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We prove a variational principle for geodesies on a Lorentzian ma- 
nifold M. admitting a timelike Killing vector field. Using this prin- 
ciple and standard techniques of global nonlinear analysis we es- 
tablish the existence of geodesies that join two fixed points of .M, 
under a suitable coercivity assumption on M. Whenever M is non 
contractible, we also get a multiplicity result for geodesies in M. 
joining two fixed points. 

1. Introduction. 

In this paper we consider the problem of the existence of geodesies that 
join two fixed point in a Lorentzian manifold. 

We will make a symmetry assumption on the metric of our Lorentzian 
manifold. Namely, we will assume that our spacetime possesses a 1- 
parameter group of (local) isometries, whose infinitesimal generator is a 
timelike vector field. Heuristically, this amounts to say that the coeffi- 
cients of our Lorentzian metric tensor are invariant by time translation (see 
Lemma C.l), and so our manifold is stationary with respect to a given ob- 
server field. Such a vector field is used to prove an alternative variational 
principle for geodesies, and this principle allows to reduce the search of 
geodesies to the study of the critical points of a smooth functional which is 
bounded from below. 

The class of stationary Lorentzian manifolds is reasonably large, and it 
contains examples that can be considered interesting both from a physicist's 
and from a mathematician's point of view. Among others, we would like to 
recall here the Schwarzsehild space-time, the Reissner-Nordstrom space- 
time and the Kerr spacertime. We refer to [9] for a detailed description of 
the mentioned examples and their physical interpretation. 

Martially supported by MURST 
Supported by CAPES, Processo AEX1697/96-0 

157 



158 Fabio Giannoni and Paolo Piccione 

Before stating the main results, we recall some basic notions of the 
Lorentzian geometry. The books [4, 9, 11, 13] are excellent references for 
a complete account of the theory and for all the background material as- 
sumed in this paper. A Lorentzian manifold is a smooth, finite dimensional 
manifold M, equipped with a (0,2)-tensor g of index 1. The bilinear form 
9(z)['i'] on TZM will also be denoted by {•, •) in the rest of the article. The 
points of the manifold M will also be called events. 

A vector v e TZM is said timelike (resp. lightlike, spacelike) if (v, v) is 
negative (resp. null, positive)', v is called causal if it is not spacelike. 

A Lorentzian manifold is said to be time-oriented if there exists a con- 
tinuous vector field Y on M such that Y(z) is timelike for all z e M. A 
timelike vector field defines the past and the future of a point z in M: a 
causal vector v 6 TZM. is said to be future pointing (resp. past pointing) if 
(v,Y{z)) is negative (resp. positive). 

Moreover, a timelike vector Y field on M allows to define a Riemannian 
metric <7(R) on M. by setting: 

(i.i) 
t^Y{x))^Y{x)) 

0(R)(*)[Cl,C2] = <Cl,<2}(R) = <Ci,C2> -2- (Y(x),Y{x)) 

for every x € M and every (1,(2 € TXM (see [1]).  Notice that, for every 
C € TZM, it is: 

(1-2) <C,C)(R)>I(C,C)|. 

A Lorentzian manifold M is said to be stationary if it admits a time 
orientation given by a Killing timelike vector field Y. We recall that a 
vector field Y on M is a Killing vector field if the Lie derivative Lyg of the 
metric tensor g is everywhere vanishing. Equivalently, Y is a Killing vector 
field if and only if the stages of all its local flows are isometries, i.e., if the 
metric tensor g of M is invariant by the flow of Y. 

A smooth curve z : (a, b) \—> A4 is a geodesic if it satisfies the differential 
equation: 

(1.3) Vii = 0, 

where V denotes the covariant derivative relative to the Levi-Civita connec- 
tion of the metric tensor g. 

Given an absolutely continuous curve z and an absolutely continuous 
vector field £ along z, whenever there is no danger of confusion we will 
denote by VSC the covariant derivative of £ along z, defined for almost all 5. 
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We also denote by V(R) the covariant derivative of the Levi-Civita con- 
nection of the Riemannian metric tensor g^R). 

The geodesies in M are stationary points for the action functional /: 

(1-4) f(z) = ±j\z,i)ds, 

defined on the set of all C1-curves z : [0,1] i—> M., with z(0) = p and 
z(l)=q. 

