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An Intrinsic Approach to the Geodesical
Connectedness of Stationary Lorentzian Manifolds

FaB1o GIANNONI! AND PAoOLO PicciONE?

We prove a variational principle for geodesics on a Lorentzian ma-
nifold M admitting a timelike Killing vector field. Using this prin-
ciple and standard techniques of global nonlinear analysis we es-
tablish the existence of geodesics that join two fixed points of M,
under a suitable coercivity assumption on M. Whenever M is non
contractible, we also get a multiplicity result for geodesics in M
joining two fixed points.

1. Introduction.

In this paper we consider the problem of the existence of geodesics that
join two fixed point in a Lorentzian manifold.

We will make a symmetry assumption on the metric of our Lorentzian
manifold. Namely, we will assume that our spacetime possesses a 1-
parameter group of (local) isometries, whose infinitesimal generator is a
timelike vector field. Heuristically, this amounts to say that the coeffi-
cients of our Lorentzian metric tensor are invariant by time translation (see
Lemma C.1), and so our manifold is stationary with respect to a given ob-
server field. Such a vector field is used to prove an alternative variational
principle for geodesics, and this principle allows to reduce the search of
geodesics to the study of the critical points of a smooth functional which is
bounded from below.

The class of stationary Lorentzian manifolds is reasonably large, and it
contains examples that can be considered interesting both from a physicist’s
and from a mathematician’s point of view. Among others, we would like to
recall here the Schwarzschild space-time, the Reissner—Nordstroém space-
time and the Kerr space-time. We refer to [9] for a detailed description of
the mentioned examples and their physical interpretation.
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Before stating the main results, we recall some basic notions of the
Lorentzian geometry. The books [4, 9, 11, 13] are excellent references for
a complete account of the theory and for all the background material as-
sumed in this paper. A Lorentzian manifold is a smooth, finite dimensional
manifold M, equipped with a (0,2)-tensor g of index 1. The bilinear form
9(2)[-, -] on T, M will also be denoted by (,-) in the rest of the article. The
points of the manifold M will also be called events.

A vector v € T, M is said timelike (resp. lightlike, spacelike) if (v,v) is
negative (resp. null, positive); v is called causal if it is not spacelike.

A Lorentzian manifold is said to be time-oriented if there exists a con-
tinuous vector field Y on M such that Y(z) is timelike for all z € M. A
timelike vector field defines the past and the future of a point z in M: a
causal vector v € T, M is said to be future pointing (resp. past pointing) if
(v,Y(2)) is negative (resp. positive).

Moreover, a timelike vector Y field on M allows to define a Riemannian
metric g, on M by setting:

(1.1)

Iy (2)[C1, Gl = (€1, G emy = (€1, C2) — 2(41,:;((2))), (}Q;z(,x;(x)),

for every € M and every (1,{2 € Tz M (see [1]). Notice that, for every
CeT, M,itis:

(12) <<-) C)(R) 2> |<C) C)l

A Lorentzian manifold M is said to be stationary if it admits a time
orientation given by a Killing timelike vector field Y. We recall that a
vector field Y on M is a Killing vector field if the Lie derivative Ly g of the
metric tensor g is everywhere vanishing. Equivalently, Y is a Killing vector
field if and only if the stages of all its local flows are isometries, i.e., if the
metric tensor g of M is invariant by the flow of Y.

A smooth curve z : (a,b) — M is a geodesic if it satisfies the differential
equation:

(1.3) V=0,

where V denotes the covariant derivative relative to the Levi—Civita connec-
tion of the metric tensor g.

Given an absolutely continuous curve z and an absolutely continuous
vector field ¢ along z, whenever there is no danger of confusion we will
denote by V(¢ the covariant derivative of { along z, defined for almost all s.
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We also denote by V® the covariant derivative of the Levi-Civita con-
nection of the Riemannian metric tensor g.
The geodesics in M are stationary points for the action functional f:

1
(1.4 1) =3 [ (s

defined on the set of all Cl-curves z : [0,1] — M, with 2(0) = p and
z2(1) =gq.

It is well known that if z is a geodesic in M, then there exists a constant
FE, such that:

(1.5) (2(s),2(s)) = E,, Vs.

A geodesic z is said to be timelike (resp. lightlike, spacelike) if E, is negative
(resp. null, positive).

In this paper, we will often use the following well known characterization
of Killing vector fields (see [13], Proposition 9.25). If X' (M) denotes the
space of all C'-vector fields on on M, then Y € X (M) is Killing if and only
if for every pair W1, Wy € X (M) it is:

(1.6) (Vw,Y, Wa) = —(Vy, Y, Wy).

In particular, if z :]a,b[—— M is an absolutely continuous curve and Y is
Killing, then

(1.7) (3, VY (2)) = 0.

This implies that, if Y is Killing, then for every geodesic z in M the quantity
(2,Y(z)) is constant. We express this fact by saying that (2,Y) = constant
is a natural constraint for geodesics. Our variational principle for geodesics
is based on this conservation law.

For some results concerning the structure of Lorentzian manifolds ad-
mitting a Killing vector field see e.g. [16] and the references therein.

A Lorentzian manifold M is said to be geodesically connected if, given
any two points p,q € M, there exists at least one geodesic z in M with
endpoints in p and ¢q. The geodesical connectedness for Lorentzian mani-
folds is a problem much more delicate than in the Riemannian case, where
the Hopf-Rinow theorem gives basically a full answer to the problem. To
convince the reader on this point, it suffices to point out that there exists
compact Lorentzian manifolds that are not geodesically connected (see for
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instance [5, 15]). Even the geodesic completeness does not imply the geodesi-
cal connectedness for stationary Lorentzian manifolds; a counterexample is
given by the pseudosphere ST of index 1 (see [4]).

The main result of this paper is the proof of the geodesical connected-
ness for a class of stationary Lorentzian manifolds, described by intrinsic
assumptions.

Before stating our main results, we need the following definition. Let p
and ¢ be fixed points in M, and consider the set of C-curves in M joining
p and ¢ and such that (2,Y") is constant:

(1.8)
Cpg = Cpqg(M) = {z e CY[0,1], M) : 2(0) = p, 2(1) = ¢q, (3, Y)=C.}.

Definition 1.1. Let ¢ be a real number. The set Cp, is said to be c-
precompact if every sequence {zptne C Cpq With f(2,) < c has a uniformly
convergent subsequence in M. We say that the restriction of f to Cp4 is
pseudo—coercive if Cp 4 is c-precompact for all ¢ > énf f-

P,9q
The c-precompactness condition replaces the condition of completeness
for Riemannian manifolds, allowing to obtain the following existence results
for geodesics in M joining p and g.

Theorem 1.2. Let p and q be two fized events of M. Suppose that Cp 4 is

non empty, and that there exists a ¢ > inf f such that Cp4 is c-precompact.
P9
Then, there ezists at least one geodesic in M joining p and g.

In particular, if the hypotheses of Theorem 1.2 are satisfied for every pair
of events (p, q), then M is geodesically connected.

A class of examples of stationary Lorentzian manifolds satisfying the
hypotheses of Theorem 1.2 will be presented in Appendix A. In Appendix B
we show that, if f is pseudo-coercive on Cp 4 for every pair of points, then
M is globally hyperbolic. Moreover, we give an example to show that the
global hyperbolicity in general does not imply the geodesical connectedness
of stationary manifolds.

Observe that the assumption that C, 4 be non empty is non trivial. In-
deed, it is in general not satisfied, as the following examples shows. Consider
the punctured Minkowski space M = R3*1\ {(0,0,0,0)}, with coordinates
(z1,z9,23,t). The vector field Y = % is timelike and Killing. Choose
p = (-1,0,0,0), ¢ = (1,0,0,0). Given any C'-curve z : [0,1] — M join-
ing p and g, then the function T'(s) = t(z(s)) cannot be constant, so there



Geodesics in stationary Lorentzian manifolds 161

must exist s; € [0,1] such that T"(s1) = (2(s1)), Y (2(s1))) # 0. Clearly,
there must also exist sy with 7"(s2) = (2(s2),Y (2(s2))) = 0. This implies
that Cp, is empty. In general, if there exists a Cl-curve w : [0,1] — M
with (w,Y) # 0 everywhere, then there exists a unique orientation pre-
serving reparametrization W of w such that (W, Y) is constant. Namely,
W = wo o1, where o : [0,1] — [0,1] is given by:

o(r) = ( /0 1<w,y> ds) /O (i, V) ds.

If M is non contractible, we prove the following multiplicity result for
geodesics joining two given points.

We recall that a vector field W on a differentiable manifold M is said to
be complete if its flow lines are defined on the entire real line.

