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We consider the problem of locally minimizing perimeter within 
a given bounded domain fi C Mn subject to a volume constraint. 
By a local minimizer, we mean a set of finite perimeter E C O 
satisfying the condition 

P(E,ft)<P(F,ft) 

among all competitors F C Q such that \F\ = \E\ and such that 
||XF — X^IILUQ) < ^ for some 6 > 0. We prove that when Q is 
convex, the boundary dE Pi O is connected, or else dE Pi O consists 
of parallel planes meeting 9fi orthogonally. The result arises as an 
application of a property we derive for normal variations of con- 
stant mean curvature hypersurfaces bounding sets within a convex 
domain Q. The property states that for such variations, area is a 
concave function of the enclosed volume. Our results hold in all 
dimensions n, even in the presence of singularities. 

1. Introduction. 

We consider the problem of locally minimizing perimeter within a given 
bounded domain Ct C Mn subject to a volume constraint. By a local mini- 
mizer, we mean a set of finite perimeter E c£l satisfying the condition 

(i.i) p(E,n)<p(F,n) 
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among all competitors F such that the measure of F equals the measure of E 
and such that the characteristic function of F lies within some Ll(VL) neigh- 
borhood of the characteristic function of E. Here P(-, £1) refers to perimeter 
within £1 A precise definition of perimeter is given at the beginning of 
Section 2; we refer to [G] for further background. 

The regularity of solutions to this problem was studied in arbitrary 
smooth domains fi during the 1980's in [GMT] and [Gr]. There it was 
shown that the boundary of any solution E is analytic in Jl off of a singular 
set of small Hausdorff dimension and that the boundary is of constant mean 
curvature. (See Theorem 2.1 for a precise statement.) Thus, in the plane 
for example, a typical solution might have boundary consisting of a number 
of circular arcs meeting d£l normally (since orthogonality arises as a natu- 
ral boundary condition). In higher dimensions, of course, the condition of 
constant mean curvature could yield much more complicated hypersurfaces. 

We show here, however, that for Q, convex, the structure of local mini- 
mizers is relatively simple, regardless of dimension; namely, 

The boundary of a local minimizer E must be connected 

(cf. Theorem 2.6). The only exception occurs when fi is locally a cylinder, 
in which case local minimizers can arise with dE n O consisting of a union of 
parallel planar components whose normals coincide with the axial direction 
of the cylinder. We note that when Q is nonconvex, one can easily construct 
solutions-even absolute minimizers- with multiple boundary components. 

Our connectivity result arises as an application of a property we derive 
for normal variations of constant mean curvature hypersurfaces bounding 
sets within convex domains. Roughly, this property states that, provided 
the singular set is of sufficiently low dimension, 

Under a normal variation, the perimeter of a constant mean cur- 
vature hypersurface is a concave function of the volume it bounds 

(cf. Theorem 2.5). 
To illustrate this principle and to see in a heuristic way how it leads to a 

connectivity result, consider the simpler problem of minimizing perimeter in 
Q = Rn subject to a volume constraint m. By the Isoperimetric Theorem, 
any local minimizer E would have to consist of a collection of balls Bi of 
radius r^, perimeter Pi = ncjnr™ and volume Vi = a;nrf with ^ Vi = m. 
Then the perimeter of each ball is seen to be a concave function of its volume: 
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Now suppose, for example, a local minimizer E consists of two such balls so 
that V1 + V2 — m and so the total perimeter P = Pi + P2 can be expressed 
as a function of Vi alone as 

P(Vi) - C (v^1 + (m - Vi)1^ 

By stationarity, P'iVi) = 0, leading to the requirement that the two balls 
must have the same mean curvature (or equivalently, the same radius). 
However, the concavity of the perimeter/volume relationship implies that 
Pff(Vi) < 0, contradicting the local minimality of the configuration E. Thus, 
E must consist of only one ball. 

In the case of a bounded domain Jl, local minimizers E will not neces- 
sarily have spherical boundaries and indeed, as was mentioned earlier, dE 
may possess singularities. Matters are also complicated by the need to con- 
sider the behavior of the free surface near dQ. Nonetheless, the argument 
is in spirit quite analogous to the one just presented. We should mention 
that the concavity property derived here is reminiscent of a more familiar 
fact regarding normal variations of minimal surfaces. If M is a hypersurface 
with mean curvature zero and normal vector UM and we consider normal 
variations Mt — {x + ^(x)^^) : x £ ^}) then a standard calculation 
yields 

(1.2) 
d2(AreaofMt) 

dt2 I  \VMi\2-e\\BM\\2dHn-\x) 
JM i=0 

where VMC denotes the gradient relative to M of a compactly supported 
scalar function £, BM denotes the second fundamental form associated with 
M and ||JBM|| = Y^i=\ rf where {^} are the principal curvatures (cf. [S], 
Section 9). The difference between our result and (1.2) is not just that 
we have constant rather than zero mean curvature, but also that the second 
derivative of area is taken with respect to volume, not t. Indeed, for constant 
mean curvature hypersurfaces, the second t-derivative will not in general be 
negative. In the case of a ball in Rn of radius t, for example, the relationship 
P(t) — Ctn~1 is convex, not concave. (For the analogue of (1.2) for constant 
mean curvature hypersurfaces in bounded domains, see formula (2.46).) 

