
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 7, Number 2, 259-278, 1999 

On the generic eigenvalue flow of a family of metrics 
and its application 

ZHANG LIQUN
1 

We define a generic eigenvalue flow of a parameter family of met- 
rics, which the corresponding eigenfunction is continuous in param- 
eters. Then we apply the result to the study of polynomial growth 
harmonic functions on a complete manifold. Under the assumption 
that the manifold has some cone structures at infinity which is not 
necessarily unique, we obtain a uniform growth estimate. 

1. Introduction. 

It is well-known that eigenvalues are continuous dependent of parame- 
ters in some nice space. We are interested in the continuity of eigenfunctions 
for one-parameter family of elliptic operators. It was proved by K. Uhlen- 
beck that in the generic sense eigenvalues have one-dimensional eigenspace. 
Clearly, if all eigenvalues are of simple multiplicity, then the eigenfunctions 
for those operators considered are continuous in the parameter. But un- 
fortunately, eigenspaces are not always one-dimensional. As we show in an 
example in next section, eigenvalues do often intersect when the parameter 
varies. Moreover, those intersections are stable in perturbations. 

On another hand, when the eigenfunction is continuous in parameter, 
such as in our applications, we can utilize it to construct almost harmonic 
functions even when the metric tensor are changing slowly in parameters. 
Actually the initial motivation are from the problem of polynomial growth 
harmonic functions on certain complete Riemanannian manifold. Indeed, 
there are cone structures at infinity for complete Riemanannian manifolds 
with nonnegative Ricci curvature, quadratic curvature decay and Euclidean 
volume growth ([CT]) or with Ricci curvature lower bounded and Euclidean 
volume growth ([CC2]). The cone structures are not unique in general, but 
they form a compact set, that suggests us to study a family of operators 

1This work is partially supported by chinese NSF. 
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with parameters varying in a compact set. In particular, let us consider for 
a family of operators 

with the metric g(t) € C2(X,T(M)(g)T(M)) and X is a compact set of a 
manifold. 

We first apply the transversality theory to define eigenfunction flows, 
which eigenfunctions are continuous in the parameter t. In section 2, we 
prove Theorem 2.8. Then we apply it to the study of polynomial growth 
harmonic functions on a complete manifold in section 3. There are many 
related works on this problem (see [CM]) and the reference there. Here 
we make use of the so called three annuli lemma, inspired by an idea of J. 
Cheeger. The three annuli lemma was used before by L. Simon [S], Cheeger 
and Tian [CT], etc.. We obtain an a priori estimate for the growth of har- 
monic functions on a complete manifold. Then as a corollary, we obtain 
an estimate on the dimension of polynomial growth harmonic functions un- 
der the assumption that the manifold has some cone structures at infinity. 
This was motivated by a recent paper of Colding and Minicozzi [CM]. In 
that paper, in particular, they proved that the dimension of harmonic func- 
tions with polynomial growth is finite for any complete manifold with Ricci 
curvature nonnegative, as Yau conjectured. 

Acknowledgment. The author would like to thank Prof. F. H. Lin for 
some interesting discussions, Prof. S. T. Yau for his encouragement and 
interests, and specially G. Tian for many useful discussions and instructions 
during his visit to MIT in 95/96. This work may be never completed without 
these discussions. He also thanks MIT for the hospitality and providing a 
stimulating environment. 

2. Generic Eigenfunction Flow. 

In this section, we consider eigenfunctions defined on (M,g(t)) where 
M is compact with dM = 0 and the metric tensor g(t) depends on the 
parameter t twice continuously differentiable. For simplicity we first consider 
the case that the parameter is in [0,27r]. Then we know that eigenvalues are 
continuous differentiable in t and 

0 = Ao(t)<Ai(t)<A2(t)<-" 
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Let G = {g(t)\g(t) is the metric of M, g(t) € C2([0,27r],T(M) ®r(M))}. 
We want to show that we can define the eigenfunction flow </>;(£) for generic 
g(t) in G which continuously depends on t. 

