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The heat equation with inhomogeneous Dirichlet
boundary conditions

M. VAN DEN BERG AND P. B. GILKEY!

We establish the existence of an asymptotic expansion for the heat
content asymptotics with inhomogeneous Dirichlet boundary con-
ditions and compute the first 5 coefficients in the asymptotic ex-
pansion.

0. Introduction.

Let M be a smooth compact Riemannian manifold of dimension m with
smooth boundary OM. For ¢ € C*(OM), let £(¢)(¢t) be the total heat en-
ergy content of M where the initial temperature is 0 and where the boundary
of M is kept at temperature ¢; see §1 for a more precise definition. Let ®4
be the harmonic function with boundary value ¢. It is well known that for
large time the temperature profile of M approaches ®4, and that

tgrg8¢)t)—/ Dy
This is a globally defined invariant which is not locally computable. For
short time the total heat content £(¢)(t) has an asymptotic expansion. It
is somewhat surprising in contrast to the large time behaviour that the
coefficients in that expansion are locally computable.

Theorem 0.1. Ast | 0, £(@)(t) = 3,51 Ba(¢ ¢)t"2. There exist locally

defined geometric invariants By, on the boundary so that B,(¢) = / ¢-By.
oM

The coefficients B, (¢) express the net heat flow into and out of the

manifold over the boundary 0M. The case ¢ = 1 has particular geometrical
significance since the coefficients are then invariants of the boundary of M.
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The classical analytical tools to study these inhomogeneous problems rely
on explicit formulas for the Dirichlet heat kernel, and are available in a few
special cases only. See, for example, Carslaw and Jaeger [4, §9.11-9.12] for
the ball in R3. In Theorem 0.2 below, we give the first five asymptotic coef-
ficients; we will use methods of invariance theory to derive these formulas.
Let L be the second fundamental form on the boundary, let R be the Rie-
mann curvature tensor of M and let p;; := Rikk; be the Ricci tensor. Let
“ and ‘:’ denote covariant differentiation with respect to the Levi-Civita
connections of M and of OM respectively. We choose a local orthonormal
frame {ey, ..., en} for the tangent bundle of M restricted to the boundary
so that e,, is the inward unit normal. Let indices a, b, ¢ etc. range from 1
through m — 1. We adopt the Einstein convention and sum over repeated

indices.

Theorem 0.2. The geometric invariants Bi, ..., By in Theorem 0.1 are
given by
2
(1) By= 7
1
(2) B2 = —'—2“Laa.

1
(3) B3 = W{LaaLbb - 2La.bLab - 2Pmm}-

1
(4) B4 = 3_2'{2LabLachc - 4LabLacLbc + 2}2ammea.b - 2Rabchac
— Piiym — 2Lab:a.b}-
Moreover
(5) .
35(1) = _W /aM{Spmm;mm - 8Laapmm;m + 16LabRammb;m

- 4P3nm + 16 Rymmb Rammb — 4Laa LobPram — 8Lab Labpmm

+ 64LabLacRmbcm - 16Laa.Lbc-Rmbcm - 8LabLacRbddc

- 8LachdRacbd + 4RabcmRabcm + 8Rabmeaccm - 16La.a:b-1:€bcc'rn

- 8Lab:cLab:c + LaaLbchchd - 4La.alLbchchd + 4LabLachchd
- 24LaaLbchdeb + 48LabLbchdea}-

Here is a brief guide to the paper. In §1, we prove Theorem 0.1. We
first establish the existence of the asymptotic expansion and then prove the
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coefficients are locally computable. In §2, we derive Theorem 0.2 (1)-(4)
from previously known results for the homogeneous case. The remainder of
the paper is devoted to the proof of Theorem 0.2 (5). In §3, we establish
some product formulas. In §4, we use these formulas to compute Bs and
complete the proof of Theorem 0.2.

1. Heat Content Asymptotics.

We begin by giving rigorous definitions of the heat content functions
with which we shall be working. Let D be a scalar operator of Laplace
type. For ® € C®°(M) and ¢ € C*°(0M), let us(z;t) and ug(z;t) mapping
M x [0,00) to R be the unique solutions of the equations:

diup = —Dug, us(z;0) = ®(z) for z € M,

1.1

(1-12) ug(y;t) =0fory € OM, t >0

and

(1.1b) Opup = —Duy, ug(z;0) =0 for z € M,

ug(y; t) = #(y) for y € OM, t > 0.

