
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 7, Number 2, 295-302, 1999 

Remarks on the existence of branch bubbles on the 
blowup analysis of equation — A u = e2u in 

dimension two 

XIUXIONG CHEN 

It is well known that for a sequence of metrics in a fixed conformal class 
with constant scalar curvature on a manifold with dimension 3 (see [4] for 
further reference) or higher (see [2] for further reference), the blowingup set 
must be finite and simple (each bubbling point carry exactly one sphere). 
The corresponding statement in dimension 2 is widely expected to hold. 
The author learned this problem from a joint paper of YanYan Li and Tai 
Shafrir [3] when he studied a different but related problem [5], [6]. The 
purpose of this paper is to construct an example of a sequence of metrics 
in a unit disk with constant curvature 1 and uniformly bounded area which 
develops branch bubbles at the center of the disk, thereby providing an 
counter example to the analogous statements in dimension two. Interested 
readers are referred to [3] for detailed history of this problem and further 
references. 

Very briefly, Brezis and Merle [1] studied a sequence of solutions {^n} 
in an open unit disk Bi satisfying the equation: 

(1) -Atin = e2u" 

where JB e2un\dz\2 < Ci for some constant C-i. Then [1] concludes that 
there exists a subsequence {unk} satisfying one of the following three alter- 
natives (mutually exclusive): 

1. {unk} is bounded in L^c(Bi). 

2. unk —> — oo uniformly on any compact subsets of Bi. 

3. there exists at most a finite blowing up set S = {pi,P2? • • • ,Pm} such 
that 

e2unk 

1=1 

in the sense of measure with concentrated mass c^ > 27r,   Vi. 
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It is conjectured by Brezis and Merle that the concentrated mass a* 
appearing in alternative (3) should be of the form c^ = 47r • k with k being 
some positive integer. This conjecture was proved by YanYan Li and Tai 
Shafrir [3]. However, it is widely believed and also expected by [3] that k 
must be 1 for all i. In this paper, we want to show that this belief is false 
by constructing explicitly a couter example. Thus gives an interesting and 
rather surprising answer to the question raised in [3]. We always use Br(z) 
to denote the Euclidean ball of radius r center at 2, while Br denotes a ball 
of radius r centered at z = 0. 

Remark 1. Both [1] and [3] prove some more general results than what we 
quote here. Readers are referred to their papers for details. 

Definition 1. A sequence {tin} of metrics (i.e.,{e2un\dz\2}) in a domain Bi 
is called a multiple m branch bubbling sequence if e2un \dz\2 has constant 
curvature 1 (satisfies the curvature equation (1) ) and 

e2un ->47rra-<5{0}, 

in the sense of measure. 

The conjecture of [3] states that there is no multiple m branch bubbling 
sequence for any m > 1. We will disprove this conjecture by explicitly 
construct a multiple m branch bubbling sequence of metrics in the unit disk 
(thus in any open disk) for any positive integer m. 

Definition 2. A sequence {un} is called a degree m pre-branch bubbling 
sequence if 

1. e2un \dz\2 is defined in a domain Brri (rn —> 00) with constant curva- 
ture 1 (satisfies the curvature equation (1) ) and a uniformly bounded 
area 

e2un\dz\2<C 
JBr 

for some constant C independent of n. 

2. There exist m distinct bubble points z = z\, 2:2, • • • , 2m such that e2wn 

converges to 0 uniformly in any compact domain away from these 
bubbling points and 

771 

e2^->47rj>.«5{zi}, 
2=0 
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in the sense of measure. If k = 1 for all 1 < i < m, then we call this 
sequence a degree m simple pre-branch-bubbling sequence. 

Essentially, multiple m branch bubbling sequence and degree m pre- 
branch-bubbling sequence are equivalent. 

Proposition 1.  For each degree m simple pre-branch bubbling sequence, 
there exists a corresponding multiple m branch bubbling sequence. 

