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The heat equation with inhomogeneous Dirichlet 
boundary conditions 

M. VAN DEN BERG AND P. B. GILKEY
1 

We establish the existence of an asymptotic expansion for the heat 
content asymptotics with inhomogeneous Dirichlet boundary con- 
ditions and compute the first 5 coefficients in the asymptotic ex- 
pansion. 

0. Introduction. 

Let M be a smooth compact Riemannian manifold of dimension m with 
smooth boundary <9M. For </> e Coc(dM), let £(</>) (t) be the total heat en- 
ergy content of M where the initial temperature is 0 and where the boundary 
of M is kept at temperature </>; see §1 for a more precise definition. Let $^ 
be the harmonic function with boundary value 0. It is well known that for 
large time the temperature profile of M approaches $^,'and that 

lim S{<l>)(t) = I <v 

This is a globally defined invariant which is not locally computable. For 
short time the total heat content £((/>)(£) has an asymptotic expansion. It 
is somewhat surprising in contrast to the large time behaviour that the 
coefficients in that expansion are locally computable. 

Theorem 0.1. As t | 0, £(</>)(*) = £n>i 13n((/))tn/2.   There exist locally 

defined geometric invariants Bn on the boundary so that Bn((j)) =  /     0*5n. 
JdM 

The coefficients Bn((j)) express the net heat flow into and out of the 
manifold over the boundary dM. The case <f> = 1 has particular geometrical 
significance since the coefficients are then invariants of the boundary of M. 
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The classical analytical tools to study these inhomogeneous problems rely 
on explicit formulas for the Dirichlet heat kernel, and are available in a few- 
special cases only. See, for example, Carslaw and Jaeger [4, §9.11-9.12] for 
the ball in M3. In Theorem 0.2 below, we give the first five asymptotic coef- 
ficients; we will use methods of invariance theory to derive these formulas. 
Let L be the second fundamental form on the boundary, let R be the Rie- 
mann curvature tensor of M and let pij := Rikkj be the Ricci tensor. Let 
';' and ':' denote covariant differentiation with respect to the Levi-Civita 
connections of M and of dM respectively. We choose a local orthonormal 
frame {ei, ...,em} for the tangent bundle of M restricted to the boundary 
so that em is the inward unit normal. Let indices a, 6, c etc. range from 1 
through m — 1. We adopt the Einstein convention and sum over repeated 
indices. 

Theorem 0.2.   The geometric invariants Bi, ..., B4 in Theorem 0.1 are 
given by 

(2) B2 = —-zLaa- 

(3) 53 = —^{LaaLbb — ZLafrLab — 2pmm}. 
DVTT 

(4) £4 = —{2LabLabLcc — 4:LabLacLbc + 2it!am&mLa& — 2RabcbLac 

Pii;m       ^^ab.abj- 

Moreover 

(5) 
1       r 

£>5(lj = — —-—-   1=   I       \yPmm\mm ~ "AiaPmmjm "r ^^ab-^ammb^m 
240V7r JdM 

— 4pmm + IGRammbRammb ~~ ^LaaLbbpmm ~ ^LabLabPmm 

+ SALabLacRjnbcm ~ ^LaaLbcRmbcm ~ 8LabLacRbddc 

— oLabJucdRacbd "f" ^Rabcm-^abcm H" ^■^abbm-^accm ~~ ±vLjaa:b±ibccm 

— 8Lab:cLab:c + LaaLbbLccLdd — 4LaaLbbLcdL cd + ^LabLabLcdLcd 

— 24:LaaLbcLcdLdb + ^LabLbcLcdLda}' 

Here is a brief guide to the paper.  In §1, we prove Theorem 0.1.   We 
first establish the existence of the asymptotic expansion and then prove the 
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coefficients are locally computable. In §2, we derive Theorem 0.2 (l)-(4) 
from previously known results for the homogeneous case. The remainder of 
the paper is devoted to the proof of Theorem 0.2 (5). In §3, we establish 
some product formulas. In §4, we use these formulas to compute B5 and 
complete the proof of Theorem 0.2. 

