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Gradient Estimation on Navier-Stokes Equations 

GANG TIAN AND ZHOUPING XIN 

In this note, we present a prior uniform gradient estimates on so- 
lutions to the 3-dimensional Navier-Stokes equations. It is shown 
that the gradient of the velocity field is locally uniformly bounded 
in L^-norm provided that either the scaled local L2-norm of the 
vorticity or the scaled local total energy is small. In particular, our 
results imply that the smooth solutions to 3-dimensional Navier- 
Stokes equations cannot develop finite time singularity and suitable 
weak solutions are in fact regular if either the scaled local L2-norm 
of the vorticity or the scaled local energy is small. 

1. Introduction. 

The study of the incompressible Navier-Stokes equations in three space 
dimensions has a long history. In the pioneering works [Le], [Ho], Leray 
and Hopf proved the existence of its weak solutions with initial and bound- 
ary conditions. However, we do not know yet whether or not the solution 
develops singularities in finite time even if all the data, such as initial and 
boundary conditions, are C^-smooth. 

In [Sch], V. Scheffer began to study the partial regularity theory of the 
Navier-Stokes equations. Deeper results were obtained by L. Caffarelli, R. 
Kohn and L. Nirenberg in [CKN]. They proved a local partial regularity 
theorem for a particular class of weak solutions. They showed that, for any 
such weak solution, the singular set has one-dimensional Hausdorff measure 
zero. In particular, their local regularity theorem implies that there is an 
e > 0 satisfying: for any suitable weak solution u of Navier-Stokes equations, 
if 

(1.1) Hmr-x)*"-1 f \Vu\2 < e, 
J\y—x|<r,|s—t|<r2 

then u is regular near (x,t).  Recently, F.H. Lin and Liu gave a simplified 
proof of the main results in [CKN], see [LL]. 

This note grows out of our efforts in understanding [CKN]. Here we 
present some new necessary and sufficient conditions for the regularity of the 
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solutions to Navier-Stokes system. One of our observations is that instead of 
the condition (1.1), the local behavior of the solutions to the Navier-Stokes 
equations is dominated by the scaled local L2-norm of the vorticity. More 
precisely, first we will show that there is a small positive number e such that, 
for any smooth solution u of the Navier-Stokes, if 

(-■7 (1.2) supr<ro    r
-1 / \cmlu\zdxdt    < s 

lBr(xo,to) J 

where Br(a;o,^o) denotes the parabolic ball with radius r and center at 
(xo,to) (cf. section 3), then r^V^I is uniformly bounded in Br/2(#o,£o) 
for r < ri. Another main observation of this note is that instead 
of the smallness assumption (1.1), the regularity of the solution is 
guaranteed by the requirements that either r-1 fJBrrx0 to\ \Vu\2dxdt or 

supt r2<t<to r
_1 Jo (x \ \u(x^ t)\2dx is uniformly bounded and the scaled lo- 

cal energy is small, i.e., 

(1.3) supr<ro (r"
3 / \u\2dxdt J < e. 

\        JMr(xo,to) ) 

Finally, we mention that our estimate also leads to the following observation 
that any suitable weak solution u of the Navier-Stokes equation will be 
regular at (a;o,to) if the local scaled L3-norm of the velocity is suitably 
small, i.e. 

(1.4) lEv^o+r"2 \\ \ufdxdt < e 
J J   Br(xo^o) 

for a uniform small positive number e. 
Our proof seems to work for generalized Navier-Stokes equations of any 

space dimensions. As an example, we will show a local partial regularity 
theorem for stationary Navier-Stokes equations of any dimensions (cf. sec- 
tion 2). The regularity theorem of this sort was previously proved by M. 
Struwe for the stationary Navier-Stokes equations of dimension five [Strl]. 
As shown later by M. Struwe [Str2], such regularity results can be used to 
construct smooth solutions of the stationary Navier-Stokes equations in E5 

or with space periodic boundary conditions in the dimension 5. It should 
be noted that there are a lot of literatures on the studies of solutions to the 
stationary Navier-Stokes system in higher space dimensions. In particular, 
Frehse and Ruzicka have proved the existence of smooth solutions to the 
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stationary Navier-Stokes system with space preriodic conditions for dimen- 
sions up to 15, see [FR1]. There are also various partinal regularity results 
available, see [FR2] and the references therein. 

In the following, we will first study the stationary Navier-Stokes equation 
in section 2 and then the incompressible Navier-Stokes equations for three 
space dimensions in section 3. 

2. Gradient Estimate on Stationary 
Navier-Stokes Equations. 

In this section we are interested in the local behavior of solutions to 
stationary Navier-Stokes equations in a smooth open domain in W1. Thus 
let Q be a domain in Rn with smooth boundary dfi, and u and p be smooth 
solutions to the equations 

(2.1) -Au + (u> V)u + Vp = 0        in ft 

(2.2) divu = 0 inft 

with the bound 

(2.3) / \u(x)f 
Jo. 

dx <MQ < +oo 

where MQ is an absolute positive constant. For x G Rn we denote BR(X) = 
{y G Mn, \y — x\ < R}. In the case of no confusion, we will skip the center 
of the ball from the notations and write simply BR. Denote the vorticity by 
w(x) =* du{x), where the notation is that of exterior calculus. The main 
result of this section is the following a priori estimate on the solution u{x). 

Theorem 2.1. There exists an absolute constant SQ > 0 such that the fol- 
lowing statement is true: Let u(x) and p(x) be smooth solutions to the sta- 
tionary Navier-Stokes equation (2.1)-(2.2) satisfying (2.3) and assume that 
there is a RQ such that on a small neighborhood 

(2.4) R-i"-*)  f    \*du(x)\2 dx < so        for all R<Ro. 
JBR 

Then there exists a constant Ri < RQ such that 

(2.5) SU
PBR/2 N

U
\ < CR~2    for al1   R < Ru 

with C an absolute constant. 
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The key step in the proof of Theorem 2.1 is the following proposition. 

Proposition 2.2. For any £i > 0; there exists as absolute constant 6 such 
that if (2.4) holds with £Q < 6 for some RQ > 0; then there exists a positive 
constant Ri = RI(RQ) < RQ such that 

(2.6) /^(J^) = _?_/,    {uix^dxKs!    for all   R < i?i. 

Proposition 2.2 will be a simple consequence of the following lemma. 

Lemma 2.3. Assume (2.4) holds. Then for any X G (0, ^] and p < J?0; the 
following inequality holds 

(2.7) h(R) = h(Xp) < 2n+2\2h(P) + c(X)e0 

with c(A) being a positive constant given by 

(2.8) 
4A2      4       2/1 

c(A) = —— + — I 1 + T 
(1-X)nn2     n2 A 

Proof of Proposition 2.2. It should be clear that the Proposition 2.2 follows 
from Lemma 2.3 by iteration. Indeed, first we fix a A € (0, 5] as that 
H = 2n+2A2 < 1, and iterate inequality (2.7) k times to obtain 

(2.9)        h{\kR0)<iikh{Ro) + —f-c{\)eo   for   A; = 1,2,.. 
1 /i- 

Now for any given si > 0, we choose so so that 

(2.10) -J—c(A)£o < ^iAn-2. 