It is well known that if z is a geodesic in M., then there exists a constant 
Ez such that: 

(1.5) (z(s),z(s)) = EZi    Vs. 

A geodesic z is said to be timelike (resp. lightlike, spacelike) if Ez is negative 
(resp. null, positive). 

In this paper, we will often use the following well known characterization 
of Killing vector fields (see [13], Proposition 9.25). If X(M) denotes the 
space of all C1-vector fields on on M, then Y G X(M) is Killing if and only 
if for every pair Wi, W2 G X(M) it is: 

(1-6) (VWiy, W2) = -(Vw2Y, Wi). 

In particular, if z :]a, 6[i—> M is an absolutely continuous curve and Y is 
Killing, then 

(1.7) (z,V3Y(z)) = 0. 

This implies that, if Y is Killing, then for every geodesic z in M the quantity 
(z,Y(z)) is constant. We express this fact by saying that (z,Y) = constant 
is a natural constraint for geodesies. Our variational principle for geodesies 
is based on this conservation law. 

For some results concerning the structure of Lorentzian manifolds ad- 
mitting a Killing vector field see e.g. [16] and the references therein. 

A Lorentzian manifold M is said to be geodesically connected if, given 
any two points p, q G JM, there exists at least one geodesic z in A4 with 
endpoints in p and q. The geodesical connectedness for Lorentzian mani- 
folds is a problem much more delicate than in the Riemannian case, where 
the Hopf-Rinow theorem gives basically a full answer to the problem. To 
convince the reader on this point, it suffices to point out that there exists 
compact Lorentzian manifolds that are not geodesically connected (see for 
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instance [5, 15]). Even the geodesic completeness does not imply the geodesi- 
cal connectedness for stationary Lorentzian manifolds; a counterexample is 
given by the pseudosphere S™ of index 1 (see [4]). 

The main result of this paper is the proof of the geodesical connected- 
ness for a class of stationary Lorentzian manifolds, described by intrinsic 
assumptions. 

Before stating our main results, we need the following definition. Let p 
and q be fixed points in M, and consider the set of C1-curves in M joining 
p and q and such that (i, Y) is constant: 

(1.8) 
Cp,q = Cp^M) = {ze C^O,!], M) : z(0) =p, z(l) - g, (z9Y) = Cz} . 

Definition 1.1. Let c be a real number. The set Cpjq is said to be c- 
precompact if every sequence {zn}ne C Cp,q with f(zn) < c has a uniformly 
convergent subsequence in M. We say that the restriction of / to CM is 
pseudo-coercive if Cpiq is c-precompact for all c > inf /. 

The c-precompactness condition replaces the condition of completeness 
for Riemannian manifolds, allowing to obtain the following existence results 
for geodesies in M joining p and q. 

Theorem 1.2. Let p and q be two fixed events of M. Suppose that CPiq is 
non empty, and that there exists a c > inf / such that CPiq is c-precompact 

Then, there exists at least one geodesic in M joining p and q. 

In particular, if the hypotheses of Theorem 1.2 are satisfied for every pair 
of events (p, g), then M is geodesically connected. 

A class of examples of stationary Lorentzian manifolds satisfying the 
hypotheses of Theorem 1.2 will be presented in Appendix A. In Appendix B 
we show that, if / is pseudo-coercive on Cp^q for every pair of points, then 
M is globally hyperbolic. Moreover, we give an example to show that the 
global hyperbolicity in general does not imply the geodesical connectedness 
of stationary manifolds. 

Observe that the assumption that Cpi9 be non empty is non trivial. In- 
deed, it is in general not satisfied, as the following examples shows. Consider 
the punctured Minkowski space M = M3*1 \ {(0,0,0,0)}, with coordinates 
(xi,X2,X3,t). The vector field Y = Jj is timelike and Killing. Choose 
p = (-1,0,0,0), q = (1,0,0,0). Given any C^-curve z : [0,1] i—► M join- 
ing p and q, then the function T(s) = t(z(s)) cannot be constant, so there 
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must exist si e [0,1] such that T^si) = (z(si)),Y(z(si))) / 0. Clearly, 
there must also exist 52 with T"(s2) = (z(s2),Y{z(s2))) — 0. This implies 
that CPjq is empty. In general, if there exists a C1-curve w : [0,1] H-—> M 
with (w^Y) 7^ 0 everywhere, then there exists a unique orientation pre- 
serving reparametrization W of w such that (VF, Y) is constant. Namely, 
W = w o cr-1, where a : [0,1] *-—> [0,1] is given by: 

-1 

o-(r) =([ (w, Y) ds)      f(w, Y) ds 

If M is non contractible, we prove the following multiplicity result for 
geodesies joining two given points. 

