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Unique continuation for differential equations of 
Schrodinger's type 

R. REGBAOUI 

We prove that the strong unique continuation property holds for 
the differential inequality |A^(x)| < Vr(a:)|Vti(x)|, where V is a 
function in L[oc(Q) with r > '^^L,n > 3, and Q a connected open 
subset of M71. If ra > 5 our result improves that of Wolff [6] who 
gotr >Max(n,^^). 

1. Introduction and statement of results. 

Let ft be a connected open subset of Rn, and V a positive function on 
Q. We say that the differential inequality 

(1.1) \&u(x)\ <V(x)\Vu(x)\ 

has the strong unique continuation property (s.u.c.p) if every solution of 
(1.1) that vanishes to infinite order at a point of Q must be identically zero. 
We recall that a function u G Z^oc(fi) is said to vanish to infinite order at a 
point XQ E ft if it satisfies 

(1.2) / \u(x)\2dx = 0(RN) for all N > 0 as R -+ 0. 
J\x—xo\<R 

There is an extensive literature on unique continuation for differential in- 
equalities like (1.1). We refer the reader to ([1], [2], [3], [4], [7]) for more 
details on the subject. 

In his paper [6], Wolff proved that (1.1) has the (s.u.c.p) if V G L[oc(fi) 
with r > Max(n, ^y^). We note that this result is optimal when n < 4 
since as it can be shown by elementary examples, the (s.u.c.p) fails for 
r < n. Counterexamples due to Wolff [8] show that the (s.u.c.p) fails also 
for r = n, n > 4. A natural question is then: the exponent r = n + e is it the 
optimal one ?. Although we are unable to answer this question, we prove 
the following: 
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Theorem 1.1. Let r > ^p^n > 3; and let u e W%£(Q) be a solution of 
(1.1) with V € Lfo^Q). Suppose that u vanishes to infinite order at a point 
#0 € fi, i.e., satisfies (1.2).  Then u vanishes identically in fl. 

When n > 5 theorem 1.1 is an improvement of Wolff's result since ^p^ < 
Max(n, ^Y^) if n > 5. It's not clear to us wether the method we have 
employed here allows one to prove the (s.u.c.p) for V G L[oc with r < 
^p^n > 5 (see remark 1.4). 

Before proving theorem 1.1, we show that if u is as in theorem 1.1, then 
u has faster than "exponential vanishing " at XQ, namely: 

Theorem 1.2. Let r > ^p^n > 3; and let u € W^{Vt) be a solution of 
(1.1) with V £ Z|oc(fi). Suppose that u vanishes to infinite order at a point 
XQ G fi; i.e; satisfies (1.2).  TTien tx satisfes, for all \a\ < 1, 

L \Dau(x)\2dx =  O (e-NR l) forallN>0asR-> 0. 

Theorem 1.2 allows us to conclude theorem 1.1 from the following: 

Theorem 1.3. Let p = ^^,n > 3, and let u G W^iVL) be a solution of 
(1.1) with V G L^c(fi).  Suppose that u satisfies, for some XQ G fi and all 

M < i, 

(1.3)      / |jDa^(x)|2da:  =  O (e"^"1) for all N > 0 as R -+ 0. 

T/ien tz vanishes identically in £1. 

2 2 Remark 1.4. a) For technical reasons we have supposed u G W/o'c in 
theorem 1.1. By using interpolation inequalities in the proof of theo- 
rem 1.2 (to obtain (2.33) ), one can see that theorem 1.1 remains valid 
if we suppose u e W%r with i = I + I, r > ^. 

b) The reason for we make the restriction r > ^p^ in theorem 1.1, is that 
the exponent ^p^ is the smallest one allowing us to obtain exponential 
decay of the form (1.3) since such a decay is needed to apply theorem 
1.3. The exponent r = n + e gives only a decay of the form 

/ 
J\x 

\Dau(x)\2dx = o(e-R ") asR-*0 
\x—xo\<R 

for some positive a ( not necessary > 1 ) 
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To prove theorem 1.3 we use a modified Carleman method due to Wolff [7], 
where the main tool is a lemma concerning concentration of measures in Rn. 