Let Sk = {u € iJfc
2(M), /Mn2 = 1}, M2 = {g\g G C2(T(M) 0T(M)) is 

the metric of M }. We consider the map 

(f>:SkxRxM2^ Hk-2(M) 

given by 

(2.1) </>(iz, A, g) = AptA + A-u = LpU. 

By the study of the regular value of 0, K. Uhlenbeck obtained the following 
result in [U] 

Lemma 2.1. The set {g G JA2\Ag has one-dimensional eigenfunction } is 
a residual set in M.2- 

Therefore for g{t) € G we may assume that Ap(o) has one-dimensional eigen- 
functions. Consider eigenvalues of A^) as t varying. First we know by the 
following example, they may have intersections. 

Example 2.2. Consider 52 with the following metric 

dO2 + g(t,9)d(f)2 

where g(t,0) = a2(t)sm20 and i < a(t) < 1. Then the eigenvalue problem 
becomes 

Let u = F(0)H((/)), then (2.2) becomes 

(^ ^y>+^+Ag=o. 
Put -H"/H = n2, forn = 1,2, • • •. Now we solve 

(24) v/gM(v/g^)+Ag_n2 = 0;        o<^<7r. 

Let An^ be its eigenvalue, then 

lo V9F'2 + 4^2      r 
(2.5)        Anii = jM   f     ,        ^   ^9FFntj=0,    j<i. 
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where Fnj is the eigenfunction corresponding to A^j and J7 is the weighted 
sobolev space with 

Jo 

For g = a2sin20, it is easy to see that Anji continuously depends on a. When 
a = 1, (2.4) becomes 

n2 

(2.6) (sin OF')' - ^—:F + sin 9F = 0,        0 < 6 < TT. 
sm^ 

Let fi = cos0, then (2.6) deduce 

(2.7)    i.f(i_^)^:N|_:^F+Ajp=0)   _i<M<i. 
dfi \ dji)      1 — fj,2 

In this case, Xnji = (n + i — l)(n + i), i = 1,2, • • •.   The corresponding 
eigenfunction is the so called Legendre function. 

Similarly we find for a = 1/2, the eigenvalue of (2.5) is Anji = (2n + i — 
l)(2n + i). In conclusion, we have 

(2.8)       A^ Qj =(2n + i-l)(2n + i),    n - 0,1, • • • ,    i = l,2,.-- . 

(2.9) Anji = (n + i - l)(n + i),     n = 0,1, • • • ,    i = 1,2, • • • . 

All eigenvalues of (2.2) for a = 1/2 and a = 1 are given by (2.8) and (2.9) 
respectively. Note that An^ is continuous dependent of a, it is easy to check 
that when a is varying from 1/2 to 1, eigenvalues of (2.5) must have infinite 
intersections. 

Remark 2.3. We can choose a2 = a(t,6)2, such that a(£,0) = a(t, TT) = 1 
and Ricc(S2) > 1. 

Now we back to our problems. For a fixed Co, we consider those eigen- 
values of Ap(£) with Xk(t) < CQ. Let to be a point where 

(2.10) < Afc_i(to) < Aib(to) = • • • = Afc+z(to) < Afc+f+i(to) < Co- 

Moreover, we may assume that those eigenvalues which are less than CQ are 
one-dimensional in a small neighborhood of to and t ^ to- Otherwise we can 
replace g(t) by a small perturbation ge(t). Since we assume Ap(o) has one- 
dimensional eigenfunctions, then the normalized ^(t) with Xk(t) < Co is in 
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C(M x [0, e)) for some small e > 0. And </>&(£) is a continuous flow, if Afc(t) 
does not intersect with other eigenvalues. We want to show that it can be 
continuously defined at the intersection point, up to a small perturbation. 
In fact, we have the following main result of this section. 

Lemma 2.4. Let to be as above, then for a residual set of g(t) 6 G; 

(2.11) \im(4>k(t),<fo+i(t), • • • <l>k+i(t)) 
t-+to 

exists by a properly chosen of the sign of those eigenfunctions. 