We recall that a vector field W on a differentiable manifold A4 is said to 
be complete if its flow lines are defined on the entire real line. 

Theorem 1.3. Suppose thatCp^ is non empty and that f is pseudo-coercive 
in Cp^q. Then, if Y is complete and M is non contractible there exists a 
sequence {zn}ne    of spacelike geodesies between p and q in M such that: 

lim f(zn) = +00. 
n—>oo 

We also prove a multiplicity result for timelike geodesies. We introduce some 
notation needed to state it. 
Suppose that Y is complete. Then, for every point q e M, we denote by 
7g : R 1—> M the maximal integral curve of Y satisfying 7^(0) = q. The 
curve 7g(£) is interpreted as the worldline of an observer through the event 

Theorem 1.4. Suppose that A4 is non contractible and that Y is complete. 
Assume the existence of CQ < 0 and to > 0 such that \t\ > to implies that 
Cp^q(t) 7^ 0 and it is co-precompact. If n[p,jq(t)\ denotes the number of 
timelike geodesies joining p and jq(t), it is: 

(1.9) lim   n[p,7g(t)] =+00. 
|t|-H-oo 

From Theorem 1.4 and Remark 6.2 it follows easily that, under the 
hypotheses of Theorem 1.4 it is: 

lim       rc[7p(*i)>7g(*2)] =+00. 
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Theorem 1.2, Theorem 1.3 and Theorem 1.4 extend the non intrinsic 
results obtained in [6] and [8], where it was assumed that M. had a global 
space-time splitting. Our intrinsic coercivity condition is more general than 
the one used in the above mentioned papers (see Appendix A). 

We would also like to point out that, to avoid lengthy computations, 
in this paper we have omitted to treat the case of a subset with convex 
boundary, as it was done in [8]. Nevertheless, also this case can be treated 
using our intrinsic estimates and the penalization argument of [8], and it 
is not too difficult to prove that the results of Theorems 1.2, 1.3 and 1.4 
remain true if one replaces M with an subset of M with smooth convex 
boundary. 

The paper is organized as follows. In Section 2 we introduce our analyti- 
cal framework and in Section 3 we prove a variational principle for geodesies 
in stationary manifolds, with the introduction of the Hilbert manifold A/^, 
which is the completion of CM with respect to the iJ1'2-norm. 

In Section 4 we show the boundedness properties of the functional J, 
which is the restriction of the action functional / to A/^, whose critical 
points are geodesies in M. In Section 5 we prove the Palais-Smale condition 
for J, and using classical techniques from Critical Point Theory we derive 
the proof of Theorems 1.2 and 1.3. The problem of the multiplicity of 
timelike geodesies is studied in Section 6, where we prove Theorem 1.4. 
Finally, we present three Appendices to the work. In Appendix A we give 
some examples of manifolds that satisfy the assumptions of the theorems 
proven in the paper. In Appendix B we discuss the relations between the 
pseudo-coercivity of / and the property of global hyperbolicity for M. An 
example is given to prove that the global hyperbolicity does not yield the 
geodesical connectedness for stationary Lorentzian manifolds. This was the 
motivation for strengthening the property of global hyperbolicity with our 
c-precompactness condition. In Appendix C, for the sake of completeness, 
we collect a few elementary facts about the local structure of stationary 
Lorentzian manifolds that were used in the course of the paper. 

Acknowledgment. The authors are pleased to acknowledge the help 
provided by Miguel Sanchez, who suggested the counterexample presented 
in Appendix B. 
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2. The Functional Framework. 

We use the auxiliary Riemannian metric (1.1) to define the main spaces 
of our functional framework. We denote by dist(-, •) the distance function 
on M x M induced by g(R). We assume that Y is a smooth timelike vector 
field defined in M. 