2. Proof of the results. 

As mentioned above, the principal point in the proof of theorem 1.3 is 
the following lemma due to Wolff [7]: 

Lemma 2.1 (Wolff [7], lemma 1). Let /JL be a positive measure in M71 

with faster than exponential decay, i.e., 

(2.1) lim T-Hogndx : \x\ > T})  =  -oo. 
T—KX) 

Define fi^ by d/ikix) = ek'xdii(x). Suppose B is a convex body in W1.  Then 
there is a sequence {fcj} C B and, for each j, a convex body Efy with 

(2.2) /^,(irvEfc.) < ^IKII 

such that {Ek} are pairwise disjoint and satisfying 

(2-3) EK-!"1   >  C\B\ 

where C is a positive constant depending only on n, and where \B\, \Ek\ 
denote the Lebesgue measures of B and Ek ■. 

We need also the following Carleman-type estimate which is proved in 
Wolff [7]. 

Lemma 2.2 (Wolff [7], Lemma 6.2). Let p =   jg^n  >   3.    If k  e 
Rn,k ^ 0, E C Rn with \E\ > \k\-n, then for all u e W2^(Rn) with 
compact support, and for all 6 > ^T^ZW, 

(2.4) \\ek-xVu\\LHE)   <  Ce(\knE\)e\\ek-xAu\\LP 

where CQ is a positive constant depending only on n and 9. 

Proof of theorem 1.3. Let u as in theorem 1.3. We may suppose that XQ = 0, 
and using a weak unique continuation theorem of Wolff [7] (Theorem 1), it 
suffices to prove that Vu = 0 in a neighborhood of 0. 
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Let JRQ > 0 sufficiently large such that 5(0, RQ
1
) C fi.   For \x\ > RQ 

define U by U(x) = u (-A^).   Then it suffices to prove that V?7 = 0 for 

large |a;|. But since the problem is rotation-invariant it will suffice to prove 
that WU = 0 in the cone: 

r = {x : \x\ > 20Ro} nix:xn> 2yjxl + • • • + x2^ 1 

{RQ large enough ). 

An easy computation shows that U G WZo^(Rn\B(0,i2o)) and satisfies 

(2.5) |Atf(aO|  <   (W(2:) + 2(n-l)|xr1)|VC/(x)| 

where W e Ln{Rn\B{0,Ro)). 

Since tx satifies (1.3), we get without difficulty, for |a| < 1, 

(2.6) f       \DaU{x)\2dx =  O {e-NR) for all N > 0 as R -* oo. 
J\x\>R 

It follows from Holder's inequality and the fact that W G Ln(Rn\B(0,i2o)) 
that 

/       {W{x)\VU{x)\)pdx =  O (e"^) for all JV > 0 as R -+ oo. 

By using the following inequality 

(f (Ixl^lV^x)!)^]        <   (f \VU{x)\2dx) 
\JR<\x\<2R ) \JR<\x\<lR ) 

and a dyadic decomposition of the set {x : \x\ > i?}, we get 

/       (Ixl-^VUWl)*dx = O {e-NR) for all N > 0 as R -» oo. 
y|a;|>jR 

It follows then 

(2.7) f       {{W{x) + 2{n-l)\x\-1)\VU{x)\)pdx =  O (e-NR) 
J\x\>R 

for all iV > 0 as it! -^ oo. 

The estimate (2.4) in lemma 2.2 was stated for functions in W2>p with 
compact supports, but a standard limiting argument using (2.6), (2.7) and 
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the inequality \AU(x)\ < (W(x) + 2(n - l^l-^IWOr)! shows that it is 
also true for the function <f)U, where (f> € CQ

D
(W

1
) such that (j)(x) = 0 if 

\x\ < RQ, and <f>(x) = 1 if |x| > 2Ro. Then 

(2.8)      iie^vc^oii^B) < cB(\k\nm$\\*-x±m\\LP- 

Let M > 0 sufficently large to be chosen later, and let 

B = B (Men , ^ 

where en is the unit vector (0, • • • ,1) € Rn. Thus B is a convex body of Rn 

with \B\ = CMn, where C is a positive constant depending only on n. 
By Leibniz formula we have A(</>£/) = <f>AU + UA<f> + 2W • V^. Hence 

by using (2.5), we get from (2.8), for all k € Mn with pk € B, 

(2.9)    ||efc-*V(^/)||L2(£;)  < 

Ce(Mn\E\)e(\\ek-*(W(x) + 2(n-l)\x\-1)\V(<t>U)\\\LP + K) 

where 

U = Ue^A^lliP + 2||efc-xV</> • VU\\LP + 

+ \\ek-x(W(x) + 2(n - l^r^V^ir, 

and Cg is a new positive constant depending only on n and 6. 
We suppose that \7U ^ 0 in F, and we will prove that this leads to a 

contradiction. 