-1

Theorem 1.3. Suppose that Cp 4 is non empty and that f is pseudo—coercive
in Cpq. Then, if Y is complete and M is non contractible there erists a
sequence {zn}ne of spacelike geodesics between p and q in M such that:

i £n) = o0

We also prove a multiplicity result for timelike geodesics. We introduce some
notation needed to state it.

Suppose that Y is complete. Then, for every point ¢ € M, we denote by
Yq : R +— M the maximal integral curve of Y satisfying v,(0) = ¢g. The
curve 7y4(t) is interpreted as the worldline of an observer through the event

q.

Theorem 1.4. Suppose that M is non contractible and thatY is complete.
Assume the existence of co < 0 and to > 0 such that |t| > to implies that
Coa(t) 7 0 and it is co-precompact. If n[p, 7q(t)] denotes the number of
timelike geodesics joining p and ~4(t), it is:

(1.9) {tlgrfwn[p, Y4(t)] = +o0.

From Theorem 1.4 and Remark 6.2 it follows easily that, under the
hypotheses of Theorem 1.4 it is:

lim n[’yp(tl),’yq(tg)] = 4-00.

[ta—t1|—+o00
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Theorem 1.2, Theorem 1.3 and Theorem 1.4 extend the non intrinsic
results obtained in [6] and [8], where it was assumed that M had a global
space—time splitting. Our intrinsic coercivity condition is more general than
the one used in the above mentioned papers (see Appendix A).

We would also like to point out that, to avoid lengthy computations,
in this paper we have omitted to treat the case of a subset with convex
boundary, as it was done in [8]. Nevertheless, also this case can be treated
using our intrinsic estimates and the penalization argument of [8], and it
is not too difficult to prove that the results of Theorems 1.2, 1.3 and 1.4
remain true if one replaces M with an subset of M with smooth convex
boundary.

The paper is organized as follows. In Section 2 we introduce our analyti-
cal framework and in Section 3 we prove a variational principle for geodesics
in stationary manifolds, with the introduction of the Hilbert manifold N, 4,
which is the completion of C, ; with respect to the H L2 norm.

In Section 4 we show the boundedness properties of the functional J,
which is the restriction of the action functional f to Np 4, whose critical
points are geodesics in M. In Section 5 we prove the Palais—Smale condition
for J, and using classical techniques from Critical Point Theory we derive
the proof of Theorems 1.2 and 1.3. The problem of the multiplicity of
timelike geodesics is studied in Section 6, where we prove Theorem 1.4.
Finally, we present three Appendices to the work. In Appendix A we give
some examples of manifolds that satisfy the assumptions of the theorems
proven in the paper. In Appendix B we discuss the relations between the
pseudo-coercivity of f and the property of global hyperbolicity for M. An
example is given to prove that the global hyperbolicity does not yield the
geodesical connectedness for stationary Lorentzian manifolds. This was the
motivation for strengthening the property of global hyperbolicity with our
c-precompactness condition. In Appendix C, for the sake of completeness,
we collect a few elementary facts about the local structure of stationary
Lorentzian manifolds that were used in the course of the paper.

Acknowledgment. The authors are pleased to acknowledge the help
provided by Miguel Sdnchez, who suggested the counterexample presented
in Appendix B.
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2. The Functional Framework.
We use the auxiliary Riemannian metric (1.1) to define the main spaces
of our functional framework. We denote by dist(-, ) the distance function

on M x M induced by gr). We assume that Y is a smooth timelike vector
field defined in M.

Let p and g two arbitrarily fixed points in M. We will denote by Q;jg (M)
the space of H2-curves in M joining p and g:
Q;;g = Q},:z(M) = { z:[0,1] — M| z absolutely continuous,

20) = p(1) = q, /01<z, e ds < +oo} .

It is well known that Q},;Z(M) is an infinite dimensional Hilbert manifold
(see [14]); for zlg QL2(M) the tangent space Ty052 may be identified with
the space of H,“-vector fields along z:

TO42(M) = {¢ € HY([0,1],TM),¢(0) = (1) =0, {(s) € ToyMVs},

where H2([0, 1], TM) is defined as:

HY2([0,1],TM) = { ¢ :[0,1] — T'M :¢ absolutely continuous,
/Ol(v(z'R)C, V) @y ds < +O°} :

Observe that 7. zﬂ},ﬁ is a Hilbert space with respect to the norm:

1 ;
2.1) Il = ( [ 06,9096 ds)

For r > 1, we will denote by L"([0, 1], TM) the set of all r-integrable vector
valued functions on [0, 1] with values in TM:

L™([0,1],TM) = { ¢ :[0,1] — T M measurable :

¢l = (/01<C(8),C(8)>m) d8>% < +oo} :

[ME}
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Similarly, one defines the space L*([0, 1],TM) as the set of all measurable
maps ¢ : [0, 1] — T'M for which

[I€lloo = ess sup 4/(¢(s), {(8)) ) < +oo.

We say that a sequence ¢, in L"([0, 1], M) tends to 0 if ||(,]» converges
to 0 as n goes to infinity.
The action functional f on Q,l,:g(/\/l) is defined by:

1
(22) ) =3 [ a2 as

observe that, by (1.2), it is |(2,2)| < (2, %)), hence the integral in (2.2)
makes sense for z € Qp2(M). The action functional is smooth on Qpra(M),
and its differential is given by:

1
(23) £l = / (2,V,¢) ds,

for every ¢ € T, 2(M). Its critical points are smooth curves that satisfy
the equation (1.3), hence they are geodesics.
We write f as the sum f = f; + f2 of two smooth functionals defined on

Qg by:
(2.4)

1/t (2,Y)? 1 [ {(zY)?
i AN ot e A d —_ = ] )
a@ =5 [ (- e pe - [k
Using the wrong way Schwartz’s inequality, it is easy to see that fi(z) > 0

for all z € Q}Jﬁ. Observe also that f; is the energy functional relative to
a sub-Riemannian structure defined on Y1, the orthogonal distribution to

the vector field Y .
We denote by W the distribution on the manifold €2372(M) consisting of
vector fields parallel to the timelike vector field Y

25)  W={(z0)eTAM) | ¢(s) | Y (()) Vs € [0,1]}.

Since Y is smooth, it follows immediately that W is a smooth distribution
on Q;,l,;g(/\/l). We set I1(z, () = z the projection of W onto Qzl,jg(./\/l), and for
z € Q2 (M), W, will denote the subspace of T,Qp2(M) given by II~1(z).
We will denote by Hé’z([O, 1], R) the Hilbert space of of all functions
p: [0,1] — R of class H%? such that u(0) = u(1) = 0. Observe that
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the pair (z,() € TQ},;Z belongs to W if and only if { = p - Y (2) for some
€ Hy”([0, 1], R).
Finally, we introduce the space Np 4(M) of curves z in Q},;g(/\/{) such
that the the inner product (2,Y) is constant:

(2.6)
Npig=Npg(M)= {Z € Qzl,:g(./\/() (2(s),Y (2(s))) is constant a.e. on [0, 1]}

Observe that the curves in N, 4 have less regularity of the curves in Cpg.
Using standard arguments in Sobolev spaces, one sees that the set Cp 4 is
contained as a dense subset of NVp, 4. Thus, in the statements of Definition 1.1
and Theorems 1.2, 1.3, and 1.4 we can replace the space Cp 4 with N, 4. The
reason for introducing the space Np 4 is that it is the natural space for
obtaining the Palais—Smale compactness condition for the action functional.
The details of this fact will be discussed in section 5.

If Y is a Killing vector field, then N, 4 can be described as the set of
curves z € Qzl,;g such that the derivative f’(z) vanishes in the directions of

4%

Proposition 2.1. Suppose that Y is Killing. Then it is

(27) Npg = {= € Q2M) | P =0, V¢ew. ).

Proof. Let (z,(¢) be an element of W, with {(s) = u(s) - Y(2(s)) for some
arbitrary p € Hé’2([0, 1, R). Since Y is Killing, then (2,V/Y) vanishes
identically on [0, 1], hence

1
F2)g = /0 (3,V4(uY (2)) ds =
1
(2:8) = /0 (u(2, VY (2)) + 1/ (2,Y (2))) ds =
1
=/0 p'(z,Y(2)) ds.

The latter integral in (2.8) is null for every p € Hé’z([O, 1], R) if and only if
(2,Y(z)) is constant a.e., and we are done. O

We conclude the Section by proving a complementary result that shows
that the space NV, 4 can be described only in terms of the functional fs.
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The meaning of the following Lemma is that the functional f;, which
is the energy functional associated to a sub-Riemannian structure on M, is
really the spatial part of the action functional f.