In addition to its purely geometric interest, our work is motivated by the 
connection which exists between the volume-constrained least area problem 
(1.1) and a well-studied variational problem related to phase transitions: 

(1.3) inf       [ (l-u2)2 + e2\Vu\2dx. 
Jn u dx=m JQ 
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Here u : fi —> R1 is viewed as an order parameter, and a minimizer ue is 
forced by the integral constraint to make a rapid transition from one phase 
{u£ & 1} to another {u£ ■« — 1}. It can be shown that for small values of 
e, local minimizers of (1.3) are closely related to local minimizers of (1.1) 
(cf. [KS]). Our connectivity result here is analogous to a similar result 
restricting the structure of transitions for stable critical points of (1.3) when 
ft is strictly convex (see [SZ] for this result as well as a list of references 
for (1.3)). Indeed, the arguments here inspired the proofs in the continuum 
setting of (1.3). 

We conclude this paper with another application of the concavity of 
the perimeter/volume relationship for normal variations. It states that for 
absolute minimizers of (1.1) in convex domains, the perimeter function 

P(m) = inf P(JP, ft)    taken over {F C Q : measure of F = m} 

is a concave function volume m (cf. Theorem 2.8). Since P is symmet- 
ric about |fi|/2, this has the interesting consequence that for m < |fi|/2, 
the mean curvature of an absolute minimizer must be strictly positive (cf. 
Corollary 2.9). We remark that this is not generally true for local minimiz- 
ers. 

2. Main Results. 

Notation and Preliminaries: We denote by \E\ the n-dimensional 
Lebesgue measure of a set E C Mn and by -ffa(-)> a-dimensional Haus- 
dorff measure. We use E to denote the topological closure of a set E. Balls 
of radius r and center x in Mn are denoted by Br(x). For any open set 
fi C Rn we recall that a function / 6 L1^) is of bounded variation in Jl if 

||V/|| (fi) = sup if fdivgdx : g e C^Rn)} \g\ < l| < oo. 

A set E C Mn is said to be of finite perimeter in fi if XE is of bounded 
variation in ft (cf. [G]), where XE denotes the characteristic function of the 
set E. 

For an open, bounded set ft c Mn, we will consider the perimeter func- 
tional E -► P(E, ft) where 

p(E,n) = \\VxE\\m- 
Since the perimeter is not changed by sets of measure zero we may, for 
convenience, always assume that 

0< \E n Br(x)\ < unr
n 
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for every ball Br(x) such that x G dE, where ujn = |JBI(X)|. If, for instance, 
E has C2 boundary, then P(JE, Q) = Hn-l{dE fl fi). 

We now set 

Am = {JB C ft : X£ € Sy(n), \E\ = m}    for any    m G [0, \Q\]. 

Then by a local minimizer of perimeter subject to fixed volume, we mean a 
set E E Am such that 

(2.1) 

P(E, ft) < P(F, ft)    whenever F € Am and ||XE - XF||Li(n) < * 

for some positive 5. 
The regularity theory for solutions to (2.1) has been well-studied and in 

the theorem below, we combine the known interior and boundary regularity 
results. 

Theorem 2.1. (cf. [GMT]),[Gr]. Let ft be an open, bounded connected set 

in Rn with C2^ boundary, and let E be a local minimizer of perimeter with 

respect to fixed volume in the sense of (2.1). Then there exists a closed subset 
of ft fl dE denoted by sing ft D dE such that sing ft PI dE = 0 ifn<7 while 
iln_8+7(sing ft fl dE) — 0 for allj>0ifn>8. On the complement of this 
singular set, reg ft fl dE = ft fl dE \ sing ft fl <9JE, we have: 

(i) There is a constant H such that in a neighborhood of every x E 
(reg ft n dE) H ft; dE is real analytic and of constant mean curva- 
ture H. 

(ii) For every x E (reg ft Pi dE) fl dQ, the set ft fl dE can be represented 

locally as the graph of a C2,a function which meets 9ft orthogonally. 

Remark.     In light of the low Hausdorff dimension of the singular set, we 
need not make a distinction between integrals 

JnndE 

and 

•dHn-l(x) I 
/QDreg dE 

or between 

•dHn-2(x) 
Jd: dnn(cindE) 
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and 

Jd\ 
•dHn-\x) 

We also note that this estimate on the singular set is optimal, as can be 
shown by explicit example. 

