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0. Introduction.

According to algebraic geometers, a degeneration of projective varieties
is a smooth holomorphic family 7= : X — A with the following property: the
fiber X; = 7w1(t) are smooth except for ¢ = 0. Assume that the central
fiber Xy is a reduced divisor with normal crossings. In [T], G. Tian proved
the convergence of complete Kéhler-Einstein metrics as ¢ — 0 for two cases:
1) On X; when X; has ample canonical line bundle for ¢t # 0, 2) On X; \ D
when Ky, + DN X, is ample for ¢t # 0, where D is a divisor of X'. In case 1)
the result can be stated as

Theorem (Tian). Let gg: be Kdhler-Einstein metric with

RiC(QE,t) = —JEt

on X;. Assume that the central fiber X is the union of smooth hyper-
surfaces, say Xoi,--- ,Xom, With normal crossings and each line bundle
Kx,, + Zj #i Xoj is ample on Xo;, 1 < @ < m. Further assume that no
three of divisors Xo; have non-empty intersection.

Then gg: converge to a complete Kdhler-Einstein metric on Xo \
Sing(Xo) in the sense of Cheeger-Gromov.

In this paper, we prove the same result without assuming that no three
divisors have nonempty intersection. The key observation is that Lemma
1.5 in [T] can be weakened. We will prove our result in a larger setting.
Before stating the main theorem of this paper we make several definitions.

Definition 0.1. Let M be a complex manifold of dimension n and Cj
are smooth hypersurfaces in M (j = 1,---,n2) such that E;’il C; is a
normal crossing divisor. Let m; be natural numbers. Complex V-manifold

M (Z ;%Cj) is defined in the following way.
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432 Conan Leung and Peng Lu

(i) As a topological space, M (Z %}'Cj) is M,

(ii) For a point p € M \ UC};, we take a small neighborhood U disjoint
from UC}, and consider (U, id) as a local uniformization,

(iii) For a point p in some Cj, without loss of generality, assume p €
(NkC;) \ (U3, C;) for some k. We take a small neighborhood U of p
with coordinate system (z!,--- ,2") such that C; is defined by 2/ =0
forj=1,---,k,and C;NU =0 for j=k+1,---,ny. We define the
uniformization of U to be py : U — U with

pu(wl, el wn) — ((wl)ml, e, (wk)mk,wk+1, L. ’wn)'

Given a Kahler metric g, we will denote its Kéhler form by wy and its
Ricci form by ric(g).

Definition 0.2. Let M (Z %J,-Cj) be a complex V-manifold.

(i) A Kahler metric g on M \ UC; is called a Kahler V-metrics on
M (Z %Cj) if for each p € UC}, pf;g can be extended smoothly

to U as a metric.

(ii) A family of Kéhler V-metrics g; on M (Z L C’-) is said to converge

in C?-topology if g converge in C2-topology on M \ (UC}) and p};g:
converge in C2-topology on U for each p € uC;.

(i) A Kéhler V-metric g on M (Z LcC ) is called complete if g is a
complete metric on M \ UU with boundary d(UU) and the extension
of pj;g is a complete metric on U with boundary pU1 (oU).

(iv) A Kshler V-metric g on M (2 L.C;) is called Kahler-Einstein if
ric(g) = —c-wy on M \ UC; for some constant c.

Definition 0.3. Let M be a smooth projective variety of dimension n and
D be a Q-divisor on M.

(i) D is called numerically effective(nef in short) if for any curve C in M
the intersection number D - C is non-negative. Such a divisor is called
big if D™ > 0.
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D is called to be ample modulo another divisor F if for every effective
reduced curve C on X which is not contained in E, D - C > 0.

Let m; be a family of natural numbers(l < j < ng). Let 7 : X — A be
a degeneration of projective varieties with two divisors C and D satisfying
the following assumptions.

1)

(2)

3)

(4)

Xt is smooth for t # 0 and X is a union of smooth hypersurfaces
Xo0i(1 <4< np)in X with normal crossings,

C + D is a reduced divisor with normal crossings. Divisor C consists
of smooth components Cy,---,C,, and divisor D consists of smooth
components Dy, - - -, Dy,. We further assume that the restriction maps
d7r|cj and dr|p, are surjective(l < j < ng,1 <k < ng),

The divisor C+ D intersects both central fiber Xy and its singular part
Sing(Xo) transversally.