Proof Let ^i, • • • , I/JI be normalized orthogonal eigenfunctions corresponding 
to Afc(to). For any sequence {£;}, there exists a subsequence, still denoted 
by {U} such that 

(2.12) lim 0fc(*i) = ci^i + 02^2 H h Q^- 
t—HQ 

And here Y^i=i Q2 = 1- Since 
(2.13) 
(Ajr(ti)-Aff(to))0fc(ti)+(Afc(ti)-Afc(to))^fe(ti)+A9(to)^fc(*i)+Afc(to)^fc(ti) = O. 

Therefore, for j = 1,2, • • • I 

(2.14)    J Vi[(Ag(ti) - Ag(to))MU) + (Afc(ti) - Afc(to))^fc(ti)]d«fl(to) = 0. 

Let £, —> to, we have 

(2.15) Jfy ^fl(*o) ( X^ c^i J + A(to) f ^ ci-ipi -0, 

for j = 1,2, •••/.   Since (2.15) has non-trivial solution (ci,C2, • • -Q), we 
deduce 

(2.16) 

an + A(to) ai2 
«21 ^22 + A(£o) ^271 

«ln ^2^ 

where a^ = /(Ap(to)'0j)^^(to). 

^nn + A(£o) 

o, 
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Let h = g'api^g^ito)' By a simple calculation, we have 

(2.17) ay = M") y hMj + /(^('o))'^!! " 5 / ^ <V^, VV-i) • 

We only need to show that up to a generic small perturbation of g'(to) 
with g(to) fixed, the matrix (a^)/x/ has I different eigenvectors. If so, then 
lim^-^o </>&(£) has only 21 possible choice. By our assumption, <^(£) is con- 
tinuous dependent of t in a small neighborhood of to with t ^ to. Then by 
a simple argument and a properly chosen of the sign of (^(t), lim^^to <l>k(t) 
exists. Therefore </>&(£) can be defined to be a continuous function of t at 
t = to. 

We claim that those (/(^o) such that (aij)ixi has one-dimensional eigen- 
function is a second category set in M.2. As in [U], we consider the map 

$ :     Sl x R x M2 *-* Rl 

given by $(£, A, </(to)) = A{gf{t^+A£, where Sl = {£ E Rl\ ELi & = ^h 
A(gf(to)) = (a^ui. 

Let D2 be the differential of $ in M2 and JDI denote the differential of 
$ in the direction of Sl x R. We only need to show that (see [U]) D2<f> has 
dense image in Rl. If this is not true, then there exist £, 77 e Sl such that 
for all ^(to) e C2(T(M) <g> T(M)), we have 

(2.18) <i4G/(«o))e,f7> = 0, 

which implies that for some normalized eigenfunctions u, v, we have 

In particular, let g^ = fgap for some / 6 C1(M), then 

• • Six dv 
(2.20) ^AfcCto) y /«« + (l " |) / /Sy 

^j 5a;j- 
= 0. 

Since / can be arbitrary, we obtain 

(2.21)                              nXkUV = (n - 

As proved in [U], (2.21) is impossible. Here we give a short argument. 
For n = 2, obviously it is impossible. 
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For n > 2, consider critical points of uv on M, we have y^ = ~^ V vi 
if v / 0 at this point. Therefore (2.21) deduce at this point 

(2.22) _|Vt,|2=_2_At,a. 
n — z 

Since A > 0, we deduce at the critical point of uv, u — v — 0. Then uv = 0 
in M, a contradiction. Then we have finished the proof of Lemma 2.3. 

Remark 2.5. For a residual set of g(t) G G, we can define the continuous 
eigenfunction flow <^i(t),^2(*)}' * '0fc(*) whenever the corresponding eigen- 
value is less than CQ. But after the intersection points, those eigenvalues 
may not be in the right order. We can also choose a sequence of the bound 
Co(fc) and Co(fc) —> oo. And then any eigenfunction at t = 0 defines an 
eigenfunction flow for generic g{t) £ G. 

The eigenfunction flow has a very important property. 

Lemma 2.6. If g(t) is periodic in t of period 27r, then for a residual set of 
g(t) G G the eigenfunction flow is a periodic function of period 27r. 

