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Schrodinger’s type
R. REGBAOUI

We prove that the strong unique continuation property holds for
the differential inequality |Au(z)| < V(z)|Vu(z)|, where V is a

function in L, () with r > =2 n > 3, and Q a connected open

subset of R™. If n > 5 our result improves that of Wolff [6] who
got 7 > Max(n, 3%4).

1. Introduction and statement of results.

Let Q be a connected open subset of R", and V' a positive function on
Q. We say that the differential inequality

(1.1) |Au(z)| < V(z)|Vu(z)|

has the strong unique continuation property (s.u.c.p) if every solution of
(1.1) that vanishes to infinite order at a point of 2 must be identically zero.
We recall that a function u € L2 () is said to vanish to infinite order at a
point zo € Q if it satisfies

(1.2) / lu(z)2dz = O(RY) for all N > 0 as R — 0.
lz—zo|<R

There is an extensive literature on unique continuation for differential in-
equalities like (1.1). We refer the reader to ([1], [2], [3], [4], [7]) for more
details on the subject.

In his paper [6], Wolff proved that (1.1) has the (s.u.c.p) if V € L] ()
with » > Max(n, 32-%). We note that this result is optimal when n < 4

since as it can be :hown by elementary examples, the (s.u.c.p) fails for
r < n. Counterexamples due to Wolff [8] show that the (s.u.c.p) fails also
for r = n,n > 4. A natural question is then: the exponent r = n+e¢ is it the
optimal one 7. Although we are unable to answer this question, we prove

the following:

303



304 R. Regbaoui

Theorem 1.1. Letr > =2 n >3, and let u € VVli’f(Q) be a solution of
(1.1) with V € L] _.(2). Suppose that u vanishes to infinite order at a point
zo € Q, i.e., satisfies (1.2). Then u vanishes identically in Q.

When n > 5 theorem 1.1 is an improvement of Wolff’s result since Zn—s“g <

Max(n, 3"2_ 4) if n > 5. It’s not clear to us wether the method we have

employed here allows one to prove the (s.u.c.p) for V e L]  with r <
7” ,m > 5 (see remark 1.4).

Before proving theorem 1.1, we show that if u is as in theorem 1.1, then
u has faster than “exponential vanishing ” at z¢, namely:
Theorem 1.2. Let r > 7"6_2,n >3, and let u € VVlicz(Q) be a solution of
(1.1) with V € L], (). Suppose that u vanishes to infinite order at a point
zo € Q, i.e, satisfies (1.2). Then u satisfes, for all |a| < 1,

/ |D*u(z)|?de = O (e_NR_l) forall N >0 as R — 0.
|z—zo|<R

Theorem 1.2 allows us to conclude theorem 1.1 from the following;:

Theorem 1.3. Let p = 52-%27” >3, and let u € Wﬁf(Q) be a solution of
(1.1) with V € L} .(Q2). Suppose that u satisfies, for some xo € Q and all
la] <1,

(1.3) / |D*u(z)?dz = O (e_NR—1> for all N >0 as R — 0.
|z—zo|<R

Then u vanishes identically in €.

Remark 1.4. a) For technical reasons we have supposed u € Wlif
theorem 1.1. By using interpolation inequalities in the proof of theo-
rem 1.2 (to obtain (2. 33) ), one can see that theorem 1.1 remains valid
if we suppose u € W, 2m with L=1l41l s =2

b) The reason for we make the restriction r > == 7” 2 in theorem 1.1, is that

the exponent 7" 2 is the smallest one allowmg us to obtain exponential
decay of the form (1.3) since such a decay is needed to apply theorem
1.3. The exponent 7 = n + ¢ gives only a decay of the form

/ |D%u(z)|?dz = O (e"R_G) asR—0
|lz—z0|<R

for some positive a ( not necessary > 1 ).
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To prove theorem 1.3 we use a modified Carleman method due to Wolff [7],
where the main tool is a lemma concerning concentration of measures in R™.

2. Proof of the results.

As mentioned above, the principal point in the proof of theorem 1.3 is
the following lemma due to Wolff [7]:

Lemma 2.1 (Wolff 7], lemma 1). Let p be a positive measure in R"
with faster than exponential decay, i.e.,

(2.1) lim T ogu({z: |z| >T}) = —oo.
T—o0

Define . by dux(z) = e*du(z). Suppose B is a convex body in R™. Then
there is a sequence {k;} C B and, for each j, a convez body Ey; with

n 1
(22) ey (R™N\Ey;) < 5l
such that {Ey,} are pairwise disjoint and satisfying

(23) SIE™ > OB

J

where C' is a positive constant depending only on n, and where |B|, |Ey,|
denote the Lebesgue measures of B and Ej;.