1. Heat Content Asymptotics. 

We begin by giving rigorous definitions of the heat content functions 
with which we shall be working. Let D be a scalar operator of Laplace 
type. For $ e C00(M) and </> e C00{dM), let u$(x\t) and u^x^t) mapping 
M x [0,00) to R be the unique solutions of the equations: 

(l.la) 

and 

(Lib) 

dtu$ = —Du$, u${x\G) = $(x) for x G M, 

U4>(y; t) = 0 for y G dM, t > 0 

dtuj, = —Dutj,, u^x] 0) = 0 for x G M, 

^(j/; *) = tiy) f^ y G dM, t > 0. 

The function u$ solves the heat equation with initial temperature $ and zero 
(Dirichlet) boundary condition and the function u^ solves the heat equation 
with initial temperature 0 and inhomogeneous boundary condition defined 
by (/>. Let $ be an auxiliary test function. Let 

(1.2) £($,<£,£>)(£) := / TZ** and £(0, *,!>)(*):=  / u+Q. 
JM JM 

Let A be the scalar Laplacian. We recover the function £(</>) by setting 
D = A and $ = 1 in equation (1.2). 

Lemma 1.1.     (1) As t   I   0,   £(*,*,£>)(<)   ^   Zn>oM$, *,2?)W2. 
T/iere exist /ocaZ invariants 13%M($,$,D) G C00{dM) so that 

and 50 

/32fc($, *,£))= /"    /?|f($,$,£>) + (-l)fc / D**^)*^)^/*;!. 
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(2) #,(*,*,£>) = / $(x)$(x)dx andt3i{$,§,D) = —?= /    $l>. 
JM s/ir JdM 

(3) J/*|aw = 0, i/ien/?n($,$,D) = --/5n_2(JD$,$,D). 
n 

(4) // ^ is ^/ie formal adjoint of D, then (3n($, $, -D) = /3n(^, $, -D). 

(5) 5e|e=o/3n(*, $,!>-€)= /3n-2(*, $, I>). 

(6) Let M be the unit disk in Mm for m > 2. Then 

(35(1,1, A) = 24^:(™ - 1)(™ - 3)(^ + 3)(^ - VvoKS™-1). 

Proof. We refer to [2, Lemma 1.3] and to [5, equation 2.17] for the proof of 
(1), we refer to [2, Theorem 1.1] for the proof of (2), we refer to [2, Lemma 
3.2] for the proof of (3, 4), we refer to [5, Lemma 2.2] for the proof of (5), 
and we refer to [2, Theorem 4.2] for the proof of (6). □ 

We can now establish the existence of the asymptotic series given in 
Theorem 0.1 for inhomogeneous boundary conditions. Let $ = $^ be a 
harmonic function on M so that $|aM = 0- Then $ — u$ satisfies the 
equations defining u^ so $ — u$ = u^. 

Consequently £(0,l,A)(i) =   /   * - £($, 1, A)(t).   Thus the asymptotic 

series for £'($, 1, A)(t) given in Lemma 1.1 shows there is a corresponding 
asymptotic series for £ where 

(1.3) Bn((j>) = -&($) for n > 1. 

The constant term in the asymptotic expansion /?o is cancelled by — /   $ 
JM 

so the asymptotic expansion for £ begins with n = 1 and not n = 0. 
The formalism which expresses Bn((/>) = —/3n(<b) a priori permits the 

normal derivatives of $ to enter into the formulas; this would involve the 
Dirichlet to Neumann operator which is not local. Thus to complete the 
proof of Theorem 0.1, we must show that the normal derivatives of $ do not 
appear. 

We now recall some local geometry of operators of Laplace type. Let 
indices i/, fi range from 1 through m and index a local coordinate frame 
on the interior of M.  Let F be the Christoffel symbols of the Levi-Civita 



Heat equation eith inhomogeneous Dirichlet conditions 283 

connection of M. Let D = —(g^^djyd^+P^d^ + Q) be an operator of Laplace 
type on C00(M). Let T be the Christoffel symbols. We refer to [6, Theorem 
2.1] for the proof of the following Lemma. 

Lemma 1.2.   There exists a unique connection V and smooth potential V 
so that D§ = -g^Q-w - V.  We have 

where u^ = -Qv^P^ + fl^IVy^) is the connection 1 form ofW. 

