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On manifolds with non-negative Ricei 
curvature and Sobolev inequalities 

M. LEDOUX 

Let M be a complete n-dimensional Riemanian manifold with non- 
negative Ricci curvature in which one of the Sobolev inequalities 
(/ l/lp^)1/P < C (/ \Vf\idv)1/q, f e C§°(M), 1 < q < n, 1/p = 
1/q—l/n, is satisfied with C the optimal constant of this inequality 
in Rn. Then M is isometric to Rn. 

Let M be a complete Riemannian manifold of dimension n > 2. Denote 
by dv the Riemannian volume element on M and by V the gradient operator. 

In this note, we are concerned with manifolds M in which a Sobolev 
inequality of the type 

a) (/l/|p^) P<c{l^f\9dv) *, 
1 < q < n, 1/p = l/q—l/n, holds for some constant C and all C00 compactly 
supported functions / on M. The best constants C = K(n, q) for which (1) 
holds in Rn are known and were described by Th. Aubin [Au] and G. Talenti 

[Ta]. Namely, K(n, 1) = n-1^ where Ljn is the volume of the Euclidean 
unit ball in Rn, while 

1 fniq-l^-^f r(n+l) V^ 
K(n, q) =      ' l ' , 

n\   n"~ <!   ) \na;nr(n/g)r(n+ 1 — njq) 

\iq>\. Moreover, for q > 1, the equality in (1) is attained by the functions 
(A+ \x\Q/(q-^y-(n/q)^ A > 0, where \x\ is the Euclidean length of the vector 
x in Rn. We are actually interested here in the geometry of those manifolds 
M for which one of the Sobolev inequalities (1) is satisfied with the best 
constant C = K(n, q) of Rn. The result of this note is the following theorem. 

Theorem. Let M be a complete n-dimensional Riemannian manifold with 
non-negative Ricci curvature. If one of the Sobolev inequalities (1) is satis- 
fied with C = K(n, q), then M is isometric to W1. 
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The particular case q = 1 (p = n/(n — 1)) is of course well-known. In 
this case indeed, the Sobolev inequality is equivalent to the isoperimetric 
inequality 

(VDln(n))(f4"'1)/n < K(n, i)voWi(a^} 
where dCt is the boundary of a smooth bounded open set ft in M. If we let 
V(xo,s) = V(s) be the volume of the geodesic ball B^XQ^S) — B(s) with 
center XQ and radius s in M, we have 

^voln (B(s)) = voln_i (dB(s)). 

Hence, setting ft = B(s) in the isoperimetric inequality, we get 

V(s)(n-1)/n<K(n,Wis) 

for all s.   Integrating yields V(s) > (nK(n,l))~nsn
y and since K{n,-1) = 

_1    —l/n    r n  1ujn '   , lor every s, 

(2) Via) > V0(s) 

where Vo(.s) = ujnsn is the volume of the Euclidean ball of radius 5 in W1. If 
M has non-negative Ricci curvature, by Bishop's comparison theorem (cf. 
e.g. [Ch]) V(s) < VQ{S) for every 5, and by (2) and the case of equality, 
M is isometric to W1, The main interest of the Theorem therefore lies in 
the case q > 1. As usual, the classical value q = 2 (and p = 2n/(n — 2)) is 
of particular interest (see below). It should be noticed that known results 
already imply that the scalar curvature of M is zero in this case (cf. [He], 
Prop. 4.10). 

Proof of the Theorem. It is inspired by the technique developed in the recent 
work [B-L] where a sharp bound on the diameter of a compact Riemannian 
manifold satisfying a Sobolev inequality is obtained, extending the classical 
Myers theorem. 

We thus assume that the Sobolev inequality (1) is satisfied with C = 
K(n,q) for some q > 1. Recall first that the extremal functions of this 
inequality in Mn are the functions (A + Ix^)1-^^, A > 0, where q' = 
q/(q—i). Let now XQ be a fixed point in M and let 6 > 1. Set / = 0_1d(-, XQ) 

where d is the distance function on M. The idea is then to apply the Sobolev 
inequality (1), with C = K(n,q), to (A + /<z,)i-W<z), for every A > 0 to 
deduce a differential inequality whose solutions may be compared to the 
extremal Euclidean case. Set, for every A > 0, 
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Note first that F is well defined and continuously differentiable in A. Indeed, 
by Fubini's theorem, for every A > 0, 

q'-i poo sq -i 

(where we recall that V(s) = V(xo, s) is the volume of the ball with center 
xo and radius s). By Bishop's comparison theorem, V(s) < Vo(s) for every 
5. It follows that 0 < F(X) < oo and that F is differentiable. 

Together with a simple approximation procedure, apply now the Sobolev 
inequality (1) with C = K{n,q) to (A + /^M71^ for every A > 0. Since 
|V/| < 1 and 1/p = 1/q - 1/n, we get 

In other words, setting 

a= (K(n,q) I—j 

for every A > 0, 

(3) a (-F'iX))^ - XF'(X) < (n - l)F(X). 