Next, we choose an integer KQ SO that 

,^0 

(2.11) M' 1 
^0^(^o) = ^Mo < -eiA1 i-2 

We define Ri = \KO
RQ. Now, for any 0 < R < Ri, there exists a k < KQ SO 

that Xk+1Ro <R< XkRo. Thus 

h(R) < -^h(\kRo) <   nkh(Ro) + ^^-c(A)eo 
An-2 

< pk-XopKotyR^ + _:_c(A)eo 

/* An-2 <ei 
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which completes the proof of Proposition 2.2. □ 

It thus suffices to prove Lemma 2.3. Due to the translation invariance 
property of the Navier-Stokes equations, one can assume that the balls are 
centered at origin, and for simplicity of presentation, p = 1, and 

(2.12) —^T /    \*du\2 dx < so        for all R < 1. 
Rn    JBR 

(The general case follows a similar estimate) .It follows from the Biot-Sawart 
law that 

(2.13) 

u*{x) =  /    Vr(x - y) A w(y) dy + H(x)        for all x e Bu 

where Y{x) is the standard normalized fundamental solution of Laplace's 
equation in Rn, and H is a harmonic function in i?i(0). Now set R == A, 
A E (0,5]. By the mean value property of a harmonic function, one can 
show easily that 

(2.14) 

-1^/       \H{x)?dx<-*—f       \H{xf 
W1      JBR(0) (1- A)n JBtiQ) 

To estimate the integral on the right hand side of (2.14), we first derive a 
bound on A(x) = JBlr0\ Vr(x — y) A w(y) dy in terms of Z^-norm of the 
vorticity. It follows from the standard argument for convolution operator 
that 

/    \A(x)\2dx<([    |vr(*)|<fe) (/    HOI2^). 
^Bi(0) \JB2(0) )     \./Bi(0> / 

But 

|vr(«)|d«<-:, 
'S2(0) n JB: 

and so 

(2.15) /       |^)|2^<4/       K 
VBi(O) n   JBI(0) 

2 4 
z)\  dz < —eo- 
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As a consequence of (2.13-2.14), we obtain that 

(2.16)    -Lj/"       \H(X)\2dx 

^     2A2
      /"      , / M2 J 2A2     4 

Next, we estimate R-(n-2) JB ,0. |A(x)|2dx. A simple estimate shows 

/       \A(x)\2dx<( [ \Vr(z)\dz)      [       \w(x)\2dx 
JBR(0) \JB1+R(0) J     JBR(0) 

\(1 + R)2 f       \w(x)\2dx 
71 JBntO) 

< 
n" JBR(0) 

<l-(l + RfRn-%, 

where we have used the assumption (2.12). Thus 

(2-i7)     ^L^^K)250 

It follows from (2.13), (2.16) and (2.17) that 

(2.18)    -Lj/       \u{x)\2dx 
Kn   ZJBR(0) 

^ [  JAixtfdx + j^ [       \H(x)\ 
*      JBR(O) x      JBR(O) 

CoX2 f      \u(x)\2dx + c(X)so 
JBiiO) 

with Co and c(A) given by 

(2.19) 

4 J /XN ^ 4 2      ^ ^ 

(1-A)n5 v;      (1-A)nn2     n2 V       XJ 

This completes the proof of Lemma 2.3. 
We now turn to the proof of Theorem 2.1. Due to the scaling property 

of the Navier-Stokes equations, one needs only to show Theorem 2.1 with 
R= 1. Next, we observe that it suffices to bound the vorticity, i.e. 

2 
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Lemma 2.4. Assume (2.3). Then 

SU
PZ<EBI(O)|VUOZ)| <CI 

z/supa,Gjg1(o) |*difc(a:)| < C2 for two absolute constants Ci and C^- 

Proof. Recall the notation that w(x) =* du{x). This lemma follows from 

(2.20) 
w{x) = (Vr * ((n - l)w A u)) {x) + Hi(x)    for all x G Bi (0) 

with the convolution integral over i?i(0) and Hi being a harmonic function 
on .Bi(O), and the representation formula (2.13) with Bi(0) by the standard 
elliptic regularity argument (see [Sel] and [Mo]). We just sketch it here for 
completeness. Indeed, since w G L00(5i) and u G L2(Bi) (Proposition 2.2), 

one gets that (n - l)w A u = gi G L2(Bi). This, w G L2(Bi) and (2.20) 

give that Hi G L2(Bi (0)). Thus, Hi G Z^CBi) since it is harmonic. Next, 

similar argument using (2.13) shows that H G L^^Bi). It follows from this, 

(2.13), and w G L^^Bi) that u* G L00^!). Consequently gi = (n - l)ty A 

iz G L00(Bi). Then (2.20) again implies that w is Holder continuous, and 

(2.13) in turn shows that Vu is also Holder continuous. In particular, Vu 
is uniformly bounded. Writing out all the estimates corresponding to these 
statements gives the desired Lemma 2.4. □ 

We are now in the position to present the main argument to conclude 
Theorem 2.1. 

Proposition 2.5. Under the same assumptions as in Theorem 2.1, there 
exists a positive constant C3 such that 

(2.21) snpxeBR{Q) I*du(x)\ < C^R'2    for all   R < Ri 

Proof of Proposition 2.5. It suffices to prove (2.21) for R= 1. We will use 
a similar argument as in the study of partial regularity of harmonic maps 

o 

[Sc]. Define xi G £i(0) (interior of the ball -Bi(O)) and ei as follows 

(2.22) supxGjBl(o)(l - \x\)2 \w(x)\ = (1 - \xi\)2ei, 
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so ei = |if;(xi)|. By definition, one has 

(2.23) \w(x)\ < (2(1 - |a:i|))2ci Vz e Bi(0), 

and 

(2.24) Ka:)|<4ei Vx G Bi^^Xi) 

The solution u(x) on the ball Binix i\(xi) can be rescaled as follows 

(2.25) .M.-^ + JL)        V, 6 fl^^^p)) 

Then v(y) is a solution to the stationary Navier-Stokes equations, and fur- 
thermore, its vorticity 

(2.26) 

t5(y) =* dv(y) = !«, (xx + JL) Vy G B^(1_|SBI|)(0) 

satisfies the following equations (see [Sel]) 

{-V2^    =div^ mBjein   .   ..(0), 

div r;       =0 

where g = (n — l)w Av. We then claim: 

Lemma 2.6.   There exists an absolute constant C4 such that 

(2.28) yfei(l-\xi\)<C4. 