1 9 
Let p and q two arbitrarily fixed points in M. We will denote by ttp]q(M) 

the space of iJ1'2-curves in M joining p and q: 

fti'J = Qi2(M) = < z:[Q, 1] i—> M  z absolutely continuous, 

z(0) = pi(l) =q,       (i, i)(R) ds < +oo I . 

It is well known that ttpq(M) is an infinite dimensional Hilbert manifold 
1 9 19 

(see [14]); for z e ftp]q(M) the tangent space TzVLp\q may be identified with 
the space of HQ  -vector fields along z: 

Tzal'2q(M) = {( e Hl'2([0, l],TM),m = C(l) = 0, ((s) € Tz{s)MVs} , 

where if ^([0,1], TM) is defined as: 

^^([0,1],TM) = | C : [0,1] i—»• TM :C absolutely continuous, 

^1(VfC,VfO(R)d»<+oo}. 

1 2 Observe that TzQp]q is a Hilbert space with respect to the norm: 

(2-1) IICII^^^V^CVfOcR)^)2. 

For r > 1, we will denote by I/QO, 1], TA^) the set of all r-integrable vector 
valued functions on [0,1] with values in TM: 

Lr([0,1],TM) = { C : [0,1] »—► TM measurable : 

IICIk=(^(C(^C(5))(i)d5)r<+cx,    . 
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Similarly, one defines the space Z^QO, 1],TM) as the set of all measurable 
maps ( ' [0,1] i—> TM for which 

HCHoo = eSS SUp yj(C(s), C(S)>(R)  < +00. 

We say that a sequence Cn in i/([0,1], M) tends to 0 if ||Cn||r converges 
to 0 as n goes to infinity. 

1  9 
The action functional f on Qp^M) is defined by: 

(2.2) f(z) = ±j\z,z)ds; 

observe that, by (1.2), it is |(i,i)| < (i,i)(R), hence the integral in (2.2) 
makes sense for z G £lp\q(M). The action functional is smooth on Qp%(M), 
and its differential is given by: 

(2.3) f\z)[C}= /   (i,VsC)ds, 
Jo 

a,2/ for every ( € Tz£lp\q(Ai). Its critical points are smooth curves that satisfy 
the equation (1.3), hence they are geodesies. 

We write / as the sum / = /i + /b of two smooth functionals defined on 
fiJi? by: 

(2-4) 

Using the wrong way Schwartz's inequality, it is easy to see that fi(z) > 0 
for all z G Qp]q. Observe also that fi is the energy functional relative to 
a sub-Riemannian structure defined on y-1, the orthogonal distribution to 
the vector field Y . 

We denote by W the distribution on the manifold £lp\q{M) consisting of 
vector fields parallel to the timelike vector field Y: 

(2.5) W = {(*, C) G Trt&M) | C(s) II Y(z{s)) V^ G [0,1]}. 

Since Y is smooth, it follows immediately that W is a smooth distribution 
1 9 ^—^ 1  9 

on Q.p\q(M). We set 11(2, C) = * the projection of W onto VLp\q(M), and for 
2 G U^(.M), W2 will denote the subspace of Tz^q{M) given by II-1^). 

We will denote by i?0' ([0,1],R) the Hilbert space of of all functions 
fi : [0,1] i—► M of class if1'2 such that ^(0) = //(I) = 0.   Observe that 
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1 9 
the pair (2, £) G Tfip'^ belongs to W if and only if ( — /x • F^) for some 

Aiefl-0
1'2([0,1],R). 

1  9 
Finally, we introduce the space Nv,q(M) of curves 0 in £l>p\q(M) such 

that the the inner product (i, y) is constant: 

(2.6) 

^/J,Jg=JVj,1g(^f) = {^ G ^q{M)    (z(s),Y(z(s))) is constant a.e. on [0,1]}. 

Observe that the curves in N^q have less regularity of the curves in Cp,q. 
Using standard arguments in Sobolev spaces, one sees that the set CViq is 
contained as a dense subset of Apj<?. Thus, in the statements of Definition 1.1 
and Theorems 1.2, 1.3, and 1.4 we can replace the space CM with Nv,q. The 
reason for introducing the space Np,q is that it is the natural space for 
obtaining the Palais-Smale compactness condition for the action functional. 
The details of this fact will be discussed in section 5. 