Proof First we note 

(2.23) \k(t) f cj>k(tf = - J (j>k{t)Kg{t)cj>k{t). 

Then we have, for 0 < t < 2TT 

(2-24) Afc(t) < C2(|<7(t)|ci)Afc(t). 

Here ^(i)!^1 is the norm of the two tensor. For this given (?(£), we may 
assume |g(£)|ci < Ci- Then (2.24) deduce for 0 < t < 27r for some constant 
C4 

(2.25) Xk(t) < CAXk(0). 

Now we choose a special metric gi(t) = (2 + sint)go, where go is a metric in 
M2 which is independent of t and A^ has one-dimensional eigenfunctions. 
Then we can see easily that the eigenfunction flow for the metric gi(t) is 
27r periodic. For the given #(£), we can consider a h(s,t) in G, such that 
/i(£, 0) = gfo(*) arid /i(t, 1) = flf(t), moreover for all 0 < 5 < 1, h(t,s) can 
define a eigenfunction flow. We note that for 0 < 5 < 1, the eigenfunction 
flow continuously depends on s. Then it is 27r periodic for all 0 < 5 < 1. 
Then we have proved the lemma. 
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Remark 2.7. Prom the proof of Lemma 2.5, it is easy to see the eigen- 
function flow is stable for the generic perturbation in G. We sometimes 
also call it eigenvalue flow, but what is important in this flow is that the 
corresponding eigenfunction is continuous in t. 

Now we consider more general case where t G X, X is a compact set of 
manifold. Our main result is 

Theorem 2.8. Let X be a compact, connected subset of a manifold, g(t) G 

C2(X,T(M) ® r(M)) = M2, then for a residual set of g{t) G M2, we can 
define an eigenvalue flow Xk(t) which is continuous in t and satisfies (2.24); 

moreover the corresponding eigenfunctions is also continuous in t. Therefore 
for any given d > 0, there exist finite number &i, • • • kj, such that 

spec{Xk(t)\t eX,k>l}\ {Xkl(t), • • • Xk.(t)} 

has gaps at X = d for all t G X. 

Proof Let ^A(t) be the eigenspace corresponding to A(£), P\(t) be the pro- 
jection to E\(t) in the sense of L2 expansion. Let ei(t), • • 'em(t) be an 
orthonormal basis of T(X). Consider the map 

$ : S2 x R x M2 *-* E\(t) 

given by 

(2.26) Qfrgit),!*) = Px{t)(VeA9(t)V + H- 

As in Lemma 2.4, we can prove that for generic g(i) G .M2, zero is a regular 
value of l>. That is, the eigenspace of the operator P\(t)(57eiAg(t)) is one 

dimensional for generic g(t) and i = 1, • • • m. 
Therefore at the point £, X(t) and \/eiX(t) is uniquely determined. At 

the point t e X, either X(t) has one dimensional eigenspace or Ve;A(£) has 
different derivatives and the corresponding eigenfunction can be continu- 
ously defined for multiple eigenvalues. Then we can define continuously the 
eigenvalues flow locally at this point. 

Now we fix a base point to G X. And we may assume that A^) 
has one dimensional eigenspace, Ai, A2, • • • A*. • • •. Consider a generic curve 
c : (/,<?/) »-> (.X",*o)j / = [0,27r]. Then we know that the eigenvalue flow 
Xk(c(s)) is a continuous function of s. We only need to show Afc(c(0)) = 
Afc(c(27r)). This can done by the cobordism argument as in Lemma 2.6. 
Then Xk(t) and its corresponding eigenfunction are continuous for alH G X 
for generic g(t) G A^2. Then our theorem follows easily. 
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Remark 2.9. Notice (2.24), (2.25) and eigenvalues continuously depend 
on parameters, eigenvalues are well defined and continuous it t for any 
g(t) E C1(X,T(M)®r(M)), but after taking limit the corresponding eigen- 
functions may not continuous in t. So we can only define the eigenfunction 
flow for generic g(t). 