Lemma 2.2. If (2,{) € W, then fi(2)[¢{] = 0.

Proof. Consider the functional g(2) = 4 01 %"’LY); ds. Let p € H&’z([O, 1, R)

and ( = p-Y. Since Y is Killing, we have:
(VeY,Y) = u(VyY,Y) =0,

and

<vz'c’ Y> = :U'/O/’ Y) - <é’ VCY>
We compute the Gateaux derivative ¢'(2)[¢] as follows:

()Y = /0 Lz Y)Y, Y)[(V:(Y) JZ lizg;)/)] —GBYVYY) |

1
29) = /0 W3 Y)Y, ds.

Considering that fi(z) = f(z) — g(2), from (2.8) and (2.9) we obtain the
thesis. O

From (2.7) and Lemma 2.2 we obtain immediately the following charac-
terization of the space NVp4:

Corollary 2.3. N, , = {z €O} (A =0, ¥ eW.}. O

The restriction of the action functional f on N, will be denoted by J:

(2.10) J=f

Np,q

For ¢ € R, we denote by J¢ the c-sublevel of the functional J in N, 4:
(2.11) J={ze Ny J(z) e

We will show in section 3 that the set N, , has the structure of an
infinite dimensional C?-manifold, and that the set of critical points of J
in Npq coincides with the set of critical points of f in Q;jg. Moreover, in
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section 4 we prove that, under the hypothesis of Theorem 1.2, the functional
J is bounded from below on N 4.

3. A Variational Principle for Geodesics.

With the aim of proving a variational principle for geodesics, we need to
show the regularity of the manifold N, 4. This is done in the next:

Proposition 3.1. The set N, is a C2-submanifold of Qpe.

Proof. By definition, it is
Nog={z€ Q},zg : (2,Y(2)) is constant a.e. on [0,1] }.

and so we can write Np 4 as the inverse image:

Nog=F71(0),
where
F. Qzl,;g — LZ([O, 1],R)
(3.1) z+— (2,Y(2)),

and C is the regular submanifold of L2([0,1],R) consisting of all functions
which are constant almost everywhere on [0, 1].

The map F of (3.1) is of class C2, and its Gateaux derivative is easily
computed as follows:

(3-2) F'(2)[] = (Vs(, Y (2)) + (£ VY (2)),

where z € Oy, ¢ € T, and V.Y (2) is the covariant derivative of ¥
along the vector field .

By a generalization of the Implicit Function Theorem (see Proposition 3.I1.2
of [10]), in order to prove that N, 4 is a regular submanifold of Q},jg it suffices
to show that the composite map:

(3.3)
1,052 29 1 L2(0,1), R) — Ty L2(0, 11, R)/ Ty C,
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is surjective3, where 7 is the quotient map. This amounts to say that, for
every z € Np 4 and h € L?([0,1],R) the equation in (:

(3.4) F'(2)[¢] = h + const.,

can be solved in Tzﬂi,l,;g. In order to prove this, we fix z € N4, h €
L2([0,1],R), and we consider the equation (3.4). We set

((s) = u(s) - Y(2(s)),
for some p € HY2([0,1],R), with x(0) = u(1) = 0, so that ¢ € T,Qb2.
Substituting ¢ in (3.4), and considering that, since Y is Killing, it is:
(2, V(Y (2)) = - (3, VyY(2)) =
(3.5) = —p-(Y(2), VsY (2)),

we obtain the equation:

(Vs(, Y (2)) + (2, VY (2)) = 1 - (Y(2), Y (2)) +
+1-(VsY(2),Y(2)) — - (VsY (2),Y(2)) =
(3.6) — (Y (2),Y(2) = h+ C,
where C is a constant. Since (YY) < 0, we can always solve (3.6) for u by
setting:

o) = s h(r)+C -
0= || e ey
and clearly p(0) = 0. Moreover, choosing

k) )
°=- |, wem.veom ¥
we also have p(1) = 0, and we are done. O

Using again the Implicit Function Theorem, we can easily characterize
the tangent space T,Np ¢:

Corollary 3.2. For z € N, g, the tangent space TNy 4 is identified with
the set:

T Npq = {g € Tzﬂézg 1 (Vs(, Y (2))+(2, VY (2)) is constant a.e. on [0, 1]}

3observe that, in the case of a Hilbertian manifold, the splitting condition on
the Kernel of the differential of F' is always satisfied.
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Proof. By the Implicit Function Theorem, T,Np, 4 is identified with the set
of all ¢ such that F'(2)[¢] € Tr(;C. Then, the thesis follows easily from
(3.2) and the fact that Tp(,)C is identified with the set of constant functions
on [0,1]. O

Observe that, by (3.5), we also have:
T, Npq = {C € Tzﬂéﬁ :(Vs(, Y (2))— (¢, VsY(2)) is constant a.e. on [0, 1]}

As a corollary to Theorem 3.1, we get the following variational principle
for geodesics on stationary Lorentzian manifolds:

Theorem 3.3. A curve z € Q;;g is a geodesic in M if and only if z € Np 4
and z s a critical point for the functional J.

Proof. If z is a geodesic in Qpa, then (%,Y) is constant and z € N, ,.

Conversely, if 2 € N4 is a critical point for the functional J, then
f SZQ vanishes on all vectors ¢ € T,Qb2 of the form ¢ = p-Y, with p €
Hy*([0,1],R), and on all vectors { € T,N, . Hence, to obtain the thesis,
it suffices to show that the spaces {u-Y : pu € Hé’Q} and T;Np 4 span the
entire TZQ},;Z, i.e., that every ¢ € TZQ},ﬁ can be written as:

(3.7) ¢=p-Y(2)+

where f is in T,Np 4 and p € H&’Q([O, 1],R). To prove this, we consider an

arbitrary ¢ € TZQ},;g and we search a function p € H& 2 such that the vector
field:

{=C—p-Y(2)

belongs to T,N, 4. By Corollary 3.2, since Y is Killing, this means that u
has to satisfy the differential equation:

(3.8) — 1 (Y (2),Y(2)) +(Vs(, Y (2)) = (¢, VsY (2)) = C,

where C is constant. Since (YY) < 0, we can solve explicitly (3.8) by
setting:

VLY () — (VY () — C
(3.9) uo) = | (), Y @) ar
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Clearly, (0) = 0. Moreover, setting:

(3.10)
([T VLY@ -GV @) N ([P ds N\
o- (| “mver o) (] vover)
we also have p(1) = 0 and the proof is concluded. O

4. The Lower Boundedness Condition for J.

The aim of this section is to prove that, if AV}, 4 is c-precompact for some

¢ > inf J, then the functional J is bounded from below.
p,q

For z € N, 4, we denote by C, the constant:
(4.1) C,=(2Y).
We start with a basic Lemma:

Lemma 4.1. Let ¢ be any real number. If Np 4 is c-precompact, then there
exists a positive constant D such that |C,| < D for all z € J°.

Proof. Let {z;}ne C J° be a maximizing sequence for the quantity |C,|,
ie.

lim |C,,| = sup |C,|.

n—oo zeJc
We want to prove that C, is bounded. We assume, by the c-precompactness,
that z, is uniformly convergent to a curve z € Q,l,;g. In particular, the
sequence zj, is eventually contained in a compact neighborhood V of z([0, 1]).
Using the local structure of stationary manifolds (see Appendix C), we can
choose a finite number of local charts
N

k _k k k
(Uk,flfl,.’EQ,... ,(EN_l,t )Ig—l

where N = dim(M) > 2, satisfying the following properties:
(a) the Uy’s cover V;

(b) each coordinate system (z%,z%, ... ,xk . tF) is adapted to Y, i.e.,

Y = a%c in U, and, setting x* = (z¥ 2%, ... 2% _,), the metric g is
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given in these coordinates by:

(4.2)
g(xE I(E, ), (6,7)] = (€, E)o + 2(65(xF), &)or — B(F)7?,

where, 8 = (Y,Y), (-, -)o denotes the restriction of (-, ) on the spacelike
distribution generated by (%,1;, a_zE’ cee ——azg _1);

(c) max (s;llp(ék(xk),ék(xk)o> = Dp < +00;

(d) there exists a finite sequence 0=ap <ay < - < ap, = 1such that

eventually z,([ax_1,ax]) C Ui for all k = 1,2,...,m0 (because z, is
uniformly convergent).

