(P) and QpfaiQ) defined 
by metric QE^ • On the other hand if we choose i large enough, this dis- 
tance approaches the distance between P and Q defined by metric ^o- So 
gEfi is complete ([Y2], p.474). However, the complete Kahler-Einstein V- 

metric on {XQ \ DQ U Sing(Xo)) (j2 ^7^0) is uniqueQTY]), gEft = gsfl. 
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This shows that ^ converges to the unique smooth V-function cpo on 

(XQ \ Do U Sing(Xo)) [Y^^^jO] in the sense of Cheeger-Gromov, so QEJ 

converge to gEfi in the sense of Cheeger-Gromov. 

Remark. In [T], Tian proved that for degeneration TT : X —> A, the 

Peterson-Weil metrics bounded from above by , .^/jM, .^^ on the punc- 
tured disc A \ {0} for some constant C. However we can not prove it for the 
degeneration family in Theorem 0.1 because we do not have QEJ <C-Qt for 

some C independent of t. 
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