3. Application in the growth Estimates. 

In this section, we study the harmonic function with polynomial growth 
by using the three annuli lemma. This technique was used before (cf. [S], 
[CT], [QT]). Let M be an open manifold with lower bounded Rice curva- 
ture, which is our basic assumption in this paper. Then we know, from the 
Cheeger-Gromov compactness theorem, that for p G M and any sequence 
{rk}irk —► oo, the sequence of pointed rescaled manifolds, (M^p^r^2g)^ has 
a subsequence which converges in the pointed Gromov-Hausdorff topology to 
a length space, MOQ. And Moo, the so called tangent cone at infinity, might 
a priori depend on the sequence {r^}. If Ricc(M) > 0 and M has maximal 
volume growth, then M^ is a metric cone [CC1], that is, Moo = (0, oo) xrX, 
where X is a length space. Under some additional assumptions on the cur- 
vature decay, Moo is in fact a smooth manifold (cf. [CT]). In general, the 
regularity of the cross section X, need more detailed study. 

In this paper, we always assume that 

(3.1) Moo = (0,oo)xr(iV,<7(t)), 

where (N,g(t)) is a family of compact manifold without boundary, g(t) 6 
C1(X,r(M) ® T(M)), X is a compact, connected subset of a manifold. 

For simplicity, in the following discussion we only prove our result in 
a simple case. That is, we assume that g(t) is continuously differentiable 
and 27r-periodic in t, where t depends on the subsequence of {r^}. We may 
assume that (iV, g(t)) has a continuous eigenfunction flow. In fact, after 
a generic perturbation we can choose (JV,<76(£)) such that (N,ge(t)) has a 
continuous eigenfunction flow and g€(t) —> g(t) as e —> 0. The following 
discussions are still valid for e sufficiently small. Let Aafi be the geodesic 
annulus on M with inner radius a and outer radius b. From our assumption 
on M, we know that for any e > 0, there exist {rfc?i}, {ttk,i} and fco, lo with 

OjMnM = ^M+i, fyfe,l+irfc,J+i =:: rfc+i,i such tliat for k> ko, I > lo 

dGH(Arkil,nkilrkil, (^,1,^,1^,1) Xr (^ff(*l))) < €rV 

dGH(Arki2,nki2rk,2, (^,2,^,2^,2) Xr (N, gfa))) < 6rfc)2 
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dGH(ArKi,nk4rk^(rk^nkiirkii) xr (N,g(ti))) < erKi 

where 0 = ti < • • • < U < • • • < tj+i = 2TT is a division. 
We consider harmonic functions defined on M with \u\ < C(l+rd), which 

is called at most d order growth harmonic functions. Note the eigenvalue 
Xj(t) is a 27r periodic function. Let </>j0(£), </>ji(£), • • ■, ^jm^) be all those 
eigenfunctions whose eigenvalue intersect with a number A^2 which will be 
given later with some t G [0,27r]. We stress that there are only finite number 
of such \jk{t) because \j(t) is periodic. 

For technique reason, we assume the condition (S): there exists a bilips- 
chitz homeomorphic map 

§k,i :     (nfe^ftj^r^) xr {N,g(ti)) h-> Arki^kirki 

For i fixed, let A^ . be the rescaled Arkijnkirki under the metric ^r-g- 

Then for any e > 0, there exist fco, ^O and r^j as before, such that for 
k > A;o, / > Jo 

(3.2) cte^A}^, (1,^,0 xr (JV,^)) < 6. 

We may assume the homeomorphic map $k,i satisfies, for any x,y e 
(1,^,0 xr(JV,p(tO 

(3.3) \dMoofay) - dM(&k,i(x)i®kti(y))\ < e. 