We claim that 

■R < \\ek-x(W(x) + 2(n - I^-^^UMLP. 

Indeed, we have 

\\e**m*) + 2(n-l)|x|-1)|V(^)|||iP   > 

ePk-x((W(x) + 2(n-l)\x\-1)\VU\)pdx, I 
but for x 6 F and pk £ B we have pk • x > GMRQ. Hence 

\\ek-*(W(x) + 2(n-l)\x\-1)\V(m\\PLP  > 

emRo I     ((yv(x) + 2{n-l)\x\-1)\VU\)pdx. 
Jxev 
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On the other hand, for pk G B, we have 

U < CRZleAMR°l*{\\U\\wi,P + \\WU\\L,), 

where ||C/||V^I.P is the W1'p-norm of U in the set {x : RQ < \x\ < 2i?o}, and 
11WE/"11LP is the Z^-norm of WU in the same set.  C is a positive constant 
depending only on n. 
It follows that 

n 

|ek-*(W(x) + 2(n - IJIXI-^IV^COWLP 

C^^-^^/PdlZ/Hwri, + \\WU\\LV) 

{Lev ((^W + 2(« - IJIil-^IV^iydx)1^ 

i?o being fixed, if M is large enough we obtain 

 1 < i 
\\ek-*{W{x) + 2(n - IJIxl-^IV^COIII^   ~ 

that's 
% <  \\ek-x(W(x) + 2(n-l)\x\-1)\V(4>U)\\\LP 

as claimed. 

Then (2.9) becomes 

(2.10)    \\ek-xV^U)\\L2(E) < 

2Ce {Mn\E\)e \\ekx{W{x) + 2(n - l)^!"1)^^)!!!^. 

Define a positive measure /i by 

d/x(a:) = ((W(x) + 2(n-l)\x\-1)\V(<i)U)\ydx. 

It follows from (2.7) that /i has faster than exponential decay. Hence by 
lemma 2.1 there is a sequence {kj} with {pkj} C B, for each j a convex 
body Ek- such that Ek- are pairwise disjoint and satisfying: 

(2.11) ||e^-a!(W(x) + 2(n-l)|x|-1)|V(^)|||iP   < 

2\\ek^{W{x) + 2(n - IJkr^lVC^OIII^^) 

and 

(2.12) 2(Mn|JBfc.|)-
1  >  C. 



Unique continuation for differential equations of Schrodinger's type   309 

where C is a positive constant depending only on n. 
We may suppose |i5fc. | > M~n (else drop all of them but one and enlarge 

it to have volume = M~n ). 
If we take E = Ek- in (2.10) and combine with (2.11) we get 

< (2.13)    He^-V^U)!!^^.) 

4C9 (M"\Ekj\)
e \\ek^(W{x) + 2(n - l)^!-1)^^)!!!^^) 

But by Holder's inequality we have, for all e > 0, 

iie*-*(w(z)+2(n - m-^wmwi*^) < 

(11^1^) + 2(n-l)|£fc.|^fe)|||a;|-
1||Ln+e(y.))||e

fci-V(^)|U2(Efc.) 

where Yj = Ek ■ n supp (/>. 
Then by comparing with (2.13) 

(Mn\Ekj\)-
e  <  Ce^WW^Y.) + |^.|^fe)|||a;r1||Ln+£(y.)) 

where Cg is a new positive constant depending only on n and 6. 
Since M > 1 and Mn|£fc;/| > 1, we get 

(M^ir^TO  < Ce (||W||LnW) + ||N-1||L-+.(iS)). 

We recall that # is any real number such that 8 > n/^l2
1\ • In paricular, for 

^ = 2:L:^ and e = TT^T, we have # +   , £, N = -j- We obtain then 

(Mn\Ekj\)-^  < c(\\W\\Ln(ri) + ||N-1||L«+.W) 

that's 

(iin^.i)-1 < 0(11^112+^.) + iiM-'iisv,,) 
where C is a positive constant depending only on n. 