The function ug solves the heat equation with initial temperature ® and zero
(Dirichlet) boundary condition and the function u4 solves the heat equation
with initial temperature 0 and inhomogeneous boundary condition defined
by ¢. Let ® be an auxiliary test function. Let

(1.2) E(®,®,D)(t) := /M up® and E(¢, ®, D)(t) := /M ug®.

Let A be the scalar Laplacian. We recover the function £(¢) by setting
D = A and ® =1 in equation (1.2).

Lemma 1.1. (1) Ast | 0, E(® & D)(t) & ¥ ,506(®, &, D)t/2.
There ezist local invariants B2M (®,®, D) € C*°(8M) so that

Bor_1(®,®, D) = / BZM (3,3, D)
oM
and so

Bok(®,®, D) = /a y BIM(®,3, D) + (-1)* /M DF®(2)®(z)dz/k!.
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(2) Bo(®,®,D) = /M ®(z)®(z)dz and 51 (®,®,D) = —% - 0.

(3) If ®lowr =0, then (2, &, D) = 2 6_»(D®, &, D).

(4) If D is the formal adjoint of D, then Bn(®,®,D) = Bn(®,®, D).
(5) Ocle=0Bn(®, ®, D — €) = fn—2(®, &, D).
(6) Let M be the unit disk in R™ for m > 2. Then

B5(1,1,8) = z5—=(m = )(m = 3)(m +3)(m — ol S™ ).

Proof. We refer to [2, Lemma 1.3] and to [5, equation 2.17] for the proof of
(1), we refer to [2, Theorem 1.1] for the proof of (2), we refer to [2, Lemma
3.2] for the proof of (3, 4), we refer to [5, Lemma 2.2] for the proof of (5),
and we refer to [2, Theorem 4.2] for the proof of (6). a

We can now establish the existence of the asymptotic series given in
Theorem 0.1 for inhomogeneous boundary conditions. Let ® = ®4 be a
harmonic function on M so that ®|spr = ¢. Then & — up satisfies the
equations defining ug so ® — up = uy.

Consequently £(¢,1,A)(t) = / & — E(®,1,A)(t). Thus the asymptotic

series for F(®,1,A)(t) given in Lemma 1.1 shows there is a corresponding
asymptotic series for £ where

(1.3) Bn(¢) = —Bn(®) for n > 1.

The constant term in the asymptotic expansion fy is cancelled by — / M
M
so the asymptotic expansion for £ begins with n =1 and not n = 0.

The formalism which expresses Bp(¢) = —Bn(®) a priori permits the
normal derivatives of ® to enter into the formulas; this would involve the
Dirichlet to Neumann operator which is not local. Thus to complete the
proof of Theorem 0.1, we must show that the normal derivatives of ® do not
appear.

We now recall some local geometry of operators of Laplace type. Let
indices v, u range from 1 through m and index a local coordinate frame
on the interior of M. Let I be the Christoffel symbols of the Levi-Civita
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connection of M. Let D = —(¢"#0,0,+ P"0,+Q) be an operator of Laplace
type on C*°(M). Let I" be the Christoffel symbols. We refer to [6, Theorem
2.1] for the proof of the following Lemma.

Lemma 1.2. There exists a unique connection V and smooth potential P
so that D® = —g"#®,,, — P. We have

P=Q-g" (ywu+wuwp. waFupa),

1
where w, = §g,,#(P“ + ¢g°"T';,#) is the connection 1 form of V.