Let Ct = XtﬂC,Cjt = XtﬂCj and Dt = Xt ﬂD,Dkt = Xt ﬂDk, then
each Cj; and Dy, is smooth. For ¢ # 0, line bundle

Kx,

is nef, big and ample modulo Dy, t # 0. It follows that there is a
unique complete Kéahler-Einstein V-metric gg; on

Xt \ Dt Z Cjt

with ric(gg,t) = ~wgp, (see [TY], Theorem 2.1 for existence and [Y2],
p.474 for completeness).

The following is the main theorem of this paper which provides a suffi-
cient condition on the convergence of this family of metrics gg ¢ as t goes to

0.

Theorem 0.1. Let m: X — A be the degeneration family with properties
(1)-(4) given above. We assume that for each i,1 <14 < ny, line bundle

KX 0:

I=1,1%
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is nef, big and ample modulo n3 1 Dio on Xo,- Then the complete Kahler-

FEinstein V-metric ggs on (X; \ Dt) (ZJ 15
complete Kdhler-FEinstein V-metric ggo on

converges to the unique

(Xo \ (Sing(Xo) U Dy)) Z c,o

in the sense of Cheeger-Gromov: there are an ezhaustion of compact sets
Fg € Xo \ (Sing(Xo) U Do) and diffeomorphisms ¢g; from Fg to into X,
satisfying:

i) X\ (DsU(Updp,(Ep))) consists of finite union of submanifolds of real
codimension 1,

ii) ¢gt maps Co into Cy and ¢} g+ is a V-metric on Fp,

iii) for each fized B, V-metrics qﬁﬂ 9B converge to ggo on Fg in C?-
topology as t goes to 0.

In section 1 we construct families of K&hler V-metrics on (X \ (DU

Sing(Xo))) ( ;‘21 s —Cj ) with prescribed asymptotic behavior near Xp \

(Sing(Xo) U Dy). In section 2 we prove Theorem 0.1 using the estimates in
[TY] and results from section 1.
The authors thank Gang Tian for helpful discussions.

1. Construction of family of Kahler V-metrics
with asymptotic behavior.

In this section we adopt the notations used in introduction. For each
i(1 < i < n1), we choose a neighborhood U; of Xo; in X such that U;, NU;, =
@ when Xo;, N Xo;, = 0, where U;, and U;, denote the closure of U;, and Uj,
respectively. We fix a relative volume V on X. Without loss of generality,
we assume X = U2, U;. Let V; be the local representation of the relative
volume form V on Ul, in particular, for each t € A, Vj| Xt is the volume form
of X;NU;. We denote by U, ...;, the intersection U;, N---NU;, for each tuple
(1, -+ ,4). It is a neighborhood of X;,...;; = Xoi; N - -+ Xoj,-

Now we begin to construct a family of Kédhler V-metrics with the asymp-
totic behavior. Let s; be the defining section of line bundle [X¢;]. By Lemma
1.1 and 1.2 in [T], there are Hermitian metrics || ||; of line bundles [Xo;] on
X satisfying(1 < i < nq):
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(1) |lsills =1 outside U,
() llsille--- lIsnllny = [t] on &,
B3) 112 - Viy = 1 13 - Vi, on Uy NUs,, 1 < iyip S 1

Without loss of generality, we may assume ||s;||? < 3 in X. Assume the
defining sections of C; and Dy in X' are u; and vy respectively. We equip
line bundles [C;] and [Dj] with Hermitian metrics || ||;2 and || |[x,3 respec-
tively. Let pi,- -+ , ptng be rational numbers in [0, 1] and € be a small positive
number. We will specify them later. Now we define a relative volume V on
X\ (CUDUSing(Xy)) as follows. For t € A\ {0},

Vi

: |
w2 [ellonl - (—logellunl? 5)?]
1

2mz~—2 2 2
;‘Zl [5||“j||j,2mJ ) <1 - 5”“3‘";'72]) ] 'H?;l-l,lgéiellsl”?