Assuming (2.28) for a moment, we conclude from (2.23) and (2.28) that 

\w(x)\ < (2C4)2 = C3        Vx e Bi(0). 

which completes the proof of Proposition 2.5. □ 

It remains to show Lemma 2.6. 

Proof of Lemma 2.6.   If (2.28) is not true, one can assume that 

x/iT(i-N|)>4. 
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and so 

(2.29) B2(0)cB3qL{1_M){0) 

It follows from this, (2.24), and (2.28) that 

(2.30) |tD(y)| < 4        for all y € ^(0) 

Note that (2.27) now holds on any open domain D C 82(0). It follows that 
the following representations hold (see [Sel]) 

(2.31) w(y) = (VT * g)(y) + H2(y), Vy E D, 

(2.32) ^(y) -  / Vr(y - 0 A w(0^ + H3(y) ,Vy € D, 
JD 

where both H2(y) and Hz are harmonic on D. We now derive the desired 
contradiction by following the two steps: 

Step 1    Loo-estimate on v 

Take D to be 82(0) and rewrite (2.32) as 

^(y) =  f      Vr(y - 0 A w(0 <% + H3(y) 
JB2m 

(2.33) 
MO) 

= A3(y) + H3(y) 

VyeBi(O). 

We first estimate the harmonic part H3. For any y € -Bi(O), 

\H3(y)\ = wn 
I      H3{z)dz <(— f       \H3( 

JBi (y) \ Wn JBi (V) 
z)\2dz 

Bi(y) 

<(—[       \v(z)\2dz)2+ (— I       \A3{z)\ dz 
Bi(y) 

= h + I'. i-r*2- 
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Simple calculation shows 

h=(±f     Hz)? 

< '-L f    |w(z)|a 
w

n JB2(0) 

dz 

dz 

2f   i /  2 
= —rh* i 

while I2 can be estimated in a same way as in (2.15): 

J2= l±-[      \As(z)\2dz) 

<(\f      \^T(z)\dz)(f       KOI2^ 
W? JBziO) J   \JB2(0) 

< 
2     i 

TlWn 
Tto 

Consequently, 

11^3(')I ll,oo(Bl(o)) ^ 
on 

<   l—h 
2         /   22 

+ f  £0 

Next, choose p G (1, ^zj), and g(> 1) such that p 1 + q 1 = 1. 
One has by Holder inequality that for all y 6 i?i (0) 

Ms(y)l = /      [Vr(y-OAtS(0]de 
7B2(0) 

<(/    ivrGz-or^rf /    KOI 
\JB2(O) )    \JB2(O) 

<l|vr(-)||LP(S3(o))4^lK-)ll!2(Bl(o)) 

= 41-f||vr(.)lb(B3)4> 
where we have used (2.30). Thus, 

■<*e 

l-^ 
ll^s(-)llL«.(ft(0)) < 4   • llvr(-)lb(S3)£o • 
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We arrive at 

(2.34) 

INOIta-dMO)) < ^4 + C6sl + C7 (h (-|=) 

with absolute constants C5, Ce, and C7 derived above. 

Step 2    Loo-estimate of w 

This can be achieved in a similar way as in Step 1. Rewrite (2.31) 
as 

(2.35) 

w(y) = A2(y) + H2(y)       for all y e B = l?i(0), 

with 

A2{y) = f       Vr(y - 05(0 «,     9 = (n-l)wAv. 
JBi(0) 

First, for y€ 51(0), 

II^COIIL^BXCJ,)) ^ ll^(-)llL2(Bl(y)) + ||^2(-)lb(Bl(2/)) 
^ 2 2 

<e| + ||Vr(-)||L1(B2(o))lb(-)llL2(jBl(3/)) 

1 

< £0
2 + (n - 1) ||v||Loo(Bl(o)) ||*(0II LHBi(y)) 

< Cse* , 

where Cg is an absolute constant.   Since H2 is harmonic, so for 
y e B1 (0) one has 

l#i(v)| = 
on     /• 
— /        H2(z)dz 

2 

/ On \ 2            1                  1 
<    — )   C8e| = Cg^ 

\WnJ 

Thus 

(2.36) \\H2(-)\\L<X>(BI{0)) 

wt 

< 
2n\ 2 

Wr 
Cs^ 
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On the other hand, for p and q as in Step 1, one gets 

PsOllz^B^O)) 

^llvroib^llsOll^co)) 
< llvr(-)llLP(B2) (n-1) IMILOO(BI) \\w{-)\\Lq{Bl) 

< (n- l)^-! ||t;||LOo(Bl) ||Vr(-)||LP(S2)4 

<Cio\\v\\Loo{Bl)e§ . 

It follows that 

(2.37) 
i I 

IK")IIL~(BI(O)) ^ cio\\v\\LooiBl)£$ +Cge§ . 

£ I 
In particular, 1 = \w(0)\ < CIQ IMI^OO^) ZQ + CQSQ , which yields 
the desired contradiction due to Proposition 2.2. Thus Lemma 2.6 
is proved. 

□ 

3. Estimates on Navier-Stokes Equations. 

In this section we intend to present some spatial gradient estimates on 
solutions of the £ime dependent Navier-Stokes equations provided that either 
the scaled local total energy or the scaled local total vorticity is suitably 
small. Though the analysis can be carried out for arbitrary number of spatial 
dimensions, we will concentrate on the case of three spatial dimension. 

Let Q, be a domain in R3 with smooth boundary Sfi, and T be any fixed 
positive constant. Set D = 0, x [0, T] (here Q, may be unbounded). The 3-D 
Navier-Stokes equations may be written in the form 

(3.1) dtu- Au + div(u®u) + Vp = 0       in£>, 

(3.2) divtx = 0, 

which are accompanied by the following initial and boundary conditions (for 
example) 

(3.3) u\t=o = uo,       ^|anx[o,T] = 0 • 
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We will consider any smooth solution (u,p) to (3.1)-(3.2). which satisfies 
the following bounds: 

(3.4) sup0<t<T|M.,*)||2+ ff   \Vu\2{x,t)dxdt<Mo, 

(3.5) ff   \p(x,t)\5/Adxdt<Mu 

where MQ and Mi are two absolute constants. We remark that the bounds 
(3.4) and (3.5) are natural conditions since they are satisfied for suitable 
weak solutions (see [CKN]). 

We shall use the following notations. Any point (re, t) 6 D will be de- 
noted by Q, i.e. Q = (x,t). The parabolic ball centered at a point Q with 
radius R will be denoted as MR(Q) = BR(X) x(t-R2,t). In the case there is 
no danger of confusion, we will omit the mention of the center of the ball and 
simply write MR. For a given solution (w,p) to the Navier-Stokes equations 
(3.1) and (3.2), the scaled total energy, the scaled vorticity, and other scaled 
quantities on the ball MR(Q) are defined to be the following dimensionless 
quantities 

E(R) = -53  ff     \u(x,t)\2dxdt, 

W(R) = 4/7     I curM^ t)\2dxdt} 
R J J  MR 

(3.6) Ei(R) = supR2<t<0 /    \u(x,t)\2dxdt, 
~     JBR 

E2(R) = \- ff     \Vu{x,t)\2dxdt, 
R J J  MR 

E3(R) = -^ ff     \u(x,t)\3dxdt. 