We begin the proof that the invariants Bn are locally computable by 
constructing a 4-fold decomposition of the invariants /^M of Lemma 1.1 
using the parity of the number of normal derivatives of $ and l>. We have 
to be careful with the decomposition since we could use the identity $;aa = 
$:aa — Laa$;m to mix even and odd parities. We consider bilinear partial 
differential operators A($, <&) which are invariantly defined and which only 
involve tangential covariant derivatives of $ and l> using the restriction of 
the connections V and V to the boundary of M and using the Levi-Civita 
connection of the boundary. Thus, for example, we would permit expressions 
of the form §.a§\a or Laa$$ but would not permit expressions <&;a®;a or 
Laa$;m$- Let A be the vector space of all such operators. Let $(0) := $ 
and (frW := $;m. For p = 0,1 and q = 0,1, let VP:q be the vector space of 
all operators of the form 

Bp>q(^,D) = 2>a,6((Z)a$)(p),(£6$)(9)) 
a,6 

for Aafi e v4. Instead of using the variables <&;m...m, we use the variables 
Da$ and (Da$)]m.  This permits us to decompose /^M = T,p,qBn,p,q for 
-E>n,p,q G Vpiq. 

Lemma 1.3.   We have  /     B^^o^, $,JD) = 0. 
JdM 

Proof. We proceed by induction on n; the cases n = 0 and n = 1 follow from 
Lemma 1.1. Choose F and F so that 

DaF\dM = 0, (DaF).m\dM - (.Da$);m|aM, 

DaF\dM = Da$\dM    and   (DaF).m\dM = 0 
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for all a. Then BUtV(F} F,D) = 0 if (u, v) ^ (1,0) so 

/   fi^DF, F, D) = /   Bn-2X0(DF, F, D) = 0. 
JdM JdM 

If n = 2k, we use Lemma 1.1 to see 

pn(F,F,D) = LJL [ DkF.F+ [   Bn^o(F,F,D) 
K-      JM JdM 

= -\&-2{F,F,D) = tj£j Dk-\DF)-F. 

Thus 

/    Bn.i.oC*, *,D)= [   BnXo(F, F, D) = 0. 

The argument is similar if n is odd; the interior integrals are not present. □ 

We can now complete the proof of Theorem 0.1. Let (j> G C00{dM). 
Choose $ harmonic with $\dM — $- We apply equation (1.3). We have 
Bn?P)i($, 1) = 0 and Aa,h{/\a$, A61) = 0 for (a, b) ^ (0,0). By Lemma 1.3, 

/     -Bn,i,o($, 1) = 0. The interior integral if n > 2 is even vanishes so 
JdM 

Bntt) = -Pn{$) = -  [     Aofi($, 1, A). 
JdM 

We integrate by parts tangentially to eliminate any tangential covariant 
derivatives of $ and express 

/    -Aofl(Q,l,A)= [    Bn(g)Q= [    Bn(g)<l>n 
JdM JdM JdM 

2. The heat content asymptotics Bn for n < 4. 

In this section, we prove Theorem 0.2 (l)-(4). We begin by recalling some 
results for the homogeneous case. Let Ct be the curvature of the connection 
defined by D. We refer to [1, 2] for the proof of the following result; see also 
[3, 7, 8]. 

Lemma 2.1. 

(i)   /%(*,*,£>)= / $$. 
JM 
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(2) /?!(*,$,£) =-4=/    **• 
V71^ JdM 

(3) ^(*, $, D) = -/(£>$•$)+   /     {^LaaSS - $ • ^;m}. 

(4) /%(*,$,.D) = -4=   /      (|(*;mm$ + **;mm 

1 
I21 +—(LaaLbb - 2LabLab - 2pmm)$$ I. 

(5)       &(*, §,D) = \( (D* -M) + ±- [   {16(D$);m$ 

+ 16$(D$);rn - 8LaaJD$ • $ - 8Laa$^$ 

+ (4P;m - 2LabLabLcc + ALabLacLbc 

— 2RambrnLab + 2RabcbLac + pii]m + 2Lab:ab)$<£> 

- 8La6$:al>:6 - 4nam$:a$ + 4fiam$ • *:a}. 

