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1. Introduction. 

Let M, iV be smooth compact Riemannian manifolds without boundary, 
m =dimM, and let <f) : M —> N be a smooth map. Suppose that the 
sectional curvature of N is nonpositive, then Eells-Sampson proved in [ES] 
that (j) is homotopic to a smooth harmonic map (such harmonic maps are 
unique except some special cases). The idea of the proof is to use the heat 
flow: 

(1.1) dtu = T(U),   in M x i2+, 

(1.2) u(x,0) = ^0*0, x e M. 

Here T(U) is the stress tension-field of u so that T(U) =' 0 if and only if 
u is a harmonic map. The key analytic estimate involved for the problem 
(1.1)-(1.2) is the following 

(1.3) sup    \Du\2(x, t) < C(to)Eo. 
xeM,t>to 

Here to > 0, and EQ = JM \D(l>\2(x) dx. Note that (1.3) is always true for 
t < to, and to is sufficiently small (depending on M,N and <j>) and with C(to) 
depending on C71,a norm of 0. 

The estimate (1.3) is derived from a Bochner-type identity and the fact 
that N is nonpositively curved. In particular, (1.3) is valid for every weakly 
harmonic map flow from M into N provided that N is nonpositively curved, 
(cf. Schoen[Sc]) 

One of the natural question is whether one may find some necessary 
and sufficient conditions for (1.3) to be valid. Or, for that matter, any 
other sufficient conditions ( without referring to the curvature of N) that 
guaranttee (1.3) to hold. 

It is, at least, the case for energy minimizing maps. Schoen-Uhlenbeck 
[SU] (Giaquinta-Giusti [GG] independently) proved that (1.3) is true for 
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energy minimizing maps provided that there are no harmonic spheres Sl in 
N ioi 2 < I < m — 1. A smooth harmonic map from Sl to iV is called a 
harmonic S1, for I > 2, if it is not a constant map. 

A year ago, the first author showed, see [L], that Schoen-Uhlenbeck's 
theorem remains to be true for stationary harmonic maps.   In particular 
(1.3) is true for stationary harmonic maps whenever the universal cover iV* 
of N supports a pointwise strictly convex function with quadratic growth. 
The later statement recovers essentially the result of Eells-Sampson [ES] for 
the static case. 

The proofs in [L] seem to indicate that some more general statement 
may be true. In particular, the following 

Conjecture. Any weakly harmonic map of finite energy from M into N 
is smooth provided that there are no harmonic spheres Sl in N, for 2 < I < 
772—1. 

Note that T. Riviere [R] had constructed an example of a weakly har- 
monic map from Bs into S'2 of finite energy, which is everywhere discontin- 
uous. This, combines with a theorem of Evans [E] and Bethuel [B], implies 
that there are many exotic weakly harmonic maps into S2 that are definitely 
not stationary. 

One of the aims of the present work is to show another evidence (cf. 
Theorem A, Corollary B below) that the above (wild) conjecture may be 
true. 

So far we have only discussed the static case. Is it possible also to 
recover the theorem of Eells-Sampson in the heat-flow case? The answer is 
yes for m = 2, see Struwe [S]. In general, Chen-Struwe [CS] have made an 
initial step. They proved the global existence of a partially regular weak- 
solution of (1.1)-(1.2) for any smooth, compact Riemannian manifold N. 
More precisely, they consider the gradient flows for the penalized energy: 

(1.4) I£(u) = JM(l\Du\2 + ^jdx, 

where F is a smooth function of u such that 

F(p) = dist2(p, N), if dist(p, N) < 6, 

= AS2, if dist(p, N) > 26. 

Here we have viewed N as a submanifold of Rk( via Nash's embedding 
theorem), and 6 is chosen so that dist2(p, iV) is smooth for 

pe{p:dist(p,N)<26}. 
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For any e > 0, one can easily solve 

(1.5) fyue - Aue - -g/(w€) = 0, in M x R+, 

(1.6) ue(xJ0) = (f)(x),xeM. 

to find a global smooth solution. Here f(u) = —grad F(u), Chen-Struwe 
[CS] then argued that, one may find a sequence e; | 0 such that uei -^ u 
in Hloc(M x i2+, N) and that u is a weak solution of (1.1)-(1.2). Moreover, 
the m-dimensional Hausdorff measure of the singular set of u, with respect 
to the parabolic metric, is locally finite. Later, Cheng [Ch] showed that 
ilm~2(sing [u) n {* = to}) < oo, for any to > 0. 

The above conclusion seems, however, not strong enough to recover the 
main theorem of Eells-Sampson. Moreover, there are several rather natural 
questions which remain to be answered. For instance, is such u obtained 
in [CS] unique? (cf. Coron [C]) What is the relationship between critical 
points of J€(-) and weakly harmonic maps from M into iV? 

In this paper we will use the gradient flow of 7€(-) to drive theorems 
similar to Schoen-Uhlenbeck [SU] and Lin [LI], and thus to recover the 
Eells-Sampson's theorem as a consequence. We should also establish some 
connections between critical points of Je(-) and weakly harmonic maps from 
M into N. 

Since our results and proofs are all local, we don't have to assume M to 
be compact. We can easily work with, say, a geodesic ball in M. For this 
reason and for the purpose of saving some notations, we shall simply work 
with the domain M being the unit ball in i?m. 

Now let's state our main results, we start with the static case and con- 
sider solutions of 

(1.7) Atie + ^/(tie) = 0, infli. 

Theorem A. Let ei j 0, and uei be a sequence of solutions of (1.1) with 
I€i(uei) < K < oo; and uei -* u weakly in Hl{Bi). Suppose that there is no 
harmonic S2 in N. Then 

e(uei)dx= (^\Duei\
2 + ^F(uei)j dx^^\Du\2dx, 

as Radon measures.    In particular,  uei   —»  u strongly in Hfoc(Bi),   and 
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Corollary B. Under the assumption that there is no harmonic S2 in N? 

the map u obtained in theorem A is a stationary harmonic map. In partic- 
ular, the singular set of u has Hausdorff dimension at most m — 4. If, in 

addition, N has no harmonic Sl for 3 < I < m — 1, then u is smooth and 
uei —> u in Ck norm, for any k>l. 

Corollary B may be useful in order to study some "weakly stationary 
harmonic maps". We should not persuit this issue here. 

Next we consider solutions of 

(1.8) dtue - Aue - ^f(ue) = 0, in Si x (0,1). 

Theorem C. Let ei [ 0; uei be a sequence of solutions of (1.8) with 

(1.9) / (l^eJ
2 + e{uei)) dxdt < K < oo. 

./£ix[0,l] 

Suppose that there is no harmonic S2 in N, and uei —» u weakly in H (Bi x 

(0,1).  Then 

(1.10) e{u€i)dxdt — -\Du\2dxdt, 

as Radon measures. In particular, u€i —> u strongly in iJ/oc(-Bi x (0,1)). 
The limit map u is a weak solution of (1.1), with Vrri(sing(u)) = 0, and 
u satisfies both energy inequality and monotonicity inequality (cf fCLLJ). 
Here V™ denotes the m-dimensional Hausdorff measure with respect to the 

parabolic metric in Rrn+1. 

Remark. Naturally the solution u obtained in theorem C has the small 
energy regularity property (cf. [CS] or [CLL]). Moreover, it also satisfies the 
stationary condition introduced in [Fm]. One is then lead to the question 
as whether such weak solutions of (1.1) are unique (say, with respect to the 
Dirichlet boundary conditions), the answer remains open. 