Proof. The estimate on the Hausdorff dimension of the singular set in the 
interior, as well as the interior regularity and constant mean curvature prop- 
erty (i) follow from [GMT]. In their work, as well as that of [Gr], the results 
are stated for absolute minimizers rather than local ones but the proofs in 
both papers carry over without change to the local minimizer setting. The 
estimate on the singular set at the boundary, as well as C1^ boundary reg- 
ularity and orthogonality (ii) follow from [G]. Then C2'a regularity follows 
from standard Schauder theory. We should mention that while the boundary 
regularity result in [Gr] is stated as C1 regularity, a closer inspection of the 
proof reveals that it is in fact C1^ regularity which has been established. □ 

Now let M be any connected component of fi fl dE, where E is a local 
minimizer of perimeter with respect to fixed volume in the sense of (2.1). 
Take £ G C^iMJ1) to be any non-negative function vanishing in a neighbor- 
hood of sing M. If sing M — 0, take £ = 1. We will associate with any 
such C 'a family of diffeomorphisms {^t} of W1 in the following way. First 
let Y e C2(Rn;Rn) be a vector field satisfying: 

(2.2) 
spt Y CO,       where O C Mn is open, 

and (ft D dE) (1 O = M, 

f     . \Y(x)\ = 1       for all x e Mn    lying in some 
^     ^ neighborhood of Af - {C = 0} 

(2.4) Y{x) e Tx(dn)    for all x e dSl 

(2.5) Y(x) = VM{X)    for all x e M - {C = 0}. 

Here UM denotes the outer unit normal to M with respect to the set E and 
Tx(dCi) denotes the tangent space to the manifold dft at x. Note that the 
construction of such a smooth vector field Y is feasible in light of Theorem 
2.1. Now define the vector field X € C2(Rn;Rn) by the formula 

(2.6) X = (Y 
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and introduce the family of diffeomorphisms {^t} (for small |t|) as the so- 
lution to: 

(2.7) 
dt X(*t(^)),    *o(^) = ^   for all x e 

Note that % = 7 on W1 \ O and by (2.4) it follows that *t maps dti into 
dCt. Therefore, in particular, Et = ^t(E) C Q. Note also that in the 
absence of singularities, ^rt(^) ~ x + ti/M(x) for x ^ M. Now we define 
A(t) = P(Et, ft) and V(t) = \Et\. Prom the properties of Y and £ one sees 
that V is an increasing function of t. Hence, we may view the perimeter of 
Et within Q, as a function of its volume V. We denote this function by ^(V") 
and now establish the familiar relationship between area and volume: 

Proposition 2.2. Let Q C Rn be any bounded open domain with C2,a 

boundary. Let M be any connected component of £1(1 dE where E is a local 
minimizer of perimeter with respect to fixed volume in the sense of (2.1), 
and denote the (constant) mean curvature of"reg M by H. For any smooth, 
non-negative function ( : Rn —» R1 vanishing in a neighborhood of sing M 
with spt £ n M fl ft ^ 0; Zet y 6e a vector field satisfying (2.2)-(2.5), Zet 
X = £y ancZ Zet {^t} be a family of diffeomorhisms satisfying (2.7). Then 
the function AiV) describing the perimeter of the family of sets Et = ^t{E) 
as a function of their volume satisfies the relation: 

(2.8) 
dA 
dV V=\E\ 

= (n - l)H. 

Proof. The formula will follow from the chain rule once we compute the 
quantities ^-|t=0 and ^f |t=0 • We begin with the first derivative of volume. 
Denote by J^t{x) the Jacobian of the mapping \I>t : Rn —> Rn evaluated at 
x. Then we have 

(2.9) 
dV 

t=o 

d 

It f       ldx= [ 
=0 J^tiE) JE 

dJ*t(x) 

Recalling (2.7), we can write 

(2.10) 

dt 

JVt = det ( / + tVX + -t2VZ + o(t2) 

dx. 
t=o 

where V denotes the gradient with respect to x and Z = ^J^ 

component given by 

(2.11) Z®=X®XV\ 

t=o 
has i^ 
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Here and throughout we invoke the summation convention for repeated in- 
dices and the subscript denotes differentiation with respect to Xj. Utilizing 
the general matrix identity 

(2.12) det (l + tA+ -t2B + o(t2) J = 1 + t trace A 

+ -t2 [trace B + (trace A)2 - trace (A2)] + o(t2), 

we find 

(2.13) ^fi       =divX 
dt t=o 

Hence we can use the Divergence Theorem to compute 

= [ divXdx= f X-VMCLH
71
-

1
^) 

t=o    JE JM 

dV 

~dt 

J(d 
+ / X-vdEdHn-1(x)+ [ 

l(dE\M)nn Jd dEndn 
X-udndHn-l{x). 