Since Yj are pairwise disjoint, by taking the sum over j and using (2.12), 
we get, with a new positive constant C depending only on n, 

11^112^ 0 + IIW-'ll^supp 0 > c 

which is is a contradiction since ||VF||Ln(sllpp ^ + Illxl^H^n+e^pp ^ -> 0 
when i?o —> 00. The proof of theorem 1.3 is then complete. □ 

To prove theorem 1.2 we need the following estimate 
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Lemma 2.3. Let p = ^^Q, n > 3, and let 

0(y) = - log(y) - log |logy|, y €]0,1[. 

T/ien, /or a//7 > 1; and for allu G CQ
0
 (5(0, |)\{0}); we have the estimate 

(2.14) 

{\og\x\)-le^\x^u < + (logixn-^^w^ivtz 
L2{\x\-ndx) V        '    ^ '    ' L2(|x|-^^) 

C76   (loglrcDc^l^bPAu 
LP(|a;|-nc?x) 

where 6 = ^-^ — ^g^, and C is a positive constant depending only on the 
dimension n. 

Proof. In order to prove this lemma we follow a method taken from Jerison 
[3]. 

Let's introduce polar coordinates in Rn\{0} by setting x = ^UJ , t € 
R , UJ € S where S denotes the unit sphere in Rn. In these coordinates the 
Laplacian takes the form 

(2.15) e2tA = d2
t + (n - 2)<% + A^ 

where A^ is the Laplace-Beltrami operator in S. 

Define the operator A by A - (^^ - A^) . It follows from (2.15) 

that 

(2.16) e2tA = (dt + ^ - A\{dt + ^ + A 

Let L = dt + Sf2 - A, and set ^(t) = -^(e*) = t + log |i| , t e] - oo, -1[. 
We shall prove the following estimate on L 

(2.17) \r1e-vl'®u\\LHdtdu,) < C76\\te-^^Lu\\LP{dtdw) 

for all u e C^Q — 00, — IfxS). Here dt and du denote the natural measures 
of R and S respectively. 

As we will see it later, the estimate (2.14) in lemma 2.3 is a direct 
consequence of (2.17). 

Define L7 by L^u = e'^^Lie^^u) , u G CffQ - 00, -l[xS). Then 
(2.17) is equivalent to 

(2.18) *     u||L2(dtd(„)   <   C7  ||ii7«||LP(dt^)- 
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We recall that the spectrum of A^ as an operator in L2(S) is {—k(k + 
n — 2), k G N}, and for each eigenvalue the corresponding eigenspace is Ek, 
the space of spherical harmonics of degree k. It follows that the spectrum of 
the operator (^^ — A) is {—fc, k G N} with Ek as corresponding eigenspaces. 
Then, for v G C^{S), 

( —« A) v = - ^2 ^kv 
\    Z J k>o 

where TT^ is the projection operator from L2(S) to Ek- 
Then the operator L7 takes the form 

(2.19) L1 = Y,(dt + r//(t)-k)nk. 
fc>0 

We need the following estimates on TT^ due to Sogge [5]: 

(2.20) IkHb(S) < ckl-2/n\\v\\Lq,{s) 

where q = ^, and l/q* = 1 - 1/g = ^, n > 3. 
Let {a/.} be a sequence in R with |afc| < 1. We have by Holder's inequal- 

ity, for all M < AT, 

iV 

M LHS) 
< i^2Wk\2\\^kv\\L9(S)) \\v\\L<if(sy 

and by (2.20) 

M L2(5) 

(AT \ 1/2 

lL9,(5)- 

^iV 
If we interpolate with the trivial estimate || J2M 

afc7r/c/y||L2(5) ^ II^IIL
2
^)? 

we 

get 

(2.21) 
N 

M LHS) 

<(iv(--2)/2('x;iafci
2') 

n/2X l/r-1/2 

1^11^(5) 

for all r such that -^ < r < 2. 
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In particular, if we take a^ = 1 and dj = 0 if j / fc, we have 

(2.22) \M\V(S) < ^(n-2)(2-r)/4r|bll^(5) 

for all r such that ^ < r < 2. 

Let iV = [27] + 1, and define the operators P+, P~ by 

^ = ^2 ^ aiid ^7"= Yl ^ 

In order to prove (2.18) we split it in two pieces: first we shall prove 

next 

(2.18)// Wt-^uW^Mv)   <  C^\\tL7u\\LPidtdu) 

Thus it will suffice to take the sum of the two estimates to have (2.18) since 
P+u + P'u = u. 