We need also the following Carleman-type estimate which is proved in
Wolff [7].

Lemma 2.2 (Wolff [7], Lemma 6.2). Let p = —%,n > 3. Ifk e
R*k # 0, E C R™ with |E| > |k|™, then for all u € W2P(R") with
compact support, and for all 6 > m’%

n—1)’

(2.4) le**Vull gy < Co (KB [l Aul o

where Cy is a positive constant depending only on n and 6.

Proof of theorem 1.3. Let u as in theorem 1.3. We may suppose that zo = 0,
and using a weak unique continuation theorem of Wolff [7](Theorem 1), it
suffices to prove that Vu = 0 in a neighborhood of 0.
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Let Ry > 0 sufficiently large such that B(0,Ry') ¢ Q. For |z| > R
define U by U(z) = u (l—;—lf) Then it suffices to prove that VU = 0 for

large |z|. But since the problem is rotation-invariant it will suffice to prove
that VU = 0 in the cone:

F:{x:|x[>2ORo}ﬂ{$:xn22\/;%+---+:c%_1}

(Ro large enough ).
An easy computation shows that U € W2P(R™\B(0, Ro)) and satisfies

loc
(2.5) AU@)| < (W(z) +2(n— Dlal ™) [VU@)]

where W € L™(R™\B(0, Ry)).
Since u satifies (1.3), we get without difficulty, for || < 1,

(2.6) / DU (z)Pdz = O (™M) for all N' > 0 as R — oo,
|lz|>R

It follows from Holder’s inequality and the fact that W € L™(R™\B(0, Ry))
that

/ (W(z)|VU(2)|)P dz = O (e™NE) for all N > 0 as R — oo.
|z|>R

By using the following inequality

1/p 1/2
-1 P ) 2dz
(/R<|z|<zR (=~ 1VU ) dx) = </R<|z|<zR VU )

and a dyadic decomposition of the set {z : [z| > R}, we get
/ (lz| VU (2)|)? de = O (e™™F) for all N > 0 as R — oo.
|z|>R
It follows then
@7 [ (W) +2n =Dl VU@ de = 0 ()
|z|>R

for all N > 0 as R — oo.
The estimate (2.4) in lemma 2.2 was stated for functions in WP with
compact supports, but a standard limiting argument using (2.6), (2.7) and
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the inequality |AU(z)| < (W(z) + 2(n — 1)|z|™})|VU(z)| shows that it is
also true for the function ¢U, where ¢ € C§°(R™) such that ¢(z) = 0 if
|z| < Ro, and ¢(z) =1 if |z| > 2Rp. Then

(2.8) ¥V (¢U) | z2zy < Co (IkI™E)? [leF=A(SU)]| 1o

Let M > 0 sufficently large to be chosen later, and let

M
B_.B(Men, '16)

where e, is the unit vector (0,---,1) € R™. Thus B is a convex body of R™
with |B| = CM™, where C is a positive constant depending only on n.

By Leibniz formula we have A(¢U) = ¢AU + UA¢ + 2VU - V. Hence
by using (2.5), we get from (2.8), for all k£ € R™ with pk € B,

29) 1€=V(V)llza(z) <
Co (M™|E|)? (|le5*(W (z) + 2(n = )|z ™)V (¢U) 1> + R)
where

R = ||ek'mUA¢||LP + 2”6ka¢ : VU”LP +
+ (¥ = (W (2) + 2(n — 1)z UV||L»,

and Cp is a new positive constant depending only on n and 6.
We suppose that VU # 0 in I', and we will prove that this leads to a
contradiction.