Here VQE and VQa, denote the outer unit normals to dE and dVt respectively. 
Recall that X — CX where the vector field Y satisfies (2.2)-(2.5). Hence, 
the last two boundary integrals vanish and we obtain 

(2.14) 
dV_ 

~dt t=0       JM 
CdHn-l{x). 

(Note that in the absence of singularities, £ = 1 so that the ^-derivative of 
volume is simply area.) 

We now turn to the calculation of ^|t_0- The computation is similar 
to the one above with the role of ^ replaced by the mapping 

We find 

(2.15) 
dA 

~dt 

St = (*t)|M : M -, «. 

dJ$t(x) 

t=0       JM 
dx. 

t=o M       9t 

where J$t denotes the Jacobian of the map if If one introduces 

{T;(:z:)};=i,...,n_i 
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as an orthonormal basis for Tx M for each x G reg M, then a brief calculation 
(and another appeal to (2.12)) yields 

(2.16) 

J$t = 1 + * diVM X + -t2     dwM Z + (diVM X)2 + J2\ (Dr.X)1 

1   \ i=l 

n-1 \ 

We refer the reader to [S], Section 9 for details. (See also [G], Chapter 
10.) Here DTi denotes the directional derivative in the direction T;, divAf (•) 
denotes the divergence relative to the manifold M given by 

diVAf(-) = (!>„(•)) -Ti, 

and (•)-L denotes orthogonal projection in the direction of VM- Using (2.15) 
and (2.16) we then obtain 

(2.17) 

Since 

(2.18) 

dA 
dt = /di divMXdHn-l{x). 

divM^ = Dri((vM) -n 

= (DTi()(vM • n) + C(DriUM) • n 

= (n-i)frc, 

formula (2.17) yields 

(2.19) 
dA 
~dt 

= {n-l)H f QdH™-1 

5=0 JM 
(x). 

Together, (2.19) and (2.14) yield (2.8). □ 
Crucial to our purpose is a formula for the second derivative of the 

function A(y) as well. For this, we will need the following proposition and 
lemma. 

Proposition 2.3. LetQ be an open, bounded, connected set in Rn withC2>a 

boundary, and let E be a local minimizer of perimeter with respect to fixed 
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volume in the sense of (2.1). Then there exist positive constants [i and CQ 

depending on dft, 6 and E such that for all positive numbers r < /x we have 

(2.20) 
fP^Kftn&E) H Br] < Cor71'1 for all balls Br C Rn of radius r. 

Proof. In [GMT] and [Gr], it is shown that E is 'almost minimizing5 without 
regard to the volume constraint in the following sense: there are positive 
numbers // and k such that for every ball Br, r < fi, and every set F C £1 of 
finite perimeter satisfying the condition 

(2.21) F\Br = E\Br, 

we have 

(2.22) P(E, Q) < P{F, fi) + krn. 

Take F in (2.22) to minimize perimeter within Br subject to condition (2.21). 
The monotonicity formula for area-minimizing sets applied to O fl dF within 
Br yields a uniform bound on the ratio 

r9 9^ H^WndF)nBr] 

for all balls Br of sufficiently small radius. For balls Br C f2, the monotonic- 
ity formula is standard (see e.g. [S], Section 17), while for balls intersecting 
<9f2, a monotonicity formula yielding a uniform bound on the ratio (2.23) 
was established in [GJ], Section 3. The result for E follows from (2.22) and 
the uniform bound on the ratio (2.23). □ 

Lemma 2.4. Let Q C Mn be an open, bounded connected set with C2'a 

boundary. Let M be any connected component ofQn dE, where E is a local 
minimizer of perimeter with respect to fixed volume in the sense of (2.1). 
Then for any positive e > 0; there exist open sets U' CC U C W1 with 
sing M C U' and U C {x : dist(x, sing M) < e} and there exists a function 
C G C00{Wl) such that 0 < C(^) < 1 with 

fo    forxe U' 
2.24 ax) = I V       ; SV ;      \l    forxeRn-U 

and 

(2.25) /  IVMCWI
2
^""

1
^)^^ 

JM 
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for some positive constant C = (7(90, (5, E, n) independent of e.  Here VM 

denotes the gradient relative to M. 

Proof Let e > 0 be given. From Theorem 2.1 we have, in particular, that 
iln~3(sing M) = 0 so we may cover sing M with balls Brk (2^) where Zk € Mn 

and 

(2.26) Err8<e- 

Furthermore, we may require r*. < min {e/2, M/2} where fj, is the parameter 
in the statement of Proposition 2.3. We may also suppose this collection of 
balls is finite since sing M is compact. Now for each fe, let £*. G C00(Rn) 
satisfy 0 < Cfc ^ 1 with 

and 

^ ^) = J0    foTxeBrk(zk) 
^k{ \l    iovxeWl\B2rk(zk) 

(2.27) |vcfc(x)|<—    for all x. 