Let's now prove (2.18)'. 

By solving a first order ordinary differential equation, we get from (2.19), 
for all u e Cgofl - 00, -IfxS71-1), and all k > N, 

/+00 

H(s - t)ek(f-^+^^-^t^'KkL1u{s,uj)ds 
■OO 

where H(z) = 1 if z > 0 and H(z) = 0 if z < 0. 
But for k > N we have 

H^-^eHt-sHiM^-iPit))   <  e-^k\t-s\ 

for all 5, t e] — 00, —1[. 
Hence by taking the L2(5)-norm in (2.23) 

/+00     1 

e-2^-sl||7r^7i;(5,.)||L2(5)d5, 
-00 

and by (2.22) (with r = p = ±g=g) 

/+oo 
e-^'-lll^ti^Ollixa)^. 

-OO 
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Now if we apply Young's inequality we obtain 

/   r+oo \ l/a 
IMvatdu,) < Ck^-W-^ yj^ e-^\dzj      \\LyU\\LP{dtdw) 

where 1/a = 3/2 — 1/p. 
But 

l/a 

—oo / 

hence 

It follows by summing over k > iV, 

E ii^iii-^) ^ ^ f E fc-2+"(1/p-1/2)N) IIMI 
k>N \k>N / 

\LP(dtduj)- 
k>N 

Since 1/p = |™ we have -2 + n(l/p - 1/2) < -1. Then 

£ Jb-2+n(l/p-l/2)    <   C? 

so 

II^MlL2(<Ma;) < C||^7^llLP(^a;) 

which is better than (2.18)'. 

Now we shall prove (2.18)". 

Let u e C^(} - oo, -l[x5). Fix t e] - oo, -1[, and set M = WOO] + 1. 
By solving a first order ODE, we have from (2.19), for all k G N with 
M < k < N, 

/+oo 
H(s — t)Tfc(s, t)7rfcL7xx(5, u;)c?5 

-oo 

where Tk(s,t) = e^(*-^)+7(^(5)-^W) and where ^(2) = 1 if z > 0, ff(^) = 0 
if z < 0. 

In the same manner, for k < M — 1, one has 

/+00 

iJ(t — s)Tfc(s, t)7r^L7i6(5, a;)d5 
-00 
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We recall that ip(t) = t + log |t|. Then we have by Taylor's formula, for all 
se]-oo,-l[, 

V(a) - m = r//(t)(s -t)- -^(s - tf 
2|«o| 

where 5o is a real number between s and t. 

It follows that 

■y (ip(s) - ip(t)) <M|s-t| 7   (s-t)2    if    s>i 
2\t\2 

and 

7 (^(5) - V(t)) < -(M - 1)|5 - t| - ^(s - i)2   if s < t. 

Hence for k > M we have 

_L 
2|S|2' 

(2.26) H(s - t)Tk(s, t)  < e~m*{s~t)2 ■ e-l*-WII«-*l 

for all s G] — 00, —1[. 
And if k < M — 1 we have 

(2.27) H(t - s)Tk(s, t)  < e"^F(s"t)2 . e-l^-fc-i||-*l 

for all s €] — 00, —1[. 

By taking the sum over k (M < k < N) in (2.24) and passing to the 
L2(5)-norm we obtain 
(2.28) 

r+oo AT 

k=M LHS) 
J—< 

AT 

^iT(5-t)rfc(5,*)7rfcL7U(5,.) 
fc=iW 

ds 
LHS) 

We have from (2.21) with r = p = £^ and afc = #(5 - t)Tk(s,t) (note 
here that |afc| < 1 by (2.26) ), 

N 

^iI(s-t)rfc(s,i)7rfcL7u(s,.) 
A;=M 

< 

L2(5) 

n/2\  l/P-1/2 

c 17("-2)/2 ^f; ij(s-i)|rfc(5,t)|2^    j ||L7U(5,.)||LP(5). 
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But from (2.26) we have 

N 

Y^H(s-t)\Tk(s,t)\2  <  Cls-tl^e  ^{S t)2. 
k=M 

Then 

AT 

k~M 

Y^His-^Tkis^TTkL^s,.) < 

C7
a\s - t|-^e"^(s"t)2 ||L7u(8,.) |LP(5) 

where a = ^M and p = n^ 

We have 

e~^{s-t)2   < Cjfl + ^s-t)2)  J     forallj>0. 