One of the main results of this section asserts that the local behavior of the 
solution to the Navier-Stokes equations (3.1) and (3.2) can be dominated by 
the above sealed quantities in (3.6). More precisely we have 

Theorem 3.1. There exists an absolute constant £ > 0 with the following 
property. Let (u,p)(x,t) be a smooth solution to (3.1)-(3.2) satisfying the 
bonds in (3.4)-(3.5). Assume that there exists a RQ > 0 such that one of the 
following three conditions hold 
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(1) Either sapo^^E^R) < +00 orsupo^^-EfeCR) < +00> and 

(3.7) 

E(R) = ^3 \u(x,t)\2dxdt < e   for all   R < RQ, 

(2) 

(3.8) niPoKRKRoWWKe, 

(3) 

(3-9) Sup0<R^RQE3(R)<8, 

then 

(3.10) supMR/2\Vu\<CR-2   for   R < ^ 

for some Ri < RQ with C being an absolute constant. 

We note that Theorem 3.1 improves somewhat the results implied in 
[CKN] and [NRS]. As in the previous section, Theorem 3.1 will follow the 
following uniform estimates. 

Theorem 3.2. For any given 8 > 0; there exists positive absolute constants 
e and RQ with the properties that 

(1) if either the condition (1), (3.7), or condition (2), (3.8); in Theo- 
rem 3.1 holds, then there exists a constant Ri = Ri(Ro), 0 < Ri < RQ, 

such that for all R< Ri, 

(3.11)   E(R) + E^R) + E2(R) 
8/5 

+ £-26/5 f£^ Qf     |p(y) t) |^ 5/4 dA        < ^ 

(2) if Es(R) < £ for all R < RQ, then there exists a constant Ri = RI(RQ), 

0 < Ri < RQ, such that for all R < Ri, 

(3.12) E^R) + E2(R) + R-2 If     \pf/2dxdt < 6. 
J J   ID 
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Remark 1. It should be emphasized that there is no smoothness require- 
ment for the solution (u,p) in the Theorem 3.2. Indeed, the conclusion (3.9) 
holds for both smooth solutions and the suitable weak solutions defined in 
[CKN]. See the proof of Theorem 3.2 which will be given later. In partic- 
ular, the suitable weak solution will be regular at the center of the ball MR 

under any of the conditions Theorem 3.1 on suitable weak solutions. 

Remark 2. With Theorem 3.2 at hand, the Theorem 3.1 can be proved 
by modifying slightly the argument in [CKN]. However we will present in 
the next subsection a different approach by using a similar technique as 
in the previous section. This argument is simple and clear, but requires a 
slightly stronger assumption that conditions (3.7) or (3.8) hold on a small 
neighborhood. 

Remark 3. It will be clear from our analysis in the next section that the 
condition sup0<R<Ro E2(R) < oo in (3.7) of Theorem 3.1 can be replaced 
by sup0<jR<jRo W(R) < +oo. 

The rest of this section is devoted to the proof of these theorems. First, 
we give a proof of Theorem 3.1. 

3.1. Proof of Theorem 3.1. 

We will first assume that Theorem 3.2 holds. Then Theorem 3.1 can 
be proved in a similar spirit as for Theorem 2.1. In fact, by assuming The- 
orem 3.2, on can apply directly the Proposition 2 in [CKN] to conclude 
Theorem 3.1. However, we prefer to give a different approach by using a 
similar technique as used in Proposition 2.5. We first observe that due to 
the scaling property and translation invariance of the Navier-Stokes equa- 
tions (3.1)-(3.2), it suffices to prove (3.10) for the ball centered at the origin 
(0,0) = 0 with radius R = 1. The second observation is that arguing in 
a similar way as for Lemma 2.4 by using Theorem 3.2 instead of Proposi- 
tion 2.2, one can conclude (3.10) as long as one can show that the vorticity 
w(x,t) = curk^z, t) is uniformly bounded, i.e., 

(3.13) supBl(Qo)Ha;,£)| <C 

The rest of this subsection is devoted to the verification of (3.13). Define 
the "parabolic" distance between two points Q2 = (^2,^2) and Qi = (xi,ti) 
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(*2 < *i) by 

(3.14) d(Q2, Qi) = max Qa^, -xi\, Vh - tjj) ,    *2 < ti • 

Then 
BflCQo) = {Q = (x,t) | d(g,Qo) < Rh 

and 

Define Qi € Bi(0) and e1(= KQi)|) by 

(3.15) 

SUPB^O) [(l-d(Q,0))2\w(Q)\\ = (l-diQuOtfeu 

so that 

(3-16>       w«l£(i^f)2ei   VQSBI(0,• 
In particular, one has that 

(3.17) KQ)| < (2(1 - d(Qu 0)))2 e1 VQ e Bi(0), 

and 

(3.18) KQ)| < 2^ , VQ 6 Bid^Q^o))^!) • 

Using (3.17), one can conclude (3.13) provided that the following claim 
holds: 

Claim.  There exists an absolutely constant C such that 

(3.19) %/er(l-d(Qi,0))<C. 

As before, the proof of this claim is given by contradiction. If (3.19) is 
not true, one may assume that ^/eKl — d(Qi, 0)) > 4 so that 

(3.20) B2(0)cB^(1_d(gi)O))(0). 

We can now rescale the solution u{x, t) near Qi as follows: 

(3.21) Set    v(y, s) = —-u \xi + -¥=, t1 + — 

ioTall(y,s)€M^a_diQi0))(0) 
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Then v(y, s) is a solution to the Navier-Stokes equations, and its correspond- 
ing vorticity 

(3.22) w(y, s) = curly v(y, s) = —w ( xi + —— , ti H J 

satisfies 

(3.23) 

'dsw* - Ayw1 + ^ (vW - TDV") =0     in 82(0) 

div^^^O in 12(0) 

It follows from (3.20)-(3.22)? and (3.18) that 

(3.24) supB2(0)|u)(y,s)| <4. 