’ 2
ﬂ -7 rlogel|si|21? [ —n mloge [112y 1 lsill?
csc . csc
=1 1k log et 2logelt| log e|t| 2logelt|

on U; N (X \ (Ct U Dy))

Vie =

and
22n1 ‘71,

[€||vk||2“’° (—logsllvklli,s)z]
1

. 3 2";1'_2 =\ 2
Hj:l 5““7’”,‘,2 : 3”“3“,, T02, i ellsully
1

Hz 1= loge|si[|7)? - (—loge [T, A [ls:l17)?
on U; N (X() \ (Co UDgou Slng(X()))).

In order to see that these volume forms V;; can be glued together to give a
global volume form V;, we simply observe that on

Ui, NU;, N X (1 <iq,i0 < mq),
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V;
= el T T )
e T, et - (~togeloelzs)|
1
2mz -2 2 N\ 2
[152 [Slluyllj, ( €||ualljz) ] TT21 i iz €Dl
272 m 212
- mlogel|si, |5, - mloge||sil;
logelt] " 2logelt] I |5 e[t > 2logelt]
| o8& g =Ll ip 108 8
2
- WlOgEH?:H,z;eil ||3l”l2
csc
log e|t| 2logelt|
_ Ve 1
T g|ss, |12 2
il pze Jepoelis - (~10meliueliy)
: 1
’ 2m;—2 2\ 2
I, [euujn,-,zf (1=l ] T o il
_W wlog (= T2y, Ist1?)
loge:lt[csc " 2logelt|
ni
— 1 mloge||s;, |3
- II G Wt "’“Wzolgsnszi“l P g |t| ese(m = 2%0 “s|;|“ o
1115, i, 10BN ogelt| oge g
= Viot-
Define
V=1 -
Wy = —é—gaaloth on Xt \ (Ct ) Dt) (t -',é O),
v-1_- .
wo = —2-7—r—8810gV0 on Xo \ (Co U Do U Sing(Xo)).
Simple computations show: for t # 0, on U; N (Xt \ (CyU Dy)),
ni
—I‘IC(Vt)+Z#krw(ll ||k3)+z ~ rie(]- ls2) + Y ie(l -l
1=1,1#i

2ric(]| - — 3log||vk|| A Olog ||vk||2
L [rell lhy | VT Olcelul 2

2o | Togelluels (—loge[lug[7 5)
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2 -2_
o2 [oc ETob 7y 262 ELolusl 1 3l
2
2 z [=Th
=L 1-ell3 7

u wlogellsillf .
t . .
+ _ZilogelﬂcQ 2logepy el

ni 9 2
T 7 log gl|s1]]; V=1 .
: ol AND
> (2logsufwc 2logelt - Ologllsulli A llsill

I=1,l#i
mlog(e [T IIsill?) &
log e[t| 2logelt| I=1,#i
2
T e wlog(sl'[z =1,l#i llslI7)
2logelt| 2logelt|

——0log IT lsifad T lsili,

I=1,l#i 1=1,l#i

where ric(V;), ric(]| - |ls), ric(|| - ||5,2), and ric(|| - ||x,3) denote the curvature
tensor of the volume forms V; = V|x, and the Hermitian metrics ||- ||;, || -||,2,
and || - ||x,3 respectively. Also, on Xo; \ (Co U Do U Sing(Xo)),

=—r10(V0) + Z pr ric(|| - lk,3) + Z I’lC(” Il5,2) + Z ric(|| - 1)

I=1,l#i
+i 2rlc(|| ||k3)+\/— .Blog||vk||k’3/\510g||'uk||%’3
=i LlogCelloliy) © (—bgsl!vklli,sV
2
|2 ¥l aauugn L9175 A Byl ]3
2 (1—e||u 12,)2
=1 | —enu]nﬂ
+ i 2 - rie(|| - [ly) 3108||51||z/\310g”51”1
L | Togellsil? (log e]|s1[[?)2

2- 302 21,0 Tic(]| - )
loge [T}y 1z sl

YL010g [T 1 lsullf A Blog Ty s lsll?
(1085H1=1,l;éi |3l||z)
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j=1
Dy, t # 0. By a result of Y. Kawamata([K]), there are constants 0 < py, <
1(1 < k < n3) such that for properly chosen volume V,