In particular, for j = 1/2, 

e   i ̂ -')2 
<C|i|(l + V7|S-t|) -i 

Therefore 

AT 

^ ^(s - t)rfc(s, t)irkLyu(s,.) 
fc=M 

< 

L»(S) 

cy>|*|||L7n(s,.)i!LP(s) 

and by (2.28) 

(2.29)  ir1 
27 

^ 7rfcu(t,.) 
fc=M L2(5) 

< c r+00   7Q11^(S>-)1ILP(S)   ds 

«/—( (i + Vrk-iDk-^ 

Now it remains to estimate the part Y^k^Q1 ^^(^ •)• ^ we start from (2.25) 
instead of (2.24) and follow the same steps as in the proof of (2.29) and 
using (2.27) instead of (2.26) , we get without difficulty: 

M-l 

]P 7rfcTz(t, .) 
k=0 L2(S) 

/+oo 

-oo 

7Q|s|||L7u(5,.)||LP(g) 

(l + ^\s-t\)\s-t\P""' 
ds. 
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and by adding to (2.29), 

r+00   T l|si<7«0, .)IILP(5)    , ir1 nwolUsc/^ (1+^,_t|)|S_,l, * 

where P~ = S^o71*^* 

Now if we apply Young's inequality we obtain 

/      /»+CX) ^ \ 

where l/o = 3/2 - 1/p. 
But 1/a 

(   \ ^ s-  ) < C7-^+2 , 
U-oo (i + Vrl^D0!^/     _ 

n^nce 

IK-1^-"!!^^^) < C7-£+f+apL7«||LP(<ft<M- 

This achieves the proof of (2.18)" since -35 + f + « = ^        V" = *• 
The proof of (2.18) is then complete, and (2.17) follows since it is equivalent 

to (2.18). 

Now we will conclude the estimate (2.14) in lemma 2.2 from (2.17). 

In polar coordinates, (2.14) can be written 

(2.30) rV^'Mlw^) + rV-^WVulMdfeM  < 
C7*||te2*-^WAt*||J&p(dfafc,). 

We have by (2.16) 

e2tA = L(dt + A+^y 

Set T = dt + A + 2^, and let u € Cg0 (] - 00, -l[xS). If we apply (2.17) 

to the function Tu instead of u, we get 

Wt-h-rtVTuWv^) < C7
6\\te-^LTu\\Lndtduj) 

that's 

(2.31) Wt^e-VVTuWwM) < C7fipe2t-^WA«||iP(^). 
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Now it remains to check that 

rv^Mb^) + rv-^«vuiu2(dt(M < 
C\\t-xe-^Tu\\L.{dtdw). 

An easy computation shows that 

e2t||V«(i, .)|l!2(5) = ||ft«(*. Olliaw + II (-Aw)1/2^, .)ll|2(5) 

<ll^(t,.)lli2(5) + l|A«(*,-)ll|2(5), 

hence if we multiply both sides by £~2e_27^W anci integrate with respect to 
t we get 

irv-^)vu|i|2(dt£M < 
\\t-le-^dtu\?LKdtM + \\t-le-^KutLHdtduj). 

On the other hand, an elementary integration by parts gives 

\\t-le-^dtu\\lHdt(kj) + \\t-le-^Au\\lHdt(kv)  + 

(n~2)   uf-lr-^(t)   112 

Then we obtain 

Thus (2.30) follows from this estimate and (2.31). The proof of lemma 2.3 
is then complete. □ 

Remark 2.4. One can easily see from the proof of Lemma 2.3, that the 
estimate (2.14) remains valid for any p such that ^^ < p < 2, with the 
same dependence of 6 on p, i.e., 6 = ^p^ — ^£. Note here that 6 = 0 if 

p — fjjipj, this is similar to the dual version of a Carleman-estimate obtained 
by Jerison [3] (see also Kim [4]). In Lemma 2.3, we have chosen p = ^~Q 

because this is the smallest exponent allowing us to prove exponential decay 
of the form (1.3) on the solutions of (1.1) (p should be chosen such that 
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(2.37) in the proof of theorem 1.2 holds ). The choice p = ^^ + s gives only 
a decay of the form 

/ \Dau(x)\2dx = o(e-R a)    as  R 

for some positive a ( not necessary > 1 ). 