We claim that
R < [l65*(W (2) + 2(n — la| DV (#V)]r-
Indeed, we have
e (W () +2(n - Dla| V@V >
& (W) + 200 = Dlal U d,
but for z € I" and pk € B we have pk -z > 6 M Ry. Hence
€52 (W (=) +2(n - Dl )V GUIZ, >
R [ (Wa) +2n = 1)le| )| VD)’ b
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On the other hand, for pk € B, we have
R < CRy'e™MB/P (|U|y1p + WU | 1s),

where ||U|lw1» is the WlP-norm of U in the set {z : Ry < |z| < 2R}, and
IWU||L» is the LP-norm of WU in the same set. C is a positive constant
depending only on n.
It follows that
R <
le¥=(W(2) +2(n — D|z|")IV(@U)ll|lzr ~
CRy e *MFo/? (|[U| w10 + WU L»)

(fzer‘ (W(z) + 2(n — 1)|z|~1)|VU|)? dz) 1/p

Ry being fixed, if M is large enough we obtain

R
[ (W (@) + 200 — D DIV @D r

that’s
R < [|F*(W(z) +2(n — 1)|z[7)V(¢U)|lIr

as claimed.
Then (2.9) becomes
(2.10) [|¥*V(@U)|lz2(my <
2Co (M™|E|)° [|e¥*(W (z) + 2(n — 1)|z| )|V (¢U)|l|z»-
Define a positive measure y by
du(z) = (W(2) +2(n = D]z| )|V (¢V)])" da

It follows from (2.7) that p has faster than exponential decay. Hence by
lemma 2.1 there is a sequence {k;} with {pk;} C B, for each j a convex
body Ej; such that Ej, are pairwise disjoint and satisfying:

(211) [l (W (2) + 2(n = )|z V(D)L
2/|e™ (W (2) + 2(n — 1)l$| IV,

and

(2.12) > (MMEy|)t > C.

J
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where C is a positive constant depending only on n.

We may suppose |Ey,| > M ™" (else drop all of them but one and enlarge
it to have volume = M~ ).

If we take E = E, in (2.10) and combine with (2.11) we get

(2.13) ||6kj'zv(¢U)||L2(Ekj) <
4C (M By ) le"* (W (@) + 2(n = 1)lal ™)V @Vl (s, -
But by Holder’s inequality we have, for all € > 0,
l€¥5° (W (z) + 2(n — 1)|x|_1)|v(¢U)|"LP(Ekj) <
(||W||Ln(Yj) +2(n — 1)| B, |70 |||f'3|_1||Ln+e(Yj)) ||€kj'xV(¢U)||L2(Ekj)

where Y; = Ej, Nsupp ¢.
Then by comparing with (2.13)

(M E )™ < Co (IWlingryy + 1Bkl 707 flal ™ gmeey)

where Cy is a new positive constant depending only on n and 6.
Since M > 1 and M"|Ey;| > 1, we get

n —9—' a —_
(M) < Co (IWlngy + ol lpmsecyy)) -

We recall that 6 is any real number such that 6 > Ff?nl—z—li In paricular, for

0 = "_n_rl and € = Wn—_l" we have 9+-7-L(—7f_+—_€—) = # We obtain then

— 1 —
(M"B, ) < C(IWlpnyy + el lgnseqyy))

that’s
1B ) < o (WG, + el Iy,

where C is a positive constant depending only on 7.
Since Y; are pairwise disjoint, by taking the sum over j and using (2.12),
we get, with a new positive constant C' depending only on n,

+ —11n+
W e &) + Ml I g ) = €

which is is a contradiction since [|W||zn(supp ¢) + 2|7 | Lr+e(supp 4) — O
when Ry — oo. The proof of theorem 1.3 is then complete.

To prove theorem 1.2 we need the following estimate
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Lemma 2.3. Let p = %ffﬁ%, n > 3, and let
$(y) = —log(y) — log|logy|, y €]0,1[.
Then, for ally > 1, and for allu € C§° (B(0, %)\{0}), we have the estimate

(2.14)
“ (log |$|)—167¢(lwl)u

+ || tog al) 274D 2V

L2(a|-ndz)
7 | (tog DA

L2(jz|~"de)

L (|z|~"dz)

where § = %1—;—2 — %, and C is a positive constant depending only on the

dimension n.

Proof. In order to prove this lemma we follow a method taken from Jerison

[3].
Let’s introduce polar coordinates in R”\{0} by setting z = e'w , t €
R, w € S where S denotes the unit sphere in R™. In these coordinates the

Laplacian takes the form
(2.15) XA =02+ (n—2)0 + A,

where A, is the Laplace-Beltrami operator in S.

(n—2)2 1/2
Define the operator A by A = (T — Aw) . It follows from (2.15)
that

(2.16) XA = (at+“;2—A> (at+l;—2+A>.