Moreover, we denote by v and p two positive constants such that:

0<v<—({Y,Y)<pu<+oo, onV,

and we set:

A= sup [tF(m1) —tF(ma)], A =max(A).

my,ma€U

We use these coordinates and, for n sufficiently large and s € [ax_1, ag), we
write z,(s) = (x£(s),t5(s)) and Y = (0,1). Since (2,,Y) is constant, for
s € [ag—1, ax] we have:

Czn = ('é'm Y) = ((Xfutfz)a (07 1)) = (5k7k7l-cz>0 - ﬂtfn

hence:

ag ag k <ok _
dfl = tﬁ(ak) - tﬁ(ak_l) = / t]:l. ds = / w—’x_n)ﬁi.&ﬁ ds.
1 ak—1

ag—

Tt follows that, for every k, C,, can be written as:

oun ([ Ea-a) ([ %)

Observe that, for every n and k, it is:

| < A.
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It follows immediately that, for every k = 1,2, ... , ng, we have:

1)0#
4.5 Co| £ — xk xkyods 4+ —————
45 ol [T i hods+ SE—

In order to prove the Theorem, we need to show that the integral

(46) |7 Jodxthoas

is bounded for at least one value of k. We will indeed show that the integral
(4.6) is bounded on n for every k.
From (4.3), we compute as follows:

/ak (2n, 2n) ds :/aak ((Xﬁ,xn)0+2(§ )0 tﬁ (t ) ) ds =

ak—1

ak k o k\2 02
(4.7) = /a - ((x,’z,x,’z)oJr 0 ’;;">° - ﬁ") ds.

Substituting (4.4) in (4.7), we obtain:

/i (o ) ds=/aai (xn,xn)ods-;—/aaf %dH
— (/aai %>—1 (/aai %ds)zﬂ_

o a(DE) (L)
- ([ %) N

From Schwartz’s inequality, we have:

([ i) < ([ i) ([ &)
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and substituting in (4.9) we obtain:

ak ag
/ (2n, 2n)ds > / (xn, Xn>0 ds +

k—1 ag—1

NEERGES “ ds\ "
(4.9) +2dn</ak_1 5 ®)<thﬁ) +
-1
_ge [T
(@) (/ ﬁ) -

Finally, summing (4.10) over k, we obtain:

(4.10)
c>/ Zny 2n) ds > / %*Vods — E - / \/ (Xk,xk)ods — F,
Z A — 1 Z Ak—1 "

where E and F are easily computed in terms of u, v, A, Do and the a;’s. It
follows that the integral (4.6) is bounded for all k, which proves the Lemma.
O

Remark 4.2. Let c be a real number. If the manifold NV 4 is c-precompact
then there exists a compact subset K of M that contains the image z([0, 1])
of every curve z € J°. In particular, if Np, 4 is c-precompact, then there exist
two positive constants v = v(c) and p = p(c) such that, for every z € J¢
and every s € [0, 1]:

(4.11) 0<v<—=(Y(2(5)),Y(2(s) <
We are ready to prove the lower boundedness condition for J:

Proposition 4.3. Suppose that Ny q is c-precompact for some ¢ > inf J.
P,q
Then, the functional J is bounded from below in Np 4.

Proof. Let z, be a minimizing sequence for J in J¢. By the c-precompactness,
the image of all the z,’s are contained in a compact subset of M. By the
definition of g,, we have

J(z)—/l(z' )y ds + 2C2 /1 ds _» _2Zee
n) — 0 ny “#n/(R) Zn o (KY)_ v Zn"*
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The conclusion follows immediately from the fact that C,, is bounded, as it
was proven in Lemma 4.1. O

5. Proof of Theorems 1.2 and 1.3.

In this section we will prove Theorem 1.2 and Theorem 1.3, using stan-
dard arguments for functionals satisfying the Palais—Smale condition.

We recall that if (X, k) is a Hilbertian manifold and F : X — R is a
Cl-functional on X, then F' is said to satisfy the Palais—Smale condition at
the level c € R if every sequence {z,},e C X satisfying:

(PS1), lim F(z,) =c,
(PS2). lim ||F'(z,)| =0,

has a subsequence converging in X. The norm || - || used in (PS2) is the
operator norm of F’(z,) in the Hilbert space T:, X.

A sequence z, in X that satisfies (PS1), and (PS2). will be called a
Palais-Smale sequence at level ¢ for the functional F'.

We will use the following notation. If z : [0,1] — M is an absolutely
continuous curve and 8 € L([0,1],TM) is a vector field along z, then the
covariant integral of 3 along z, denoted by B = [_f, is the (unique) vector
field along z that satisfies the initial value problem:

V:B =03, B(0)=0.
We need the following elementary result is semi-Riemannian geometry:

Lemma 5.1. Let K be a compact subset of M. Suppose that z is an
absolutely continuous curve in K, with 2 € L'([0,1],TM), and that
B € LY([0,1],TM) is a vector field along z. Then, the covariant inte-
gral B = [ f8 of B along z is in L°°([0,1], T M), and there ezists constant
M = M(K) such that:

(5.1) I1Bllso < 1181l - ™ 1411,

Proof. Since K is covered by a finite number of charts, using local coordi-
nates, we can assume that M is an open subset of RY. We denote by |-
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the Euclidean norm. The vector field B is the solution of the initial value
problem:

52) SB=-T()[B+5, BO)=0,

where

I‘(z(s))[-, ] : TZ(S)M X TZ(S)M — TZ(S)M

is the bilinear map given by the Christoffel symbols {Ffj} of the Lorentzian
metric g.
Integrating (5.2) on [0, s], we obtain:

B(s) = /Osﬁdr _ /0 T(z)[2, B dr,

hence

1 s
(5.3) IB(s)| < /0 16l dr + M /0 14/ |B|dr,

where M is the maximum of the norm of the operator I' on K. Applying
Gronwall’s Lemma to (5.3), we obtain:

1 .
B < [ 1glar- S e,
0
which gives (5.1). O

Remark 5.2. Suppose that {z,} is a sequence of absolutely continuous
curves having image in a fixed compact subset of M, and with ||Z,||:
bounded. Suppose further that (3, is a sequence of vector fields along the
zy’s that tends to 0 in L*([0,1],TM). From Lemma 5.1 and its proof it
follows that the sequence By, = [, [, converges to 0 in L*([0, 1], TM).

We are ready to prove the Palais—Smale condition for the functional J:

Theorem 5.3. If N,  is c-precompact, then J satisfies the Palais—Smale
condition at every level ¢ < c.

Proof. Let’s fix ¢ < c and let z, be a Palais-Smale sequence at level ¢.
Arguing as in Proposition 4.3, we see that z, has a subsequence (denoted
again z,) that converges weakly to some z € 57, We now use the fact
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that J'(z,) is infinitesimal to prove that the convergence is strong. Let
Cn €T, Q},;g be any sequence which is bounded in H%2([0, 1], TM); recalling
(3.7), we set _

Cn = pin - Y (20) + G,

where p = up is given by (3.9) and (3.10), while G € Ty, Npq. From (3.9)

and (3.10) it follows easily that also ¢, is bounded in H:2([0, 1], TM), hence:
! > ! *

(5.4) nh_)n;oJ (z)[C) = 1}1_)n010/0 (2n, V3, (n)ds = 0.

Moreover, since (%,,Y) is constant and Y is Killing it is:

(5.5)
1 1 1
/ (2n, Vs, (pn - Y))ds = / pn(2n,Y)ds + / Un{zn, Vs, Y)ds = 0.
0 0 0

Putting together (5.4) and (5.5), we obtain:

1
(5.6) Hm [ (%, V:,G)ds =0, VY, € T, Q2 bounded.

n—00 0

We isolate the following Lemma for future reference:

Lemma 5.4. In the above notations, there erists a sequence oy, in Tznﬂéjg
that tends to 0 in L2([0,1],TM) and such that:

1 1
(5.7) /O(én,Vz'nCn) d.s=/O (o, V3, G ds.

Proof. We denote by ©,, the vector field along z, which is the gradient
VJ(zy) of the functional J with respect to the Hilbertian norm || - || defined
by (2.1). By definition, we have:

1 1
| Vg ds= [ (9890, 986w ds
and, by (5.6), the sequence of vector fields
A, = V(;)@n

goes to 0 in L2([0,1], TM).
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Using the Christoﬂ?el‘symbols of the metric tensors g and gy, we can
express the Riemannian covariant covariant derivative V(z.lz)(n in terms of
the Lorentzian covariant derivative V; _(,. Then, we write

(5.8)
1 1
/ (An, vfé?(ft)(R) ds = / (An, Vs, o+ G(zn)[2n][¢nl) vy ds,
0 0

where G(2)[(1][¢2] is a bilinear functions in the variables (1,2 which is con-
tinuous in the first variable z. Using (1.1), it is immediately checked the
existence of two sequences By, and by, going to 0 in L2([0, 1], TM) such that:

(5.9) /01 (Amv(z?(n)(a) ds = /01 ((Bn, \RE (bn,gn)) ds.