Proof of theorem 1.2.   Let u as in theorem 1.2. We may suppose that XQ = 0. 
9 9 By hypothesis u is a W^'c function satisfying 

(2.32) t       \u{x)\2dx = 0{RN)  foralliVX)  as R -► 0. 
^|a;|<jR 

Let's recall the following elementary inequality 

I \Vv{x)\2dx  <   (I\v{x)\2d^\      ( f \Av(x)\2dx} 

r2,2 which is valid for all v e W^ with compact support. 
By using a smooth cut-off function and the last inequality, one easily 

checks that 

/       \Vu\2dx <  CR-2\\u\\W2,2 I [ \u\2dx 
J\x\<R \J\x\<2R y 

1/2 

where |M|VK
2

>
2
 is ^he W2'2-norm of u in the ball 5(0, 2R). 

Hence it follows from (2.32), 

(2.33) /       \Vu(x)\2dx = 0(RN)  for all N > 0  as R -► 0. 
J\x\<R 

Fix R > 0 (small enough) and let 7 = ii!-1-^, where e is a small positive 
number to be chosen later. Let x € C^R71) such that x(x) = 1 if M < i? 
and x(^) = 0 if |a;| > 2R. Thus x satisfies also \Dax(x)\ < CR'^. 

The estimate (2.14) in lemma 2.3 was stated for functions in 

C000 (B (0,1) uo>) , 
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but a standard limiting argument using (2.32), (2.33) and the inequality 
|Aix(a;)| < V(x)\Vu(x)\, shows that it is also true for the function xu' Then 

(lognr^i-Uxu + 
L2(|x|-n^) 

(log|^|)-Vl^(W)V(x^) 
L2{\x\-ndx) 

< 

cy (log\x\)\x\2e^^A(xu) 
LP(\x\-ndx) 

where ff = 2»=2 _ 1^ and p=^. 
Ap 

Since x = 0 when |x| > 2R = 2j   l+£ we get 

L2(\x\-ndx) 

(loglxD-Vje^W^VCxw) < 
L2(\x\-ndx) 

C  {)!ag\x\)\x\*-s-eSe1Mx\)&{xu) 
LP(\x\-ndx) 

which gives 

(2.34) 

r 2 \ 1/2 

/      ((loglxD-^^W)^!) \x\-ndx\ 
J\x\<R V J ) 

+ 
v  1/2 

( /       ((loglxD-^ajle^l^lVu^lxl^dx)       < 

(loglxDIxl^-^e^^DA^) 
LP(|a;|-ndr) 

c 

since x — 1 when |x| < i?. 
We have from the inequality |A«(x)| < V{x)\Vu{x)\, 

(2.35)       (loglrrDN^-V^DA^) < 
LP(|a:|-ndx) 

[/ {\og\x\)\x\2-6-s6e^xW{x)\Vu{x)\V\x\-ndx\        + 
V^i*i<fl / 

(/        (\og\x\)\x\2-s-£ie^\x^i\{xu)P\x\-ndx\      . 
\J\x\>R ) 
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Let q = -^j-^, and note here that \ = \ + \- By Holder's inequality we have 

(2.36)     ([        {\og\x\)\x\2-s-e6e^^V{x)\Vu(x)\P\x\-ndx\       < 
\J\x\<R ) 

(j     ((log M)2!*!1-5-^)9 \xrdxj 

( r 2 \1/2 

(/        ((loglxD^l^le^l^lVul)   |a;|-nda;]      . 

\l/9 

But we have 

(2.37) 

Hence 

(1 - 8)q = n. 

1/9 

n^^iogixifix]1-6-^)9\xrdxj   = \\(iog\x\)2\xrsv\\Lq{B(0,R)) 

where 
(log\x\)2\x\-£SV 

is the L^-norm of the function (log |x|)2|x|-^y in the ball B(0, R). 
We have by hypothesis V G L[oc for r > q. Then if s is sufficiently small, 

we have (log |a:|)2|x|"£6V G L^ so 

||(log|^|)Vr£^llL,(B(o^))  -0    when  R - 0. 

In particular, for it! sufficiently small 

ii(iog|x|)^|xr£dF||L,(B(0,fl)) < 
2C 

where C is as in (2.34). 
Then it follows from (2.36) that 

(2.38)     ( [        (logl^lxl^-^e^WVOzOIV^aOl 
\i|x|<i? 