Assume that Kx,+> ;2| Dg+> 12 m;; ;1 Cj: is nef, big and ample modulo

n3 n2
. ) m;—1 .
—ric(Ve) + ) meric(l] - lleg) + > jn ric(|| - [Ij,2)
k=1 j=1 J

is a Kéahler V-metric on (X; \ D;) (Z mijCjt). Assume that for each 7,1 <
1 < nyp, line bundle

n3 no ni
m; — 1
Kxp+Y Do+ jn Cio+ Y Xu
k=1 j=1 J I=1,l#i

is nef, big and ample modulo Dy on Xy;, then

n3g ng ni

- . mj;—1 . .
—ric(Vo) + > peric(|| - llx3) + Y —ric(|| - [l52) + > rie(ll - )

k=1 j=1 J 1=1,l#i

is a Kéahler V-metric on (Xo; \ (Do U Sing(Xo))) (Z ;nl—jC'jo) for the same
reason. The following lemma follows directly from the formulas of w; and

wp above.

Lemma 1.1. Assume that Kx,+3 ;%) Die+3 52 %;—10]',5 is nef, big and
ample modulo Dy, t # 0, and assume that for each i,1 < i < ny, line bundle

n3 n n1
m; — 1
Kx,, + E Do + E :n Cjo + E Xo
k=1 j=1 J 1=1,l4

is nef, big and ample modulo Dy on Xy;.

Then by choosing the volume form V properly and a small &, w; is the
Kahler forms of complete Kdhler V-metrics g; for t sufficiently small. More-
over, the Kahler V-metrics g: converges to go outside Do U Sing(Xy) in
the sense of Cheeger-Gromov: there are an ezhaustion of compact subsets
Fz € Xo \ (Do U Sing(Xo)) and diffeomorphisms ¢pg+ from Fp into X; sat-
isfying:

(1) X¢\ Updpt(F) consists of finite union of submanifolds of real codi-
mension 1,

(2) ¢pt map FgN Cy into Cy and ¢ ,9¢ are V-metrics,
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(3) for each fized 3, ¢B,tgt converge to go on Fg in C2-topology on the
space of V-metrics ast goes to 0.

Before we state the next lemma, we need a couple of definitions.

Definition 1.1. Let M L ¢.) be the V-manifold in Definition 0.1.
mj ~J

Let B be a ball in C™ and % is a holomorphic map from B into M. % is
called a quasi-coordinate map if either ¥ (B)N(UC;) = @ and 7 is of maximal
rank everywhere, or ¢(B) is contained in some uniformizing neighborhood

U, the lifting ¢y : B — U is of maximal rank everywhere, and v satisfies
Y =pyoyy. (B,) is called a local quasi-coordinate of the V-manifold.

Definition 1.2. Let M (Z %Cj) be a V-manifold and g is a smooth

Kahler V-metric on it. We call that (M (Z mijC’j) ,9) has bounded geom-

etry of order k + 8, where k € N, 8 € [0, 1), if the following conditions hold:
There are a system of quasi-coordinates {(Ba, %)} such that:

(i) Every ¢ € M is the image of the center of some B,,

(ii) There are positive numbers ¢ and 6 independent of o such that the
radius of B, is between £ and 6.

(i) There exists constant C such that

0<C(6;) < (9aij) < C(6i5)
alpl+|qlgai3

<C
0220z =

CP(Ba)

for all multi-indexes p, ¢ with |p| + |q| < k, where g,z is the pullback
metric on B, and | - |Cg( B,) is the standard Hélder norm.

Lemma 1.2. Same assumptions as Lemma 1.1. Then

(i) the Kdhler V-metric go in Lemma 1.1 has bounded geometry of order
4+ 0.

(i) the Kéhler V-metrics g, in Lemma 1.1 have uniformly bounded cur-
vature tensors on the uniformization coordinate systems of the V-
manifold for t # 0.
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Proof. (i) we prove that (Xo; \ (Do U Sing(Xo))) (ZJ 'ijCOj) has bounded
geometry of order 4 4 (3 for each s = 1,--- ,ny. In [TY] it has been proved
that go has bounded geometry on (Xo; \ (Do U U (Sing(Xo)))) (E; m%.COj),
where U(Sing(Xo)) is a small neighborhood of Sing(Xp) in Xo;. We only

need to prove that go has bounded geometry on U (Sing(Xo)).
Pick up a point zo € Sing(Xo) N Xo;, for simplicity, we assume that