Theorem D. Let u 6 Hl(Mx (0,1), iV) be a solution of (1.1)-(1.2), which 
satisfies the energy monotonicity (3.11), the energy inequality (3.11"), and 
the small energy regularity (3.12) with e(ue) replaced by ^\Du\2. Then either 

u is smooth and 

(1.11) sup        \Du\(x,t) <oo, 
(x,t)eMx(05l) 
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or there is a harmoni Sl for some I = 2, • • • ,ra — 1, or there is a quasi- 
harmonic S for some I — 3, • • • ■, m. 

Here (f> : Rl —•> iV is called a quasi-harmonic Sl, if (f) is a nonconstant, 

smooth map from Rl to N such that it is a critical point of fRl \Dv\2e~ *  dy, 
i.e., 

(1.12) Ac/> - ly • ^ + A(^) W, ^) = 0, 

here A is the second fundamental form of AT, and fRl \D(j)\2e    4~ dy < oo. 

Note that, for such a 0, if one let u(x, i) — (j)( -^ j, then u is a self-similar 

solution of (1.1) from Rl x R-. into N. 
From Ding-Lin [DL], we conclude that there are no quasi-harmonic Sl in 

N if the universal cover N of N supports a pointwise strictly convex function 
with quadratic growth, Then Eells- Sampson's theorem follows from theorem 
D above. 

We would like to point out for the special case that N is the unit circle in 
the complex plane, the compactness of solutions of (1.7) and (1.8) were dis- 
cussed already in Lin [L2]. They are rather useful in the study of vortices, fil- 
aments, and codimension two submanifolds dynamics for Ginzburg-Landau 
type functional. 

Finally we would like to end the section with the following open ques- 
tions. 

Question. For a compact, smooth Riemannian manifold N, are there any 
quasi-harmonic Sl, I > 3, of finite energy? 

In fact, besides a well-known theorem of Sacks-Uhlenbeck [SaU] which 
guarantees the existence of harmonic S'2, the authors are not aware of any 
general statement concerning the existence of harmonic Sl for I > 3. 

2. Proof of Theorem A. 

We will divide the proof into two cases. 

Case 1.    m = 2. 
Define the concentration set S by 

r>0  K 

x G Bi : liminf /        e(ue) > SQ 
40       JBr(x) 



402 FangHua Lin and ChangYou Wang 

where 60 is the same constant as in Lemma 2.2 below. Then it is easy to 
see that E is closed and locally finite. Moreover, Lemma 2.2 implies that 
we can extract a subsequence of ue (denoted as itself) such that ue —> u in 
Cl{Bi \ S) locally and hence u £ C00(Bi^N) is a harmonic map, by the 
removable singularity theorem of [SaU]. 

Now we claim S = 0. Suppose not. Then we choose XQ £ E and ro > 0 
such that Bro(xo) fl E = {XQ}. Define (cf. [W]) 

Qe(t) =     sup      /       e(u€). 
veBmixn) JBt(y) y€Br0(xo) JBt(y) 

Then it is clear that there exist te I 0 and x€ —> XQ such that 

e(ue) = - 

Define rescaling maps ve : Jl€ —> i?^ by ^e(x) = ^€(a;e + tea;), we have 

Qe(te) = f e(ne) = f. 

(2.1) -Ave + -r-ra/K) = 0, in fie> 

(2.2) /  i|^e|
2 + T^JF^) < ir < oo, 

and 

(2.3) 
JBl{y) 2 (,,) 2 

with equality if y = 0. Here Oe = ^e~
1(Sro(xo) \ {^e})- Therefore we may 

assume, by Lemma 2.2, that v€ —> i; in Hl{R2) fl C1(i?2) locally so that v 
satisfies 

(2.4) eg < /   c(t;) < oo, 
JB? 

and either if c/t€ —> 0 

(2.5) A^; + A{v)(Dv, Dv) = 0, in B2, 



Harmonic and quasi-harmonic spheres 403 

or if e/te —> oo 

(2.6) Av = 0, in R2, 

or if e/t€ —» c > 0 

(2.7) -At; + ^/(«) = 0, ini?2. 

Note that it is easy to see that v will be either nonconstant harmonic maps 
from S2 into N or nonconstant harmonic function from S'2 in the cases of 
(2.5) and (2.6), which is impossible by (2.4), [Sail] and assumption on N. 
On the other hand, any v satisfying (2.7) and (2.4) must be constant. In 
fact, let (j) G C™{B2) be such that </> = 1 on i?i, and define <f>n{x) = </>(^). 
Multiplying (2.7) by (j)nx • Dv, we get ( as in the deriviation of the Pohozaev 
identity), 

/    F{y)(j)n < C I e{y) —> 0, as n —> oo. 
JR2 JB2n\Bn 

Here we use (2.4). Therefore F(v) = 0 and Av = 0. Thus v is constant.   □ 

Case 2.    m > 3. 
Let's first recall two key facts about ue as follows: 

Lemma 2,1 (Energy Monotonicity Formula). Letue be as in theorem 
A. Then 

(2.8)    R2-m [       e(ue) - r2'171 [       e(ue) 
JBR(X) JBrix) 

JBR(x)\Br(x) vr Jr (*) ^ ' 

for Vx E Bi and 0 < r < R < d(x, dBi). In particular, r2 rn JB ,, e(ue) is 
monotonically non-decreasing with respect to r. 

Lemma 2.2 (eo-Regularity Theorem). Let ue be as in theorem A. 
Then there exist eo > 0 and KQ > 0 such that if R2~m JB , . e{ue) < e^, 
then 

(2.9) sup e(ue) < KoR-m [       e(ue), 
BR(y) JBR(x) 

for any y 6 B R (X) . 
2 
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Now assume ue —> u* weakly in Hl(Bi), then //e = e{ue)dx —> ji = 
^\Du^\2 dx + v as Radon measures for some nonnegative Radon measure 
v > 0. Moreover, we define (cf. [Sc]), 

E = Pi I x e Bi : liminf r2-m /       e(u€) dx > $ I 
r>il 40 JBrM 2/ 

Then (2.8) and (2.9) imply that S is closed and i?m-2(E n BR) is finite for 
any R < 1. Moreover, ue -> ^* in C^Bi \ S) fl ^(JBi \ E) locally (after 
passing to subsequences, if needed) so that u* is a weakly harmonic map on 
£?!, which is smooth away from S. 

Claim 1. e(ue) —> ^.D'u*!2 in Si \ S locally. 

To see this, we need to show V(BR) = 0 for any ball BR CC 5I \ S. 
Letting e j 0, (2.8) implies 

(2.10)    R2-m f    (^\Du*\2dx + v) -r2-™ f   (^\Du*\2dx + v) 

= f \x\2-™ ^ + 2 [R
P^v{Bp). 

Here we use that fact that 4^(^e) dx -» u as Radon measures in 5i \S. On 
the other hand, since u* is a smooth harmonic map on Bi \ E, ^* satisfies 

hence 

R2-m   I      hDu^dx_r2-m    f     hDu^ dx =   [ \x\ 
JBR * JBr  2 JBR\Br 

nR 
R2-mu(BR) - r2-mis(Br) = 2 /    p^viB?), 

2-m du* 
dr 

which implies, for 0 < r < i?, 

J;(r-M*)) = 0. 