Furthermore, Theorem 3.2 implies that there is an absolute constant C > 0 
so that 

(3.25) 

sup_4<T<o /    Ky,r)|2dj/+ // |Vy^|2(2/,r)dydr <C(5, 
JB2 JJ B2(0) 

where 5 can be small if 

(3.26) //        \v(y,s)\2dyds = 23E(^) 
J J Bo(0) 12(0) 

is suitably small. The desired contradiction is derived by using (3.23)-(3.26) 
and the fact that ^(O)] = e^1 |iy(Qi)| = 1 as follows. We first note that the 
value of w at (?/, 5) = (0,0) can be represented through an integral using the 
heat kernel. Indeed, let K(y, s) be the backward heat kernel with the dirac 
mass at (y, s) = (0,0), i.e., 

(3.27) K(y,s) = T—± ^ exp{--^-|     S<0, 
(ViJF(=i))      ^ 4(-s^ 

and ^(y, 5) be a smooth cut-off function defined by 

(0        i<d((y,S),(0,0))<l, 

(3.28) V(y,S) =ll        0 < d((y,S),(0,0)) < |, 

{C°°    l<d((y,s),(0,0))<l. 
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Now multiplying the first equation in (3.23) by 7p{y,s)K(yis)J integrating 
the resulting expressions over Bi(0), and after several integration by parts 
and taking limit, we can derive 

<S(0,0) = //        [(^ + A<I/J)K + 2VV> • VK] w(y, s) dy ds 
J J Bi(0) 

(3.29) + [[       {KVy^ + ^VyK)g{y, s) dy ds , 
J J Bi(0) 

where g = w®v-v®w. It follows from (3.27)-(3.28) and (3.25) that 

(3.30) If        [{ds^ + ^)K + 2V^ • VK] w{y, s) dy ds 
J J Bi(0) 

<(    //        \[{ds^ + ^)K + 2^'VK}{y,s)\2dyds\ 
\   J J Bi{p) J 

•(    //        \w{y,s)\2dyds\ 
\   J J Bi(0) / 

<C<52, 

where we have used the fact that {ds^+A^K+^S/^K is uniformly bounded 
on Bi(0) due to (3.27) and (3.28). Next, using the definition of #, one can 
obtain 

(3.31) //       (KVyiP)g(y,s)dydS 
J J Bi(0) 

<(   ff       \K{VyiP)\2dyds\ \    ff       \g(y,s)\2dyds 
\   J J Bi(0) J      \   J J Bi(0) j 

<c(   If        ^{y^s^dyds) 
\   J J Bi(0) / 

< C (supBl(0) |ti)|) (   JJ        Ky, s)|2 dyds j 

where we have used (3.25)-(3.30). Finally, we estimate the last integral on 
the right hand side of (3.29). Using Holder and Sobolev's inequalities and 
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(3.24)-(3.28), one has 

(3.32) ff       (ipVyK)g{y,s)dyds 
JJ Bi(0) 

<(    ff        \9(y,s)\6dy)    (   ff        WVyK\ldyds 
\   JJ Bi(O) J      \  JJ Bi(O) 

-    / \   6 

<cf/   s-wds)    1   /   ds /       \v(y,s)fdy\   supBl 

1° ( f      \Vyv\2dy 
J-l \^Bi(0) 

J-i yJBxio) 

(0) Ku 

+ 

<c 

dy )   ds 

sup_i<s<o /       |Vst;(y,a)|2dy]    I    // |Vyu|2dyds 
VB^o) /     \ JJ Bi(0) 

+ (sup_1<s<o/       |v(y,s)|2dy) //        |v| 
V JBi{0) J      \   JJ Bi(0) 

dyds 

< C   .52 + 

where we have used the following estimate 

(3.33) sup_1<s<o /       \Vyv{y,s)\2dy 
" ~   •'Bi(O) 

<Csup_1<s<0/       \v(y,s)\2dy + C \w\2dyds 
JBi(O) ././ ©2(0) 

+ C// |l;(y,s)|2dyds. 
^7 82(0) 

Collecting (3.29)-(3.32) yields the desired contradiction 

(3.34) 1 = |t5(0,0) I < C (V6 + ^E(^) 
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It remains to prove (3.33). First, it is noted that (3.23) and (3.24) give 

(3.35)    sup^^o /        \w(y,s)\2dy 
^Bi(O) 

<C // \w\2dyds + c // \v\2dyds 
J J Bo(0) J J BoCO) 

as follows by multiplying (3.23) with ^(y, s)(j)(y, 5), here </> is a smooth "cut- 
off" function which is one on Bi(0) and vanishes on c?B2(0), integrating over 
-82(0) x [—4,5], and using standard manipulations. Next, one has that for 
all(2/,s)eBi(0) 

(3.36) v*(y, s)= [       VT(y - z) A w{z, s) dz + H(z, s) 
JB2(0) 

with H(z,s) being a harmonic function on 82(0) for each s e (—4,0). It 
thus follows from the standard elliptic regularity argument (see the proof of 
Lemma 2.4) that 

(3.37) sup_1<s<0 /       \Wv(y,s)\2dy 
" ~  JB1(O) 

<c(sup_1<s<0 /        |^(y,5)|2dy + sup_1<s<0 /        \w(y,s)\2dy\ . 
\ " "  VJ3I(0) JB^O) J 

Consequently, we conclude (3.33) from (3.35) and (3.37). So the proof of 
the Claim (3.19) is completed. □ 

Finally, we turn to the main estimates in Theorem 3.2. 

3.2. Proof of Theorem 3.2. 

Throughout this section Q (i = 0,1,2,...), C, and 0(1) will denote 
generic positive absolute constants unless stated otherwise. For the simplic- 
ity of presentation, we will also use the following notations 

(3.38) 

Pi(R) = R-26'5 (f_R2 Qf ipfo *) \dy) ^ A   , 

(3.39) 

P2(R) = R-2 If     \V{y,t)\*l2dxdt. 
J J BR 
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We also set 

(3.40) ^(R) = E(R) + E^R) + E2(R) + P^R), 

(3.41) MR) = Ei(R) + E2(R) + P2(R)- 

Due to the assumptions (3.4) and (3.5), one can verify easily by using 
Sobolev-Poincare inequality and the classical Calderon-Zygmund estimate 
that there exist two absolute positive constants TQ and M2 such that 

(3.42) (/>i(ro) < M2    and    ^(ro) < M2. 

Our goal is to show that (j)i(R) and <P2(R) can be small under the corre- 
sponding conditions in Theorem 3.2. 

First, we prove the part (1) of the Theorem 3.2. To this need, we need 
the following lemma. 

Lemma 3.3.      (i)   There exist absolute constants CQ and Ci such that for 
any A G (0, |], r = Ap; and p < ro, one has 

Mr) < CO\V
5
MP) + C1{\-

5/2El/\p)El^(p)E1
2
/2(p) 

+ \-iEl%)E^(P)E*%) 

+ X-^El%)E^(p)E^(p) 
(3.43) +\-5/2(E1(p)E2(p)E(p))1/2 

+ \-^El%)EV»(p)El%) 

+ X-^E2
1
/5(p)E3/5(p)E2(p)} 

(ii)   There exists an absolute constant C2 such that for any A G  (0, ^], 
r = \p, and p < ro; one has 

(3.44) £?2(r) < 72X2E2(p) + C2 ( 8X2 + - 1 W(p). 