i1 Jt k1
xo € (n on) N XN (ﬂ Cjo) N (m Dk()) ,
1=1 j=1 k=1

zo ¢ Xoi, for I > 41,1 # i, o ¢ Cjo, for j > j1, and zo ¢ Dy, for
k > k;. Take a neighborhood Uy, of xg with coordinate system (z!,--- ,2")
of Xo; such that X is defined by 2z = 0,1 = 1,--- 41, Dy is defined by
211k =0,k =1,--- k1, and Cjo is defined by z1+tF1+7 = 0,5 = 1,--- , j;.
If we choose U, small enough, we may assume that ||s;]|; = 1, = 43 +
1,---,n,l # 4. On the uniformization pg, : Uz, — Uy, We have coordinate
system (w!, -+, w"). Let A} = {w € C:0 < |w| < 6§} and As = {w €
C: |w| < 6}, then we may identify Uy, with (A%)1FF1 x (As)*~4=%1 where
6 > 0 only depends on Xo, Co, and Dy. We will construct quasi-coordinate
on ﬁmo such that the pullback of go has bounded geometry. The following
two lemmas are well-known (see e.g. [TY, p. 602]).

Lemma 1.3. The map pg : As — A} with pg(w) = 6 exp (%‘l‘—g + \/—10) is
a universal covering map of A}, where § € [0,27). The fundamental domain
over A3\ {teV=10 : 0 < t < 6} is {w € Ag : 0 < §Im(w) < 7|6 — wl|?}.

Lemma 1.4. For n € (0,1), ¢, : As — As, with ¢y(w) = 5;“—_-553, is an
automorphism mapping né to the origin. Furthermore

{we Ags: 0 < 6Im(w) < 7|6 —w|?, |w|? + (—logr)|6 — w|* < 6%}
c U ' (a3),
O0<n<1
when r is chosen small enough.

If we shrink Uy, to (AX)1+*1 x (Ans)"~"1~*1, then it is covered by

- -1
U Po, © 7711 (A%‘s) X X Pl ey O¢77i1+k1 (A%‘s) % (A%5>

o<ny<1
0,€[0,2m)
=1, i1+k1

n—iyj—ki
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Consider immersion F* : AT, — Ug,, with
2

F(’Ul,”- avn)
— - 11+k i11+k
= (pg1 o (bml('ul)’ POy © ¢7h‘1+k1 (vl1+ 1)’ ot 1+1, e ,,Un) )

Then by some simple computations, we get

1
(11)  w'=py 07 (h) = Sexp (8 J_“ Zﬁ;gl f g; + \/1—191) ,

(1.2)
5 262(1 +m) (14 m)(o + 6) 5
= = V=16, ) —
88 = = m) -5 P ((1 “e—8) VT B
1+ m)(W'f? - &%)
1.3 log [u![? = 2log 5 + 2.
) bl = 2B+ 2t — P
forl=1,---,41 + k1.
On U,,, we can write wo = wq + wy, where
=3 YL 9log [lugll} 5 A Flog [[oell.
= (og effue E 5)°
L - dlog || A Hlog |}
= (loge|lsi?)?
| 2 OlogTTiL, [l A Slog TTiL, lsil?
(loge TTiL, Isulif)?
w(/) =wp—wp = ——'2;1 Z biidwi A di? .
ij=1
Then wy is a positive (1,1)-form on Uy,. By the choice of (w?,--- ,w™), we

may assume ||'uk||i’3 = hi4k|w 2 and ||s;|; = hy|w!|? for some positive

functions h; on Uy, @ = 1,- - ,41 + k1. Substituting (1.1), (1.2) and (1.3)
into F*wg, we obtain

V=T

* - 1 { =J
Fruo=—5— Z b3 (F(v!,-- ,v™)dv' A do?
"'1‘72"'1+kl+1
1 1
+= 3

2
1<k (52 — foip - Lple =i -1og(s<52hl))
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_ _ 52
. ((52dvl _ (1 Ul)(vl 5) . 3loghl>

2(1+m)
g (=m)(@-96)* 5
/\(52dvl— 0+ -8loghl)J
4 (Fol s o (1 +m)(1 + n;)
D Pl e e 8 [l

1,7 <t1+k1

(1+n:)(v* +6) (1+n)@ +6)
o) e (EBEES v GEREES o)
V-1

- dvt A d’
o U U
1+
—46%R - L. m i
IR 2 R [
i<iz+hky
Jj>i1+k1+1

o (AW +0) g, N VL
P ((omreg) + V7)o n ]

v-—1 1
+ .