We begin the proof that the invariants B, are locally computable by
constructing a 4-fold decomposition of the invariants ,BgM of Lemma 1.1
using the parity of the number of normal derivatives of ® and ®. We have
to be careful with the decomposition since we could use the identity ®.,, =
®.00 — Laa®;n to mix even and odd parities. We consider bilinear partial
differential operators A(Q, &J) which are invariantly defined and which only
involve tangential covariant derivatives of ® and & using the restriction of
the connections V and V to the boundary of M and using the Levi-Civita
connection of the boundary. Thus, for example, we would permit expressions
of the form ®.,®., or L, ®® but would not permit expressions ®. <I>;a or
Lao®.m &. Let A be the vector space of all such operators. Let <I>(°) =&
and 80 .= ®.,. For p=0,1and ¢ = 0,1, let V, , be the vector space of
all operators of the form

Bpq(®, &)’ D) = ZAa,b((Daq))(p)a (Db&))(q))
a,b

for A, € A. Instead of using the variables ®.,...,,, we use the variables
D*® and (D*®).,. This permits us to decompose 32M = > pq Brpg for
Brpg € Vpg:

Lemma 1.3. We have / Bn,1,0(®, <i>, D) =0.
oM

Proof. We proceed by induction on n; the cases n = 0 and n = 1 follow from
Lemma 1.1. Choose F' and F' so that

D®Flap = 0, (D*F);mlom = (D*®).m o,
DeFloy = D?®|ops  and  (D*F).mlops = 0
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for all a. Then B, ,(F, F, D) = 0 if (u,v) # (1,0) so
/ B2, (DF,F, D) = / Bn—21,0(DF, F,D) = 0.
oM oM
If n = 2k, we use Lemma 1.1 to see

_ iy _ _
B.(F, B, D)= kll) / DFF.F + / Bnio(F, F, D)
. M oM

= __1_ 7 _ (—1)k k-1 =
= —2Pn-2(F,F,D) = ~—~ [ D*"}(DF)-F.
K Ky
Thus
/ Bn,10(®, 9, D) =/ Bn10(F,F,D) =0.
oM oM

The argument is similar if n is odd; the interior integrals are not present. [

We can now complete the proof of Theorem 0.1. Let ¢ € C*(dM).
Choose ® harmonic with ®|spsr = ¢. We apply equation (1.3). We have
B p1(®,1) =0 and A, ;(A%®, A1) = 0 for (a,b) # (0,0). By Lemma 1.3,

Bn1,0(®,1) = 0. The interior integral if n > 2 is even vanishes so

Boa(4) = —n(®) = — /a  Aoo(®,1,4).

We integrate by parts tangentially to eliminate any tangential covariant
derivatives of ® and express

/aM —Aoo(®,1,A) =/aMB"(g)q)=/aMB"(g)¢'D

2. The heat content asymptotics B, for n < 4.

In this section, we prove Theorem 0.2 (1)-(4). We begin by recalling some
results for the homogeneous case. Let € be the curvature of the connection
defined by D. We refer to [1, 2] for the proof of the following result; see also

3, 7, 8].

Lemma 2.1.

(1) ,30(<1>,&>,D)=/Mq>&>.
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2) fi(®,& D)= 3.
\/_ oM
(3) (@ ® D)= / (DD - &) + / (3Lacd®— 8- By},
~ 2
(4) :83((1)7 (I)aD) = _ﬁ oM {g(q);mmq) + q)(b;mm

— Lgo®,n® — Lyg®®.) — 0,9, + PO

+_1‘(LaaLbb - 2LabLab - 2pmm)(b(§} .

(5)  Bu(®,®,D) /(ch D¥) + 32/ {16(D®),,, &

+160(D®),, — 8LaqD® - & — 8L,u®D®

+ (4P;m — 2LapLabLee + 4Lab LacLie

~ 2RgmbmLab + 2Rabeb Lac + piism + 2Lab:ab) 2
— 8Lp®.0®.p — 40 @0 ® + 4Qm® - .0}

We let D = A be the scalar Laplacian. Then the potential P = 0 and the
connection V is flat so Q = 0. Let ® be a harmonic function with ®|sps = 1.
Set ® = 1. We use equation (1.3) to derive assertions (1), (2), and (4) of
Theorem 0.2 from the corresponding assertions of Lemma 2.1. We may use
the identity:

0= (I);ii = (b;mm + P — Laaq);m

to see
(I);mm - Laaq);m = Dom® = Domgp =0.