Hence V[BR) =0. □ 

Claim 1 implies that sing(u*)U spt(i/) C S. In fact, 

Claim 2. sing{u*)iJ spt(i/) = E. 
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If xo ^ sing^^U spt(i/), then u* is smooth near XQ and u(BrQ(xo)) = 0 
for ro > 0 small so that 

■t-m [ (hDu.\*dx + v)<£ 
JBTHIXO) \Z J     4 'Bro(xo) 

2 

Hence r^~m JB , ^ e(ue) < ^ for sufficiently small e and XQ £ E by Lemma 
2.2. ^ ^ D 

Lemma 2.1 also implies 

(2.11) R2-mv(BR(x)) > r2-mix(Br(x)), 

for 0 < r < R < d(x, dBi) and Vx € Bi. em-2(^, x) = limrio r2~mii{Br(x)) 
exists for all x G Bi . Moreover, 

0m-2(z/,a;) = Gm-2(/x,x) 

for iJm-2 a.e. x e E, since limrior2-m/Br(x) |i?«*|2 = 0 for H™-2 a.e. 
a; € E (cf. Federer-Ziemer [FZ]). Note also, by definition of E and (2.8), 
that 

(2.12) -£ < em-2(/x, x) < c(ii:, p), Vx € s n BP. 

Suppose now that 

e(ue) dx -f* -\DU*Y dx. 

Then we must have 

i?m-2(E) > 0,   and v{Bx) > 0. 

From (2.11), one knows 0m-2(/x, a;) is upper semicontinuous.   Therefore 
there exists E c E, with #m-2(E) = i?m-2(E) > 0, such that em-2(/x, x)(= 
0m_2(z/?x)) is approximately continuous for x e S, (cf.[F]). 

For E, we need the following geometric Lemma (cf. [L]), 

Lemma 2.3.  There exists E C E with iJm"2(£) > 0 such that Mx G E 

and ri I 0 there are {x? I^i2 C E fl Br. (x) satisfying 

Wi - Xi\ > Sri, 0<j<k<m-2, 

distal — x®, span{xl — x®, — - , x]-   — x^}) > 5r^ 2 < j < m — 2, 

for some uniform 6 > 0, here x? = x. □ 
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Now pick a XQ e E, with Gm-2(/i,xo) > 0, limsupri0r
2-m

JH
rm-2(S n 

Br{xo)) > 0 and lim^io^2"771/^^) I^D^*!2 = 0. Define the rescaling mea- 

sures & by letting fi^A) = rf-'VOo + nA) for any A C i?m. Then (2.11) 
gives 2m-2el < m^) < C(xo, K) < oo. One can then assume that & -> ^ 
for some nonnegative Radon measure /z*. By the diagonal process, one can 
see that 

e(u€i) dx -* //*, uei —> constant weakly in if1, 

here et = r^^. Then E* , the support of //#, has iym~2(S*) > 0 and 
0m~2(M*, x) = em-20, XQ) for any x 6 S*. Moreover, there exist {^}^~1

2 C 
S* \ Bs such that 

dist(^, spante1, • • • , f-1)) > 5,2 < j < m - 2, 

with 5 > 0 is the same constant as in Lemma 2.3 . Denote Rm~2 = 
spanft1, • • • , £m-2} = {(0,0, xs, • • • , xm) G i?m}. Applying (2.8) with cen- 
ters at 0, f1, • • • , £m~2, we can find a £o € E* such that 

/. Bstfo) 
4 

Pr^P + e-^KJ^O, 

where T denotes vectors in Rm 2, the span of {^j™^2. Hence 

(2.13) / E 
i«o)xsr2(?o)7S 

^f 

^i 
+ er2

jp(«ei)^0) 

which, combimes with the weak L1 estimates of Hardy-Littlewood max- 
imal functions (cf.[Se]),  implies that there exists Ai   c  S7l~2(^o) with 

4 

Hrn~2(Ai) > 0 such that for any pi e Ai, 

(2.14) sup   r 
6 
4 

2-ra 

^(0,|) 
/ /f —^ 0, as z -^ oo, 

JB™-2
(VA 

where /, = /B2 (&) ^3   a^    + ^ ^K). Now we have 

Claim 3. /x*(xi,X2,X3,-" ^m) = em-2(^xo)Hrn-2L (R™-2 x {£0}). 
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To see this, let </> 6 C^Bf (£o)), then for 3 < j < m, 
4 

(2.15)      *    /■        02eK) = -2/        t^P"^ 

|_^    0„ 
5 

Therefore (2.13)implies? for 3 < j < m, 

du€i due 

1=3— B5(fo)r   a^ ^ 

^-/ 02eK)-O3in^(Br2(eo)). 

Which implies /i*(x) = 5(^1,^2) ^3 ••• d^m for some Radon mea- 
sure g > 0 whose support consists of finitely many points . For 
(21,£2)   Gspt(g)njB|(^o)j  we have g(xi,X2)   =   9m~2(iu,xo)  and /x*   = 

em-2(//, ^o)^771-^4(i?m-2 x {^0}). □ 

Claim 3 clearly implies 

e(uei) dx -> 0, in B?(Co) \ ^m"2 x {Co} locally. 
4 

Now we start the bubble process as follows: choosey G A;, with \pi—£o| < |, 
there exist yi € B| (^0) and ^ | 0 such that 

8 

/ e(y>ei)(y,Pi) dy = max < / e^)^,^) dy : z e B|(&) > 

C(m)' 

for some large C(m). Define the rescaling maps Vi(x) = uei((yi,pi) + ^x), 
then 

(2.16) -Avi + —^—f(vi) = 0, in Bj_(0). 

(2.17) 
dvi 

r2-m 

JB?-
2
(O) JB\ (o) ^ dxj 

2 1 
+ (?=?^)^0' 
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forr^. 

(2.18)     f      hDvi\
2 + —l-—F(vi)(x1,0)dx1 

JB?(0) 2 (S- ^i)2 (sr1^)2 C(m) 

>(       \\Dvtf 
JB?(v) 2 

+ 
(sr1*)3 F(vi)(x1,0)dx1,yeQ,i. 

Moreover, 

(2.19)   22-m f 
JB^-'- (O)xBi(z) 

\Dvi\
2 + 

(*rv ;?(*) dx < €§, "iz G Of. 

llexeQi = 8-l{Bl{io)). 

To get (2.19), one may apply the Allard's Strong Constancy Lemma 

Pi 
2 

([A] (Page 3-5)) to (2.15), with a = ph f < r < |, m replaced by m - 2, 

^f ^ /B2
 (yi) (f)2~^~B^t for 1 < /, n < m - 2, then conditions (a)-(e) in [A] 

are all satisfied ( with small 5 in (c)), so that for any small f3 > 0 there 
exists 0 < c < oo such that, for large 2, 

(2.20)   r 2-m L rjcjre M-c / 
JB r (Pi) 

m-2 < /?sup{|^|(a:) : rr G 5^^)},  | < r < |, 

for any r/ € Cg0(5^_2(pi)) with support in B™ z(pi).   Moreover, using 
262 

(2.18), we see c < ^. Hence, V2 € Bj^o), 

m2-m [ 
JB B£-2(pi)xB*(z 

e(0 < §, 

if we choose /3 so small and C(m) sufficiently large. This gives (2.19). Ap- 
plying Lemma 2.2, we conclude that vi —> v = v(xi,X2) in C1^2 x B™~2) 
locally so that if | | c> 0, Av + jzf(v) = 0, or if fj- j 0, v : i?2 -♦ N is a 
harmonic map. Moreover, the strong convergence and energy monotonicity 
inequality of Vi implies 

0<  /   e(t;) 
JB? 