1 vt|2—42 . 2
" (Zlﬁil A + log(e6%1 [, hz))

—28%(1+m) )
. dv' + Ologh,
Kzil<(1—m)(’vl—5)2 o

—28(1+m) . = )
A — dv’' + Ologh
ZZ ((1—nz)(vl—5)2 TR

From the fact that limz — cozP exp(—z) = 0 for any real number p, it is
east to see that in (1.4) the first two terms are equivalent to a Euclidean
metric on A% o the next two terms are very small since we may choose 7

close to 1, the last term is positive and bounded. It is straight forward to
check that F™*wp has bounded geometry.

(ii) We show that g; has uniformly bounded curvature tensor for ¢ # 0
small. It is known that outside a neighborhood of Sing(Xy), g; has uniformly
bounded geometry ([TY]). It suffices to bound curvature tensor Rm(g:) on
some neighborhood of Sing(Xp). For any zo € Sing(Xy), for simplicity, we
assume that zo € (ﬂ?:lXOl) N (0;1:103-0) N (ﬂ’,§1=1Dk0), zo ¢ Xoi,! > 41,
zo ¢ Cjo,j > Jj1, and zo ¢ Dko,k > k1. Take a neighborhood of zg with
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coordinate system (2!, ---,2"!) in X such that Xp; is defined by
2=0l=n+2—41, - ,n+1,
Dy, is defined by

and Cj is defined by .
Zk1+J =0,7=1,---,5

On the uniformization pg, : (7@ — Uz, we have coordinate system
(wl, -+ ,w™1). We may identify Uy, with (AX)*1 x (As)"~*1, where § > 0

I

only depends on X, C, and D. Then

0130 np;l:_ol (Xt)

— {(wl,. . ’wn+1) Y st UL o S ¢ I,wll <61l=1,---,n+ ]_}.
Assume |lug|lx = hx|w®|? and ||si|; = | for k=1, k1, l=n+2—
i1, -+ ,n+ 1. By the definition of metric g;, we have (here we take i = n+1
in the definition of V;;)

* \4 -1,5 b
Prowy = —5—09log | - k|2 k|2))2
g k1 E|w® |25 (= log (hy|w*|?))
1

1o elws P T yp s, 0!
s T mlog ehy|w'|? ?
11
log e|t| 2logelt|

I=n+2—iy
2
mmloge]linioi hzlwllz))

' (log€|t|csc 2logelt|

where b is a smooth function of

1 _1 R t t
s TN 1 —1
Hl=n+2~—11 w Hl—n+2 —11 w

+1 with one of

with %85 logb positive definite. By exchanging w™
w27 L ™ if necessary, we may assume |w!| > \/|t], | = n +2 —

i1, -+ ,n. Then simple computations show

s R \/—
wp = —5— ﬁzlh Fdw™ A daP — ;8610g(10gehk|wk| )2
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VA = ™ 7 log ehy|w!|? ?
+ 7 Z ‘ Balog( csc )

logelt 2logelt
g

\4 1 2
Y—1a5 log | — escT 18 (e Tl oy Pulw'?)
log et 2logelt]

VT8 (5 + dloghy ) A (4 + dloghy)

T =1 (log ehg [wk[?)?

VI 11’%_: 88 log hy,|wk|?
= — log ehy|wk|?)
V-1 m mlogeh|w!> 82loghy

- ctg . !
B
T ento—i 2logelt| 2logelt|  Ow*ow

V-1 i ( T wlogahl|wl|2)2

+ — csc
T 2logelt| 2logelt|

! 1
: (‘% +dlog hl) A (%"l + élogh,>
e ctgvrlog(e [T o, Palw'?)
m  2logelt| 2logelt|
) 0 log H?=n+2—i1 hy
OwowP

2
N V-1 T cscﬂlog(e | . hy|wt|?)
2logelt| 2logelt|

dw® A diwP

dw® A diP

n dw! n dit B
> ( +8loghl) 3 (Tg;—+810ghl),

l=n+2—iy l=n+2—1,

2 . .
where h,5 and gw}fa gl are smooth functions of

t t
Y TN 1) TIn —
Hl=n+2—i1 w Hl=n+2—1l1 w

and h,j is positive definite on Uso.