Let L = 0; + %52 — A, and set 9(t) = —¢(e’) = t + log|t| , t €] — 00, —1].
We shall prove the following estimate on L

(2.17) 1t Y Oul| 2 gan) < CF° [t Lul| 1o(aran)

for all u € C§°(] — 00, —1[xS). Here dt and dw denote the natural measures

of R and S respectively.
As we will see it later, the estimate (2.14) in lemma 2.3 is a direct

consequence of (2.17).
Define L, by Lyu = e WO L(e"¥®Wy) |, u € C§°(] — 00, —1[xS). Then
(2.17) is equivalent to

(2.18) 1t 2(atay < CA [t Lyutl| Lo ()
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We recall that the spectrum of A, as an operator in L2(S) is {—k(k +
n — 2),k € N}, and for each eigenvalue the corresponding eigenspace is Ej,
the space of spherical harmonics of degree k. It follows that the spectrum of
the operator ("—52 —A) is {—k, k € N} with E}, as corresponding eigenspaces.
Then, for v € C§°(S5),

-2
<n2 —A)v=—2k7rkv

k>0

where my, is the projection operator from L?(S) to Ej.
Then the operator L, takes the form

(2.19) Ly= (8 +7Y¥/(t) — k)m.

k>0
We need the following estimates on 7 due to Sogge [5]:
(2.20) Imkolizacs) < K=ol o,

where ¢ = %, and 1/¢=1-1/q= n—%—%,n > 3.

Let {ax} be a sequence in R with |a;| < 1. We have by Holder’s inequal-
ity, for all M < N,

N
Zakﬂ'kv
M

and by (2.20)

2 N
< (Z|Gk|2||”k”||m(s)> ||U||Lq/(5),

L2(8) M

N 1/2
< N(n—2)/2n (Z lakl2> “v“LQ’(S)'
M

N
Z AETLU
M

L%(S)

If we interpolate with the trivial estimate || Y237 axmyv|| 12(s) < lvllzz(s), we

get
N /2y 1/7=1/2
< | N2 (Zlak|2> vl (s)
L2(S) M

2
for all r such that m% <r<a2.

(2.21)

N
Z QETEV
M
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In particular, if we take a; = 1 and a; = 0 if j # k, we have
(2.22) Imvllpas) < CRODCEA |yl )

for all r such that ;2:_‘—2 <r<a2.
Let N = [27] + 1, and define the operators P,;,*‘ , Py by

P;-:Zﬂ'k and P,;:ch

k>N k<N

In order to prove (2.18) we split it in two pieces: first we shall prove

(2.18) It Pl ull 2wy < ClltLyul| Lo(dsaw)
next
(2.18)" It P ullpeqatawy < CY°NELyull po(dtaw)

Thus it will suffice to take the sum of the two estimates to have (2.18) since
Pru+ Pru=u.
Let’s now prove (2.18)’.

By solving a first order ordinary differential equation, we get from (2.19),
for all u € C°(] — 00, —1[xS"~1), and all k > N,

+oo
(2.23)  mu(t,w) = — H(s — t)e*t=+1 0¥, [ (s, w)ds

—00

where H(2) =1if 2 >0 and H(z) =01if 2 < 0.
But for £ > N we have

H(s — £)eht=9 4140 —0(@) < oFkit—

for all s,t €] — 00, —1[.
Hence by taking the L2(S)-norm in (2.23)

oo Lk|t—s|
mult, llzags) < / &3Sl L (s, ) 2gs) ds,
—00

and by (2.22) (with r = p = 2252

+o00o 1
lmeult, Mlrzs) < Ck("_2)(2_p)/4p/ e 2 el Lou(s, ) | 1o(s)ds-

—00
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Now if we apply Young’s inequality we obtain

+00 1/a
7l L2(apany < CROTDEPI4P ( / e_gklzldz) | Lyull L (dtdw)

—00

where 1/a =3/2 —1/p.

But
400 1/a
( / o~ Skl dz) < Ck32+p,

—00
hence

< Ck—2+n(1/p—1/2) ”L

2 2
”7Tku||L2(dtdw) yull Lp(dtdw)*

It follows by summing over k& > N,

> ImeullZegaran) < € (Z k‘“"“/*"””) 1L ull e (dea-
k>N k>N

Since 1/p = 7219 we have —2 + n(1/p — 1/2) < —1. Then

Z k~2n(/p-1/2) < ¢
k>N
so
I P ull 2 (atawy < CllLyull Lo (dtdw)
which is better than (2.18)'.
Now we shall prove (2.18)".