< oo, 
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which is impossible from step 1. This finishes the proof of Theorem A.    □ 

Proof of Corollary B. 
Since uei are smooth solutions of (1.7), we have 

(2-21) llt=0 jBm ^DU^X^ + ^F(««.*) ^ = 0> 
where ueij(x) — uei(x + ££(:c)), and f G Co(Bi,i?m). Hence 

Now it is easy to see that (2.22), with the help from Theorem A that 
e(u€i) dx —> ^|-D^|2 dx, implies 

(2,3, lw««-2£;££ = *. 
Which implies that u is a stationary harmonic map (cf. [B]). The rest of 
statements of Corollary B follow from Theorem D of [L]. 

3. Proof of Theorem C. 

Now we turn our attention to theorem C. We still divide the proof into 
two parts. 

Part I.   m = 2. 
We may assume that uei —* u* weakly in Hl(Bi x (0,1)), e{uei) dxdt —> 

^IDn*!2 dxdt + i/(xj t) as Radon measures for some nonnegative Radon mea- 
sure v. If the strong convergence fails, then v(Bi x (0,1)) > 0. Denote 
E =sptu. Prom Part II below, we have V2(T,) > 0 and can pick a point 
zo = (xo,to) e E such that e2(E, (a:o,to)) = limr|or~2^2(S n Pr(^o)) > j 
and limr|o^~2 Ipr((Xo to)) l^*!2 = 0- For ri i 0) we define maps uei{x,t) — 

^((^Oj *o) + (r^ ^*))j then we have 

u^ —* constant weakly but not strongly in il1, e{ue^) dxdt —> v*(x,t), 

for some Radon measure is* with ^*(Pi(0)) > 0, here Pr(z) = Br(z) x 
(-r2,r2). Note 0 e S* = spt(i/*), and ^(E*) > 0. Moreover E* = E* fi {t} 
is finite (cf. Part II). In fact, there exists po > 0 such that e(uei) dx /» 0 for 



410 FangHua Lin and Chang You Wang 

each t E (-Po,0), since, otherwise, fBi e{uei)(-,-pl)dx is small for large i 
and Lemma 3.3 below implies 0 ^ E* . Therefore, there exists nonnegative 
Radon measures //t, with IH{BI) > 0, such that e(uei)dx -> fit for each 
* € {~ph 0)- From Part II, we also know that spt/^ C S* for each t, hence, 
on 5i x (-pg,0), ^ = EJL? CCt, j>xt for some x) G Si, C(t, j) > eg and 

1 < iV'(t) < C{K) < oo. Now, we choose a to € (-PQ, 0) such that 

(3.1) lim /    \dtu€i \2(x, to) dx < oo. 

Now pick x*0 6 Si for some 1 < j < N(to) and let ro > 0 be small enough. 

Then, at x*?, similar to the proof of theorem A, there exist Si j 0 and 

(3.2) 
Xi —► x P such that 

/ e(^)(.,to) = § = max J /        e(^)(.,to) : rr € Bro(xf) I . 

Now consider ^(x) = u€i (xi + Six, to), on fy = S^1 (Bro (xf) \ {xi}), we have 

(3-3) Avi + ——zfivi) = gh in fi^, 

(s) 
where ^(rc) = SfdtUe^xf + S^x). Hence HsiH^^) "^ 05 and 

(3.4) /       e(^)^ = $ >  /       e(^),Vx G fi^ 

It is easy to see that Vi —> ^oo weakly in i71(i?2) locally. In fact, Lemma 3.1 
below shows that the convergence is strong in Jff

1(i22) locally. Hence, either 
Voo is a nonconstant harmonic map from R2 to N or a nonconstant solution 
to A^oo + \f{voo) = 0 in i?2 for some CQ > 0, both are impossible by the 
assumption and theorem A. □ 

Lemma 3.1 (eo-Compactness). Let en I 0; there exists €o > 0 such that 
ifun G H1{Bi)Rk) satisfy 

(3.5) Atin + 4/K) = /n, 

mt/i /Bi e{un) < el, \\Dun\\Loo < £; and ||/n||L2(Si) "^ 0- Then un ^ u in 

^(Bi) locally and u : Bi -+ N is a harmonic map, i.e., 

(3.6) Au + A(u)(Du, Du) = 0. 
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Proof. First note that, for any small <?)o > 0, we can choose eo sufficiently 
small such that if JB e{un) < eg and \Dun\ < £-, then dist(uni N) < SQ. 

For simplicity, we assume AT to be a unit sphere Sk (The general case can 
be modified easily, cf.   page 344-345 of [CL]). Therefore, pn = \un\ and 

^ = firsatisfy 

(3.7) Apn + -y/9n(l " pi) + Pn\Dlpn\2 = Qn, 

(3.8) div(p2 D^n) + /Onl^nl Vn = V 

with H^nllL2? II^TIIIL
2
 < 11/nllL2- Since Ibn-lIU00 < ^o is small, the Calderon- 

Zygmund theory [Se] implies that there exists C > 0 such that 

(3.9) f   mn\4<cf   \Di,n\2([   |div(p^„)|2+ f   [D^A. 
J B-, J jD-t \JB-i J B-\ I 

Applying (3.9) to (3.8), we have 

/    \div(p2
nD^n)\2<C   f    \Dll>n\*+   f    IK]2 

JBl JBl JBl 

<Cel f   |div(p2^n)|2+ f  QD^ + lhnf), 
JBl JBl 

hence if we choose eo small enough then 

/    |div(p^n)|2<c/   (|^n|2 + |/n|2). 
JBl JBl 

Which implies that Difrn is uniformly bounded locally in L4 . Hence (3.7) 
becomes 

(3-10) (A - ^r) (1 - Pn) = 9n, 

for some bounded nonnegative c(x), here gn is uniformly bounded in L2. 
Hence, by the standard elliptic estimates, 1 — pn —► 0 in L00 n Hl{Bi) 
locally. Therefore, un —> u in Hl(Bi) locally. D 

Part II.   m > 3 
In order to deal with this case, we first recall some notations and two 

key facts about u€ (cf. [S] [CS]). Let ue be a solution to (1.8) in Bi x (0,1). 
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Let Pm denote the ra-dimensional Hausdorff measure in i2m+1 with respect 
to the parabolic metric <$((x, t), (y, 5)) = max{|x - y|, A/^-^I}, and i?™-2 

denote the m - 2 dimensional Hausdorff measure in R™ with respect to 
the standard metric. For ZQ = (xo,t0) e Bi x (0,1), denote Gzo as the 
fundamental solution to the (backward) heat equation 

Gzo(x, t) = [47r(io - t)]-* exp (-^^) , * € Bi, t < «,. 

Also 

^R(-2O) = {2 = (x, t) e Bi x (0,1) : |x - arol < -R, |i - to\2 < R2}. 

SR(ZO) = {Z = (X, t)eB1x (0, l):t = to- R2}. 

TR(ZO) = {Z = (X, t)eBiX (0, l):t0-AR2<t<to- R2}. 

Define 

*(«e, zo, R)= r]2(x)e(ue)(x, t)GZ0(x, t) dxdt, 
JTR{zo) 

<b(ue,z0,R) = R2 7]2(x)e(ue)(x,t)GZ0(x,t) dx, 
JSR(z0) 

for 0 < R < ^°. Here rj € ^(^(xo)) is such that 0 < rj < 1, 77 = 1 for 
\x - xo\ < ^, \Dri\ < ^, and ro < 1 - |xo|. Then we have (cf. [S], [CS], 
[CL]) 

Lemma 3.2 (Energy Monotonicity Formula). Letue be as in theorem, 
C. Then 

PRQ    cr   (   r 

(3.11)    *(tie,26,i2) + c /     —     /        V 
/R r      \JTr(zo) 

2\x- Du€ + 2tdtue\2       \ 

< e6^-*)^^, zo, i2o) + Cii:(i?o - R). 