If Y is a Killing vector field, then J\fViq can be described as the set of 
curves z G £lp\q such that the derivative f,{z) vanishes in the directions of 
W: 

Proposition 2.1. Suppose that Y is Killing.  Then it is 

(2.7) AfP!q = {ze fiJ^M) I f'(zm = 0, V C e Wz}. 

Proof. Let (2, C) be an element of W, with ((s) = /i(s) • Y(z(s)) for some 
arbitrary /i G HQ'

2
([0, 1],R). Since Y is Killing, then (i,VsF) vanishes 

identically on [0,1], hence 

/'(*)[<]= / (i,Va(nY(z))d3 = 
Jo 

(2-8) = /  (M{i, VsY(z)) + //(i, Y(z))) ds = 

The latter integral in (2.8) is null for every /J, G iIo'2([0,1],M) if and only if 
(z,Y(z)) is constant a.e., and we are done. D 

We conclude the Section by proving a complementary result that shows 
that the space J\fp^q can be described only in terms of the functional /2. 
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The meaning of the following Lemma is that the functional /i, which 
is the energy functional associated to a sub-Riemannian structure on M, is 
really the spatial part of the action functional /. 

Lemma 2.2. If(z,t) G >V; then /{(*)[C] = 0- 

Proof. Consider the functional g(z) = % f* ^^ ds. Let fi e H^2([0,1],R) 
and C = fi • y. Since Y is Killing, we have: 

<vcy,y> = /i(Vyy,y> = o, 

and 
{ViC,Y)=fi'(Y,Y)-(z,VcY). 

We compute the Gateaux derivative ^(^[C] ^ follows: 

/, Mvl z-1 <ii y)(^ y) [<ViC, y) + & vc^)] - (^^)2(Vc^ r) H ^(^)[^y]=y  ^ryp : ds = 

(2.9) =    f   ll'(z,Y),d8. 
Jo 

Considering that fi(z) = f(z) - g(z), from (2.8) and (2.9) we obtain the 
thesis. □ 

From (2.7) and Lemma 2.2 we obtain immediately the following charac- 
terization of the space Afp^: 

Corollary 2.3. A/^ = {z G ft^ : &(z)[(} = 0, V C G W*}. □ 

The restriction of the action functional / on Afp,q will be denoted by J: 

(2.10) J = f       . 

For c e R, we denote by Jc the c-sublevel of the functional J in A/^: 

(2.11) JC={^G^: J(^)<c}. 

We will show in section 3 that the set AfPiq has the structure of an 
infinite dimensional C2-manifold, and that the set of critical points of J 

1 2 
in Npiq coincides with the set of critical points of / in f^.  Moreover, in 
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section 4 we prove that, under the hypothesis of Theorem 1.2, the functional 
J is bounded from below on A/^. 

3, A Variational Principle for Geodesies. 

With the aim of proving a variational principle for geodesies, we need to 
show the regularity of the manifold Np,q. This is done in the next: 

Proposition 3.1.   The set J\fp^q is a C2-submanifold offl. 1,2 

Proof. By definition, it is 

Afpjq = {z e Qp'* : (z,Y(z)) is constant a.e. on [0,1] }. 

and so we can write J\fp,q as the inverse image: 

AfPa = F-1(C), 

where 

F:fiJ;2,—L2([0,1],R) 
(3.1) z~(z,Y(z)), 

and C is the regular submanifold of I/2([0,1],M) consisting of all functions 
which are constant almost everywhere on [0,1]. 

The map F of (3.1) is of class C2, and its Gateaux derivative is easily 
computed as follows: 

(3.2) F'(z)[C} = (Vs(,Y(z)) + (i, VcY(z)), 

where z € ilp\q, ( E TzQp\q and V^Y(z) is the covariant derivative of Y 
along the vector field (. 