Now we let 

(3.4) Mti) = Mti)0$k}i 

where <l>j(ti) is an eigenfunction on (N,g(ti)). We define a new function VJ 

by 

(3.5) ^ = I /    ufafc) 
UdBr 

0i(tt)> 

for rfcji < r < QA:,i^,i, where r = d{p,.)» ias. = ^(fe) /aBr ■ lt is easy to 

see that Vj 6 L^oc(M). We note that ajr^^^j^i) is a harmonic function 
on the metric cone (0,oo) xr (N,g(ti)), where Aj(^) = Pj(ti)(pj(ti) +n-2), 
Pj(^) > 0. We shall show that for i fixed ^ is near ajrW^fafc) in some 
sense. 
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Given L > 1 and a family of annuli {Aak:Lak}. Let A^ L be the rescaled 

annulus under the metric -\g. Then we know there exists a subsequence of 
ak 

{a/J, still denoted by a^, and a metric g(t), such that 

]imdGH(AlL,(l,L)xr(N,g(t)) = 0. 

For k large, let $fc • ^IL ^^ (l?^) xr (N,g(t)) be a homeomorphic map. 
Put Uk = uo $^1

5 where ^ is a given harmonic function on M. 

Lemma 3.1.   There exist a subsequence of < Uk 

"7,21/ 

>, still denoted 

by itself such that 

(3.6) r—^ >uo        in    C0((l,L)xr(N,gm- 
m     (        \ Loo(A|,2J 

Furthermore, -MQ is a harmonic function on the tangent cone at infinity. 

Proof First we know, from Cheng-Yau's gradient estimates -rn—^^  is 

2,21/ 

uniformly bounded on AI^L- Therefore -rn—— is a compact sequence, 

then there exists a subsequence such that (3.6) is true.  Obviously zzo is a 
harmonic function. 

Now, we let A* = iiifte[2,27r) ^i(*) > 0, do < 0 and do(do + n — 2) < A*. 
Then we have the following three annuli lemma. 

Lemma 3.2.  Given L > 1, there exists a k^, for k > ko 

(3.7)        -f U^UL^J u2 + L-2do_f u2\ 

where -A. =     ,,. 1 r -A. . So if JALfc,Lfc+l yol{ALkLk+1) JALkLk+1 J 

-f u2> L2d° -J 

then 

u\ 

-f u2> L2d° J u2. 
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Proof. We first prove (3.7) on a metric cone (0, oo) xr (iV, g(t)). A harmonic 
function in a metric cone has the following expansions 

(3.8) u = 5>irW*i + 5>r--("-2)-^, 

where pj > 0 and Pj(pj + n — 2) = \j, A^, (j)j is eigenvalue, eigenfunction in 
(N,g(t)). Then we only need to show that 

r.2pi+n|Z,fc+1 -,    / r2p:/+n|Lfc r2pj+n\Lk+2\ 

(3.9) l-^<»[£*l-J^ + L^!_Jj}!i), 

or 

for ^ = —(n — 2) — pj < 7}. Or for some pj with 2(n — 2) + 2pj = n 

r \Lk \ r i^fc.j r \Lk+1 j 

(3.9)-(3.11) can be reduced to 

(3.12) 1< - (L2*-^ + L-Mo+2Pj ^) 

or 

(3.13) 1 < -(L2do-2v + L-2do+2qi). 

From our assumption we know c?o 7^ ^j, ^o 7^ Pj? then (3.12) and (3.13) are 
true. 

Now we prove Lemma 3.2 by contradictions. Suppose there exists a 
subsequence {/&}> such that on annuli ALik-i Lik, ALik ^^+1 and ALik+i Lik+2, 
inequality (3.7) is not true. Then we apply Lemma 3.1 on ALik-i Lik+2, we 
deduce a contradiction by taking limit. 

Lemma 3.3.   The limit UQ in Lemma 3.1 has the following expansion in the 
metric cone (1,1/) xr (N,g(t)) 

where pj(t) > 0 and Pj(t)(pj(i) + n — 2) = \j(t). 
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Proof. From Lemma 3.2, we deduce that there exists fci for k > ki 

(3.14) 4 u2>L2d°-f u2. 

Otherwise we have for all k > ko 

(3.15) -f u2<L2d»-[ u2. 

We note that the convergence in (3.6) is true in C0((<5, 5""1) xr (iV,p(£)) 
where 8 is any small positive constant. Then (3.15) is also true for ^o on 
any two annuli in (5,5~1) xr (N,g(t). It follows that 

(3.16) ^o = ^bjr-fr-y-nfa. 