Proof. Let {un} in Brn(rn —» oo) be a degree m simple pre-branch bubbling 
sequence. Using the reverse blowing up procedure, we have: 

un(z) = un(rn •2?) + ln|rn|. 

It is easy to show that {un} is a multiple m branch bubbling sequence by a 
direct computation. □ 

Remark 2. The converse of this proposition is essentially true. For any 
multiple m branch bubbling sequence, by a careful rescaling argument, one 
can obtain a degree k (2 < k < m) simple pre-branch bubbling sequence ( 
which may require blowup several times). We omit this part of the argument 
because it is not essential to the construction of the example. The important 
point to keep in mind is: the goal of blowing up is not to obtain sphere, but 
to separate the bubble points. Interested readers are encouraged to read [5], 
where this type of blowing up argument has been written down in detail. 

The following is a well known fact about Riemannian geometry in di- 
mension 2: 

Proposition 2. For any holomorphic function f(z) in a domain ft where 
f'(z) never vanishes in fi, then the metric 

^Ml'   |<M2 
(i +1/|2)2 

has constant curvature 1 onVt. 

We will prove the main theorem first by referring it to two technical 
theorems which will be proved immediately afterwards. From now on, any 
point where a function vanishes is called a zero point of that function. 

Theorem 1. For any integer m, there exists a multiple m branch bubbling 
sequence. 
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Proof. According to Theorem 3 on p.300, there exists an entire function 
which has exactly m simple zero points and whose derivative nowhere van- 
ishes. Following Theorem 2 on p.298, such an entire function leads to the 
existence of a degree m simple pre-branch bubbling sequence. Therefore 
there exists a multiple m branch bubbling sequence according to Proposi- 
tion 1. □ 

Remark 3. The set of all the multiple m branch bubbling sequence is at 
least as large as the set of all entire functions which have exactly m distinct 
zero points and their derivatives nowhere vanish. The remaining problem is 
if the two sets are equivalent in some sense. 

Theorem 2. For any entire function f such that it has only m distinct 
simple zero points and f vanishes at nowhere, then there exists Xn —> oo 
such that 

(i + AM/I2)2 'ldz]      onBn 

is a degree m simple pre-branch-bubbling sequence. 

Remark 4. For any entire function / which has more than one zero points 

and f never vanishes, the metric JfjlpU * \dz\2 has infinite area in the 
complex plane. Thus {An} must be chosen carefully in order to have a 
uniformly bounded area in a sequence of increased disks which exhausts the 
entire complex plane. 

Proof. Let / be an entire function with a finite number of simple zero points 
at z = zi, Z2, • - - ,zm such that f^z) has no zero in the entire complex plane. 
Suppose that 

Vi = \f'(zi)\>Oyi<i<m. 

For n large enough such that Bn contains all zero points, we claim (fixing 
n) 

4-A2 •!/'(*) |2 

££>./BB(1 + A2.|/|2)
21 

Fixing e > 0, then there exists a 6 > 0 such that 

,.       f   4-A* •/'(*)'      ,2 lim   /     u K n
0 \dz\2 = m-A-K. 

»^(1 + A2-|/|2)21     ' 

(1 - e) m \z - Zil < |/(2)| <(! + €) m \z - ZilVz € Bsizi), Vl<i<m 

and 
(1 - e) m < \f'(z)\ < (1 + eJ/ii.Vz 6 B«(zi), VI < i < m. 
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In Bn \ U- Bs(zi), we have 

lim±^J/W=o 
A-oo  (1 + A2-|/|2)2 

since inf |/(z)| > 0. In each Bs(zi), we have 
zeBnXUiBsizi)1 

(1-e)2 4-A2-(l + e)2-M? 4-A2-|/^)|2 

(1 + e)2 ' (1 + A2 • (1 + e)2 • /*? |Z|2)2 " (1 + A2 • |/|2)2 

^ (1 + €)2 4-A2-(l-6)2-/x2 

S(1-6)2'(1 + A2.(1-6)2^2.H2)2- 

Thus, 

(I-)2 .  /■ ^       .^.^  /•        4.A».|f(z)|»,.  ,2 

(l + c) ' i-«|<(i.*).W (l + lW1     '   " iB,(,) (1 + A2 • l/l2)2'     ' 