(3.11') ^K.zo.B) < e^0-^*^,^,^) + CtftRo - i2). 

/or some c, C > 0; and any 0 < R < RQ < minl^, ro}.  Here K is given 
by theorem C. D 

For u€ as above, note also that we have 

(3.11") I       \dtue\2 dxdt < CR'2 f        e(u£)dxdt, 
JPR(Z) JP2R{z) 

for any P2R{z) C Bi x (0,1). 
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Lemma 3.3 (eo- Regularity Estimate). Let ue  be as in theorem  C. 

Then there exists eo > 0 such that if for 0 < R <ram{:^r-,ro}, 

^(u^z^R) <el, 

then there holds 

(3.12) sup  e{ue) < C{8R)-\ 
P6R(z0) 

for some constant C > 0 and 6 > 0. D 

Now assume ue —> u* weakly in H1^™ x (071)), then e(itc) dxdt —► // = 
^ID^*!2 + z/ as Radon measure for some Radon measure z/ > 0. Moreover 
we define (cf. [CS]), 

E= pK^ESi x (0,1) :liminf /       r]2e{ue){x,t)Gz{x,t) dxdt > €^}, 
i?>0 

where eo is as in Lemma 3.3. Then (3.11) implies S is closed and 7:>m(S n 
PR) < oo for any R <1. Lemma 3.3 implies that ue —»it* in C1

(JBI X (0,1) \ 
E) n Hl(Bi x (0,1) \ E) locally (after passing to subsequences, if needed) 
so that u* satisfies (1.1) weakly and smooth away from E. If we define the 
slice concentration set S* = E n {£} for 0 < t < 1, then it was proved by 
[Ch] that Hm-2(Et n K) < oo, for any t G (0,1) and compact K C 5i. 

Claim 1. e^e) dxdt —» ^i^ii^l2 dxdt locally in Bi x (0,1) \ E. 

To see this, one need to prove that U(PR(ZO)) = 0 for any PR(ZO) CC 

BI x (0,1) \ E. Note that we actually have, for 0 < R < RQ < min{^, ro} 
(cf. [CS]) 

(3.13) 

#(u€,zo,#o) = V(ue,zo,R) 

rRo 
+ [ 0 r"1 ( /        Lp1^ • Du€ + 2sdsue\2 + ^F(u€) 

JR \JTr(zo) L 6 
r] GZ0 dyds    dr 

Due(y - Due + 2sdsue)Dr]2GZo dyds j dr. 
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Taking e j 0, we get 

f (hnu^ + u) v2GZ0 = [        (hDu*\2 + v) r?GZQ 
JTRQ(ZO)  \2 ) JTR(zo)  \Z ) 

+ / 0 r"1 (  /        [M"1^ • ^* + Isdsutf + 2i/] tfGZQ dyds ) dr 
JR \JTr(zo) J 

-  /      r-1 I   / Du*(y - Du* + 2sdsu*)Dri1GZQdyds\ dr. 
JR \JTr(zo) J 

Here we use the fact that ^F(ue) —» u as Radon measure in Bi x (0,1) \ S. 
One the other hand, u* G C00(Bi x (0,1) \ S) satisfies (1.1) so that u* 
satisfies (cf. [S]): 

/ J|^|V^o = /        hDu*\2r,2GZ0 

- /     r-1 I   /        Du*(y - Du* + 2sdsu*)Dri2GZodyds J dr, 
7i2 \^rr(zo) / 

+ [ 0 r'1 I f        \s\-1\yDu* + 2sdau*\2TJ2Gzodyds) dr. 
JR \JTr(zo) ) 

Therefore, we have 

I rfG,, du= f        ri2GZQ du + 2 f " r"1 ( /       r?2^^ di/ J dr. 
JTRo(z0) JTR(zo) JR \JTr(zo) ) 

Hence 

(3.14) i- f /       r?2^^ &/) = 2r-1 /       772GZo di/. 
Or   \hr{za) ) JTr{z0) 

for 0 < r < i2o, which implies 

/       r1
2Gzodu=(^y [        V

2Gzodu, 

therefore U{PR{ZQ)) = 0. □ 

Claim 1 implies that sing(tt*)Uspt(z/) C S. In fact, 

Claim 2. sing(u*)\Jspt{y) = S. 
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In fact, if ZQ ^sing(?i5)c)Uspt(z/), then there exists p > 0 such that u* G 
C00(Pp(zo)) and u(Pp(zo)) = 0 so that 

JPpizo) V2 / 2 

and then p m Jp (z ) G(ue) < e2 for sufficiently small e and hence ZQ $. S. D r^ 

For the measures /x and u above, we define two density functions 

Gm(^z) = \im f      T,2GzdH 
Rl0JTn(z) lTR{z 

and 

Gm(i/,^) = lim /      rfGzdv, 
ITR(Z 

for z G Bi x (0,1), if both of the limits exist. Then we have 

Claim 3.     (a) ©m(//, z) exists for z G Bi x (0,1) and is upper-semicon- 
tinous; 

(b) eg < Gm(^, ^) < C(A:, r) for any z G E D Pr. 

(c) For Pm a.e. z G S, Gm(z/,2) exists and em(z/,z) = em(^,z). 

From the monotonicity inequality of /x, we have, for 0 < R < RQ, 

[      r}2GzdpL< [        ri2Gzdfi + CEo(Ro-R), 
JTR(z) JTRo{z) 

which implies 0m(/x, z) exists for z G J3i x (0,1) and is upper-semicontinuous. 
Note that limrior-

m jPr{z) \Du*\2 = 0 for Pm a.e. z G Bi x (0,1) (cf. [FZ]) 
(b) (c) then follows from the definition of E and (a). □ 

Now assume that e(ifc€) dxdt /> ^|JD^*|
2
 dxdt, then one must have 

Pm(E) > 0, and i/(5i x (0,1)) > 0. 

Moreover Claim 4 shows that there exists E C S with Pm(E) = :Pm(E) > 0 
such that 9m(/x, z) = QTn(uJ z) is approximately continuous for z G E. Now, 
we can choose a ZQ = (xo,to) G E such that (i) limsupr|0r~m7:>m(E n 
■Pr(^o)) > 0; (ii) 6m(/x, 2;) is approximately continuous at ZQ; and (iii) 
limrior— /pp(j80)|I>u.|2 = 0. 
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For ri I 0, define the parabolic dilation Dri by 

Dn (A) = {z = (x, t) e Rm+l : (a:, t) = {ny, rfs) for some (y, s) E A} , 

and the rescaling measures /ii(A) = r~m/i(zo + Z)ri(i4)) for any A C Bi x 
(0,1). Then we have €Q < /ii(J5i x (0,1)) < C(K). Hence we can assume 
that ^ —> /i* for some Radon measure /i* > 0. By the diagonal process, 
one can extract subsequence €j j 0. 

e(i4€J ctecK —> /x*, and ^€i —> constant weakly in Hl(Bi x (0,1)). 

Note that £*, the support of //*, is given by £* = Ut€(-i,i) ^ an<^ 

Ei - fl | x e B1 : liminf / r,2e{uei)G^t) > e2
0 \ . 

So that (0,0) G E*, ^m(E*) > 0, and /i*(5i x (-1,1)) > eg. 