Assertion (3) of Theorem 0.2 now follows. Note that ®.,,, does not appear
in the formula! g

3. Product formulas.

Let T% := S x ...S1 be the k dimensional torus with the usual periodic
parameters. Let M; := (rg,71) xT* and My := T¢. We use coordinates (r, u)
for u = (u;) on My and coordinates v = (v;) on M,. We consider a diagonal
warped product metric on M := M x M of the form ds® = dr?+du?+g;dv?.
We shall assume g;(r,u,v) is identically equal to 1 near r = r; so only
the boundary component {rg} x Tkt is relevant. Let g = I1; 9; /2 Then

Ay = Dy + Dy for Dy = —g7 16,90, — g710%g8" and Dy = —g“la;’ggj_la;-’.
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Lemma 3.1. If g = hy(r,u)h2(v), then

Ba(1,1, Anr) = Ba(1, ha, D1) / o (v)do.

Mo

Proof. The operator D; is independent of v by assumption. Let ui(r,u)
solve equation (1.1a) for the operator D; on M; with initial condition ® = 1.
Then ups(r, u,v) := uy(r,u) solves equation (1.1a) for the operator Ay on
M with the same initial condition. Since dvoly = gdrdudv,

E(,1,Au)(t) = /M w1 (ry s ) (ry w)drdu - /M ha(v)dv

— E(1, h1, D1)(®) /M ho(v)dv.0

The operator D; of Lemma 3.1 is not a general operator of Laplace
type. It is defined on a flat manifold with totally geodesic boundary with
flat associated connection; the curvature of V and V vanishes. We compute
Bs for such operators in the following Lemma.

Lemma 3.2. Let M = (rg,r1) x T* with the flat product metric.
(1) Let D be an operator of Laplace type on M defining a flat connection.
Then

1
157
—8D%%- & — 85D%% — 8D - D® + 5P (D.4,0+0P4,)

+ 9(I);aa(i’;bb + 4((I’;mmi);aa. + (I);aa.‘i);mm)}~

B5(®,®, D) = / {Pamm®® — 4PD® - & — 4PODE + P2
oM

(2) Let §=e* and D = —571(8,30, + Y ucy, 05,305,). Then

a) P="Pr+ P for

1

1
—Z9%h— = 2
2(9Th (6rh)

P =

and ! 1
Pe==) (50%h+ 7(9Fh)%).

_ 1 _
b) A5(1,9, D) = 555 7= /a  ((16Prymm + 16Pymm + 16P;)3}-
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Proof. One can use dimensional analysis to see that the local formulas ﬂgM
have a certain homogeneity property; see the discussion in [2, pp53-54].
Using the symmetry property G5(®, ®, D) = B5(®, ®, D), we see there exist
constants so

(3.1)

35(3,8, D) = —

+ a3P(D® - & + ®DD) + a4P P&, + asP20D

+ ag(D?%® - & + ®D?®) + a7 {(D®).;n®.1m

+ & (D®).m} + agD® - D + agP(®.5,® + 3.,,)
+a10P®,0 @0 + 118,00 6 + 012(P . Paa

+ ®.00P.mm) + 013®.ma®.ma }-

Product formulas then show the constants a; are independent of the dimen-
sion m.

We first take k = 0 so M = [rg,r1]. Since D® = —®..,,, — PP, by
Lemma 2.1

. 1 . . .
62 B@&D)== /a _{4D2 @ +40D% +2P04}.

Suppose ®|aps = 0. By Lemma 1.1, 85(®, ®, D) = —%ﬂg(D@,&),D). Thus
we have

Bs(®,9, D) = {-8D?>® - & —8D® - D® — 4PD® - $}

1

15y Jom
and hence ag = 0, a3 = —4, a4 =0, ag = —8, a7 = 0, and ag = —8. Let &

be general. We see that a5 = 1 by using Lemma 1.1 and equation (3.2):

ﬂ3(q)7 é7 D) = a€|€=0:35(®7 &)7 D - GI)

1 - .- -
= 0d . .
NG aM{2 ®-®+200DP + 8PP + 2a5P}

We have ds? = dr? + r2ds} and A, := —82 — (m — 1)r~18, + r—2A are the
flat metric and Euclidean Laplacian in polar coordinates.

