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On manifolds with non-negative Ricci
curvature and Sobolev inequalities

M. LEDOUX

Let M be a complete n-dimensional Riemanian manifold with non-

negative Ricci curvature in which one of the Sobolev inequalities
1 1

(1) 7" < C ([ 1V £l9dv) 7", f € C(M), 1 < q <, 1/p =

1/g—1/n, is satisfied with C the optimal constant of this inequality

in R™. Then M is isometric to R™.

Let M be a complete Riemannian manifold of dimension n > 2. Denote
by dv the Riemannian volume element on M and by V the gradient operator.

In this note, we are concerned with manifolds M in which a Sobolev
inequality of the type

(1) ( / | flpdv> P ( / v f|qdv> v

1<¢g<n,1/p=1/q—1/n, holds for some constant C' and all C*>° compactly
supported functions f on M. The best constants C = K(n, ¢) for which (1)
holds in R™ are known and were described by Th. Aubin [Au] and G. Talenti
[Ta]. Namely, K(n,1) =n"lw, /™ \where wy, is the volume of the Euclidean
unit ball in R™, while

Koo = (%><q-1>/q (mreratetis n/q))l/n

if ¢ > 1. Moreover, for ¢ > 1, the equality in (1) is attained by the functions
(A+ |z|9/ (@ D)1=(7/9) | X > 0, where |z is the Euclidean length of the vector
z in R™. We are actually interested here in the geometry of those manifolds
M for which one of the Sobolev inequalities (1) is satisfied with the best
constant C' = K (n, g) of R™. The result of this note is the following theorem.

Theorem. Let M be a complete n-dimensional Riemannian manifold with
non-negative Ricci curvature. If one of the Sobolev inequalities (1) is satis-

fied with C = K(n,q), then M is isometric to R™.
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The particular case ¢ = 1 (p = n/(n — 1)) is of course well-known. In
this case indeed, the Sobolev inequality is equivalent to the isoperimetric
inequality

(vol,, ()™ ~D/™ < K(n, 1)vol,_1(89)
where 0f) is the boundary of a smooth bounded open set 2 in M. If we let
V(zo,s) = V(s) be the volume of the geodesic ball B(zo,s) = B(s) with
center xg and radius s in M, we have

disVOIn (B(s)) = volp—1 (0B(s)) .
Hence, setting 2 = B(s) in the isoperimetric inequality, we get
V()" D" < K(n, )V (s)
for all s. Integrating yields V(s) > (nK(n,1)) "s", and since K(n,1) =

n_lw,fl/n, for every s,
(2) V(s) = Vo(s)

where Vp(s) = wps™ is the volume of the Euclidean ball of radius s in R™. If
M has non-negative Ricci curvature, by Bishop’s comparison theorem (cf.
e.g. [Ch]) V(s) < Vi(s) for every s, and by (2) and the case of equality,
M is isometric to R™. The main interest of the Theorem therefore lies in
the case ¢ > 1. As usual, the classical value ¢ = 2 (and p = 2n/(n — 2)) is
of particular interest (see below). It should be noticed that known results
already imply that the scalar curvature of M is zero in this case (cf. [He],
Prop. 4.10).

Proof of the Theorem. It is inspired by the technique developed in the recent
work [B-L] where a sharp bound on the diameter of a compact Riemannian
manifold satisfying a Sobolev inequality is obtained, extending the classical
Myers theorem.

We thus assume that the Sobolev inequality (1) is satisfied with C =
K(n,q) for some ¢ > 1. Recall first that the extremal functions of this
inequality in R" are the functions (A + |z|¢)1=(*/9), X\ > 0, where ¢ =
q/(g—1). Let now g be a fixed point in M and let 6 > 1. Set f = 6~1d(-, zo)
where d is the distance function on M. The idea is then to apply the Sobolev
inequality (1), with C = K(n,q), to (A + fq/)l"("/q), for every A > 0 to
deduce a differential inequality whose solutions may be compared to the
extremal Euclidean case. Set, for every A > 0,

1 1
FO)=2=7 / (A+ fa)n—t do.
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Note first that F is well defined and continuously differentiable in A. Indeed,
by Fubini’s theorem, for every A > 0,

-1

FO\) = ¢ /0 "V (s) (TS%W ds

(where we recall that V(s) = V(zo, s) is the volume of the ball with center
o and radius s). By Bishop’s comparison theorem, V'(s) < Vo(s) for every
s. It follows that 0 < F()\) < oo and that F' is differentiable.

Together with a simple approximation procedure, apply now the Sobolev
inequality (1) with C = K(n,q) to (A + F9)1=(/9) for every A > 0. Since
|IVfl<1land1/p=1/q—1/n, we get

!

1 1/p n—gq fq 1/q
(/ e dv) < K(n,q) (——q—l) (/——(qu,)n dv) :
In other words, setting
_ n—-q\\"’
a—<K(n7Q)<q_1>) ’

(3) o (—F'(V)7P = AF'(N) < (n— ))F(N).

for every A > 0,

We now compare the solutions of the differential inequality (3) to the solu-
tions H of the differential equality

(4) a (—H'W))YP = AH'(N) = (n— DH(), A>0.