Let us assume Lemma 3.3 for a moment and continue the proof of the 
part (1) of Theorem 3.2. There are several cases. 

Case 1. 

(3.45) 
suP0<ii<i?o El(R) = M3     and     suPo<fl<Bo E(R) ^ £ 
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where M3 is a finite absolute constant. In this case, it follows from (3.43) 
in Lemma 3.3 that 

(3.46) 

Mr) < CzX^Mp) + CiX-WeWfaip) + CgA-98^1/2 

where we have assumed Ro < ro, e < 1, r = \p, and A 6 (0, j]. We now 

fix A in (3.46) so that 2C3A4/5 = /*<!.  Then for e < (§*A4)     , (3.46) 
becomes 

(3.47) ^i(r) < VMP) + CsA-^/V/4,        r = Ap, p < i?o. 

Now (3.11) in the Theorem 3.2 follows from (3.47) by iteration in the same 
way as in the proof of Proposition 2.2 from Lemma 2.3. 

Case 2. 

(3.48) 
suPcxiKtfo E^(R) = M4    and    sup0<jR<jRo E(R) < e 

where M4 is a finite absolute constant. 

In this case, Lemma 3.3 yields that for r = Ap, A e (0, j], and p < RQ < ro, 

(3.49) Mr) < CeX4/5Mp) + CrA"98/^1/2. 

Now we can proceed as in the previous case. Theorem 3.2 is proved in this 
case. 

Case 3. The condition (3.8) holds, i.e. 

(3.50) svPo<R<RoW(R)<e. 

It follows from (3.50) and (3.44) in Lemma 3.3 that 

(3.51) E2(r) < 72X2E2(p) + C2 (sA2 + i) 

for all A € (0, 5], r — Xp, p < RQ < ro. A simple iteration shows 

(3.52) E2(Xkp) < (72X2)kE2(p) + \~ ^"^ (sA2 + 1) e 

fork = 1,2,... 

£ 
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As a consequence of (3.52), one shows as before that for any 6Q > 0 there 
exists so > 0 such that for s < SQ, (3.50) implies that 

(3.53) sup0<r<ri E2(r) < So 

for some ri depending only on i2o, ^i < Ro- Combining (3.53) with (3.43) 
in Lemma 3.3 shows that for A G (0, ^], r = Ap, and p < ri, 

^i(r) < C0X
4^Mp) + C1{X-5/2

(l>11
/2(p)6o + X-1cf>31

/4(p)6l/4 

(3.54) + X-^MP)^2 + X-7/Ul%)C + \-16/5
MP)SO} 

< CsX*/5Mp) + CQX-^S^MP) + doX-WW5. 

Now the desired estimate (3.11) in Theorem 3.2 can be proved in the same 
way as in case 1. 

Thus the proof of the first part of the Theorem 3.2 is considered complete. 
It remains to prove Lemma 3.3. The analysis will be based on the following 
basis identities 

/  (%|2)(M)d2;- //    (dte\u\2)(x,s)dxds + 2 [[    (0\Vu\2)(x,s)dxds 
JBp JJ B* JJ B* 

(3.55) < 2 / /     |V0| \u\ \Vu\dxds + 2 / /     (Ou) • (u • Vu)dxds 
JJ B* JJ B* 

-2 //     Ou-Vpdxds 
JJ B* 

where 0(xJ s) is a smooth test function vanishing on <9Bp, and B^ = Bp fl 
{s < t} for any p > 0, and 

(3.56) — Ap(x) s) = didj{uiUj)(x, s) on Bp. 

It should be clear that (3.55) and (3.56) hold true for smooth solution {u^p) 
to (3.1) and (3.2). In fact, both are true for the suitable weak solutions 
defined in [CKN]. 

Proof of Lemma 3.3. In the following, for any fixed positive numbers r and 
p, with the property that 0 < r < ^p and p < ro, we set r* = 2r < ^p. We 
also denote by gr the average of g on the ball 5r, i.e. gr — ^^ JB g dx. We 
first prove the part (z) of the Lemma 3.3. This will be the consequence of 
the following claims. We will borrow and generalize some ideas from [CKN]. 
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Claim 1. For r ■<■ jp, p < TQ, it holds that 

Ei(r) + E2(r) < C i E(r*) + r* If      \u\[\u\2 - Hfjdxdt 
[ J J   Mr* 

(3.57) +r-2 ff     \u - up\ ]p\ dxdt + r'2 If      \up\ \p{x, t)\dxdt 

= C{E{u) + Ji(r*) + J2(r,) + J3(r*)}. 

Proof. Let if>(x,t) be a smooth function with the property that 0 < tp < 1, 
^ = 1 on Br, ip = 0 away from M^ such that 

(3.58) \dxil>\ <-    and    |^| + |V^|<-^. 

Set 0 — ip2 in the inequality (3.54) to obtain 

/     (e\u\2)(x,t)dx+ ff     9\Vu\2dxds < -= [f      \u\2(x,s)dxds 
JBr* JJn^ ri JJ B^ 

//      (0u)'(u-Vu)dxds +2   //      eu-Vpdxds 
JJ B^ yy B^ 

< CuE(r*) + - ff      \u\\[\u\2 - WMdxds 
r* J J Bt 

H //       \u — Up\ ^dxds H //       [tZpl |p|da:ds 
r* yy B* r* yy B* 

+ 

where we have used integration by parts, (3.58), and the fact that u is 
divergence free. Hence (3.57) follows. We now estimate each term on the 
right hand side of (3.57). □ 

Claim 2. For 0 < fi < \p, it holds that 

(3.59) 
E^)<i^E\%)E^{p) 

\ 5/2 

+ C|£)     El%)EV\p)El'\P). 
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Proof. For each fix £, —fi2 < t < 0, one has by Poincare's inequality that 

f   \u(x,t)\2dx<  f   |H2-Hf|dx+/,   Hjdx 

( \ 1//2  / \ ly/2 

<Cp[ [   lufix^dx)      If   \Vu(x,t)\2dx\ 

+ (-)    /   \u\2(x,t)dx. 

Integrating the above inequality over (—//2,0) gives 

(o \ 1/2 / \ 1/2 

/      /   |^|2dxdt |       [ //    \Vu\2dxdt) 
J-^JBP J       \JJ Mp J 

+ p"3 /      /    \u\2(x,t)dxdt. 
J-fi2 JBP 

Note that 

//    \u\ (x,t)dxdt 
-M

2
 JBP 

< I sup_M2<t<o /    |w|2(x,t)dx J       /   2 ( /    M20M)dxJ 

/ \ 1/2 

Hence (3.59) follows. Next, we estimate the term involving the cubic non- 
linearity. □ 

Claim 3. 