By a generalization of the Implicit Function Theorem (see Proposition 3.II.2 
of [10]), in order to prove that A/^ is a regular submanifold of Slp'J it suffices 
to show that the composite map: 

(3.3) 

^"M -^ 2>WL2([0,1], R) ^U TF{z)L
2([0,1], R)/TF{Z)C, 
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is surjective3, where TT is the quotient map. This amounts to say that, for 
every z G MVA and h G I/2([0,1],M) the equation in £: 

(3.4) F/(^)[C] = /i +const., 

1 9 
can be solved in Tz?lv\q.    In order to prove this, we fix z G Mv^ h G 
L2([0,1],M), and we consider the equation (3.4). We set 

C(s) = ^(5) • Y(z(S)), 

for some // € ^^([O.lJ.R), with /i(0) = /*(!) = 0, so that C € T^^. 
Substituting C, in (3.4), and considering that, since Y is Killing, it is: 

(Z,^<Y(Z))=H-(Z,VYY(Z)) = 

(3.5) =-fi-(Y(z),VsY(z)), 

we obtain the equation: 

(vsc, Y(z)) + (i, vcy(z)) = M' • (r^), r^)) + 
+ /* • (Vsy(2), Y(z)) - fi ■ (VsY(z),Y(z)) = 

(3.6) =ljt'-{Y(z),Y(z)) = h + C, 

where C is a constant. Since (F, Y) < 0, we can always solve (3.6) for JJ, by 
setting: 

h(r) + C 

Jo (y(z(s)),y(^s))) 

and clearly /z(0) = 0. Moreover, choosing 

dr, 

c = _/ 7__l(£L__dr, 
Jo (Y(z(S)),Y(z(S))) 

we also have /i(l) = 0, and we are done. □ 

Using again the Implicit Function Theorem, we can easily characterize 
the tangent space TzJ\fp^q: 

Corollary 3.2. For z G Np^q, the tangent space TzJ\fpjq is identified with 
the set: 

TzNp,q = {C£ TzSl)fq : (VaC,^(*))+(2, Vfy(*)) is constant a.e. on [0,1]}. 

3observe that, in the case of a Hilbertian manifold, the splitting condition on 
the Kernel of the differential of F is always satisfied. 
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Proof. By the Implicit Function Theorem, TzNp,q is identified with the set 
of all £ such that F'^z)^] G Tp^C. Then, the thesis follows easily from 
(3.2) and the fact that Tp^C is identified with the set of constant functions 
on [0,1]. □ 

Observe that, by (3.5), we also have: 

TzArP9q = {(e TznJ;5 : (Vs^Y(z))-(CVaY(z)) is constant a.e. on [0,1]}. 

As a corollary to Theorem 3.1, we get the following variational principle 
for geodesies on stationary Lorentzian manifolds: 

Theorem 3.3. A curve z G ttplq is a geodesic in M if and only if z 6 MPA 

and z is a critical point for the functional J. 

1 9 
Proof. If z is a geodesic in fipjg, then (i, Y) is constant and z G Npa- 

Conversely, if z G Apj(? is a critical point for the functional J, then 
f[z) vanishes on all vectors £ G Tzttp\q of the form £ = /x • Y, with /i G 
HQ ([0,1],R), and on all vectors £ G TzNp,q. Hence, to obtain the thesis, 
it suffices to show that the spaces {/i • Y : JJL G i?0' } and TZMPA span the 

19 19 entire TzVLp\q, i.e., that every £ G TzQp\q can be written as: 

(3.7) C = M-nz) + C, 

where £ is in TzNp,q and // G iJ0' ([0,1],R). To prove this, we consider an 
19 19 

arbitrary £ 6 Tzilp;g and we search a function n € H0'   such that the vector 
field: 

< = <-/z-Y(*) 

belongs to TzJVPiq. By Corollary 3.2, since Y is Killing, this means that fi 
has to satisfy the differential equation: 

(3.8) - // • (Y(z),Y(z)) + (Vs(,Y(z)) - (C,V8Y(z)) = C, 

where C is constant.   Since (Y, Y) < 0, we can solve explicitly (3.8) by 
setting: 

(1 Q\ „M -  f (Vs(,Y(z))-(CVsY(z))-C (3-9)      Ms) - Jo (mm dr- 
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Clearly, /x(0) = 0. Moreover, setting: 

(3.10) 

^^sC,Y(z))-(C,VsY(z)) ^ \ff1 ds ( f1(V.CtY(z))-(C,V.Y(z))     W/-1 

C=U—wwm—dvU 
we also have //(I) = 0 and the proof is concluded. □ 

4. The Lower Boundedness Condition for J. 

The aim of this section is to prove that, \l Nv^q is c-precompact for some 
c > inf J, then the functional J is bounded from below. 