Now, it is:
1 1
/0 (b Ca) ds = — /0 (f.. ba Vi G,

because (,(0) = ¢,(1) = 0. By Remark 5.2, it follows that [, b, tends to 0
uniformly, therefore (5.7) follows from (5.9). O

Going back to the proof of Theorem 5.3, we now consider the sequence
of vector fields

(5.10) Wi = Zn — O,
From (5.7) we get that w, is of class C! and that
(5.11) Vs, wn = 0.

The next observation is that the L2-norm ||w,||2 of wy, is bounded, because
l2nll2 is bounded and ay, tends to 0 in L?([0,1],TM). This implies, in
particular, that, for some sequence {s,} C [0,1], the sequence |wn(sn)] is
bounded, say:

(5.12) |wn(sn)| < co, VneN.

Once again, Gronwall’s Lemma applied to the differential equation (5.11)
and the boundedness condition (5.12) gives the existence of vo > 0 such
that:

|lwn(s)] < co - elo linldr v s e [0, 1].
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It follows that w, is bounded in L*°. From (5.10) it follows that 2, is
bounded in L?, and since z,(0) is fixed the sequence z, is uniformly bounded.
Writing equation (5.11) in coordinates, it becomes:

(5.13) wy, + D(2n)[2n, wn] = 0,

where I' is a continuous function in z, (that can be expressed using the
Christoffel symbols of g), which is linear in the arguments z, and w,. From
(5.13), we obtain that !, is bounded in L2, and thus wy, is bounded in H'2.

It follows that a subsequence of wy, still denoted by w,, is weakly con-
vergent in H12, and, in particular, w, is convergent in L?([0, 1], TM).

Therefore there exists a subsequence of z, that tends to z strongly in
Qg

By the L2-convergence, a subsequence of (z,,Y) converges pointwise
to (2,Y) almost everywhere, which implies that (z,Y) is constant a.e., so
z € Np 4 and the Theorem is proven. d

We prove now the completeness of the c-sublevels of J using the c-
precompactness condition:

Proposition 5.5. Let c € R be fized. If Np 4 is c-precompact, then J isa
complete metric subspace of Np g for all ¢’ < c.

Proof. It suffices to consider the c-sublevel. Observe that, since all the
curves in J¢ lie in a compact set (Proposition 4.2), we can assume that M
is complete with respect to the Riemannian metric ggy. This implies that
Q},q is a complete Hilbertian mamfold Let z, be a Cauchy sequence in
J¢. Then, z, converges to z in qu, and, up to passing to a subsequence,
we have convergence pointwise almost everywhere of (2,,Y) to (2,Y). This
implies that (2,Y) is constant a.e. on [0,1], so z € N, 4. Finally, by the
continuity of J, it is J(2) < ¢, and J¢ is complete. d

The Palais—Smale condition, the completeness of the sublevels and the
boundedness property of the functional J yield immediately the existence
of minimal points.

Proof of Theorem 1.2. It is a classical argument in Critical Point Theory.
Thanks to the Palais—Smale condition and the completeness of the sublevels
of the functionals J, if the infimum 4 of J on N, weren’t a critical value,
then it would be possible to find a homotopy between the sublevels J*~7 and
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J* where n > 0 is sufficiently small. This is clearly impossible, because,
for every n > 0, J=" = () while J**7 # (). Hence, J attains its minimum on
Np,q- From Theorem 3.3, any minimal point for J is a geodesic from p to g,
and we are done. g

With the aim of proving Theorem 1.3, let’s assume now that M is non
contractible, and such that N, is c-precompact for all values of the c.
The proof of our multiplicity result is based on the Ljusternik—Schnirelman
theory for Palais—Smale functionals. We recall that if X is a topological
space and B any subset of X, the Ljusternik—Schnirelman category cat x (B)
of B in X is the minimal number (possibly infinite) of closed, contractible
subsets of X that cover B. The Ljusternik—Schnirelman category of B in X
is a homotopical invariant, in the sense that catx (B) = catr(x)(F(B)) for
every continuous map F : X — F(X) which is a homotopy equivalence.

A well known result by Fadell and Husseini (see [7]) states that, if M is
non contractible, then the category of the space (p'a(M) is infinite.

We prove now that, if Y is a complete vector field, then there exists
a smooth map F : Qpa — A, which is a homotopy equivalence (see
Proposition 5.9). This implies:

(5.14) caty, ,(Np,q) = +oo.

Let’s assume that M is connected and that the vector field Y is complete.
The completeness of Y is satisfied, for instance, if M is complete with respect
to the Riemannian metric g, and if ¥ satisfies the boundedness condition
YY) ={{Y)n < p

We denote by 9(z,t) the flow of the vector field Y, i.e., for every z in
M, the curve t — ¥(z,t) is the unique integral curve of Y starting at z
when ¢t = 0. Since Y is complete, then 1) gives a map defined for all times ¢:

P: MXR+— M.

Now, fix p,q two arbitrary points in M and let z : [0,1] — M be any
smooth curve satisfying z(0) = p and z(1) = q. We define a curve w :

[0,1] — M by:

(5.15) w(s) = 9(z(s), p(s)),
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where ¢ : [0,1] — R is to be chosen in such a way that ¢(0) = ¢(1) =0
and such that (w(s),Y (w(s))) = C is constant on [0, 1]. Hence, we need:

(,Y (w)) = (de¥(z, §)[2] + dep(, $)¢, ¥ (w)) =
= (de¥(z,9)[2], Y () + ¢' - (Y (¢(2, 4)), Y (w)) =
(5.16) =,

where d, and d; denotes the differential operators with respect to the
variables = and t respectively. In (5.16) we have used the fact that
dgp(z,9) = Y (¥(z,¢)), which comes easily from the definition of flow.
Moreover, using the group property ¥ (v¥(z,s),t) = ¥(z,s + t), one sees
that dz9[Y (z)] = Y(w). Since d,¢ is an isometry, we have:

(5.17) (da9[2], Y (w)) = (d29[2], detp[Y (2)]) = (£, Y).

Remark 5.6. Observe that, since Y is Killing, the quantity (Y,Y") is con-
stant along the flow lines of Y, hence it can be computed indifferently on z(s)
or on w(s). This observation allows to omit the argument of ¥ whenever
there is no danger of confusion.

Putting together (5.16) and (5.17), we obtain that, in order for w to be-
long to NV, q, the function ¢ must satisfy the first order differential equation:

’_ C - <j3’ Y)

and the boundary conditions ¢(0) = ¢(1) = 0.

For every choice of the constant C, the initial value problem given by
(5.18) and the initial condition ¢(0) = 0 has a (unique) solution, which is
defined on the entire interval [0, 1], because the right hand side of (5.18) is
sublinear in z. If we set:

oo e=([5R) ([55)

an immediate calculation shows:

1
#(1) = /O ¢ ds =0,

and we are done.
Incidentally, we have proven the following:
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Lemma 5.7. Suppose that Y is complete and that M is connected. Then,
for every pair of points p,q € M, the sets Cp 4 and Ny 4 are non empty. O

We have indeed proven a slightly stronger result:

Proposition 5.8. Under the same hypothesis of Proposition 5.7, any curve

al2 . .
in Qplg is homotopic to a curve in Np 4.

Proof. If z is any C'-curve in M joining p and g, set

(5.20) H(o,s) = ¥(z(s),0 - ¢(s)),
in the same notations of (5.15). This gives a homotopy between z(-) =
H(0,) and w() = H(L,) € Npg. O

In the notations above, we can define formally an operator:
(5.21) F(z) = w,

where z € Qzl,;g and w is the curve given by (5.15).
The map F is a homotopy equivalence between the spaces Q}.jg and N, 4.
This fact and other properties of F are collected in the next:

Proposition 5.9. The map F : Q},;g — Np,q 1s smooth, and it is a strong
deformation retract. Moreover, it is:

(5.22) J(F(z)) > f(=z),

where the equality sign holds if and only if x € Npq.