We now compare the solutions of the differential inequality (3) to the solu- 
tions H of the differential equality 

(4) a (-H'(X))q/p - XH'(X) = (n- l)H(X),    X > 0. 

It is plain that a particular solution Ho of (4) is given by the extremal 
functions of the Sobolev inequality in Rn, namely 

If 1 _      A W) = —t y^ (A + ^^ dx - J^J^ 

where 

1       f 1 q      fa(n-q)y/{p-q) 

A = Ho{1) - ^1 JRn (1 + |x|9'))n-l dX - n - q U<Z - 1) ) 

(as a solution of (4)). 
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We claim that if F(Xo) < Ho(Xo) for some AQ > 0, then F(\) < Ho(\) 
for every A < AQ. Indeed, if this is not the case, let Ai be defined by 

A1 = sup{A<Ao;F(A) = Fo(A)}. 

Now, for every A > 0, (p\(X) = aXq/p + AX is strictly increasing in X > 0 
so that (3) reads as 

-F'(X) < tp;1 ((n - l)F(A)) 

while, by (4), 
-^(A) = ^1((n-l)iJo(A)). 

Therefore 

(F - HoYiX) > <p? ((n - l)Ho(X)) - ^ ((n - l)F(A)) > 0 

on the set {F < HQ}. Hence (F — Ho)' > 0 on the interval [Ai, AQ] SO tha,t 
F — HQ is non-decreasing on this interval. But then, in particular,    t 

0 = (F - flb)(Ai) < (F - flb)(Ao) < 0 

which is a contradiction. 
Recall now, A > 0, 

KJ      n-lj   (\ + f<i')n-i * J0       
v    J(\ + s*)n 

while 

A 
~~  \(n/q)-l  ■ 

The local geometry indicates that 

Indeed, write 

poo 9^/-1 
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As V(s) ~ VQ(S) when 5-^0, for every £ > 0, there is 6 > 0 such that, for 
every A > 0, 

I    V{s) T^TT 7T- ds > (1 - e) /   Vo(s) —^ T— ds 

- 0g'((n/qyi)x(n/q)-l J0 
y0^(l + sg')n ds- 

Hence, for every A > 0, 

from which (5) follows as A —> 0. 
We can now conclude the proof of the Theorem. By the claim and (5), 

we have that F(X) > i?o(A) for every A > 0, that is 

Letting 8 —» 1, 
poo g'-l 

Jo (X + s*')n      - 

for every A > 0. Since by Bishop's theorem V(s) < Vo(s) for every 5 when 
M has non-negative curvature, it must be that V(s) = Vb(s) for almost 
every s, and thus every 5 by continuity. By the case of equality in Bishop's 
theorem, M is isometric to Rn. The proof of the Theorem is complete.    □ 

It is natural to conjecture that the Theorem may actually be turned into 
a volume comparison statement as it is the case for q = 1. That is, in a 
manifold M satisfying the Sobolev inequality (1) with the constant K(n, q) 
for some q > 1, and without any curvature assumption, for every XQ and 
every s, 

V(x0,s)>Vo(s). 

This is well-known up to a constant (depending only on n and q) but the 
preceding proof does not seem to be able to yield such a conclusion. 
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To conclude this note, we comment some related comparison theorem. 
The Sobolev inequality (1) belongs to a general family of inequalities of the 
type 

/• \ l/r /   f \ B/a f   n x (l-e)/9 
yi/r^j   <c^j\f\sdvj   (^yiv/i^j     , fec§r(M), 

with 
1      5     1-0 
- = - + r      s p 

(cf. [B-C-L-SC]). Inequality (1) corresponds to 0 = 0. When g = 2, the 
classical value, and r = 2, other choices of interest are 0 = 2/(n + 2) which 
corresponds to the Nash inequality 

(6) [J Iffdv) <C^j\f\dvj     J \Vf\2dv,    feCS?(M), 

and the limiting value 9 = 1 which corresponds to the logarithmic Sobolev 
or entropy-energy inequality 

(7) jf2\ogfdv<^\og(cJ\Vf\2dv^,    feCSTiM),    Jf2dv = l 

(cf. [Da]). As for the Sobolev inequality (1), the optimal constants for these 
two inequalities (6) and (7) in Mn are known ([C-L] and [Ca] respectively), 
so that one may ask for a statement analogous to the Theorem in case of 
these inequalities. As a result, it was shown in [B-C-L] that this is indeed 
the case for the logarithmic Sobolev inequality (7), that is, a n-dimensional 
Riemannian manifold with non-negative Ricci curvature satisfying (7) with 
the best constant of Rn is isometric to Rn. The proof there relies on optimal 
heat kernel bounds in manifolds satisfying the logarithmic Sobolev inequality 
(7) with the best constant of W1. Namely, if ^(x, y) denotes the heat kernel 
on M, then, for every t > 0, 

sup pt(x,y)< /2 =   sup Pt(x,y) 

where Pt(x, y) is the heat kernel on W1. One then concludes with the results 
of P. Li [Li] relating an optimal large time heat kernel decay to the maximal 
volume growth of balls in manifolds with non-negative Ricci curvature. The 
analogous results for the Nash inequality (6) are so far open. 
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