It is plain that a particular solution Ho of (4) is given by the extremal
functions of the Sobolev inequality in R™, namely

1 1 A
Ho =73 /R BT e © = o

where

3 1 1 g a(n —q) p/(p—q)
A—HO(]-) - n—l‘/l\{n (1+|$|q/))n_1 dr = — (n(q—l)

(as a solution of (4)).
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We claim that if F'(Ag) < Ho(Ao) for some g > 0, then F(X) < Hp(A)
for every A < Ag. Indeed, if this is not the case, let A; be defined by

A1 =sup{A < Aog; F(A) = Ho(M\)}.

Now, for every A > 0, s (X) = aX%/? 4+ \X is strictly increasing in X >0
so that (3) reads as

—F'(3) < o3 ((n— DF()

while, by (4),
’ —Hy(\) = ¢3! (n = ) Ho(N)).

Therefore
(F - Ho)'(N) 2 5! (n =) Ho(N) — ¢35 (n — 1)F(A)) > 0

on the set {F' < Hp}. Hence (F' — Hp)' > 0 on the interval [A;, Ao] so that
F — Hj is non-decreasing on this interval. But then, in particular, ¢

0= (F — Ho)(M) < (F'— Ho)(Xo) <0

which is a contradiction.
Recall now, A > 0,

FO) = — / L -y /OOV(OS)—il——ds
Th_1) DT A+ s7)7

while

!

Ho(A) = — / 1 da:—’/ooV(s)—si—ds
V=0T fo Bt P Ty PO e

A
~ \n/g)-1-°
The local geometry indicates that
... F
> 0" .
(5) hf\n_%(r)lf o0 = " >1

Indeed, write

oo '—1
— /9D ST
F(\) = g0 /0 V() Gy
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As V(s) ~ Vy(s) when s — 0, for every € > 0, there is § > 0 such that, for
every A > 0,

q—1 6 q'-1

/0 V() iy e 2 (1) /0 () Gy

L =g e
2 (@D AT /0 Vo(s )(1+ ok

Hence, for every A > 0,

oy 8/6Mt /q
FQ) > gn (1 E)f (1+q)n

HO()\) fO VO S)m— ds
from which (5) follows as A — 0.

We can now conclude the proof of the Theorem. By the claim and (5),
we have that F'(\) > Ho(A) for every A > 0, that is

g7 -1

W05 o) g ds 0

Letting § — 1,
-1

o0 59
V(s)—W(s)] ————=ds>0
JACREOF
for every A > 0. Since by Bishop’s theorem V (s) < Vj(s) for every s when
M has non-negative curvature, it must be that V(s) = V(s) for almost
every s, and thus every s by continuity. By the case of equality in Bishop’s
theorem, M is isometric to R™. The proof of the Theorem is complete. O

It is natural to conjecture that the Theorem may actually be turned into
a volume comparison statement as it is the case for ¢ = 1. That is, in a
manifold M satisfying the Sobolev inequality (1) with the constant K(n,q)
for some ¢ > 1, and without any curvature assumption, for every zo and
every s,
V(zo,s) = Vo(s)-

This is well-known up to a constant (depending only on n and ¢) but the
preceding proof does not seem to be able to yield such a conclusion.
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To conclude this note, we comment some related comparison theorem.
The Sobolev inequality (1) belongs to a general family of inequalities of the

type

1/r 0/s (1-6)/q
( / Iflrd'v> so( / lflsdv) ( / IVfl"dv) . Fecn,

with

T S P
(cf. [B-C-L-SC]). Inequality (1) corresponds to § = 0. When g = 2, the
classical value, and 7 = 2, other choices of interest are § = 2/(n + 2) which
corresponds to the Nash inequality

© ([ i) Y (/ Ifldv>4/n [1wsta, 1 cgom,

and the limiting value § = 1 which corresponds to the logarithmic Sobolev
or entropy-energy inequality

0 [osars g iog(c[[Vita), fecean, [ o=

(cf. [Da]). As for the Sobolev inequality (1), the optimal constants for these
two inequalities (6) and (7) in R™ are known ([C-L] and [Ca] respectively),
so that one may ask for a statement analogous to the Theorem in case of
these inequalities. As a result, it was shown in [B-C-L] that this is indeed
the case for the logarithmic Sobolev inequality (7), that is, a n-dimensional
Riemannian manifold with non-negative Ricci curvature satisfying (7) with
the best constant of R™ is isometric to R™. The proof there relies on optimal
heat kernel bounds in manifolds satisfying the logarithmic Sobolev inequality
(7) with the best constant of R”. Namely, if p;(z, y) denotes the heat kernel
on M, then, for every t > 0,

1 0
sup pi(z,y) < 75 = SUp pi(T,Y
eyeM ( ) ) (47Tt)n/2 2.yeRn t( ) )
where p)(z,y) is the heat kernel on R™. One then concludes with the results
of P. Li [Li] relating an optimal large time heat kernel decay to the maximal
volume growth of balls in manifolds with non-negative Ricci curvature. The
analogous results for the Nash inequality (6) are so far open.
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