Let u € C§°(] — 00, —1[xS). Fix t €] — 00, —1], and set M = [y¢'(¢)] + 1.
By solving a first order ODE, we have from (2.19), for all k¥ € N with
M<Ek<N,

(2.24) mru(t,w) = — o H(s — t)Ti(s, t)mpLyu(s,w)ds

-0
where Ty (s,t) = ek(t=)+7@()=¥(®) and where H(2) = 1if 2 > 0, H(z) =0
if z<0.
In the same manner, for k < M — 1, one has
+00
(2.25) mpu(t,w) = H(t — s)Ti(s, t)mLyu(s,w)ds

—00
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We recall that 9(t) = ¢t + log|t|]. Then we have by Taylor’s formula, for all
s €] — oo, —1],

B(s) —(t) = ¥ (£)(s — ) - 2,—3101—2@ —1)?

where sg is a real number between s and ¢.

It follows that

v (W(s) — p(t)) < M|s —t| — 2Itl2(s—t)2 if s>t

and

v (@(s) — () < (M —1)|s — t| — 2|Z|2 (s—1)? ifs<t
Hence for £ > M we have

(2.26) H(s — t)Ti(s,8) <e T g-lh=Mils—]

for all s €] — oo, —1].
And if K < M — 1 we have

(2.27) H(t—8)Ti(s,t) < e—z—l},z(s—t)z . e~ 1M—k—1]s—¢|

for all s €] — 00, —1].
By taking the sum over £ (M < k < N) in (2.24) and passing to the

L?(S)-norm we obtain
(2.28)

N +ool|l N
Z mru(t,.) §/ Z (s = )Tk (s, t)m Lyu(s,.) ds
k=M rxs) 7% llk=M L2(S)

We have from (2.21) with r = p = %fg-lo and ax = H(s — t)Ti(s,t) (note
here that |ax| < 1 by (2.26) ),

N
> " H(s— t)Ti(s, t)meLyu(s, )
k=M

<

L2(S)

R nj2\ 1/p=1/2
C (7(71—2)/2 <Z H(s —t)|Tx(s, t)|2) ) | Lyu(s, ')”LP(S)-

k=M




Unique continuation for differential equations of Schrodinger’s type 315

But from (2.26) we have

N

S His—0lTk(s, ) < Cls -7t O
k=M
Then
N
Z H(s —t)Tx(s, t)mp Lyu(s, .) <
k=M L2(s)

_BY (s—1)2
s = 1P T L (s, Yl
where a = ————(”*221(32*1’ ) and 8 = ———n(i_p ).

p
‘We have

_ B (s_p)? —J
e e (=0 < Cj <1+l%12(s—t)2) for all j > 0.

In particular, for j = 1/2,

_ AV

e < Ot (1 + VAls — )L
Therefore

CyeItl| Lyu(s, )l e (s)
- (1+\/f—y|s—t|) |s —t|8’

N
Z H(s —t)Tx(s,t)mpLyu(s,.)
k=M

L*(S)

and by (2.28)

<C/+OO YN Lyu(s, )l e (s)

229) [t T e M+ Als—t) st

2v
Z 7rku(t, )
k=M

L2(S)

Now it remains to estimate the part ZkM=Bl mru(t,.). If we start from (2.25)
instead of (2.24) and follow the same steps as in the proof of (2.29) and
using (2.27) instead of (2.26) , we get without difficulty:

M-1
Z mru(t, .)
k=0

SC/+OO |8l | Lyuls, )llze(s) J
—oo (

S
— —tB8
e T+ Als—t) |s — |
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and by adding to (2.29),

+00 @\ sLyu(s, -)|lze(s)

1 _
E LR PRy B cever e

— _ N
where Py = 5o Tk-

Now if we apply Young’s inequality we obtain

+o0 d

1/a
— — 4
671 Py ull L2 asder) < C7° </_°o (1+ Alz))* [z[ﬂa) [EL oy o (ata)

where 1/a =3/2—-1/p.

But y
+o0 dz ) e 1.8
< C —2_a.+2’
(/.oo At v, =77

11— _1.8
||t 1P ull p2(dtdw) < CY 2a T2 ||t Lyu| Lo (dtdw) -

hence

This achieves the proof of (2.18)" since —55 + Bira= 3%;— — SR = 6.
The proof of (2.18) is then complete, and (2.17) follows since it is equlvalent
to (2.18).