Degeneration of Kahler-Einstein metrics 445

Define

r /-1 _ —n _
Wy = —Eﬁ—aglho‘)ﬁ(wlawl," ) ,wn’w aO)O)dwa N dwﬁ

k1 k A gk
v—-1 dw® A d

(15) Y o o TR

w2 T gl

— n 12y 2 d l/\ d—l

+\/ 1 Z ( s Cscwlogshﬂwl ) w lzw ’

TS 2logelt| 2logelt| |w!|

and

2
" ’ vV -1 ( ™ ™ log(€ H?=n+2—i1 hl |wl '2)>

“p =@t m \ 2log e|t|csc 2logelt|

© dwt °. dat

(1.6) Y =AY
l=n+2—1 w l=n+42—1; w

Let g; and gg be the metric corresponding to w; and w;/ respectively. Using
the fact that |w!| > VIt =n+2—i5,---,n, g, has uniformly bounded
curvature tensor. gt is equivalent to glt umformly in ¢, and their difference is
bounded in C3-norm defined by gt So gt has uniformly bounded curvature
tensor. Omne can check that w; — wg are uniformly small in C3-topology
with respect to the metric g; when we choose € small. So ¢g; has uniformly
bounded curvature tensor on Uy,. Lemma 1.2 is proved. d

Lemma 1.5. For the metric g in Lemma 1.1, there is a smooth function
f on X\ (CUDUSing(Xo)) compatible with the V-manifold structure and
bounded from above such that

V=1 -
ric(ge) + wr = -§7T—aaft,

v—=1 -
I’iC(go) + wo = 768]‘.0,

where fi = flx,\(c,up,) and fo = flxo\(CouDoUsing(Xo))- Furthermore
—Ag, ft < C for some constant C independent of t.

Proof. We define f by(t may be 0)
n

= _log 2t
ft— log*v;'
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It suffices to show that f; and —Ag, f; are uniformly bounded from above
near DUSing(Xp). Here we only show that they are uniformly bounded from
above near Sing(Xp), near D the proof is similar and easier. First we prove
that f is bounded from above near Sing(Xj). Using the coordinate system
(wl,--- ,w™1) in the proof of Lemma 1.2(ii), we have w? = (w; )*(1 + h),
where i%/ is a function with very small values. So we need to prove that
—log (‘”{,t)n is uniformly bounded from above.

Since (w1+wy)™ > wi when both w; and wy are non-negative (1,1)-forms,
observing that last term in (1.6) is non-negative, we have

@

Vo = VW

k -2
P S (LT ST
T |wk[2(1=pe) | 2logelt| 2logelt| ’

where C' is a constant independent of ¢. Since usin{ > %x for 0 < z < u,
using the fact that |w;| > 1/|¢[, we have

2
n

-2

_ wloge [ . hy|w!?

T csc g Hl_n+2—11 il >C- Z log shll'wl|2
2log e|t| 2logelt| I=n+2—i;

So f is bounded from above by a positive constant independent of ¢.
Next we prove —Agf; < C. Using the same coordinate system

(w!, -+, w"*t!) as above. Then by some computations we find
(wi)"(L+ )
= _og We) \1 T Nt)
ft og 7
2 loge [T g, Bafu|2)
= k12(1—px) _ | T TI0gE | [j=pn42—i; MU i
logkl:[llw | og <2log5|t|csc T log ] + Py,

where k has uniformly bounded C3-norm with respect to metric g;. However
further computations show that both

k1
—A,, log H lwk|2(1—ﬂk)
k=1

and

-2
wloge [ - hy|wt)?
[t (T T8 Ty ke
2logelt| 2logelt|
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are bounded from above. So the lemma is proved. a

2. Proof of Theorem 0.1.

We adopt the notations of section 1. Now let gg ; be the Kahler-Einstein
V-metrics on (X; \ D; U Sing(Xo)) (Z %—Cjt) for each t € A. Then there

J

are smooth V-functions ¢; on (X; \ D; U Sing(Xo)) (Z ;nl—jCjt) such that

o
WEt = Wt + —57?33907::

where wg; are the Kéhler forms associated with gg;. Furthermore, the
following equation follows from ric(gg:) = —wg,

w%,t = eft+<thZL,
where f; is defined in Lemma 1.5.