We let D = A be the scalar Laplacian. Then the potential V = 0 and the 
connection V is flat so ft = 0. Let $ be a harmonic function with $|aM — 1- 
Set $ = 1. We use equation (1.3) to derive assertions (1), (2), and (4) of 
Theorem 0.2 from the corresponding assertions of Lemma 2.1. We may use 
the identity: 

0 = $;ii = $;mm + $:aa - £aa$;m 

to see 

Assertion (3) of Theorem 0.2 now follows. Note that $;m does not appear 
in the formula! □ 

3. Product formulas. 

Let Tk := S1 x ...S'1 be the k dimensional torus with the usual periodic 
parameters. Let Mi := (ro, ri)xTk and M2 := Te. We use coordinates (r, -u) 
for u = (ui) on Mi and coordinates v = (VJ) on M2. We consider a diagonal 
warped product metric on M := Mi XM2 of the form ds2 = dr2+duf+gjdv?j. 
We shall assume gj{r,u,v) is identically equal to 1 near r = ri so only 

the boundary component {ro} x T^"1"^ is relevant. Let g — HjQj - Then 

AM = D1 + ,02 for JDi = -g-^gdr - g-^gd? and D2 = -g-^ggj1®. 
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Lemma 3.1. If g = hi(r,u)h2(v), then 

&(l,l,AM)=/k(l,fci,£i) /   h2(v)dv. 
JMo 

Proof. The operator Di is independent of v by assumption. Let ui(r,u) 
solve equation (1.1a) for the operator Di on Mi with initial condition $ = 1. 
Then UM(r,u,v) := ui(r,u) solves equation (1.1a) for the operator AM on 
M with the same initial condition. Since dvolM = gdrdudv, 

JE7(1,1,AM)(*)= /    ui(r,u',t)hi{r,u)drdu'  I    h2{v)dv 
JMi JM2 

= E(l,huDi)(t) [   h2(v)dvn 
JMo 

The operator Di of Lemma 3.1 is not a general operator of Laplace 
type. It is defined on a flat manifold with totally geodesic boundary with 
flat associated connection; the curvature of V and V vanishes. We compute 
/?5 for such operators in the following Lemma. 

Lemma 3.2. Let M = (ro,ri) x Tk with the flat product metric. 

(1) Let D be an operator of Laplace type on M defining a flat connection. 
Then 

/?5($, <!, D) = —^= [    {V^mm^ - WD® . $ - 4V$D$ + V2$$ 
15V^ JdM 
- 8D2$ - $ - S^^D2^ - 8D$ • D$ + 5^($;aa* + **;aa) 

+ 9$;aal>;66 + 4($;mm$;aa + $;aa*;mm)}. 

(2) Let g = eh and D = -g-l{drgdr + J2a<k dxk9dXk).  Then 

a) V = Vr + Vt for 

Vr = -\d?h-\(drh)2 

and 

i 

b) /%(1, ^, I>) = 7^7=   f     {(16^;mm + l&Pt^m + 16^)^}. 
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Proof. One can use dimensional analysis to see that the local formulas /3^M 

have a certain homogeneity property; see the discussion in [2, pp53-54]. 
Using the symmetry property /%($, <!, D) = /^(l*, <fr, Z)), we see there exist 
constants so 

(3.1) 

+ 03P(I>* • $ + $£>$) + aAV&m$tm + asT32** 

+ a6(D
2$ • * + #JD

2
$) + a7{(I>*);m*;m 

+ $;m(P$);m} + a8L»$ • D$ + a9V($;aa$ + *$;aa) 

+ *;aa^;mm) + Oi3*;nia*;mo}. 

Product formulas then show the constants Oi are independent of the dimen- 
sion m. 

We first take k = 0 so M = [rcn].   Since D$ = -$;mm - V§, by 
Lemma 2.1 

(3.2) fo($,$,D) = -l7= [   {42?$-* + 4$D$ + 2P$*}. 

2 
Suppose $|eW = 0. By Lemma 1.1, ^(^.^D) = --^(D*, $,£)). Thus 
we have 

/%($, *, D) = —^ /   {-8I>2$ • $ - 8I>$ • M - 4^1)* • $} 
IOVTT 7aM 

and hence 02 = 0, as = —4, 04 = 0, a6 = —8, a7 = 0, and as = —8. Let $ 
be general. We see that 05 = 1 by using Lemma 1.1 and equation (3.2): 

#,(*, $, D) = d£|e=o/?5($, *, -D - el) 

= 77^7= f   {20$ • $ + 20$M + 8^*$ + 205^}. 