Then define £ through the formula C(x) = minfc £*:(#)• It follows that 0 < 
C < 1 with 

(2.28) C = 0   on    U'^UkBr^z^DsingM 

while 

(2.29) C-l    on   Rn\U   where 

U = Ufc52rfc(^fc) C {x : dist(x,sing M) < e}. 
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Furthermore, £ is piecewise smooth and in light of Proposition 2.3, (2.26) 
and (2.27), we have 

/   VMCW 
2 dH71-1^) < [  |vC(x)|2 dHn-l{x) 

JMk 

(2.30) =^2f \VCk(x)\2 dH^ix) 
k     J(B2rk(zk)-Brk(zk))nM 

k    rk 

<2n+1CoJ2rk~3 <C£' 

Finally, we mollify £ to obtain a C00 function £ still satisfying an estimate 
like (2.30). (As £ is to satisfy (2.24), the mollification will slightly alter the 
definition of U' and U from (2.28) and (2.29) above.) □ 

We can now obtain the second derivative of perimeter with respect to 
volume. 

Theorem 2.5. Let fi C M71 be any bounded, open, connected set with C2,a 

boundary. Let M be any connected component of ClD dE where E is a 
local minimizer of perimeter with respect to fixed volume in the sense of 
(2.1). Then there exists a smooth non-negative function £ : W1 —> R1 with 
spt £nMnfi 7^ 0 and £ vanishing in a neighborhood of sing M, there exists a 
vector field Y satisfying (2.2)-(2.5); a vector field X = (Y and there exists a 
family of diffeomorphisms {^t} satisfying (2.7), such that the function AiV) 
describing the perimeter of the family of sets Et = ^tiE) as a function of 
their volume satisfies the relation: 

d2A ( $M C?\\BMt ^n-1(x)+JMnan C2iW*WM) dfl"-2^) ^ 
(^C^-M*))2 

dVl 
V=\E\ 

^6l) +    (/Mc^-H*))2   ' 
Here BM and BQQ, denote the second fundamental form associated with M 
and dVt respectively. 

Furthermore, if £1 is convex, then we have 

d2A 
(2.32) 

dV2 <0 
V=\E\ 
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unless M is planar (\\BM\\ = OJ and Bd^i/M, ^M) = 0 on M fl dSl, in which 
case 

d2A 

dV2 = 0. 
V=\E\ 

Remark.     In the absence of singularities such as in the case n < 8, one 
can choose £ = 1 and formula (2.31) simplifies to read: 

d2A 

dV2 
V=\E\ 

JM \\BM\\2 dH"-\x) + /Mnan BmlyM, VM) dE-\x) 

Remark.    In case Vt is strictly convex in the sense that 

Bdsiij^x), T(X)) > 0    for every x G dft    and r(x) G Tx(dn), 

then (2.32) will hold even if M is planar. 

Proof. If \\BM\\ = 0 on reg M, every component of reg M must lie in a 
plane. It then follows that there can be only one component of reg M and 
that sing M = 0 and we may choose £ = 1 in the construction of the vector 
field X. To see this, note that one could blow up E about any point in 
sing M fl ft to obtain a minimal cone C (cf. [G]) with reg (dC) consisting 
of components lying on hyperplanes. If C were not a half-space, then nec- 
essarily the dimension of sing (dC) would be n — 2 from the intersection of 
hyperplanes, rather than < n — 8. 

If ||-BM|| ^ 0 on reg M, then there exists a ball Br(x) for some x G 
reg M D Q and some r > 0 such that Br(x) fl M C reg M and such that 

P 
JBr(x (x)r\M 

||5w||^iJn-1(x)>0. 

We then choose a function £ as in Lemma 2.4 so that £ = 1 on M Pi Br[x) 
and so that 

(2.33) / |VMCI
S 

JM 
dEn-l(x) <p. 

Consequently, (2.32) will follow from (2.31). 
The verification of (2.31) results from the chain rule once we compute 

the quantities ^X-        and 4nr       . Now 
t=o t=o 

(2.34) 
d2V 
dt2 

t=o    JE 

d2J%(x) 
dt2 dx. 

t=o 
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In light of (2.10) and (2.12) we find 

(2.35) 
<92Jtft 

Hence, 
cfV 
dt2 

t=o 
But since 

t=0 
div Z + (div X)2 - Xgxg). 