Lemma 2.1. There is a uniform constant C independent of t such that
suple + il < C on (X \ Dy USing(Xo)) (X 7Cse).

Proof. It follows from maximal principle since by Lemma 1.2
. 1
(Xt \ Dt U Slng(X())) (Z m—jCjt)
has uniformly bounded geometry.(See [TY] or [B]) O

Lemma 2.2. (i) There are two constants ¢ and C both independent of t
and z such that e=#*(®)(n + A, p4(z)) < C.

(if) For any compact set K C X \ (D U Sing(Xo)), there is a uniform
constant Cg depending on K but independent of t and = such that
n+ Ag et < Ck.

Proof. (i) Let zo be the point where e=¢(®) (n + A,, p4(z)) attains its maxi-
mum. Note that in [Y1] this second-order derivative estimate of ¢ is bounded
by a constant depending only on supf and sup(—A,f) for the complex
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Monge-Apmére equation (wy +99p)" = ef +9”wg. Using Lemma 1.2 and 1.5,
we have the following estimate n + Ag,p:(29) < C by the same computa-
tions as the second-order derivative estimate in [Y1] using quasi-coordinate
system. On the other hand, from Lemma 2.1 and Lemma 1.5, we have
—pi(z) < fi(z) +C < C"+ C. So e=t@)(n + Ay, pi(z0)) is uniformly
bounded.

(i) From Lemma 2.1, for any compact set K C X'\ (D U Sing(Xo)), we can
find Ck such that for any z in K, |¢:(z)| < Cx. Now (ii) follows form (i).
a

Corollary 2.1. For any compact set K C X \ (D U Sing(Xo)), there is a
constant Ck depending on K but independent of t such that

sup {|gt, [VE @] 1 1 <k <3} < Ck.
X:NK

Proof. By working in the quasi-coordinate system, we can show that ¢; + f;
has uniformly bounded C?*“-norm on any compact set K (the proof is the
same as the proof of Lemma 1.4 in [TY]). In the proof we need to use
Lemma 2.1 above. The third derivative estimate of ¢; follows using Lemma
2.2 and the arguments in [Y1]. O

Now we conclude the proof of Theorem 0.1. For any sequence ¢y,, by
a diagonalizing argument using Corollary 2.1, we can find a subsequence
which converges in the sense of Cheeger-Gromov under %3 -topology on

(Xo \ Do U Sing(Xo)) (Z Cjo) Let ¢, be any convergent sequence and

Voo be the limit on (Xo \ Do U Sing(Xo)) (Z CJO), then by Lemma 1.1

gE,t; will converge to a Kéahler-Einstein V—metrlc gg,0 outside Sing(Xo) in
the sense of Cheeger-Gromov. We now prove that V-metric ggo is com-
plete. Fix a point P on (X \ Do U Sing(Xo)) (Z ijCj()), let Q be another
point close to Sing(Xp) and ¢g; be defined as in Lemma 1.1. Then the
distance between ¢g¢,(P) and ¢g,(Q) defined by metric g, can be cho-
sen arbitrary large if Q is close enough to Sing(Xo) and i is large enough.
This is also true for the distance between ¢g . (P) and ¢g;,(Q) defined
by metric gg¢. On the other hand if we choose i large enough, this dis-
tance approaches the distance between P and @ defined by metric ggo. So
gEo is complete ([Y2], p.474). However, the complete Kéhler-Einstein V-

metric on (Xo \ Do U Sing(Xo)) (Z C’Jo) is unique([TY]), gro = 9E,-
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This shows that ¢; converges to the unique smooth V-function ¢g on
(Xo \ Do U Sing(Xo)) (Z —n%C’jo) in the sense of Cheeger-Gromov, so gg ¢
converge to gg o in the sense of Cheeger-Gromov.

Remark. In [T], Tian proved that for degeneration 7 : X — A, the
Peterson-Weil metrics bounded from above by HQ(—C_'{‘;—?IZZPF on the punc-
tured disc A\ {0} for some constant C. However we can not prove it for the
degeneration family in Theorem 0.1 because we do not have gg < C'- g for

some C independent of ¢.
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