Therefore there exists a ball BLk in M where u achieves its maximum in the 
interior of BLk. This contradicts the maximum principle. Then we apply 
(3.14) to its limit, Lemma 3.3 follows easily. 

Now we go back to the function VJ. We have the following growth esti- 
mate. 

Lemma 3.4. Given L > 1, 6 > 0 and mi , let £>m* = inf^p^TrjPi^) ; 
PM = suPtG[o,27r] Pj{t)> there exist R and a division IQ, for a > R, and if 

(3'17)        LJ^L/' 
then 

(3.18) / v2>L2^-s-f      v]. 

(3.19) -t v2<L2pM+6-f      v2. 

Proof, we prove the lemma again by contradictions. Suppose there exists a 
8 > 0, L > 1 and {a/.}, a^ —» oo, for any fixed division /, we have 

(3.20) -f v2<L2p™*-6-f v2 

^ALak,L^ak ^ Aak,Lak 
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and 

(3.21) 
ALak,L2ak 

Furthermore, we may assume that there exists a t, £;_i < t < ti, such that 
limfc^oo dGH(AiL, (1, L) xr (JV, g(t)) = 0, where A^ is the rescaled annulus 
of ^4afc,Lafc- By Lemma 3.1, we may assume 

(3.13). If the division I is large enough so that 
■tL°°(AlL) 

UQ and no satisfies 

IM*) - MQIL^N) < vol(N)' I = i — l,i. 

And then 

J(N,g(t)) 

-f ^(tj)^(t) 

< e,        l — i — l,i, 

'(N,gCt)) 

Then (3.20) deduce 

(3.22)    —-i  [L2ayPi®+n-idr_er       u2 
uoZ(^L)L2) JL 7AL|L2 

< i?^.-*   _J_     ^ a2r2Pj(t)+n-idr + e J 
[vol(Ai!L) J1     

J i^ 

And (3.21) deduce 

voZ(>li 

^l,L 
^0 

Since ^(t) > pm* for e sufficiently small, (3.22) and (3.23) give a contradic- 
tion. Similarly we can prove (3.19). 

Now let Xd = d(d + n- 2) and jmo be the first integer satisfying 

(3.24) min       Xj(t) > Xd + -. 
j>jmo,0<t<27r 2 

Let Ad! = maxi<imoio<t<27r Aimo(t), Xd1 = d^+n-2) with d1 > 0. Choose 
Ad2 = Adl + 6 and cfo satisfying 32 

(3.25) A^ = ^2(^2 + n - 2)       di > 0. 
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As we mentioned before, let Aj0(£), A^t), • • • Ajm (t) be all the eigenvalues 
which intersects with A^2 for some t G [0, 27r]. Obviously jo > jVno aild then 

min        A7\(£) > A^. 
0<Kmi,0<t<27r    Jl 

Put v = X}jo<7<7m ^i* ^ ^s easy to c^ieck t'1^ any 6 > 0 there exists i?o for 
a > R 

(3.26) -f U2~-f (U-Vf-J V2    <6-f U2. 

Since u is at most order d growth, from Lemma 3.4 and (3.26) we deduce 
that there exists Ri for a > Ri 

(3.27) /       (u-v)2>-f u2. 

For u — v we have the following growth estimate which is also called the 
three annulus lemma. 

Lemma 3.5.  Let L > 1 and c^ be given as before, then there exist ko and 
a division IQ for k > ko 

(3.28)    / 
JA A

LktLk+i 

1 
<2 

(u - vY 

L2d2 -I (u- v)2 + L-2d2 4 (u-v) 
JArk^rk JArk-n    rk+2 Lk + lfLk+2 

therefore if 

then 

-f (u-v)2 >!?*>-[ (u-v)2, 
JALk:Lk+i JALk-i>Lk 

-f (« - v)2 > L2d2 4 {u- v)2. 
JArk+Xrk+2 «/Arfc  rfc+l 

Proof. We prove this lemma again by contradictions. Suppose that there 
exists a sequence {ki},'ki —► oo, such that (3.28) is not true for any given 
Jo- As in the proof of Lemma 3.4, we may assume 