We have ds2 = dr2 + r2ds^ and Ae := -5^ - (m - l)r_157. + r~2Ag are the 
flat metric and Euclidean Laplacian in polar coordinates. 
Let Mi := (ro,ri) C R and let M := {x : T-Q < |x| < ri} C Mm.   On 
C00(Afi), let £> := -a2 _ (m _ l)r-1ar. By Lemma 1.1 and Lemma 3.1, 

(35(l,l,Ae) = (35(l,rm-\D) voliST-1) 
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1 1 
By Lemma 1.2, u = -(m - l)r~1 and V = -T(TO - l)(rn - 3)r~2.  Note 

i3(l) = 0 and ^(r771-1) = 0. We show ai = 1 by equating coefficients in the 
equation 

1   ={-;U(™ - l)(m - 3) + l(m - l)2(m - 3)2} 
15^1   2  xv A ' '  16v 

= 24^7i(m " 1)(m " 3)(m + 3)(m ~ 7)- 

To evaluate the remaining coefficients, we take k = 1 so M = [ro,ri\ x S1. 
Let D = Dr + Du for Dr = -9^ and Du = -(a^ + P(it)). 
Let $(r, u) = <l)(r)i/j(u) and $(r, tx) = <f)(r)ij;{u).   Because u<$> = u^u^, we 
have 

(3.3) &(*,*,£)=   J]  Pp(<l>,hDr)l3q(il>,j>,Du). 
p+q=n 

Since the boundary of the circle is empty, 

and fok+ii'&i'&iDt) — 0-   We use equations (3.1),  (3.3), and (3.4).   By 
equating coefficients of the invariants V§'§:aa + V§-aa§, V$-a§',a, $;aa$;bb, 
*;ma*;ma, and $;mm$;aa + *;aa*;mm, We show that 

1 2   11 1 2   1 
= (09 - 20) = —=-, T^T^aio = 0, T^-pCan - 24) = 

15x/?
v y ; 0r2'  150F  iU       '  15^ y ^2' 

1                                           1                               2  2 
zai3 = 0, and /-(Q12 - 24) = 7=-. 

We complete the proof of the assertion (1) by solving these equations to see 
ag = 5, aio = 0, an = 9, ai2 = 4, and that ais — 0. Assertion (2a) follows 
directly from Lemma 1.2.   Assertion (2b) follows from assertion (1) since 
l;aa = 5;aa = ^1 u ana l;mra =: 9;mm = ~~~ ' r- I—I 

4. The computation of B5. 

In this section, we complete the proof of Theorem 0.2 (5); by equation 
(1.3) it suffices to compute /?5(1,1, A). 
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Lemma 4.1.     (1)  There exist universal constants so that 

/35(1, 1, AM) — 0/<n   i—   I      {blPmm;mm + fy^aaPmmjm 
24(V7r JdM 

+ b3-LJab-K'ammb',m   i   ^APmm   i- ^■t^ammb-^ammb 

+ beLaaLbbPrnm + &7^a6^a6Pmm + bsLabLacRmbcm 

+ bgLaaLbcRmbcm + bioRammbRaccb + buLaaLbcRbddc 

+ bnLabLacRbddc + ^IS^afe^cd^acW + buRabcmRabcm 

r ^15^a667n-^acc772 "T ^IQJ-'aa-.b^bccm T" ^l^ab'.c^ab-.c 

+ ^LaaL^LccLdd + ^LaaLbbLcdLcd + ^Lab Lab Lodged 

+ esLaaLicLcdLdb + eeLabLbcLcdLda}- 

(2) 62 = 1, 63 = -4; 64 + 65 = -20, 66 = 48. 

(3) 6i - 8, 62 = -8, 63 = 16, 64 = -4, h = 16, &6 - -4, 67 = -8, 

68 = 64, 69 = -16, 610 = 0, 611 = 0, 612 = 613, 64 = -4 - 612, 

65 = -I6 + &12. 