Let My := (ro,m1) C Rand let M := {z : 7o < |z] < m;} C R™. On
C*° (M), let D := —82 — (m — 1)r~10,. By Lemma 1.1 and Lemma 3.1,

Bs(1,1,Ac) = Bs(1,7™ L, D) vol(§™1)

N 24()1ﬁ(m = 1)(m = 3)(m + 3)(m — 7)(r§* > + 17" vol (™).
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By Lemma 1.2, w = %(m —1)rland P = —%(m — 1)(m — 3)r~2. Note

D(1) = 0 and D(r™ 1) = 0. We show a; = 1 by equating coefficients in the
equation

15\/_{ al(m—l)(m 3)+ G(m_1)2(m_3)2}
_ iﬁ—ﬁ(m—l)(m—3)(m+3)(m—7).

To evaluate the remaining coefficients, we take k = 1 so M = [ro,r1] X St
Let D = D, + D, for D, = —6? and D,, = —(82 + P(u)).

Let ®&(r,u) = ¢(r)y(u) and &(r,u) = ¢(r)¢(u). Because ug = Uply, W
have

(3.3) Ba(®,8,D) = > Bp(6,,Dr)By(, %, Du).

ptg=n
Since the boundary of the circle is empty,
(., D) = (<1)* [ (Dl )/
and fBog1(¥,%,D;) = 0. We use equations (3.1), (3 3), and (3.4). By

equating coefficients of the invariants P® - ®.,q + PP, aa®, P®.o <I>,a, <I>,aa<I>;bb,
®. ma<I> :ma, and @, ®.00 + @, aa<I> -mm, We show that

1 21 1 1 2 1
_— — = —— — =0, —— — = ——
Bya® 20 =—7=g ppue =0 Fomln -2 =-—=s,

1 1 2 2
a3 = (a1 —24) = ——=2.

G =0  and  omlan - 24) = —72g

We complete the proof of the assertion (1) by solving these equations to see
ag =5, a10 =0, a;3 = 9, a;2 = 4, and that aj3 = 0. Assertion (2a) follows
directly from Lemma 1.2. Assertion (2b) follows from assertion (1) since
]-;aa = g;aa = ""Pu and l;mm = g;mm = —Pr. O

4. The computation of Bs.

In this section, we complete the proof of Theorem 0.2 (5); by equation
(1.3) it suffices to compute B5(1,1, A).
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Lemma 4.1. (1) There exist universal constants so that

1
,65(1, 1, AM) = W /BM{blpmm;mm + b2LaaPmm;m

+ b3 Lab Rammb;m + bapom + b5 Rammb Rammb

+ b6 Laa Lvbpram + b7 Lab Labprm + bs LabLac Rmbem

+ b9 Laa Lvc Rimbern + 010 Rammb Raceb + b11 Laa Lbc Rodde
+ b12Lab Lac Rbddc + b13LabLea Rachd + b14 Raberm Rabem
+ b1s RapbmRacem + 016 Laa:b Rocem + €1Lap:cLab:c

+ esLaoLopLecLaq + €3LaaLipLegLicq + €4 LapLapLealcd
+ e5Lag LvcLeaLay + €6 Loy LycLegLda }-

(2) ea=1,e3=—4, eg + e5 = —20, eg = 48.

(3) by = 8 by = —8, by = 16, by = —4, bs = 16, bg = —4, by = -8,
bS = 64; b9 = —16; blO = O: bll = O; b12 = b13; €4 = —4 — b127
es = —16 + byo.

(4) bip = —8, b1z = —8, b1y =4, b5 = 8, bjg = —16, ey = 8.

Proof. We use the Weyl calculus to write down a basis of invariants. We
omit the invariants {pii:aa, Pmm:aa} since they integrate to zero. We omit

Piizmm and pi;mLaq Since we may express Piizmm and / PiizmLaq in
oM oM

terms of / Prmm;mm and / Pmm:mLaa Plus lower order terms. Since
oM oM

Rovern = Lpca — Laeh, We may symmetrize the covariant derivatives of L
modulo this tensor. We integrate by parts to avoid expressions in the second
tangential covariant derivatives Lgpcq of L. We use product formulas to
see the coefficients of the invariants pizi ,|p|2, IR, pmmpii, LaaLsppii, and
Loy Lapps; vanish. This proves the first assertion. If M is the unit disk in
R™, then by Lemma 1.1

ea(m — 1) +e3(m —1)% + (eg + e5)(m — 1)® + eg(m — 1)
= (m3 = Tm? — 9m + 63)(m — 1).
The second assertion now follows.