Proof. The smoothness of F follows easily from standard theorems on
smooth dependence on the data for the ordinary differential equation (5.18).
The map F is the identity on NV}, 5. In fact, observe that, if (z,Y (z)) = C
is constant, then ¢ = 0 is the (unique) solution of (5.18), with ¢(0) = 0.
Then, 7()() = (z(),0) = 2().
The map H : szg x [0,1] — Q},jg given by:

H(z,0) = wy, we(s) = H(o,s),

where H is defined by (5.20), gives a homotopy between the identity map
1,2 . .
on ¢ and F. Hence, F is a strong deformation retract.
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To prove (5.22), recall (5.15), (5.18) and (5.19), and consider that d
is an isometry and dz%(z, t)[Y (z)] = Y (¢(z,t)). Setting w = F(z) and we
compute directly:

(), ) — (&, &) = 2¢'(,Y) + (¢)2(Y,Y) =

_ (b e ) () = @2
YY) '

Integrating on [0, 1], we obtain:

5.23

(2)‘] _( &Y, 27t ds \7! L@, Y)?
we-1en= ([ o) ([ wa) -/ G

Hoélder’s inequality tells us that

(5.24)
. 2 .
(o) < (] o) (] o)
and substituting in (5.23) gives
J(w) — f(z) > 0.

Moreover, the equal sign in (5.24) holds precisely when (z,Y’) is constant,
i.e. when = € Ny 4. This concludes the proof. a

The proof of Theorem 1.3 is based on the following result of the classical
Ljusternik—Schnirelman theory on infinite dimensional manifolds (see e.g.
[11, 12)):

Theorem 5.10. Let M be a Hilbert manifold and F : M — R be a C?-
functional on M. Suppose that the following hypotheses are satisfied:

(1) F is bounded from below;

(2) for allc > inf F, F satisfies the Palais—Smale condition at the level c;

(3) for all ¢ > inf F', the sublevel F° is a complete metric subspace of M.

Then, there exists at least catpr(M) critical points of F' in M. Moreover,
if catpr(M) = +o0, there erists a sequence x,, of critical points of F' in M
such that:

lim F(z,)=supF. O
n—00 M
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Using Theorem 5.10, we can now prove Theorem 1.3:

Proof of Theorem 1.3. We show that the functional J satisfies the hypothesis
of Theorem 5.10.

By Proposition 3.1, Ny 4 is a Hilbert manifold and J is a C?-functional on
Np,q- By the pseudo-coercivity of J, Proposition 4.3 says that J is bounded
from below, and Theorem 5.3 gives the Palais—Smale condition for J at every
level c € R.

The completeness of the sublevels J¢ is proven in Proposition 5.5.

In order to conclude the proof, we only need to show that J is unbounded
from above in Np4. From Proposition 5.9, it suffices to show that f is
unbounded from above in Q},;g. To prove this, we use local coordinates as in,
the proof of Lemma 4.1 (see also Appendix C). We assume, without loss of
generality, that M = U x]a, b[, where U is an open subset of RV=1, and, in
the coordinates x = (z1,...,2ny-1) € U and ¢t €|a, b] the metric g is written
as in (4.2). We can also assume that the vector field § and the scalar field
B are bounded in U x]a, b[. If we fix two points p = (o, to) and ¢ = (x1,%1)
in Ux]a,b], we choose a smooth function ¢ : [0,1] ——]a, b[ with £(0) = to
and ¢(1) = t;. We can find a sequence of smooth curves xi : [0,1] — U,
k > 1, joining xg and x1, such that (xj,Xx)o diverges uniformly on [0, 1] as
k — oco. Setting 2z, = (xx,t) € Qzl,}g, since § and (8 are bounded it follows
immediately that kli—»IEo f(z) = 400, and we are done. O

6. Multiplicity of Timelike Geodesics.

The purpose of this Section is to prove Theorem 1.4. We will assume
henceforth that all the hypotheses of Theorem 1.4 are satisfied.

We will work with the spaces Npﬂq(t), and, with a slight abuse of nota-
tions, we will denote by J the restriction of the action functional f on each
of them. To avoid confusion, for every c,t.€ R, we will denote by J¢ ﬂ./\fp,,yq(t)
the c-sublevel of the functional J in AV, ().

For all ¢ € R, we define a map £; between the spaces N4 and N, )
as follows.

For z € N, 4, let C; denote the constant (z,Y), and £;(x) = w the curve:

(6.1) w(s) = P(2(s), ¢e(s)),
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where 9 (-, -) is the flow of Y, and ¢; is the function:

(6.2) ¢i(s) =1- (/01 @f%)_l /0 (yf,l;')'

Since ¢¢(0) = 0 and ¢y(1) =1, it is clear that Li(z) € O .
using the fact that d e is an isometry, d;9[Y (z)] = Y (w) and dyp =Y, we

compute directly:

Moreover,

1 ogr \7!
(w,Y)=(dz¢[¢],Y>+¢i'<KY>=Cw+t'(/0 (;Y)) '

So, the quantity

6.3) sz(w,Y)=Cx+t.</01 (;;>)—1

is constant and Ly(z) € Ny, (1)-
The map L; satisfies the following properties:

Proposition 6.1. Let t be a real number and L; : Np g —— Ny ) be the
map described above. Then, the following are true:

(1) L is a bijection,
(2) L; is a map of class C?;
(3) for all compact subset B C Npq it is
lim sup J(£i(z)) = —o0.

[t|=+oo zeB

Proof. For part (1) it is enough to observe that, since 7, ()(—t) = ¢ and the
quantity (Y,Y) is constant along the flow lines of ¥, then the map

Fot: Np(ty — Npag

is an inverse for £;.
For part (2), observe that, from (6.2), ¢: depends regularly on z.
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For part (3), we denote by w = £L(z). Using (6.2) and (6.3) we compute
J(w) as follows:

1
= 5 [ (el detla] +261(dali], Y) + ()Y, 1)) ds=

1
=1 [ (@) 20000+ (020 7) do =
0 ¥
1 1 .. CgU—Cg 1 ds _
25/0 (CB,:E)dS-|— ) ‘/0 <KY>_

c2 -2 [t ds

If B is a compact subset of NV, 4, then there exist positive constants D =
D(B), pu = u(b), and v = v(B) such that for all z € B it is |Cz| < D and
—p < (Y (z(s)),Y(z(s))) < —v. Hence, from (6.4) we obtain:

D? (C?
<cd - W,
J(w) <c+ 5 2

In order to conclude the proof, it suffices to show that C,, = Cy(z,t) can
be made arbitrarily large as |t| — 400, uniformly in z. This follows imme-
diately from (6.3), that gives:

4
Cul 210 [ s~ 102

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Since M is non contractible, a well known result of
Fadell and Husseini (see [7]) says that there exists a sequence {K,}ne of
compact subsets of () g such that:

lim catqr, 2(Kn)

n—oo

Let F : qu — N, 4 be the strong deformation retract described in Sec-
tion 5, and consider the compact subsets of NV, 4:

K, = F(K,), neN,
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Since F is an homotopy equivalence, then:
caty,  (Kn) = catgre (Kp) — +o0.

Let cg < 0 and ¢y > 0 be chosen as in the statement of Theorem 1.4 and fix
¢ < cp. From part (3) of Proposition 6.1, it follows that, for every m € N,
there exists a positive number ¢ = #(m) > to such that the first m elements
of the sequence:

L(Ky), L(Ka), ..., Li(Km)

are contained in the sublevel J° NN, ) for all ¢ with [¢] > %.
For every t € R, since £; : Np g — j\/pﬁq(t) is a homeomorphism, then

Li(K;) is a compact subset of Ny, (t) and
catyr, o (LK) = cata, o (Ki), i=1,2,...,m.

Let M(m) = max{cat,\/mq(t) (Li(K;)) =i = 1,2,...,m}. Clearly, M(m)
tends to +o0 as m — +o0.

For j € N, we denote by A;(j) the set of closed subset of ./V;,wq(t) with
Ljusternik—Schnirelman category greater or equal to j. A classical minimaz
argument in Critical Point Theory for Palais—-Smale functionals (see e.g.
[11]) show that, for j =1,2,..., M (m), the numbers:

cj Aelfﬁtlf(j) [21613 J(:c)} <c<0,
are critical values for J on ./\/p,,yq(t). If the ¢;’s are not all distinct, and there
exist ¢ # j such that ¢; = c;, then there are infinitely many critical points
for J at the level c;. If they are all distinct, then there are M (m) distinct
critical points for J. Hence, if [t| — +o00, the number of timelike geodesics
in Ny, () is arbitrarily large, and we are done. O

Remark 6.2. It is easy to check that, for all ¢ € R, the map G; :
Noy(—t),q = Nppg() defined by Gi(z) = w, with w(s) = ¥(z(s),t) satis-

P
fies the properties:

(a) G: is a bijective isometry;
(b) J(G(x)) = J(x), for all x € N, (_p)q-

It follows immediately that if f is c-precompact in -szq(t)> then it is c-
precompact also in NV, (_)q-
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A. Examples and Remarks on the Hypotheses
of Theorem 1.2.