(4) bn = -8, 613 = -8, 614 = 4, 6i5 = 8, bie = -16, e1 = -8. 

Proof. We use the Weyl calculus to write down a basis of invariants.  We 
omit the invariants {pa-.aai Pmm-.aa} since they integrate to zero.  We omit 

pii;mm and pu-mLaa since we may express   /     pu-mm and  /     p^;mLaa in 
JdM JdM 

terms of  /     Pmm;mm and   /     Pmm-mLaa plus lower order terms.   Since 
JdM JdM 

Rabcm — Lbc.a — iac:65 we may symmetrize the covariant derivatives of L 
modulo this tensor. We integrate by parts to avoid expressions in the second 
tangential covariant derivatives La5:c^ of L.   We use product formulas to 
see the coefficients of the invariants p^ ,|p|2, |JR|

2
, PmrnPii-, LaaLupa, and 

LabLabPa vanish.  This proves the first assertion.  If M is the unit disk in 
Rm, then by Lemma 1.1 

e2(m - I)4 + e3(m - I)3 + (64 + esXm - I)2 + e6(m - 1) 

= (m3 - 7m2 - 9m + 63)(m - 1). 

The second assertion now follows. 
We use the results of §3 to prove the remaining assertions. We take k = 0 

and consider the metric ds2 = dr2 + e2^r^dv2 on [ro, ri] x T^ as in Lemma 
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3.1. Let '/' denote partial differentiation. Let m denote <9r; the remaining 
indices range from 1 through £ and index the 8% derivatives. Then 

-K"mabm;m = ~^ab\Ja/mm + Ja/m)/mi 

■ttmabm == ~°ab\Ja/mm   •   /a/mm/' 

\4*-L/ ^ma6m;mm == ~^ab{ja/mnn + Ja/mJ/mm) 

Lab = Sab fa/mi and 

Rabcd = LacLbd — ^acZ^&c + -^a6cd 

We use equation (4.1) and sum over indices a, 6, etc: 

^iPmm^mm       ^1\    Ja/mmmm ~ ^Ja/mmmJa/m       ^Ja/mm/i 

^2^aaPmm;m — ^2/a/mv/fe/mmm "I" ^Jb/mmJb/m)i 

^3-^a6^amm6;m — ^yJa/mmmJa/m   '   ^/a/mm/a/mJ' 

°4Pmm = ^{fa/mm + Ja/m)\Jb/mm + fb/m)'> 

^■^ammb^ammb = ^5(/a/mm """ Ja/m)   ' 

beLaaLbbPmm = —befa/mfb/mifc/mm + /c/m)' 

bjLaiLabPmm = —blfa/mUb/mm + /ft/m)' 

b%LabLacRmbcm = ""^s/a/r^v/a/mm + /a/m) 

bgLaaLbcRmbcm = —&9 /a/m A/m (A/mm + /fc/m) 

OlO-K'ammb-K'accb = ^10\Ja/mm   »   Ja/mja/m)\Ja/mJa/m   '   \~Ja/mJc/m 

'   -^acca)) 

bllLaaLbcRbddc — ^llv/a/mA/m — fa/mfb/mfd/m 

+ fa/mfb/mRbddb) 

bi2LabLacRbddc = bnUa/m ~ /a/mA/m + fa/m^adda) 

blsLabLcdRacbd = ^13(/a/mA/m — /a/m + fa/mfb/mRabab) 

^LaaLbbLccLdd = ^2 A/m A/m A/m A/m 

esLaaLbbLcdLcd = e3/a/mA/m/c/m 

e^LabLabLcdLcd = e4fa/mfb/m 

C^LaaLbcLcdLdc = esA/mA/m' ailci 

BeLabLbcLcdLda = e6/a/m- 

(4.2) 
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The terms buRabcmRabcm, bi5RabbrnRaccm) biQLaa:bRbccm^ and eiLab:cLab:c 

will not play a role in this analysis.  Let ujr = -fa/m, D = -(&* + ujrdr), 
1 2 

and let V = ~(2fa/mm + J2a,b fa/mfb/m)- We compute 

(A 3) ;mm "^ = ~%fa/mmmm + ( — ^fa/mmmfb/m — ^fa/mmfb/mm) 