= / div Z + (div X)2 - X®XU) dx. 
=o     JE 3 

div Z = xgl.x® + x®xjj), 
one can use the fact that 

div((divX)X) = (divXf + XU.XW 

to conclude that 

l-K       = f diY((divX)X)dx. 
dtZ  t=o     JE 

Again invoking properties (2.2)-(2.5) we obtain 

d2V 
dt2 

(2.36) 

= f (divX)X-UMdHn-1(x) 
=0     JM 

=  f CdivlC^dH^ix) 
JM 

= {n-l)H f C2dHn-l(x) 
JM 

+ ! (VC-UMdH^ix), 
JM 

where H is the (constant) mean curvature of reg M. 

t=0 
Recalling the notation from 

,2   A 

We now turn to the calculation of -^r 

the proof of Proposition 2.2 in which $t denotes the restriction of ^ to M, 
we use (2.16) to calculate 

d2A 
dt2 =1 

t=:0 JM 

d2J<$>t(x) 
dt2 dx 

t=o 

(2.37) =/       (divM^ + (divMX)2 + ^|(DriX) 
JMnn \ i=1 ' 

± 

n-l 

- J2 (n ■ D^X)^ ■ DTiX) ] dHn-\x). 
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We will analyze each term in the last integral. With (2.19), we can evaluate 
the second term in the integral: 

(2.38) 

/ (divMX)2^^71-1^)-^-!)2^2 / ^dH71-1^). 
JM JM 

To simplify the third term in the integral appearing in (2.37), note that on 
M fl spt X we have 

{DTix)L\ = \(DTi{(;vM))L\ = \DTi(;\ 

since (DTiUM) • ^M = 0. Hence, 

n—1 

(2.39) [ J2 liDnX)1- * = [  |VMC|
2
 dir^x). 

JM~I
] JM 

The fourth term in the integral in (2.37) reduces to 

(2.40) /   V (n • DnX^Tj • DTiX) dHn-\x) 

= / C'II^MII2^71-1^). 
JM 

To complete the evaluation of (2.37) we must analyze the integral 

/ &YvMZdHn-l(x). 
JM 

To this end, write divM Z — div^ ZT + divM Z1- where 

n-l 

ZT = ^2(Z • Ti)Ti    and    Z1- = (Z • VM)VM- 

2=1 

Now on M fl spt Z we have 

(2.41) 

divM Z1- = [DT. ((Z • VM)VM)} ■ n 

= (Z ■ VM){DTiVM) -n 

= (n-l)H(Z-uM). 
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Since (2.3) and (2.5) imply that on Mflspt Z we have Y^Y® = 0    for   j = 

1,... , n as well as yW - i/g, we can use (2.2)-(2.5),(2.6),(2.11) and (2.41) 
to calculate 

\ divMZ±dHn-1(x) = (n-l)H [ X^X^v^dH71-1^) 
JM JM       3 

(2.42) = (n - l)£r / (CyW),,^00^ dfl-"1^) 

= (n-l)H [ (VC-UMdH^ix). 
JM 

We now apply the Divergence Theorem (see e.g. [S], Section 7) and the 
orthogonality of M and d£l (cf. Theorem 2.1) to obtain 

(2.43) 

/  divft ZT dHn-\x) =  f        ZT • i/M dHn-2(x). 
JM JMndn 

Letting {^(x)}^2 be an orthonormal basis for Tx(dft) n TXM tor x e 
reg M D 5f2 we observe that {T{, ... , r^_2, ^an} forms an orthonormal basis 
for TXM for any x e reg M fl 90. Thus, we may write 

n-2 

i=i 

so that by (2.43) and (2.11) we have 

/ divM ZT dHn-l{x) = [        Z'Udn dHn-2(x) 
JM JMndQ. 

JMndn 

We then invoke the condition X • ud^ = 0 for x G M fl dtt (cf.   (2.4)) to 
assert that 

(2.44) ^-(X'N)X^ =0 
OXj 

where N is any smooth extension of the vector field 1/^. Consequently, 

/ divM ZTdHn-l(x) = - [       X^Nl
x.X^ dHn-2(x) 

JM JMndQ J 

(2.45) = - /        C2Y®N®YM dHn-2(x) 
JMndn 3 

= - [        eDUM{^)'mdHn-2{x). 
JMndn 
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Applying (2.38), (2.39), (2.40), (2.42) and (2.45) to the formula (2.37) we 
conclude that 

d?A 
dt2 

(2.46) 

= (n-l)2F2 f CdHn-\x)+ f  {VMtfdH71-1 

t=o JM JM 
(x) 

- [ eWBuf dHn-\x) + (n-l)H I (VC • VM dH^ix) 
JM JM 

- [        eDUM{vd^-vMdHn-\x). 
JMndQ /Mndfi 

Now from the chain rule we have 

72 A        dVd2A_dA d2V 
(2 47^ ^ —   dt   dt2 dt  dt2 

A substitution of (2.14), (2.19), (2.36) and (2.46) into (2.47) yields (2.31). 
□ 

As an application of Theorem 2.5, we obtain: 

Theorem 2.6. Let ft C Mn be a bounded, convex open set with C2>a bound- 
ary. Let E be a local minimizer of 'perimeter with respect to fixed volume 
in the sense of (2.1) and let M = fi fl dE. Then either M is connected 
or it consists of a union of parallel planar components meeting dVt orthog- 
onally with that part of Vt lying between any two such planar components 
consisting of a cylinder. In particular, if fi is strictly convex in the sense 
that BQSI(T{X))T(X)) > 0 for all x e dtt and T(X) G Tx(dCt)j then M is 
connected. 