Now we will conclude the estimate (2.14) in lemma 2.2 from (2.17).

In polar coordinates, (2.14) can be written

(2.30) It~ || L2(aran) + [ttt YOVl 2 (gray <
C°||te® ¥ Al Lo (dtd)-

We have by (2.16)

thA=L<Bt+A+B—_2:—2>.

Set T = 8; + A + 252, and let u € Cf° (] = 00, —1[xS). If we apply (2.17)
to the function T'u 1nstead of u, we get

e O U] 2y < O lte™VO LT u ()
that’s

(2:31) [t YO Tu| L2 (dga) < vt Aul| Lo (dtde)-
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Now it remains to check that

£ 2e™Ou| o gy + 11OV r2gra0) <
Cllt_16_7¢(t)TU|'L2(dtdw) .

An easy computation shows that

IVt Ygas) = 18eu(t, )iFas) + I (~A0) " ult, iz,
< [18eult, MZas) + I1Ault, NZzgs),
hence if we multiply both sides by t~2e~27¥(t) and integrate with respect to
t we get
1t e YOV 2 4y <

-1 — 2 -1_- 2
1t~ e Q)| gyany + 1671 O AUl gy
On the other hand, an elementary integration by parts gives

||t_16“ry¢(t)Tu“%z(dtdw) >
[t e D032 gy + 1 eV O AU 22 gy +

n—2)2% . _
(——[)—”t le 7¢(t)““%?(dt@)'

Then we obtain

172 Y Ou)l paarany + 17OV 2atan) <
OHt—le—'Y'll’(t)Tu”Lg (dtdw)’

Thus (2.30) follows from this estimate and (2.31). The proof of lemma 2.3
is then complete. O

Remark 2.4. One can easily see from the proof of Lemma 2.3, that the

estimate (2.14) remains valid for any p such that ;12_% < p < 2, with the
same dependence of § on p, i.e., § = %—;—2 — 3’%2. Note here that § = 0 if
p= gz;g, this is similar to the dual version of a Carleman-estimate obtained

by Jerison [3] (see also Kim [4]). In Lemma 2.3, we have chosen p = %ﬁ'j_‘lé

because this is the smallest exponent allowing us to prove exponential decay
of the form (1.3) on the solutions of (1.1) (p should be chosen such that
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(2.37) in the proof of theorem 1.2 holds ). The choice p = 712?-% + € gives only
a decay of the form

/ |D%u(z)|%dz = O(e"R_a) as R—0
|z—zo|<R

for some positive a ( not necessary > 1).

Proof of theorem 1.2. Let u as in theorem 1.2. We may suppose that z¢ = 0.
By hypothesis u is a W’li’cz function satisfying

(2.32) / lu(z)|?dz = O(RN) forall N >0 as R— 0.
|z|<R

Let’s recall the following elementary inequality

/|Vv(a:)|2dg; < (/|v(w)|2dx)1/2 (/IAU(:v)de)l/z

which is valid for all v € Wfo’f with compact support.
By using a smooth cut-off function and the last inequality, one easily

checks that

1/2
/ |Vul|?de < CR7?||ullw22 </ |u|2da:)
|z|<R |z|<2R

where ||ul|y2.2 is the W22-norm of u in the ball B(0, 2R).
Hence it follows from (2.32),

(2.33) / Vu(z)2dz = O(RN) forall N >0 as R — 0.
|z|<R

Fix R > 0 (small enough) and let v = R~17¢, where ¢ is a small positive
number to be chosen later. Let x € C§°(R") such that x(z) = 11if [z| < R
and x(z) = 0 if |z| > 2R. Thus x satisfies also |[D*x(z)| < CR~le,

The estimate (2.14) in lemma 2.3 was stated for functions in

o (o))
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but a standard limiting argument using (2.32), (2.33) and the inequality
|Au(z)| < V(z)|Vu(z)|, shows that it is also true for the function xu. Then

”(log |z)) ez 3

L2(|z|—"dx)
| G0g l2) M ale =DV ()