The primary goal of this section is to give examples where the hypotheses
of Theorems 1.2 , 1.3 and 1.4 are satisfied.

We recall that the Lorentzian gradient V¥ of a smooth real function
VU defined on (an open subset of) M is the vector field VU defined by the
relation d¥(z)[v] = (V¥(z),v) for all z and all v € T, M. A smooth function
is said to be a time function if its gradient is timelike everywhere.

In this Section we will assume that M is the domain of a smooth time
function T satisfying:

(A1) (VT,Y) = 1.

It is easy to see that such a time function T always exists locally (see Ap-
pendix C, (C.8)). Observe also that the condition (A.1) is equivalent to:

(A.2) T((z,t))=T(z) +t, YzeM,teR,

which means that the flow lines of the vector field Y are parametrized by the
time function T'. Observe also that, if Y is complete, then a necessary and
sufficient condition for such a function to exist is that M admit a spacelike
surface ¥ that intersects exactly once all the flow lines of Y.

We denote by Ag = VTL the orthogonal distribution to the vector field
VT on M. Equivalently, A is the integrable distribution on M given by the
tangent spaces to the spacelike surfaces T' = Tp. By (A.2), these surfaces are
preserved by the flow of Y, hence Ag is a Y-invariant, integrable spacelike
distribution of codimension 1 on M.

We now fix some notation needed to introduce the concept of spatial
sublinear growth for vector fields on M.

We denote by T the spacelike hypersurface of M given by T~1(0); we de-
note by dy, the Riemannian distance function on ¥ induced by the restriction
of the metric of M on X.

Since ¥ intersects exactly once the flow lines of Y, then, for every point
x € M it is well defined the projection P(z) of z on X, given by:

P(z) = Z Ny,

where ; is the maximal integral curve of Y through z. Finally, we introduce
the spatial pseudo-distance function d, on M, given by:

d (20, 1) = dn(P(x0), P(z1)).

Roughly speaking, d, measures the distance between the flow lines of Y.
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Definition A.1. A function b : M —— R is said to have spatial sublinear
growth on M if there exists pg € M, a constant a €]0, 1] and two constants
A, B € R such that, for all z € M it is:

(A.3) Ib(z)] < A - do(x, po)* + B.

A vector field W on M is said to have spatial sublinear growth on M if, for
every x € M and every £ € (Ay); it is:

for some function b having spatial sublinear growth on M.

Obviously, since a €]0, 1], the choice of the base point pg in (A.3) is purely
formal.

We give the following integral characterization of the spatial sublinear
condition for a vector field W:

Lemma A.2. Let z : [0,1] — M be an absolutely continuous curve, and,
for almost every s, set 2(s) = £(s)+A(s) Y (2(s)), where {(s) € (Ao),(s) and
A(s) € R. If W is a continuous vector field having spatial sublinear growth
on M, then there exists a continuous function x : RT —— R*, depending
only on the initial point z(0), such that:

(A4) [wmias<x ([ Viegas),

where x(r) has order of infinity less than 2 for r — +oo, i.e.,

lim sup &;) = 0.
r—4oo T

Proof. Let = denote the projection of z on X, i.e., z(s) = P(z(s)) for all s.
Since Y is Killing, it is:

(&(s), 2(s)) = (€(s),&(s)), for almost all s.

By the spatial boundedness of W, we can assume without loss of generality
that
(A.5)

(W (2(5)),£(s))| < [A - do(2(s), 2(0))* + B] - v/(£(5),£(5)),
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for some real constants A, B and some « €]0, 1[. Moreover, from the defini-
tion of d,, we have:

s 1
(A.6) do(2(s),2(0)) < /0 V&) dr < /0 V& & ds.

Integrating (A.5) on [0,1], using Schwartz’s inequality and substituting
(A.6), we obtain:

1
/ (W, &)]ds < A-r®t 4 B.p3,
0

where r = fol v/ (&,€) ds. This concludes the proof. O

The spatial sublinear growth for the vector field Y implies the c-pre-
compactness of N 4, as explained in the following Proposition:

Proposition A.3. Suppose that M is connected and complete with respect
to gy, and that Y satisfies the boundedness assumption (4.11 )in M. IfY
has spatial sublinear growth in M, then Np,q is c-precompact for every pair
of (p,q) and every c € R.

Proof. Let p,qg € M and c € R be fixed and set 9 = T(q) —T(p).

Let z € J¢ be a fixed curve; for almost all s we decompose the tangent
vector Z(s) as the sum of a vector £(s) in (Ao)2(s) and a multiple of Y (2(s)).
Recalling (A.1), an immediate calculation gives:

2(s) = £(s) + (2(), VT (2(5))) - Y (2(s)),  £(s) € (D0)y(s)-
Setting C, = (z,Y), we have
and, integrating on [0, 1], we obtain
T M ds ey
ﬁ—/()(z,VT)ds—C'z /0 A% /0 (Y,Y)ds’

which gives:

(A7) C. = (19+/01 éf,?) ds) . (/01 (Sf;))_l.
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Now, we write the product (2, z) as:

. 5 vy _CI
(A-8) (,2) = (£,€) - AR AsS

Now, using the Hélder’s inequality gives :

(/01 %‘%d) E (/01 %f?f ds) | (/01 (}fi,)) |

Then, integrating (A.8) on [0, 1] and using (A.7), we get:

(A.9) 1
202/0 (3,2)ds >

> [tegaea ([ )" [ arp ([ )7

Finally, using (4.11), from (A.9) we obtain:

1 1
(A.10) /0 (6,6)ds < A; - /0 (€, Y)|ds + By,

for some real constants A;, B that are independent from z. Since Y has
spatial sublinear growth, from Lemma A.2 it follows that the integral

/ (6,6 ds

is bounded independently of z, hence, by (A.10), also the integral

1
[ 1eviias
0

is bounded independently of z. From (4.11) and (A.7), it follows that |C,|
is bounded in the sublevel J€. Since

s S ds = J(2) — 20 [ %
Z,Z S = zZ)— 2z ’
\/0< >(R) () ‘/0 (KY)

is bounded, then the Ascoli-Arzeld Theorem implies that N, is c-pre-
compact. This concludes the proof. O
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As an example, consider the manifold M given by a global splitting Mg xR,
described by coordinates x € Mg and ¢ € R, where (Mo, (-, -)o) is a complete
Riemannian manifold, and Lorentzian metric g given by:

g%, B[, T), (&,7)] = (£,€)0 + 2(8(x),%) — B(x) T2, &€ TaMo, TER,
where § is a smooth vector field on Mg and B : Mg — R* is a smooth
scalar field. Let Y be the timelike Killing vector field (0,1) = 2. The
timelike vector field:

W(x,t) = L

5G9+ 809, 56 00 Y

is integrable (see Appendix C, (C.6)) and it is easily checked that (Y, W) = 1.
Here, the orthogonal distribution Ag = W+ is identified with the tangent
bundle of My, and, for (x,&) € T Mo, it is

(¥,6)% = (6(x),€)§ < (6(x),6())o - (€, €)o = (6(x),6(x))o - (£, £)-
Moreover, (Y,Y) = —f. In this case, if § is bounded from above and
bounded away from zero, and if ||6]lo = 1/(6(x), 6(x))o has sublinear growth
in Mg, then Y has spatial sublinear growth in M, and the hypothesis of
Proposition A.3 are satisfied. By Theorem 1.2, M is geodesically connected.
Thus, the results of [6] and [8] follow from ours.

We recall that a Cl-vector field W is said to be irrotational if its curl van-
ishes on the orthogonal distribution of W. The curl of W is the differential
dww of the dual form ww (v) = (W, v).

Remark A.4. Observe that, if M is static with respect to Y, i.e. the
Killing vector field Y is irrotational, then the orthogonal distribution of Y
is integrable (see Proposition 12.30 of [13]). In this case, the condition of
spatial sublinear growth is automatically satisfied by Y by taking Ag = YL,

Remark A.5. We emphasize the fact that the Riemannian complete-
ness for M assumed in Proposition A.3 is, in general, not related to the
Lorentzian completeness, nor to the geodesical connectedness of M. Some
examples that prove the logical inequivalence of these concepts may be found
in [2, 3].

B. Pseudo-Coercivity and Global
Hyperbolicity.

In this appendix we discuss some relations of the pseudo-coercivity prop-
erty and the global hyperbolicity for M. We recall the basic notions needed;
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our main reference for this part is the book by B. O’Neill ([13]).