Proof. Suppose by way of contradiction that ft fl dE consists of more than 
one component. Denote any two of these components by Mi and M2. In 
light of Theorem 2.1 we know that ft fl dE is regular off of a singular set of 
Hausdorff dimension at most n — 8. Furthermore, Mi and M2 are separated 
from each other and from any other components of ft fl dE by some positive 
distance. Suppose first that either 

(2.48) IISMJ^O    or     ||5M2||^0. 

Say ||-BMII| ^ 0. Then by Theorem 2.5, there exist functions (^ and ((2) 
supported in neighborhoods of Mi and M2 respectively and two associated 
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diffeomorphisms of Mn, (^j)*, i = 1,2 with 

spt ((*i)t - J) n spt ((*2)t - /) = 0, 

such that 

(2.49) 
cPAi 
dV,2 < 0   while 

d2Ao 

Vi=\E\ dVo2 <0. 
V2=\E\ 

Here Vi(t) = \($i)t(E)\ for i = 1,2, and we have denoted by Ai(Vi), i = l,2, 
the relation between perimeter P((^i)t(E),Q,) and volume Vi(t) for each 
variation. 

As both Vi and V2 are monotone functions of £ for |£| small, while Vi (0) = 
V2(0) = \E\, we may find for each small t a unique number s(t) such that 
(V^t) - \E\) + (V2(s(t)) - \E\) = 0 or simply 

(2.50) Fi(i) + F2(s(*)) = 2|£|. 

Now define the family of competing sets Et via the formula 

Et = ^t(E)    where    *t(x) = (tfi)t(a:) + (*2)8(t)(a:) - ^    for all a; € Mn. 

Note that ^t — I is only supported in a neighborhood of Mi and M2 and 
that |£t| = |E| in light of (2.50). 

In light of (2.50), we may express the total perimeter within Cl of the set 
Et as a function of Vi alone, and we denote this relationship by A(Vi). It 
follows from Proposition 2.2 and (2.50) that 

dA 
dV1 

dAi 

V1=\E\ 

(2.51) 
dAi 

+ dA2 

dVi 

Vi=\E\ 

Vi=\E\ 

dVx 

dA2 
dV2 

Vi=|E| 

V2=\E\ 

= (n - 1)H - (n - 1)^ = 0. 

However, (2.49) and (2.50) imply 

(2.52) 

d2A 
dV? Vi=\E\ 

d2Ai 
dV2 

d2A1 

dV2 

+ 
Vi=\E\ 

+ 
Vi=]E\ 

d2A2 
dV2 

d2A2 
dV2 

Vi=|S| 

<0. 
V2=\E\ 
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Hence, for small values of t we conclude that P(£^ Q) < P{E, fi) while 
\Et\ = \E\, contradicting the local minimality of E. 

It remains to treat to the case where (2.48) fails. If ||JBM*|| = 0 for both 
i = 1 and 2 and fi is strictly convex, then formula (2.49) still holds by 
Theorem 2.5 and the contradiction is again reached. 

Finally, suppose both Mi and M2 are planar and meet d£l orthogonally 
only at points where 

BdClivMnVMi) =0- 

Let El and 112 denote the two planes containing Mi and M2 respectively. 
We first claim that Hi and 112 must be parallel. To see this, let x G Mi 
and y G M2 achieve the minimal distance between the two components. If 
both x and y lie in Q, then clearly the planes are parallel, so without loss of 
generality, we may assume x G dQ. Now suppose, by way of contradiction, 
that the line segment xy is not orthogonal to Mi. Then x is not the closest 
point of Hi to y and indeed such a closest point, say z, must lie outside ft. 
Consider the triangle formed by x, y and z. The angle Zxzy must be 90° 
since yz _L Hi. However, the convexity of Ct forces y and z to lie on opposite 
sides of Tx(9f2), and since xz _L 90, the angle Zyxz must exceed 90° and 
we reach a contradiction. We conclude that xy _L Mi. Similarly, xy J_ M2 
and the two planes are parallel. But convexity requires xy C ft and since 
VMifa) £ Tx(dCl) implies x + tvMxix) $. ft for all t G M1, it follows that 
xy C dft. Consequently, that part of ft lying between the parallel planes Hi 
and n2 must be the cylinder Mi x (0, \x — y|). □ 

Finally, we present some consequences of Theorems 2.5 and 2.6 related 
to absolute minimizers of perimeter subject to a volume constraint. 