We use the results of §3 to prove the remaining assertions. We take k = 0
and consider the metric ds? = dr2 + lei(”’)dvi2 on [ro,r1] X Tt as in Lemma
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3.1. Let ‘)’ denote partial differentiation. Let m denote 8,; the remaining
indices range from 1 through ¢ and index the 8? derivatives. Then

Rinabmim = —6ab(fajmm + Fam) jm»
Rinabm = —8ab(fa/mm + Fz/mm)»
(4.1) Ronabmimm = ~8ab(fa/mm + f2m) frm
Lab = —babfaym,»  and
Raped = LacLpg — LogLye + RO,

We use equation (4.1) and sum over indices a, b, etc:

b1Pmmsmm = b1.(— fa/mmmm = 2fa mmmfajm = 252 /mm)»
baLaapmmsm = b2 fa/m(Foymmm + 2F6/mmfo/m),
b3 Lab Rammbm = b3(fajmmm fajm + 2fajmmFa/m);
baPrm, = 04 fajmm + Fejm) Fopmm + Fm);
b5 Rammb Rammb = b5(fa/mm + fom)’s
06 Laa Loppmm = —6 fajm fojm(Fejmm + Fom);
b7Lab Labpmm = =07 f2) (fofmm + Fi1m)s
b8 Lab Lac Rmbem = =08 /o (Fajmm + Fo/m)
b9 Laa Lve Rimbem = = fajm.fo/m(Fojmm + fjm)
b10RammbRaceh = b10(fajmm + fajmfajm)(fajmFajm + (= fajmfejm

4.2
42 + ROMY)
b11LaaLbcRedac = bll(fa/mfl?/m - fa/mfl?/mfd/m
+ fa/mfb/le?é\c{b)

b12Lab Lac Rodde = b12(Fajm = Fopmfajm + FarmRodia)
b13Lab LeaRacha = b13(f2m Tiim — Fajm + Fajm Fojm Robas)
e2LaaLivLecLad = €2fajm fojmfe/mfajm

e3LaaLbsLeaLed = €3 fajmfojm Foim

eaLapLapLeiLed = eafy/m fiom

esLaaLbcLedldc = €5 fajmfijm: ~ and

e6LabLicLeaLaa = eeff/m-
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The terms b14Rapem Rabem, bis RapbmRacem, Y16 Laa:b Rocern, and €1 Lgp:cLap:c
will not play a role in this analysis. Let w, = 3 fajmsy D = — (82 + w,6,),
1
and let P = _Z(2fa/mm + 2 ap faymSo/m). We compute

16P;mm + 16,P2 = _8fa./mmmm + (_Sfa/mmmfb/m - 4fa/mmfb/mm)

(4.3)
+ 4fa/mmfb/mfc/m + fa/mfb/mfc/mfd/m'

Let wr = wr(r). We use the results of §3 to equate the coefficients of the
expressions

fa/mmfa/mfb/ma fa/mmmm’ fa/mmfag/m7 Hfa/mmm7

H f/m, H2fa/mm’ fa/mmf(?/ma fa/mmfb/mma
H2f3/ma ff/mm, (fa/mfb/m)2a fa/mngé\claa
f;l/ma H4a fa/mmmfa/m

in the sum of terms from displays (4.2) and (4.3) to derive the equations

2by —bg — b1p =0

2b3 + 2b5 — bg + b1o = 0,
by = -8,
—bg — b1o — b11 — b1z +e5 =0,
—bg =4,
%4 — by =0,
by = —4,
—bg —b11 +e3 =0,
by +b5 =0,
by — b7 +biz3+e4 =0,
bio =0,
bs — bg + b1o + b1 — b1z + e =0,
ex =1, and
—2b1 + b3 =0.