For z 6 A/^g, we denote by Cz the constant: 

(4.i) cz = (i,y). 

We start with a basic Lemma: 

Lemma 4.1. Let c be any real number. If Afpiq is c-precompact, then there 
exists a positive constant D such that \CZ\ < D for all z G Jc. 

Proof Let {zn}rie    C Jc be a maximizing sequence for the quantity |CZ|, 
i.e. 

lim \CZn\ = sup \CZ\. n^00 zeJc 

We want to prove that CZn is bounded. We assume, by the c-precompactness, 
12 

that zn is uniformly convergent to a curve z G Slp\q. In particular, the 
sequence zn is eventually contained in a compact neighborhood V of z([0,1]). 
Using the local structure of stationary manifolds (see Appendix C), we can 
choose a finite number of local charts 

(1 i Jc        Jc Jc i Jc i 

where N = dim(M) > 2, satisfying the following properties: 

(a) the Uk's cover V; 

(b) each coordinate system (a^,^, •.. ^N-V
1
^) ^

S
 

adapted to Y, i.e., 
Y = ^ in Uk and, setting xk = (x^x^ • • • ,^_i), the metric g is 
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given in these coordinates by: 

(4.2) 
5(xfc, *)[(£, T),(£,T)] = ^e)o + 2(^(xfc))Oor-/3(xfc)r2, 

where, /S = (Y, Y), {■, ^o denotes the restriction of (•, •) on the spacelike 
distribution generated by (^, ^x,.. • , axk    )'> 

(c) max ( sup(<Sfc(xfc),<5fc(xfc)o ) = Do < +00; k    \uk J 

(d) there exists a finite sequence 0 = ao < ai < • • • < ano = 1 such that 
eventually ^([ofc_i,afc]) C Uk for all k = 1,2,... ,no (because zn is 
uniformly convergent). 

Moreover, we denote by u and /x two positive constants such that: 

0<u<-(Y,Y) <fi<+oo,    onV, 

and we set: 

Ak=     sup     |«fc(mi)-tfc(m2)|,    A = max(Afc). 
miJm2EUk 

We use these coordinates and, for n sufficiently large and 5 G [dk-i, flfc], we 

write zn(s) = (xS(s),t*(3)) and Y = (0,1). Since (in,y) is constant, for 
5 G [afc_i,a]fe] we have: 

(4.3) C,n = (in,F) = ((x^,^),(0,l)) - (6\±k
n)o-Pil 

hence: 

It follows that, for every /c, C2n can be written as: 

fafc   ds\ 

Observe that, for every n and fc, it is: 

1*1 < A- 



172 Fabio Giannoni and Paolo Piccione 

It follows immediately that, for every k = 1, 2,... , no, we have: 

(4.5)      ICI < ^e r v^^;dS+_^_. 

In order to prove the Theorem, we need to show that the integral 

(4-6) r  ^<x£,x*)odS 

is bounded for at least one value of k. We will indeed show that the integral 
(4.6) is bounded on n for every k. 

From (4.3), we compute as follows: 

rak pO'k   / v 

(4,, -.J^A+^-C-k)*, 

Substituting (4.4) in (4.7), we obtain: 

/      (in, in) ds =  /      (x^,x£)ods + /       K    >*n)0 ds + 
Jak-i Jak-l Jak-l P 

-i 

^JC^-JCT)"^ 

V-'afc-l 

ds\ 

From Schwartz's inequality, we have: 

£^dsU£^.   £1 
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and substituting in (4.9) we obtain: 

fak fak 

/      (zn,zn)ds>  /      (x^<)od5 + 

-1 

♦* £WO + 

- ^ (L 
ak   ds\ 

Finally, summing (4.10) over fc, we obtain: 

(4.10) 
pi JV_    pak N_    pak       i  

c > /   (i„, i„) ds>J2 (^n, x*>o ds-E-^ ^ (±k
n, x^o dS - F, 

where E and F are easily computed in terms of /i, v, A, J^o and the a^'s. It 
follows that the integral (4.6) is bounded for all fc, which proves the Lemma. 
□ 
Remark 4.2. Let c be a real number. If the manifold Mpiq is c-precompact 

then there exists a compact subset K of Ai that contains the image ^([0,1]) 
of every curve z € Jc. In particular, iiNPA is c-precompact, then there exist 
two positive constants v = u(c) and /J, = /x(c) such that, for every z G Jc 

and every 5 6 [0,1]: 

(4.11) 0<u<-(Y(z(s)),Y(z(s)))<fi. 