L2(jz|="dx) —
J 279(|z))
O | toglalaPe DA,
where § = % — 3242 ‘and p = 7253,
Since x = 0 when |z| > 2R = 27—17175 we get
=1 ,7¢(|x])
"(loglxl) © XU L2 (a)-nda) *
=1y | ()
|Gola) ale DO 0w <
O |oglabyiaP =S D agan)|
which gives
) 1/2
[ (toglahtertepul) ol ma )+
934 lz|<R
[ (ogle alem=Dwul) ol s | <
|lz]<R
O |oglaplaP =t =D A,

since x = 1 when |z| < R.
We have from the inequality |Au(z)| < V(z)|Vu(z)],

(2.35)  |[(log fa) o P02 782D A (xu)

Le(||=ndz)

1/p
( / |tog ) 2=~ EDY (2) V() | le‘”dw> +
|z|<R

1/p
—b6—¢ z L
( |, laestabierr-stersiDagaf i dx) .
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+ % By Holder’s inequality we have

Let ¢ = 72-2, and note here that I—l, =

1
q

» 1/p
(2.36) (/IKR‘(log ]:c|)|$|2—6—séev¢(lzl)v(gj),vu(m)ll |9:]""da:) <

1/q
q
( /1 - ((toglal)lel~>==V') lz|""dw> x

1/2
< /| (0o )~ el =D Tu)’ |z|-"dz> .

But we have
(2.37) (1-06)g=n.

Hence

1/q
(/ <R ((log |$|)2|xll_6_56V)q |x|—nd.’1,‘> — “(IOgIx|)2lxl_€6V”Lq(B(0,R))

where
| tog fa) el —=V

L1(B(0,R))

is the L9-norm of the function (log |z|)?|z|~*®V in the ball B(0, R).
We have by hypothesis V' € L] for r > g. Then if € is sufficiently small,

loc
we have (log |93D2|73l_€6V € L;Ioc’ 50

l|(log |z])?|2|~**V'||a(B0,r)) — 0 when R — 0.
In particular, for R sufficiently small
1
2,.|—€6
I(og |z)*|z["Vlzeo.r) = 55

where C is as in (2.34).
Then it follows from (2.36) that

» 1/p
(2.38) </II<R|(log|:c|)]$|2—6—séev¢(lx|)V(I)lvu(x)]‘ |$|—ndx> <

1/2
1 - T 2 -n
56 ( /’ p (Gog ) ale =Dl ) o dz)
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Now if we combine (2.34) with (2.35) and (2.38), we get

1/2
2
( / ((log|x[)_1e'7¢(|x|)|u]> |x|_"dx> +
|lz|<R
) 1/2
( / ((Ioglxl)‘llwleW('x"IWl) lxl‘“d:v) <
|lz|<R

1/p
o[ |oogiahlaPs-=te DA efda
lz|>R

where C is a new positive constant depending only on n.
Since x is supported in B(0,2R), and since ¢ is a decreasing function,
we have

1/p
p
( L laestabizt=o==¢er# a0 lwl‘“dw> <

C |log R| R~ 750 e® |1y,

where ||u|y2» is the W2P-norm of u in the ball B(0,2R).
If R is sufficiently small we have ||u||y2» < 1. Then

1/p
p
( /| | Ooglalal =D A G l:vl‘"dw) <

C log R| R™» *0c19(R)

and if we compare with (2.39), we get

1/2
2
( / ((tog Ja)2e70=Du) |mr"dx) +
|lz|<R

1/2
2
( / o (logle) ! ale7=D[ ) I:vl‘"dw> <
z|<

C|log R|R™7» 4*8e7¢(R),
On the other hand we have

1/2
2
(/| ((Gogal) D)) |x|-"dx) +
z|<R

1/2
2
( [ (toglaHalerehivu) |xr"dx) >
|z|<R
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1/2
eYP(R/4) (/ |U|2 Ilog Im”—2 Iml_ndx) +
|z|<R/4

1/2
TR ( [ 1vuPliog el |m|2-"dx> ,
|z|<R/4

then

1/2
( [l hoglel Ifcl‘"dm> +
|z|<R/4

1/2
( /l <Rt |Vul? [log |z|| 2 Imlz""dw) <

C |log R| R™7 4~/ ($(R)—4(R/4)

but if R is small enough we have ¢(R) — #(R/4) < —1. Hence

1/2
( / ful? flog [ 2 lwl‘"dm) +
|lz|<R/4

1/2
( /| VP ol 1w|2—"dx) <

which is better than the desired result since y = R™17¢.

C |log R| R™p 707

Proof of theorem 1.1. This is an immediate consequence of theorem 1.2 and
theorem 1.3. O
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