lim doniA^ (1, L) xr (N,g(fi) = 0, 
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with ti-i < t < ti, and o— > UQ, UQ satisfying (3.13). If / is large 

enough so that 

l^(*0-^(*)lL~(i\r) < m vouNy        l = i-l,h    J=3o,Jw-3m1, 

and then we deduce 

(3.29) Yl     aU r^V+n-i^^f       u2 

^ 2 

ul 

where A^L = (1,L) xr (N,g(t)). Since ^ 7^ Pj(*) for J 7^ Jo, • • • jmu for € 
small (3.29) is impossible. 

From Lemma 3.4 and Lemma 3.5, we can have the growth estimate for 
u. 

Lemma 3.6. If u is a harmonic function with growth order at most d, then 
for L > 1 fixed, there exists ko, for k > ko 

(3.30) -f u2<L2d2-f u 
JArh    rfc-UI JA 

2 
„      _ a 

ALkfLk+1 JALk-iLk 

Proof By Lemma 3.4, we only need to show that (3.30) is true for k > ko 
and some large / for u — v. Form Lemma 3.5, if (3.30) is not true for u — v, 
then for k > ko 

(3.31) -f (u-v)2>L2d2-f {u-vf. 
JALkLk+1 JALk-lLk 

By induction, we have 

(3.32) -f (u- v)2 > L2^-^ 4 {u- v)2. 

We note ^2 > d, (3.26) and (3.27), then (3.32) is impossible. 
We actually proved the following growth estimates for harmonic func- 

tions. 
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Theorem 3.7. Under the assumptions of (3.1), (S); andRicc(M) is bound- 
ed from below by —c/r2, where c is a positive constant and r is the distance 
function from some fixed point, ALk ^k+i is the annulus with Lk < r < L^1, 
then there exist C = C(M), ko = ko(M) such that for any at most order d 
growth harmonic function u, we have 

I u2< L2Cd(k-ko-2)   f u2^ 

for k > ko. 

Now we have the following corollary. 

Theorem 3.8. Under the assumptions of (3.1), (S), and Ricc(M) is bound- 
ed from below by —c/r2, where c is a positive constant and r is the distance 
function from some fixed point, then the dimension of at most order d growth 
harmonic functions is not more than the dimension of at most order Cd 
growth harmonic functions on its tangent cone at infinity. Here C = C(M) 
is given in (2.25). 

Proof. Let it, w be two linear independent harmonic functions on M with 
growth order at most d. 

Put Wk — 7fcW, Uk = aku — (3kW such that 

/, 
Wk2 = 1, 

/, 

ALk-ljLk+2 

wkuk = 0. 

We may assume as before, there exists a subsequence {ki} so that 

(3.33) limdGH(Ak^lL2, (L-\L2) xT (N,g(t)) = 0. 

And both u^ and w^ has a limit u and w respectively. By lemma 3.3 and 
lemma 3.6, we can deduce as before 

(3.34) u=    Y^    a3rPj(t>r 
0<pj<d2 
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(3.35) w=    Y,    cirPJ<t>r 
0<pj<d2 

Moreover 

(3.36) / uw = 0. 
J A00 

Then our theorem follows easily from (3.34)-(3.36). 

Corollary 3.9. In addition to the assumption of theorem 3.8, we assume 
that Ricc(N) > 0; then the dimension of at most order d growth harmonic 
functions is not more than C[d(d + n — S)^71-1)/2 where C is a constant 

dependent of M. 

In fact by a result of Li and Yau [LY2], we have 

And Xk(t) < C2(M)Afc(0), then we deduce our corollary easily. 
In general, if the Rice curvature of the cross section is only lower 

bounded, there are also some estimates on the eigenvalues, (see [SY]) so 
is the estimate of the dimension of the harmonic functions on M. 

Remark 3.10. In the discussion of theorem 3.8, in fact, the assumption 
that Ricc(M) is lower bounded is not necessary. Our argument, however, 
can be also applied to the case when the cross section of M has singularities 
which will be discussed later. 
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