Claim 4.   T/iere e2:z5t5 £o > 0 swc/i that E* ^ 0 /or any t G (—to, 0]. 

Suppose not, for to > 0, ££0 = 0. Then for any XQ G SI, there exists 
ro > 0 such that 

liminf / V2e(uei)G{x0ito) < eg, 
^10   JTr0((x0,to)) 

so that Lemma 3.3 yields 

sup     e(uei) < C(6ro)~2
) 

for some C > 0 and <5 > 0. This implies that, for some f > 0, 

u6i —> constant in C2 f S i x (to — f, to + f) J , 

and 
^(#1 x (to-f,to + f)J =0, 

which implies (0,0) £ E* if we choose to sufficiently small. Contradiction. 
□ 

From Claim 4, one see e(u€i)(x11) dx /» 0, for t G (-to, 0). On the other 
hand, there exist nonnegative Radon measures vt for t G (—*o>0) such that 
e(izei)(^ *) dx -^ vt, hence vt{Bi) > 0 for t G (-to, 0). It is easy to see that 
spti/t C E* for t € (-to,0). In fact, 
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Claim 5. JM(Bi) > 0, then Hm-2(spt(vt)) > 0. 

Suppose not. Then for any 6 > 0 there exists a covering {B^Xi)}^ of 

spti/*, with Xi Esptz/t, such that XXi7"!""2 < S' Sillce 

oo 

i/t(Bi\UBn(^)) = 0, 
i=l 

we have 
/ e(u€j)(x,t)dx ->0,asej | 0 

Moreover, by (3.11'), 

2 
/ e(u£j)(x,t)dx<e-1r? [ tf6^)^,1)0^+^,1) dy 

= e-1$(«ej.,ri, (xi,t + r?)) 

< e-1*^., i2, (x^ t + rf)) + CK(R - r*) 

<e-lR2-m ! e(uej)<C(R,K), 
Jt+rf-R2 

for some large i? > n. Hence, 

/ e(ue )(x, t)dx<J2 e(utj)(a;' *) dx 

JuZiBnixi) i=ijBTi(*i) 
OO 

I 
so that if we choose 6 <    2c   > ^hen 

3 
e(u€j.)0M)<fo;< ^^(-Bi), 

for sufficiently small ej. Contradiction. □ 

Claim 5 gives iJ™-2^*) > 0 for any t e (-*o,0). Now, we can pick 
another point (xuh) € S*S such that IF"-2^1) > 0 and Q^2^^^ = 
limsupri0r

2-miIm_2(St1 n jBr(xi)) > 0. Now we apply Lemma 2.3 to S*1 

at xi to conclude that for rj I 0 there exist {x{, ■ ■ ■ , x?m_2} C E**1 such that 

K-x^|>5rj,Vl<fc<m-2, 
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and 

dist(xJ
k - zj, spanjxj - XJ

0J - ■ • , rrj^ - a^}) > ^, VI < fc < m - 2, 

where x?Q = xi. Let /x*j(i4) = rjm^{{xi.ti) + Drj{A)) for each j and 
define veij{x,t) = u^xi + VjX.ti + r?t)). Then, by the diagonal process 
again, one can find a subsequence of ey (denoted as ej) such that, as ej I 0, 

Moreover, if we denote E** =spt^** and S^ = E** fl {t}, then 

span{^i,-.. ,^m_2}cS^, 

where ^ = lim^oo ^&^a, for 1 < fc < m - 2. Note that {^i, • • • ,Cm-2} 
spans a m—2 dimensional linear subspace of Rm. One also has Vm(E**) > 0, 
uej -^constant weakly in H1, and 0m(/i**,2:) is constant for z e S**. 

Applying (3.11) at centers (0, 0), (fi, 0), • • • , (£m_2,0) and using the fact 
that 9m(//**, z) is constant for z G S**, we have for any r > 0, 

(3.13) J RdRJ  irVKid2%fc,o) dxdt -* 0, as j - oo, 

for 0 < A; < m - 2. Here & = (0,0) and vk
jR = ^uej ((&, 0) + (iZa;, i22t)). 

Hence, by Fatou's Lemma, one has, for 0 < k < m — 2, 

(3.24) lim / ^I^I^^Q) dxdt = 0,\/Re (0,1) 
€jiu JTi 

Let {0} x Rm-2 

Then, (3.14) implies 

(3.15) lim/   0/   rflDrue,]2dxdt = 0, 
"^J-t\   JR.™ 

Ti 

Let {0} x Rm-2 be the span{6, • • ■ , ^-2} = {(0,0, y^ ■ ■ ■ , ym) e i?m}. 

>m-2 for any 0 < to < ti < 00. Here T 6 {0} x i?"2"2, the spanj^i, • • • , £m_2} = 

Claim 6. 

^(x,y,t) = e^C^.^y.^Cfi1""^ ({0} x Rm-2) x ^2i 5). 

ITere «S = \Jl
j=1{(x,t) € R2 x R_ : x = CjV^} /or some 1 < I < 

00 and Cj G i?2 x {0}. Moreover, if (x,y,t) € ({0} x i?m_2) x S then 
emMx,y,t)) - e™(M, (a;o,*o)). 
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First we note that Tm(E** fl PR) < oo for any R > 0.  Also, passing 
(3.11) to the limit, we see that 

(jDr)#(/i**) = /z**,Vr > 0, 

therefore E** = £V(E**) and we can write E** = {(cV—*,*) • c 6 S^1,* € 
jR_}. Now we need to show that E"1 = {0} x Rm~2 x S with S as in the 
Claim. To do so, let <f) e C^(R2) and for 3 < k < m, 0 < to < h < oo, we 
compute 

(3.16) 

^— /        /    (l)2(x)e(u€ )(x,y,t) dxdt 
oyk J-t*   J& 

-ti.   . 
2 

dx dx \ dyk )       dyi dyi \ dyk )      e2-       ej   dyk 

dcj)2 duej du€j   |    d    f *§  f     2 awei Sit, 

=r / 
7-^?  7^2 Sx   dx   dyk      dyi J_t2   JR2 ^   dyk  dyi 

J-ti Jm \ 
_d_ r'o r 
dyi J-ti JR 

3 

d<f>2 duej       2 dut \ du, 

+ ir     .       <? 

dx   dx dt J dyk 

lR2      dyk  dyi 

Which, combines with (3.15), implies, for 3 < k < m, 

(3.17) —- /        /    (f)2(x)d^(x,y1t) = 0, 

in the sense of distribution for all y G {0} x i?771-2. Thus ii**{x,y,t) = 
v**{x,t)dy. Hence if we denote E** C R2 x {0} x R- as sptz/**, then 

E** = E** x ({0} x Rm-2) and E** = UU"^^'*) : * G R-} and 

cj G i?2 x {0} for some 1 < I < oo . This finishes the proof of the Claim. □ 

From Claim 6, we may then assume that u€i converges strongly to a 
constant in H1^™ x J?_ \ ({0} x R™-2) x S) locally. 

Without loss of generality, we will assume I = 1 and denote ci = c. From 
(3.15), we may apply the weak L1-estimates of the local Hardy-Littlewood 
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maximal function with respect to the parabolic distance in it!m+1 (cf,[Se]) 
to conclude that there exists Aj c ({0} x i?771-2) x S with Vm(Aj) > 0 such 
that for any {c^—tj, yj, tj) G Aj 

(3.18) sup 
^(o,4 

P   r-m f 
""-Hvrf,) 

fj -> 0, as j -+ oo, 

• due. 
where /,• = JB2(cy/=^ TZa l^l2 dx- Now, pick up (y^tj) € ^ D ({0} x 

Rm-2 x ^ such that |%.| <  1  and _tj ^ |^| ^ ^ for some o < *„ < tl. 