"(l-e)2   y|^|<(i-«).A.w.«(l + NI2)21     ' 

Observe that 

/•    4-A2-|/^)|2       2_   r ^  /■        4-A2-|f(,)|2       2 

^ (l + A2-!/!2)2'^1   " y^u,*(„) + fe^W (1 + A2 • l/l2)2'     ' 

and 
lim   / ,      *        ld^l^ = 47r. 

A^ooJ|jZ_2;.|<(1±e).A./2..(5 (1 + |z|  j 

4 
lim   / TTT 

Therefore, 

^
T

 (i+oa      - yBn (i+A
2
 • i/i2)2 

.1 (1 + 6)2 

-Aj+(l-6) < 0(T) + ^ ^ " m " 47r' 

where lim o(—) = 0. Let A —> oo first, we have 
A—too      A 

(I-*)2   „.^„„,..., f   ^-A2-1/^)1 
(1 +1): 

m 
- »-» ;B.(I+A

2
-I/I

2
) 

2 

f   4-A2-|/'(z)|2.J  l2 <l™sup/ 'Y     2|^|2 

A^oo   7B„ (1 + A2 • |/|2) 

-(l-€)2    m   ^ 
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Let e —> 0, then 

f   4-A2-|/,(^)|2l7   l2 
/     , 9 \dz\2 = m-ATT. 

»ys„(l + A2.|/|2)21     ' 
lim   , 01 
^°%n(l + A2.|/|2)21 

Thus the claim is true. 

Again fix a small number e > 0. For each n, chose An such that 

JB, 

4-A2.|/
,
(2)|

2
IJ  I2 A 1 

,         „       „ o\dz   =m-47r + o(-), 
/Bn(l + A2.|/|2)21 ^n^' 

and 
4-AMf(z)l2 1 

max  - = 01 —), 
*eB„\UIi1Be(«) (l + A2.|/|2)2       ynh 

where lim o(—) = 0. It is straightforward to verify that 

(i + AM/l2)21 

on 5n is a degree m simple pre-branch bubbling sequence. □ 

Theorem 3. For each positive integer m > 0, there exists an entire func- 
tion in the complex plane such that it has exactly m simple zero points and 
its derivative vanishes at nowhere. 

Proof. For ra = 1, choose f(z) = a • z + b.  For m — 2, may assume the two 
zero points are z = 0, z = 1.  Consider 

/   N e7lV=I(l-2)   _!_  1   _  O* 
/(*) = c^w . z(z - i)5        where^^) = 

z(z-l) 

Clearly, that ^(z) is a well defined entire function, so is g(z).   Thus /(z) 
has only two zero points. Now 

hats no zero points at all in the entire complex plane. 

For generic m > 1, let zi, z^ • • • , ^m be m distinct designated zero points, 
define a polynomial 

m 

P(z)=]l(z-zi). 
i=l 
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Let Wi be defined such that eWi = Pf(zi). Define a (m-1) degree polynomial 
Q(z) such that it takes value wi at zf. 

m m 

i=i i=i 

Let g(z) be defined as 
_ eQW - P'{z) 

9 (Z) - P{z)        ■ 

Clearly, g'(z) is an entire function. Then 

f(z)=e^-P(z) 

has exactly m zero points and its derivatives has no zero points since 

/'(*) = e?W(g'(z) - P{z) + P'(z)) = e?W • eQ^. 

D 

Open Problem. Is our method of constructing a multiple m branching 
bubbling sequence unique ? In other words: is the converse of theorem 2 
true? 
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