JIMEEM-2 If   HI[N2-N2]|^t 

(3.60) 
^ x 5/2 

/* 
/or /x < -p. 
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Proof, It follows from Holder, Poincare, and Sobolev-Poincare's inequalities 
that 

fJM< (   IMILS^IKIM
2'-HS)\\L^{B,)dt 

J — y?- 

- CC (H^)
I|V,I|I

WM) 
+ -^MLHB^) 

(3.61) = Cjf0   M%%JVu\\%\BJt 

+ ^ J^2Mh(BjVu\\L2{Bfl)dt 

from which (3.60) follows trivially. □ 

Next we turn to the terms involving the pressure. First, we have 

Claim 4. For 0 < /x < i/?; one has 

<C 

Jid*) + JSCAO = M 2 //     \u — Up\\p\dxdt + n 2 //      liZpUpjrfxdt 

\    3/5 

(3.62) + (^)     ^V^/io^^i/io^pV^) 

+ f^V/2^/2(p)^1/2(p)^1/2(p) 
^    \ 7/4 

+ ( ^     E\l\P)E^{P)El%) 



Gradient estimation on Navier-Stokes equations 247 

Proof. First, by Holder's inequality, one has 

H2h{ti = I    (\uP\ f   \p\dx)dt 
J-fi2 JB^ 

V5 /     _      , v 5/4     \ 4/5 

(3.63) 

/   o   / \5/2   \ 1/5 

< ^=^-3/V1!/5£i3/",WBI/5WJ',I/2W- 

To estimate J2, we will use the following representation for the pressure 

pO, t) = /    VxlXa: - y) • (it • Vu){y)dy + po(z, t) 
(3.64) -/Bp 

where t E (—/x2,0), r(x) is the normalized fundamental solution of Laplace's 
equation in R3, and po is harmonic in x 6 Bp for each fixed t E (—p2,0). 
Since // < ^p, it follows from the mean value property of a harmonic function 
and (3.64) that 

(3.65) |poOM)| < 8(|p(-,t)|p + |pi(-,t)|p)       Vx e SM. 

Consequently, 

/i2J2(/x) <   //      |u — Up\ \pQ{X)t)\dxdt+ II     \u — Up\\pi(X)t)\dxdt 

(3.66) 

+ 8 /" 2 flpilp /   |«-fip|<ixjdt 

+ //     \u — Up\\'p\{x,i)\dx&t. 
J J Bu 
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Each term on the right hand side of (3.66) can be estimated rather easily 
as follows 

8 /      I \p\p /    \u-up\dx J dt 

<3-67)    s?[C{L[u-a*x) 
J     if   \p(y,t)\dy\     dt 

5     \ 1/5 

dt I       x 

5     \ VS 
1/2/ ^'-"(CiL*-^ sc  dt]   pf'tp), 

but, Poincare inequality yields 

/      I   /    \u — Up\dx J   dt 

Up\ dx | dt < WS/J? /      j      /    \u — up\dx J    /    \u - 

< Cp/i3 /       I (  /    \u ~ Up\dx j \u — Up\ \Vu\dx I dt 
/-M2 \ yjB^ j JBP 

(3.68) 
3/2 

X 

p 

\ l/2   / \ 1/2 

ill .     .9   ,      ,. 
X    . 

ip / \ J J  Bp / 
//    |u|2dxdt ]      ( //    \Vu\2dxdt ] 

Hence 

(3.69)   s/     (Hp/   \u-up\dx\dt 
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Next, using the explicit formula for (3.64), one estimates by the Young's 
inequality that 

(3.70) f Mx,t)\dx < Cp I   \u • ^u(y)\dy 
J Bp J Bp 

<CP\\u\\L2iBp)\\Vu\\L2iBp 

Thus 

8'./ 2[\Pi\pJ   W-uP\dx)dt 

<Cp-2 j      ( \\u\\L2{Bi))\\Vu\\L2{Bp) I    \u-up\d. 
J-H2  Y JBp, 

(3.71) < Cp-V72 (sa.p_IM2<i<0 J   \u\2dx\ 

x[ff    \u\2dxdt)      ( ff    \Vufdxdt) 

< CP^
2
EI%)EVHP)EI

/2
(P). 

Finally, note that (for fj, < ^p) 

x \ dt 

1/2 

X 

v 1/2   / \  1/2 

(3-72) <C^M'Mi^(B^u^m^Bp) 

and 

(3.73) 
(f \ i/4 / \3/8 / \ 1/8 

J    \u - up\4dx j      <clf   \Vu\2dx\      If   \ufdx\ 
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which follow from the Young's and Poincare-Sobolev's inequalities respec- 
tively. One obtain from (3.69) and (3.70) that 

/ /     l^ — Up\ |PI(:K, t)\dxdt 
J J Mfj. 

<[     If   \u-up\4dx)      (f   |pi(x,t)|4/3da:)      dt 

o    / \7/8 / \5/8 

(3.74) < C//1/4 /     j  /   |V^|2^ J      (  f   \u\2dx J      dt 

7/4 

(3.62) now follows from (3.63), (3.66), (3.69), (3.71), and (3.74). Finally, we 
estimate Pi(r). 

Claim 5. For any rj < ^p, one has 

(3.75) 

PLW < C | (j)47' Pxip) + {^j ^ El'\p)E^{p)E2{p)\ . 

Proof. We again use the representation formula (3.64) for the pressure. It 
then follows from (3.65) that 

/    \po(x,t)\dx<%(-)      I   \p1(x,t)\dx+ I   \p{x,t)\dx 
JBy. \PJ    \JBP JBP 

This, together with (3.70), shows that 

lb(-,*)llLi(BM) < l|Pl(-,<)llLi(BM) + WPoMWLHBr) 

(3-76) <8^)    M;t)\\LHBp) 

where we have also used the simple estimate 

f   \pi(x,t)\dx < CIM I   \u- Vu(y)\dy < C/x||«||L2(jBp)||Vu||L2(Sp 
J Bu J Bn 
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which follows from the explicit representations for pi{x,t) by the standard 
estimate. As a consequence of (3.76) and Hoolder's inequality, we can derive 

5/4 

J     (J   \p(y,t)\dy)      dt 

{£)""'fJilp{y'myT'* 
+1* 

<c 

5/4 r IM L2(BP)||VK||L2(^ M 

15/4    rQ 

f Ah |p(y'i)|dy) dt 

,5/4 

< CM13/4 

\ 3/8 

<t)\\v{Bp)dt , 
p< J f (//»JV"|2H 

\5/8' 

j 
1/2 )1/Z /      \ A 

(Pi(p))5/8+(^)  ^(P)^8^)^/8^) 

which implies (3.75) immediately. □ 

Now, the part (z), (3.43), of the Lemma 3.3 is a direct corollary of Claims 
1-5. Indeed, from (3.57), (3.59), and (3.75), one gets that for r — \p, 
A G (0, \], and r* = 2r < ^p, 

^(r) < XE^ipiE^ip) + C[\-^E\%)Ell\p)E1
2'\p) + E{r*) 

+ X^P^p) + X-l^Ell\p)E^\p)E2{p)}. 