Lemma 2.7. Let f : / —> R1 be a lower-semicontinuous function defined 
on an interval I and suppose f is locally concave in the sense that its graph 
admits a local upper support line in a neighborhood of any point on the graph. 
Then, f is concave. 

Proof Equivalently, we must show that the graph of / lies completely above 
any secant line. Assume to the contrary that it extends below a secant 
between s = a and 5 = 6, which can be taken without loss of generality 
to be horizontal. By lower-semicontinuity, a minimum is achieved over the 
interval [a, b] and necessarily, it occurs in (a, b). Furthermore, the set of 
s-values where this minimum is achieved is closed.   By the local support 
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line property, however, this set of s-values is also open. Hence, / must be 
constant on [a, 6], a contradiction. □ 

Remark. The assumption of semicontinuity is clearly necessary. For 
example, the function f(s) defined as |s| for s / 0 and 1 for 5 = 0 is locally 
concave but not concave. 

Theorem 2.8. Let ft C K71 be an open, bounded, strictly convex set with 
C2^ boundary.  Then the function 

P(m)=   inf  P(F,to), 

is a concave function of m on the interval 0 < m < \Q\ and P is symmetric 
about |fi| /2. 

Proof. One can easily verify that P is a continuous function of m and the 
symmetry in m is immediate by taking complements within ft. To check the 
concavity, fix any volume mo in the interval (0, |fi|). Let E be an absolute 
minimizer for that volume. By Theorem 2.6, we know M = ft n dE is 
connected. Denote the constant mean curvature of reg M by H. For this 
M, we apply Proposition 2.2 and Theorem 2.5 in order to construct a family 
of sets {Et} with EQ = E such that the function A(m) measuring P(Et, Q) 
as a function of m = \Et\ is concave and satisfies ■^\rn=rn = (n — 1)H. 
This function may only be defined for m in some small interval about mo, 
but within its domain of definition, it necessarily satisfies A(m) > P(m) 
and A(mo) = P(mo). In particular, the line 

(2.53) l(m) = (n- l)H(m - mo) + P(mo) 

is locally an upper support line for both A(m) and P(m). Since P is also 
continuous, the previous lemma implies that P is a concave function of m. 
□ 
Corollary 2.9. Let ft cW1 be an open, bounded, strictly convex set with 
C2>a boundary.  Then, for m < \ft\/2, any absolute minimizer of 

inf   P(F,n), 

must have strictly positive mean curvature. 
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Proof. The mean curvature of any absolute minimizer must be in the su- 
perdifferential of the function P(m) of Theorem 2.8; otherwise, the line I of 
(2.53) would not be a local upper support line. (By the superdifferential at 
a point x, we mean the set of slopes of all upper support lines to the graph of 
P at x.) By concavity, the superdifferential is decreasing in the sense that, 
for x > y, every value in the superdifferential at x lies below every value in 
the superdifferential at y. But, by symmetry, zero is in the superdifferential 
at \Q\/2.  It follows that each value in the superdifferential is positive for 
x < \n\/2. □ 

The property expressed in Corollary 2.9, though quite intuitive, captures 
global information. It does not hold for local minimizers. For example, take 
ft to be the unit disc in the plane. Then the annulus of inner radius 3/4 
and outer radius 1 is a local minimizer with respect to its own measure but 
has a negatively curved boundary. Alternatively, consider for example, an 
absolute minimizer E in a convex domain ft c Mn such that \E\ is just 
below \ft\ /2. By trimming ft far away from JS, one can create a new convex 
domain ft' C ft such that E is a local minimizer within ft' with positive 
mean curvature and volume satisfying \E\ > \ft\ /2. 

We also remark that the function P(m), though continuous, is typically 
not C1. Jumps in the derivative occur wherever there exist multiple absolute 
minimizers with different mean curvatures. Generically, such jumps occur 
at m — \fl\ /2, since typically an absolute minimizer E for this m-value will 
have mean curvature H ^ 0 and both E and ft \ E will solve the problem. 
To construct examples with jumps at values other than m = \ft\ /2, one can 
round off the corners of a triangular domain using varying radii of curvature. 
For some value of m, there will then be absolute minimizers near two of the 
(former) corners, with different radii of curvature but enclosing the same 
volume. 

Finally, we do not expect that absolute minimizers need be convex, since 
nonplanar minimal surfaces always have principal curvatures of opposing 
signs and the same is often true of constant mean curvature hypersurfaces. 
It should be possible to construct a nonconvex minimizer, for example, by 
perturbation of a strictly stable, planar minimizer. 
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