2^(/,<i?(
(l0S|:r;|rl|x|e^(W)|Vu|)2|Xrnda; 

< 

1/2 
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Now if we combine (2.34) with (2.35) and (2.38), we get 

/ \ 1/2 

If   ((logiztr^'^M^r^)   + 
(2.39)     ^ lx]<R 

f       ((log|x|)-V|e7^(N)|Vu|)%|-n<fo )        < 
J\x\<R V J ) 

Cl  f        (log |x|)|a;|2-*-e*e^(la,l>A(x«) * \x\-ndx) 
\J\x\>R J 

where C is a new positive constant depending only on n. 
Since x is supported in B(0,2R), and since $ is a decreasing function, 

we have 
\ I/P 

< 
l\x\>R ) 

C |log iJ| R-%-^e^W \\u\\w2tp 

where ||«||ty2,p is the W2'p-noTm of u in the ball B(0,2R). 
If R is sufficiently small we have ||U||VK2,P < 1. Then 

i/p 

/        (log\x\)\x\2-5-eSe^\A(xu) P \x\-ndx) 
J\x\>R I 

( f        (log|a;|)|x|2-^^e^la:l)A(xn) 
\J\x\>R 

and if we compare with (2.39), we get 

f       ((log|a;|)-V*(l!Bl>|u|)2|arnda:)       + 

f       ((loglxD-^xle^l^lVul^lxr^dx) 

\x\-ndx < 

C\\ogR\R-^-6-sSe^^ 

\ 1/2 

< 
|x|<i? 

On the other hand we have 

C\logR\R~p-S~eSe1'^R\ 

'  t 2 \1/2 

/        ((loglsD-^^^Dlul)   |xrndx 

f        ((log IxD-Vlc^^'^Vul)2 \x\-ndx j > 
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\ 1/2 

\x\<R/4 J 
e7*(*/4) [   f |u|2 |log ^11-2 ^-ndx j + 

\J\x\<R/4 J 

eyHR/4) f f |Vti|2 |log |x||-2 |x|2-„d^        > 

V-'l*l<-R/4 / 

then 

/    M^iogixirvr^j  + 
KJ\x\<R/4 J 

I |Vu|2|log|z|| 
\ 1/2 

r2 ixi2-ndx i   < 
c|<fl/4 

but if i? is small enough we have ^{R) — (/)(R/4) < — 1. Hence 

1/2 

/       H2|iog|x||-2|x|-^ 

/ |V^|2|log|x|r2|^|2-nda: 

CIlog^l^-F^-^e"7 

which is better than the desired result since 7 = R~1~e. 

Proof of theorem 1.1.   This is an immediate consequence of theorem 1.2 and 
theorem 1.3. □ 

References. 

[1] B. Barcelo, C.E. Kenig, A. Ruiz and CD. Sogge, Weighted Sobolev inequalities 
and unique continuation for the Laplacian plus lower order terms, 111. J. Math. 
32 (1988), 230-245. 

[2] L. Hormander, Uniqueness theorems for second order elliptic differential equa- 
tions, Comm. Partial Differential Equations. 8 (1983), 21-64. 



Unique continuation for differential equations of Schrodinger's type    323 

[3]   D. Jerison,   Carleman inequalities for the Dirac and Laplace operators and 
unique continuation, Adv. Math. 63 (1986), 118-134. 

[4]  Y.M. Kim, Carleman inequalities for the Dirac operator and strong unique con- 
tinuation, Proc. Amer. Math. Soc. 123 (1995), 2103-2112. 

[5]   CD. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 
(1986), 43-65. 

[6]  T.H. Wolff, Unique continuation for \Au\ < V\Vu\ and related problems, Re- 
vista Math. Iberoamericana, 6 (1990), 155-200. 

[7]   T.H. Wolff, A property of measures in Rn and an application to unique contin- 
uation, Geom. Funct. Analy. 2 (1992), 225-284. 

[8]   T.H. Wolff, A counterexample in a unique continuation problem, Comm. Analy. 
Geom. 2 (1994), 79-102. 

RECEIVED FEBRUARY 3, 1997. 

FACULTE DES SCIENCES 

UNIVERSITE DE BRETAGNE OCCIDENTALE, 

6, AVENUE LE GORGEU, BP 809 
29285 BREST  -   FRANCE 