Using Claims 2-4 with rj = r* = 2r, one can bound the right hand side 
above by 

C{\El%)E^(p) + X-^E^E^E^ip) 

+ \->El%)E^(p)E3
2%) + \-WE\l\P)EV\P)Ey\P) 

+ X^P^p) + \-l^Ell\P)Ezl\P)E2{P) 

+ X-^El/1\P)E^(P)El^P)P}%) 
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+ \-^El
ll\p)E1/\p)El

2l\p) + X-7/'E\'2{p)Ell\p)E7/\p) + 

+ \^E^l\p)E^{p)Pl/\n)} 

< C{{\E\l\p)Ell\p) + \El/l0{p)Ell\p)Ell\p) + \Wl\ip)) + 

+ {\-^E\%)EV\p)Ell\p) + \-^E\l\p)EV\p)El<\p) 

+ \-W\p)EV\p)Ell\p) + A-9/5
JB1

3/5(p)£V5(p)jE2i/5(p) 

+ X-W'EZOwi&'WEtip) + A-^EJ/^^I/S^^/S^J^ 

where, in the last step, we have used the Claim 5 with /x = r* and the 
Cauchy-Schwartz inequality. Hence (3.43) follows. So the first part, (3.43) 
of the Lemma 3.3 is proved. 

We now turn to the proof of the part (ii), (3.44), of Lemma 3.3. This can 
be accomplished easily as follows. We first recall the following representation 

(3.77) 

Vu*(x,t)=  [   V2
xT(x-y)Aw(y,t)dy+\w(x,t)\ + Ho(x,t) 

JBp 

for all (#,£) € Bp, where w{x^t) = curli^rr,t), Ho(x,t) is a harmonic func- 
tion in x E Bp for each fixed t G (—p2,0), and the integral on the right hand 
side of (3.77) is in the sense of the Cauchy principal value. It then follows 
from the Calderon-Zygmund estimate that there is a positive constant C 
such that 

(3.78) f   \Vu(x,t)\2dx<C f   {wix.t^dx 
J Br J Bp 

+ 3       \w(x,t)\2dx + 3       \Ho(x,t)\2dx. 
J Br J Br 

By the mean value property of harmonic functions, one has for each t G 
(-p2,0) that 

(3.79) /   \Ho(x,t)\2dx < n 
A*   3 /   \Ho(x,t)\2dx. 

JBr V1 - A;    JBP 

On the other hand, as for (3.78), one has from (3.77) that 

(3.80) 

/   |#o(x,£)|2cte<3 /    \Vu(x,t)\2dx + C j    \w(x,t)\2dx 
JBO JBP JBO 
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for each t € (—p2,0), where C is an absolute constant. It follows from 
(3.78)-(3.80) that for all t € (-/?2,0), 

-/    \Vu(x,t)\2dx < --TT- /    \Vu(x,t)\2dx + 
r JBr (1 - A)3 p JBP 

(3.81) +C(_^_+l)i^Wl,4)|2<ix 

with an absolute constant C. We now integrate (3.81) over (—r2,0) to 
obtain the desired estimate (3.44). This finishes the proof of the second 
part of Lemma 3.3. So the proof of Lemma 3.3 is complete. □ 

Finally, we prove the part (2) of the Theorem 3.2. As before, the key step 
in the proof of the inequality (3.12) will be the following iteration relation. 

Lemma 3.4. There exists an absolute constant C such that for any A G 
(0, j]; r = Ap; and p < ro, it holds that 

(3.82) 

<h(r) < C{\$(p) + (E2
s
/\2r) + E3(2r) + A"2!^)}. 

Assuming Lemma 3.4 for the moment, one can prove the part (2) of Theo- 
rem 3.2, (3.12), easily in a same way as in the previous cases. Thus it suffice 
to prove Lemma 3.4. 

Proof of Lemma 3.4. As in the proof of Lemma 3.3, for any r < ^p, p < r*o, 
we set r* < 2r < ^p, and divide the proof into several steps. 

Step 1 

(3.83) 
Ei(r) + E2(r) < C[E(u) + Es(u) + ^(r*)]. 

Proof In the identity (3.55), one choose 0 = ip2 with if; satisfying 
(3.58) to obtain after integrations by parts that 

Ei(r) + £2(r) < ^ ff      \u\2dxdt + ^ ff      \u\3dxds 

(3.84) +^ ff     \u\\P\dxds 
r*   J J   Mr* 

< C[E(n) + E3(u) + P2(u)), 



254 Gang Tian and Zhouping Xin 

where in the last step one has used Holder's inequality. □ 

Step 2 

(3.85) Ebi) < v/^^Ou),        fi < p < ro 

Proof. (3.85) follows from Holder's inequality. □ 

Step 3    For any 0 < fi < \p, 

(3.86) P^) <cU^j P2(P) + (^)2^3(p)| • 

Proof. We will use the following representation for the pressure which follows 
from the identity (3.56): 

(3.87) 

p(x,t)=  f  [D2
xr(x-y):   (u ® u)(y)]dy + \u(x, t)\2 + Hr(x, t) 

JBP 

for all (x, t) £ Bp, where the integral is in the sense of the Cauchy principal 
value, and Hi is harmonic on Bp for each fixed t 6 (—p2,0). Set 

(3.88) P20M)= /  [D2
xr(x-y)'.   (u®u)(y)}dy. 

JBP 

Then the classical Calderon-Zygmund estimate shows that 

(3.89) /   \p2{y,t)\mdy<C I   \u{x,t)\zdx 
J Bp J Bp 

with an absolute constant C. On the other hand, one has 

(3.90) J   |iri(y,«)|3/2d2/<(V2)9(^)   J   \u{x,t)\3dx 



Gradient estimation on Navier-Stokes equations 255 

(3.91) <C 

+    1 + 

<c 

due to the mean value property of harmonic functions.   It follows from 
(3.87)-(3.90) that 

f   \p{x,t)f2dx<C    I   \p2(x,t)\3/2dx+ [   \u\3dx+ f   IH^dx 
JBu JBH JB^ JB^ 

j   \u\3dx+(^\3 J   |ffi(x,*)!3/^ 

JB   Wz^dx+ff^   \P2\3/2d: 

[   \P(x,t)\3/2dx+ [   \u(x,t)\3dx 

n Integrating (3.91) over (-M2,0) leads to (3.86). 

It follows from Steps 1-3 that for r = Ap, A € (0, |], and p < ro, 

<j>2(r) = E^r) + E2(r) + P2(r)] 

<C[E(r*) + Ez(r*) + P2(r*)) 

< C[\P2{p) + \-2Ez(P) + Ez(n) + ^(r,)], 

which yields the desired estimate (3.82) immediately.   This completes the 
proof of Lemma 3.4. □ 

Consequently, the proof of Theorem 3.2 is completed. □ 
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