A regular (absolutely continuous) curve « :]a,b[C R —— M is called
timelike (resp. lightlike, spacelike, causal) if 4(s) is timelike (resp. lightlike,
spacelike, causal) for all s €]a,b[ (almost everywhere in ]a, b[). A Lorentzian
manifold M is said to be causal if it does not contain any closed causal
curve. The manifold M is strongly causal if given any point p € M and any
neighborhood V' of p there exists a neighborhood U C V of p such that all
the causal curves with endpoints in U remain inside V.

For a pair p, g of points of M, the causality relation p < q¢ means that
there exists a future pointing causal curve from p to ¢. Two points p and ¢
are causally related if either p < q or ¢ < p. The relation p < ¢ means that
either p < q or p = q. The causal future J*(p) and the causal past T~ (p)
of p are the sets:

J*(p)={q€M:qu}, J‘(p)={q:q3p}-

Finally, the manifold M is said to be globally hyperbolic if it is strongly
causal and if, for every pair of points p,q € M the set JT(p) N T (q) is
compact in M. Equivalently, if M is strongly causal, then it is globally hy-
perbolic if for every pair of causally related points p < q and every sequence
z, of future pointing causal curves from p to g there exists a subsequence
Zp,, Which is uniformly convergent, up to a reparametrization.

Our pseudo-coercivity assumption implies the global hyperbolicity, as
proven in the following:

Proposition B.1. If f is pseudo-coercive on Cpq for all pairs p,q in M,
then M is globally hyperbolic.

Nevertheless, the global hyperbolicity is in general not sufficient to guar-
antee the geodesical connectedness, not even for stationary manifolds.

To see this, let’s consider the following example. Let M be the 4-
dimensional Minkowski space, with ¥ = % the timelike Killing vector field.
Take a non convex open subset A of the spacelike surface ¢ = 0, and con-
sider the Cauchy development D(A) of A, which is the set of points p in M
such that every past or future pointing, inextendible causal curve through
p meets A (see Definition 14.45 of [13]). The interior of D(A) is non empty,
as it contains A, and so by Theorem 14.38 of [13] it is a globally hyperbolic
manifold. Nonetheless, it is not geodesically connected, because two points
in A cannot joined by any geodesics contained in D(A).
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Proof of Proposition B.1. We assume that f is pseudo-coercive in N, 4 for
all p and ¢ in M. Suppose that the strong causality of M is violated; in
this case there exist a point p € M, a neighborhood V of p and a sequence
zpn : [0,1] — M of causal curves such that:

() pn = 2,(0) and ¢, = z,(1) tend to p as n — oo;
(b) z,([0,1]) N (M \ V) # 0 for all n.

Since zy, is causal, we can reparameterize each z, and suppose that (2,,Y) =
Cy, is constant for all n.
We can find two sequences of curves &, 2 : [0,1] — V, n € N, satis-
fying
1 — 171y — 200 — 2(1) —
2,(0) = p, € (1) = Pn, 23,(0) = gn, 2,(1) = g,

and such that 2! tends to O uniformly in [0,1], ¢ = 1,2. For instance, one
can take the minimal geodesics with respect to g, that join p with p, and
g, respectively.

Let y, : [0,1] — M be the junction of z, z, and z2, defined by
Yn(s) = zL(3s) if s € [0,1], yn(s) = 2,(3s — 1) if s € [3,2] and yu(s) =
22(3s —2) if s € [2,1]. Now, define w, = F(yn), where F : Qo — Ny
is the map defined in section 5. Notice that, since (2,,Y) is constant, then
wn(s) = 2z,(3s — 1) for s €]3, 2[.

Since £, is uniformly convergent to 0, by the construction of the map F
one sees that:

J(wp) < &p,

where €, is a sequence in R that converges to 0. By taking a re-indexed
subsegence, we can assume that J(wy,) < %

Finally, define Wy (s) = wp(ns—k) for s € [%, E:—l], wherek =0,1,... ,n—1.
By construction, it is W, € Npq and J(w,) < 1. But, by (2) above, w,
does not have any uniformly convergent subsequence, contradicting the 1-
precompactness of N, ,. Hence, M is strongly causal.

Now, fix any pair p and ¢ of causally related points in M and consider
any sequence z, of future pointing timelike curves in M joining p and gq.
Since (2,,,Y) < 0 everywhere, they can be reparameterized in such a way
that (2,,Y") is constant. As J(z,) <0, by the pseudo-coercivity {z,} must
contain a uniformly convergent subsequence. This implies that M is globally
hyperbolic and we are done. a
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C. About the Local Structure of M.

For the reader’s convenience, in this Appendix we collect a few results
about the local structure of a Lorentzian manifold that admits a timelike
Killing vector field, and that were used at some points during the rest of the
paper. We claim no originality of the results and the proofs presented, that
are mostly well known among specialists.

We assume that M is a Lorentzian manifold of dimension N > 2, and
that Y is a given timelike Killing vector field on M.

Since Y never vanishes on M, then for every point z € M there exists an

open neighborhood U, of z and a coordinate system ¢ = (z1,22,...,ZN-1,t)
on U,, such that Y is a coordinate field with respect to ¢, say:
3]
C.1 Y =—.

We set v = t. It is easy to prove that the Killing property of Y is expressed
by the fact that, in such a coordinate system, the coefficients g;; of the metric
g on M are functions that do not depend on the variable ¢:

Lemma C.1. For every coordinate system (U, ) around z such that (C.1)
holds, the coefficients g;; are independent of the variable t.

Proof. 1t is a simple calculation that uses the properties of the Levi—-Civita
connection of g. Namely, for every 7,5 € {1,2,...,N} it is

09 _ ﬁ(i i)
ot o ot 3(131', 8£l:j
o 0 0 0
=V om o5 T am Véas, T
9 6 0 0 0
o; Ot Bzcj> ot’ Oz;’ Oz
0 0 o 0 0
(C.2) + <8_:ci’v%_3—t> + {55 [5; 5@])

= (v ) +

Since the %’s are coordinate fields, then [a%i, %] = [%, %] = 0; moreover,

by (1.6): 5 s 5 5
iR

Ve an T am Ve =Y

which gives 35;" = 0 and concludes the proof. ]
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For every coordinate system (U, ¢) such that (C.1) holds, the surfaces
t = const.

are transversal to Y'; it is clear that for every point we can choose such a
coordinate system such that these surfaces are spacelike,* i.e. such that the
restriction of the Lorentzian metric ¢ on them is positive definite. Such a
coordinate system is said to be adapted to Y .

It should be remarked that, differently from the situation studied in [6],
[8] and [11], in our setting ¢ is not a globally defined time function.

Then, M can be written locally as a topological product ¥x]a, b[, where
Y is a spacelike hypersurface parametrized by coordinates =1, zg,...,zN_1,
and ]a, b[ is an open interval of R. In coordinates x = (z1,... ,zN—1) and
t €]a, b], the metric g is written as:

(C.3) 9%, D7), (6, 7)) = (€, €)o + 2(8(x), E)o — B(x)72,

where (§,7) € Tz X X R, (-, -)o is the (positive definite) restriction of g to X%,
6 is a smooth vector field on X given by:

§(x) = Go(x) ™! - 6(x),

where

B N-1 P
o(x) = Z giN (x) 9z,
i=1 t

Go(x) is the (N — 1) x (IN — 1) matrix:
Go(x) = (9:5) 5=t

and [ is the smooth scalar field on ¥ given by:

B(x) = —(Y,Y) > 0.
Using the definition (1.1) of g, it is easily computed:
(C.4)

2
g(R)[(§7T)’ (5, T)] = <§’ €>0 + E(x—)

“for instance, one can take an arbitrary coordinate system (U, () such that
(C.1) holds, choose a smooth function S(z1,zs,...,zN_1) such that the graph
zy = S(x1,...,2Ny-1) passes through 2z and is a spacelike hypersurface ¥ in M,
then foliate a neighborhood of z using ¥ and the flow of Y.

<5(X), 5)(% - 2<6(X), f)OT + IB(X)TZ;
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moreover, for an absolutely continuous curve z(s) = (x(s), ¢(s)), the conser-
vation law (2(s),Y (z(s))) = C, is given by:

(C5)  (4(s), Y (2(s))) = (5(x(s)), k(s))o — B(x(5)) {(5) = C:.
Observe also that, in the metric (C.3), the gradient V¢ of the coordinate

function ¢ is given by:

1
(C.6) Vi= g 6D

A quick computation gives:
(C.7) (Vt, Vi) = = (B+(5,6)) 7" <0,
which says that t is a local time function; moreover

(C.8) (Vt,Y) =1.
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