Let 6j I 0 and Xj 6 5? (c^/^) be such that 

(3.19)   Sf [ 
JB Bjj(.xj)x(ti-si,ti: 

e(uej)(x, y^t) dxdt = —^ 
C(m) 

= max ^5. 2 / e(ue)(•, %-, ■) : z e B\ (c^=i~) i . 
JB^xitj-SJ^) 2       v 'J 

Define sequence of maps ^-(z,y,i) = ^((xj,yj, tj) + (8j(x,y),8?t)), on 
% = Sj^iBKc^t])) x S^-2) x (-(5-2(-2t2 + ^,0). Then ^ satisfies 

(3.20) dtVj - AVJ —sf&j) := 0' in %• 

(3.21)     / e(vj)(x,0,t)dxdt 
JBIX(-I,O) C(m) 

= max < / e{vj)(x,0, t) dxdi : z 6 .J-1 fB\ (CJ^U)) 

(3.22) sup    r-m f       f V 
reCO,^) JPr(0)JB*    (0)^ 

9^9" 

^yifc 
0. 

Moreover, by (3.16) one can apply Allard's Strong Constancy Lemma [A] 
(cf. the proof of theorem A) to conclude that 

(3.23) i (£|(2)x£2™-2(0))x(-l,0) 

2e2 

e(vj) dxdydt < ^  0   , 

for all z 6 5- 1(Si (c^/—t^)). In fact, we have 
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Claim 7. For any z G <?>• 1(B\(cy/—tj)) and t G (—oo, 0], we have 

(3.14) 
/, (B%{z)xB?- 2(0))x(t-l,t) 

4e2 

e(vj) dxdydt <       Q 

(^(m)' 

To see this, one first note that the Fubini's theorem implies for each 
z G B\(cy/—tj), there exists tJ

z G (tj — Sptj) such that 

(3.25) f 
JB BhAz)xB?s-

2(yj 
e(ue.)(x,y,ti)dxdy<-^8™-2. 

2± 
C(mp 

On the other hand, there exists sufficiently small /3o > 0 such that if |-j| < 

1 + fio, then 

(3.26) 
4e2 JB?     ,,,  _,.  ^KO^y,*)^^^^-2 

'^^^tto) C(m) 

where ci = w-j- This follows from (3.14) , Claim 7, and (3.25). Rescaling 
V    ^z 

(3.26), one see that, for any z € Sj1 (B\ {cy/=tj)\ and t e (-^_2^o,0), 

/ 
JBUz)xl lB*(z)xB?-2(p) 

e(vj)(x,y,t) dxdy < 44 
c(my 

hence, integrating with respect to t, 

L 
4e2 

2-m / eiv^x, y, s) dxdyds < —±- 

Therefore, by choosing sufficiently large C(m), one has 

(3.27) i (B%(z)xB?-2(0))x(t-2,t) 
e(vj) dxdyds < 60, 

for (zyt) G 8- 2{B\(c^-tj)) x JR_.  From the local Hl boundedness of Vj 
J        2 

in J?m x JR-, we may assume that vj —> ^oo weakly in H^iR171 x /?_, i?^). 
Hence (3.15) implies 

n III 

f     E 
JR^XR-fc=3 

^00 
= 0, 
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which yields v^x.y.t) = VQOOM) 
for (^JZ/J*) € Rm X R_.  On the other 

hand, from (3.24), we can apply Lemma 3.3 to get 

vj -+ voc, in C^oc(R
2 x (B™-2) x R_,Rk). 

Which, combines with (3.21), gives 

/. 

^2 
e(^oo) dxdt = 

e0 

B^x(-lfi) C(m)' 

Here e^oo) is either ^ID^ool2 + ^i^oo) or ^l^^od2. Hence -Uoo is noncon- 
stant. Moreover, i^oo satisfies either 

6j i c> 0, dtVoo - AVOQ + -2/(^00) = 0, in R2 x i?_, 

or 6j I 0, v(R2 x R-) C AT, and dtVoo - Avoo = Aiv^^Dvoo.Dv^). From 
the monotonicity inequality and energy inequality of VJ, we also know that 

sup      /    e(v00)(x11) dx < M < 00, 
te(-oofl) JR

2 

and 

\dtVoo|2 < 00. I, /R2xR- 

Now, we want to show that such VQO can not exist. In fact, we have 

Claim 8. Suppose v : R2 x (—00,0) —» Rk satisfies 

sup      /    e(v) < M < 00 
te(-oo,o) ^.R2 

sup      e(v) < M < ex), 
JR

2x(-cx),0) 

and either (i) 

(3.28) $« - A^ + !/(«) = 0, 

/or some c> 0 or ^ u 6 C2(R2 x (—00,0), iV) and 

(3.29) dfct; - Au = i4(t;)(I>t;, Dv). 

Then v is constant. 
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To see this, one first note that v satisfies the energy inequality 

(3.30)        ^   \dtv\2+l   :WM)<   Km    /   \\Dv\\,T) 
J-oo JB? l T-*-oo JR2 I 

< oo. 

This can be obtained by multiplying the equations dtvcj) for suitable cut-off 
function </>. Prom the gradient bound of v, one also have 

(3.31) l|0t;||cfc(fi2x(_OOio))<C(fc,M). 

Hence one may choose tn [ — oo such that 

/   \dtv\\.,tn)^0, 

and 

v(-,*n) -+ voo in Hl{R2) n C2(R2) locally . 

Hence VQO satisfies JR2 e(v) < oo and either 

-A^oo + -«/(VQO) = 0, 

or 
-Avoo = A(v00)(Dv00, Dvoo). 

Which is necessarily constant (cf. Theorem A) so that 

Km    f   ^|2(,T) = 0, 
T->-oo JR2 2 

therefore v =constant and the proof of theorem C is complete. □ 

4. Proof of Theorem D. 

In this section, we will show a more general statement, which implies 
Theorem D as a consequence. Note that if N doesn't support harmonic 52, 
then Theorem C tells that solutions ue to (1.5) satisfying (1.9), converges 
strongly in Hl{Bi x (0, l),i2fe) to u, which is a weak solution to (1.1) and 
satisfies the energy monotonicity inequality, the energy inequality and the 
small energy regularity (cf. [CLL] or [F]). Moreover, arguments similar to 
Theorem C give the following. 
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Proposition 4.1. Under the assumption that N doesn't support harmonic 
S2. Let {un} C Hl{Bi x (0,1), iV) be a sequence of solutions of (1.1) with 

I {\dtun\2 + \Dun\2) dxdt < K < oo. 
^ix(0,l) 

In addition, un satisfies (3.11), (3.11") and (3.12). Then un (after passing 
to possible subsequences) converges strongly in H\0C(Bi x (0,1), N) to a map 
u, which satisfies weakly (1.1), (3.11), (3.11"), and (3.12). Hence there 
exists E C Bi x (0,1) with ^m(S) = 0 such that u e C00{Bi x (0,1) \ E, N). 