Assertion (3) now follows. As a scholium to our computations we see

1
(4.4) Pr = Z{_zfa/mm - fa/mfb/m}, and
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(@5) 6oL, 1800 = 3757= [ {(16Pm + 16P2)5)

1
2407 /b,  broLasLacRyde + broLas LeaRcha + bia Rabem Rabom
+ bis RapbmRacem + b16 Laa:b Rbcem + elLab:cLab:c}-

Next we take a metric of the form ds}; = dr? + da? + e2/("*)dv?. Let m
denote &, and 1 denote 8;. The remaining indices u,v will range from 2
through m — 1 and index the &) derivatives. We sum over u, v, etc. and
compute

1 1
Py = —§fu/mm - qu/mfv/m

Rutmv = 6uv(=fujim — fujrfujm)
Rty = Suy(—fuyr1 — fay)
RN, = 6ufly — fupfon
b12LapLacRom, = b12f3/m(_fu/11 - f3/1) + fg/m(éuv 3/1 = furfosn)
b13Lab LeaROM) = 013 fujmfojm(Fujifoy1 — Suv 3/1)
b14Rapern Rabem = 2614 R = 2614(Fustm + Fujt fum)’
b15 RavbmRacem = b15(fujim + Fujrfusm) (Fojim + fojr foym)
b16 Laa:b Rbcem = 016 fujim (fo/im + foj1fojm)
e1Lab:cLab:c = (fi/lmfu/lm + ff/me/l)
16Pusmm = —8fuj11mm — 8(fu/imFo/tm + fujtmmfos1)

/ {169Pumm]} = / {b1aLap LacROM, + b1oLap LoaROM,
rox St oM

+ b14aRabem Raberm + 15 Rapbm Racem + 16 Laa:b Rbcem + €1Lab:cLab:c }

bia 2, furs = b12f2 funfs :/ 212 Fu /1 fa/1 Fa
/aM{ 12fu/mfuiis — b12fymfusi o1} g 2012 Furim Fui fug

and

/ o {efu(_sfu/llmm - 8fu/11mfv)} =0.

There are no other integral identities among the monomials involved. We
equate coefficients of fu/lmfv/lfv/ma fu/lmfu/lma fu/lmfu/lfu/mv f'z/lm’
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JuymFojmFusrfoy1, and f3 /m fg 1 to derive the following equations:

2b15 + b1g =0, bis + big = =8, 2b1p +4b14 =0,
2b14+e1 =0, biz+bis=0, and —b13+ 2b14 + 2e; =0.

We use these equations and the preceding assertions to complete the proof.

O

References.

[1] M. van den Berg, S. Desjardins, and P. Gilkey, Functoriality and heat content
aymptotics for operators of Laplace type, Topological Methods in Nonlinear
Analysis, 2 (1993), 147-162.

[2] M. van den Berg and P. Gilkey, Heat Content Asymptotics of a Riemannian
Manifold with Boundary, Journal of Functional Analysis, 120 (1994), 48-71.

[3] M. van den Berg and J-F Le Gall, Mean curvature and the heat equation, Math.
Z. 215 (1994), 437-464.

[4] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford Science
Publications, Oxford University Press, 1946.

[5] S. Desjardins and P. Gilkey, Heat content asymptotics for operators of Laplace
type with Neumann boundary conditions, Math. Z. 215 (1994), 251-268.

[6] P. Gilkey, The spectral geometry of a Riemannian manifold, J. Diff. Geo. 10
(1975), 601-618.

[7] D.M. McAvity, Heat kernel asymptotics for mized boundary conditions, Class.
Quant. Grav. 9 (1992), 1983-1998.

(8] D.M. McAvity, Surface energy from heat content asymptotics, J. Phys. A.:
Math. Gen. 26 (1993), 823-830.

RECEIVED JANUARY 17, 1997.

UNIVERSITY OF BRISTOL,
UNIVERSITY WALK, BrisToL BS8 1TW, U.K.
E-mail address: M.vandenBerg@bris.ac.uk



294 M. van den Berg and P.B. Gilkey

AND

UNIVERSITY OF OREGON,
EUGENE ORr 97403 USA
E-mail address: gilkey@math.uoregon.edu