•" ^Ja/mmJb/mJc/m   '   Ja/mJb/mJc/mJd/m- 

Let a;r = uv(r).  We use the results of §3 to equate the coefficients of the 
expressions 

J a/mm Ja/m Jb/mi Ja/mmmrm Ja /'mmJai'mi 'Lja/mmmi 

Ja/m'> '*'  Ja/mmi Ja/mmJb/rn^ Ja/mmJb/mmi 

J a/mi Ja/mm') \Ja/mJb/m)   i Ja/mm^acca') 

Ja/m"* '*'  » Ja/mmmJa/m 

in the sum of terms from displays (4.2) and (4.3) to derive the equations 

262 - &9 - &io = 0 

-6i = -8 

263 + 265 ~68+ 6l0 = 0, 

62 = -8, 

-69 - 610 - 611 - 612 + 65 = 0, 

-66 = 4, 

264 - 67 = 0, 

64 = -4, 

-fee -611 + 63 = 0, 

-2&i + 65 = 0, 

64 - 67 + 6x3 + 64 = 0, 

610 = 0, 

65 - 68 + 6l0 + 6l2 - 6l3 + 66 = 0, 

62 = 1,        and 

-2&i + 63 = 0. 

Assertion (3) now follows. As a scholium to our computations we see 

(4-4) Vr = -A-Va/mm " fa/mfb/m}, and 
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(4.5)     /%(1, 1, AM) " 24^ J   {(lWr;mm + ^)g} 

= OAn   /-   /      {bnLabLacRbddc + ^nLabLcdRacbd + buRabcmRabcm ZAUy/TT JdM 

+ bisRabbmRaccrn + ^16^aa:6-R6ccm + elLab:cLab:c}• 

Next we take a metric of the form dsj^ = dr2 + dx2 + e2^v^r^dv^. Let m 
denote dr and 1 denote 9X. The remaining indices u, v will range from 2 
through m — 1 and index the 32 derivatives. We sum over u, v, etc. and 
compute 

' u 7)Ju/mm       ~7Ju/mJv/m 

-t^ulmv — Vuv\    Ju/lm       Ju/lJu/m) 

Rullv — Suv( — fu/ll — fu/l) 
r>dM    _ c      P2     _   n        n 
-^uvvu ~ uuvJu/i       Ju/lJv/1 

bnLabLacRbddc = b12fu/m(-fu/n — fu/l) + fu/m(S^fu/l ~~ fu/lfv/l) 

bisLabLcdRacbd — hsfu/mfv/mifu/lfv/l — ^uvfu/i) 

buRabcmRabcm = ^uRluum = ^u(fu/lm + fu/lfu/m) 

bisRabbmRaccm = &15(A/lm + fu/lfu/m)(fv/lm + fv/lfv/m) 

h6Laa:bRbccm = hefu/lm(fv/lm + fv/lfv/m) 

Zl-Labic-Ltakc = {fu/lmfu/lm + fu/mfu/l) 

lo/ U;mm = —QJu/llmm ~~ °{ju/lmJv/lm + Ju/lmmJv/1) 

/ {16^Pn;mm} =   /      {buLabLacRbddc + ^LabLcdRacbd 
JroxS1 JdM 

+ buRabcmRabcm + bi^RabbmRaccm + &16iaa:6-R6ccm + ^lLab:cLab:c} 

/      {-bi2fu/mfu/n-bl2fu/mfu/lfv/l}=   /       Zbnfu/imfu/ifu/mi 
JdM ' JdM 

and 
/       {c^C-SA/n^ - 8/,/n™/,)} = 0. 

JroX^1 

There are no other integral identities among the monomials involved.  We 

equate   Coefficients   Of   fu/lmfv/lfv/m,    fu/lmfv/lm,    fu/lmfu/lfu/m,    fu/lm> 
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fu/mfv/mfu/lfv/lj and fu/mfu/l to derive the following equations: 

2615 + bie = 0,   &15 + 6i6 = —8, 2bi2 + 46i4 = 0, 
2bu + ei = 0,     &13 + 615 = 0, and   -613 + 2bu + 2ei - 0. 

We use these equations and the preceding assertions to complete the proof. 
□ 
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