Remark. If {un} C Hl(Bi x (0,1), N) are a sequence of smooth solutions 
of (1.1), then it is well-know (cf. [S]) that un satisfy (3.11), (3.11"), (3.12). 
Moreover, it was recently shown by Chen-Li-Lin [CLL], Feldman [Fm], and 
Chen-Wang [CW] that Lemma 3.3 (i.e., (3.12) holds for weak solutions of 
(1.1) which satisfy (3.11) and (3.12) (cf. [CLL]), provided that iV is a round 
sphere or a Riemannian Homogeneous manifold. Although it is believed 
to be true, the small energy regularity estimates remain open for general 
Riemannian manifolds N. 

Note that there doesn't exist quasi-harmonic S2 to N in general. Hence 
Part I of the proof of Theorem C gives 

Proposition 4.2. Assume that N doesn't support harmonic S2.  Let u G 
Hl{B2 x (0,1), AT) be any weak solution of (1.1), which satisfies the energy 
inequality: 
For rj e C^(BlR), 0<t1<t2<l, 

(4.1) /   r]2\Du\2(x,t2)dx< [   r]2\Du\2(x,h) dx + C^t^h- 
JBl JBl 

Then u € C00{Bl x (0,1), N). Moreover 

(4.2) sup     \Du\2(x,t) <C f \Du\2. 

1, 

Making use of the Proposition 4.1, we can now prove the following The- 
orem, which can be viewed as the parabolic analogous result of Federer's 
dimension reduction [F], one can refer to Schoen-Uhlenbeck [SU] for the 
energy minimizing harmonic map cases. 
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Theorem 4.3. For m > 3. Assume that N doesn't support harmonic S2. 
Let u € H1^! x (0,1), N) be a weak solution of (1.1), which satisfies (3.11), 
(3.11"), (3.12). Then there exists a closed S C -Bi x (0,1), with parabolic 
Hausdorff dimension less than or equal m - 3, such that u € C00(5i X 
(0,1) \ S,iV). Moreover, S is discrete if m = 3.If, in addition, for some 
2 < p < m - 1, iV supports neither harmonic Sl for 2 < I < p nor quasi- 
harmonic Sk for 3 < k < p + 1, then the parabolic Hausdorff dimension of 

S is at most m — p — 2. 

Proof. First note the singular set of u, S C -Bi x (0,1), is given by 

S = l (x,t) e BV1 x (0,1) : limr-m / \Du\2(y,s) dyds > eg I, 
(^ rlO JpT(x,t) ) 

where eo is the small constant in (3.12). It is well-know that Pm(S) = 0 (cf. 
[S]). Moreover, (3.11) implies S is closed. Therefore the parabolic Hausdorff 
dimension of S is less than or equal to m. Let 0 < s < m be such that 
Vs {T,) > 0. Then there exists zo 6 S such that (cf. [F]) 

(4.3) limr-s^s(E n Pr^o)) > 0, 
nio 

for a sequence n j 0. Look at maps Ui(x, t) = u(zo + (nx, r?t),: Pi(0) -* N. 
Then (3.11), (3.11"), and (3.12) imply that 

/      Idm]2 + IDui]2 < M < oo, 
^Pi(0) 

hence m converges weakly in ^(P^O), N) to a map UQ and hence strongly 
in if^PitO), iV) as well by Proposition 4.1. Hence UQ is a weak solution of 
(l.l),OCand by (3.11), 

f \2tdtuo + x ■ Duo\2 dxdt = 0, Vr > 0. 

which implies either uo(x,t) = uo(ft) : Rm -* N (i.e., UQ is a homogeneous 

of degree zero harmonic map from i?m to N) or izo(M) = ^o(^j) : Rm x 

(-oo, 0) -> N is a self-similar solution of (1.1). Since UQ of the first type can 
be covered by those arguments of [L] for stationary harmonic maps, we will 
only consider the latter cases at each following step. Note that if Si denotes 
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the singular set of Ui in Pi(0), we clearly have EiDPi (0) = Dri(EnPz±(zo)) 

and hence Vs& nPi) = rrsps(SnPn(zo). Therefore, (4.3) implies 

limVs(EinPi(0)) >0. 

On the other hand, if we denote EQ as the singular set of WQ, then (3.12) 
implies for any <!>o > 0 there exists ZQ >> 1 such that dist(£;, So) < <5o for 
% > io, here dist denote the parabolic distance. This, in particular, implies 

Ps(EonPi(0)) >0. 

Since ^o is self-similar, we have .DA (So) C So for any A > 0 and there 
are two possiblities: either we have s < 0, or we can choose a point zi = 
(#1, ti) G EondPi(O), here dPi(0) denotes the parabolic boundary of Pi(0), 
such that 

limsupr-sPs(Eo n Pr(^i)) > 0. 
r-»0 

Repeating the blowing-up argument of UQ at the center zi we get a map 
ui e firl(Pm x P_, iV) with Ps(Ei fl Pi(0)) > 0, which is easily seen to be 
independent of xi direction, i.e., wi((^i,y, t)) = ui(-^-) for any (xi,y) G 

R x Pm_1 = R171. If s — 1 < 0, we stop. Otherwise, there is a point 
Z2 G Ei n (<9Pi(0) n P771-1) x P_, and we repeat the argument at Z2. If we 
repeat the procedure n times , we get a map un G H^^R171 x P_, iV) which 
is a self-similar solution of (1.1) and satisfies i/m(xi, • • • , a;n, y, t) = Tzm(-Xj) 

for any (zi, • • • , xnj y) G P71 x P771"71 = Pm and Ps(En fl Pi(0)) > 0. We 
can repeat the argument utill 5 - n < 0. In order to have constructed un^ 
we must have 5 — n + 1 > 0. Since s < m and m is integer we then have 
n < m — 1. If n > m — 2, then we would have a map un : Pm x P_ :—► iV 
such that Rm~2 x jR(t) C En, here P(t) C P2 x P_ is a self-similar curve 
passing through 0 and R(t) ^ {0}. Hence Pm(Eri) > 0 contradicting the 
fact Pm(En) = 0. Therefore n < m - 3. Since Ps(En) > 0, we have 
s < m — 3, and since s can be any number smaller than dimE we have 
shown dimE < m - 3. Suppose now that m = 3. Then E is of dimension 0. 
If E is not discrete, then there were a sequence Zi G E with Zi —> ZQ G E, then 
we could choose A* = 4dist(^,^o) and consider the scaled maps u^x^t) = 
u(zo + (\iX,\?t)) so that uxi will converge strongly in H£oc(Pi(0),N) to a 
self-similar solution UQ : P3 x P_ —> N such that the singular set EQ contains 
both 0 and a point at dPi(0), which implies P2(Eo) > 0. This contradicts 

4 

the fact P2(Eo) = 0 again. 
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Under the additional assumptions as in the Theorem 4.3, we see if n = 

m — 3, then we would have un 6 H^R™ x #_, N) which is a self-similar 
solution of (1.1) such that un(x,y,t) = 'un(-^) for any x € i?m~3 and 

y G R3 and un has an isolated singularity at (y,t) = 0. Therefore, un is a 
self-similar solution of (1.1) in i?3 x i?_ with an isolated singularity at 0, 
which is trivial by assumption. Thus we had n < m — 4. We can repeat the 
same reasoning for n = ra — 4, • • • , m—p — 2 and conclude that n < m—p—2 
which then implies dimE <m — p — 2. This completes the proof of Theorem 

4.3. □ 

Completion of Proof of Theorem D. Applying Theorem 4.3 with p replaced 
by p = m—1, we can conclude that the singular set E of u is empty. Then one 
can apply the small energy regularity estimates at each point in B\ x (i, |) 

to get the gradient estimates (1.11). 
Recently, we received a preprint by Digand Li, who refined Theorem D 

at time T = +oo. □ 
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