We are ready to prove the lower boundedness condition for J: 

Proposition 4.3. Suppose that J\fp^q is c-precompact for some c >  inf J. 

Then, the functional J is bounded from below in J\fp,q. 
K,q 

Proof Let zn be a minimizing sequence for J in Jc. By the c-precompactness, 
the image of all the £n's are contained in a compact subset of M. By the 
definition of gm, we have 

J(Zn) = Jo (in'in)(R> ^ + 2 ^ Jo WY) -~vC> 
■2 
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The conclusion follows immediately from the fact that CZn is bounded, as it 
was proven in Lemma 4.1. □ 

5. Proof of Theorems 1.2 and 1.3. 

In this section we will prove Theorem 1.2 and Theorem 1.3, using stan- 
dard arguments for functionals satisfying the Palais-Smale condition. 

We recall that if (X, h) is a Hilbertian manifold and F : X \—> R is a 
C1-functional on X, then F is said to satisfy thePalais-Smale condition at 
the level c G M if every sequence {xn}ne   C X satisfying: 

(PS1)C   lim F(xn) = c, 
n—>oo 

(PS2)C   lim 11^(011 = 0, 
n- 

has a subsequence converging in X. The norm || • || used in (PS2) is the 
operator norm of F'fen) in the Hilbert space TXnX. 

A sequence xn in X that satisfies (PS1)C and (PS2)C will be called a 
Palais-Smale sequence at level c for the functional F. 

We will use the following notation. If z : [0,1] i—► M is an absolutely 
continuous curve and (3 e £1([0,1],TM) is a vector field along z, then the 
covariant integral of /? along z, denoted by B = f /?, is the (unique) vector 
field along z that satisfies the initial value problem: 

ViS = A   5(0) = 0. 

We need the following elementary result is semi-Riemannian geometry: 

Lemma 5.1. Let K be a compact subset of M. Suppose that z is an 
absolutely continuous curve in K, with z G -^1([0,1], TM), and that 
(3 G L1([0, IjjTA^) is a vector field along z. Then, the covariant inte- 
gral B = Jzf3 of (5 along z is in Z^QO, l],TM), and there exists constant 
M = M{K) such that: 

M-PIU (5.1) ||B||oo<||i9||i-c- 

Proof. Since K is covered by a finite number of charts, using local coordi- 
nates, we can assume that M is an open subset of M^. We denote by | • | 
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the Euclidean norm. The vector field B is the solution of the initial value 
problem: 

(5.2) ±B = -r(z)[z,B] + p,    B(0) = 0, 

where 
r(s(a))[., •] : TZ{S)M x Tz{s)M .— Tz{s)M 

is the bilinear map given by the Christoffel symbols {.F^-} of the Lorentzian 
metric g. 

Integrating (5.2) on [0,5], we obtain: 

(s)= f'pdr- far(z)[z,B]dr, 
Jo Jo 

B 

hence 

(5.3) \B(s)\ < [  |/3| dr + M I* \z\ • |J5| dr, 
Jo Jo 

where M is the maximum of the norm of the operator F on K.  Applying 
Gronwall's Lemma to (5.3), we obtain: 

ri 1 

\B(s)\< /   Ifldr-e^ol^, 
Jo 

which gives (5.1). D 

Remark 5.2. Suppose that {zn} is a sequence of absolutely continuous 
curves having image in a fixed compact subset of M, and with ||in||i 
bounded. Suppose further that /3n is a sequence of vector fields along the 
Zn's that tends to 0 in I/1([0, i\,TM). From Lemma 5.1 and its proof it 
follows that the sequence Bn = f   f3n converges to 0 in Loo([0,1],TM). 

We are ready to prove the Palais-Smale condition for the functional J: 

Theorem 5.3. If J\fp^q is c-precompact, then J satisfies the Palais-Smale 
condition at every level c' < c. 

Proof. Let's fix cf < c and let zn be a Palais-Smale sequence at level c'. 
Arguing as in Proposition 4.3, we see that zn has a subsequence (denoted 
again zn) that converges weakly to some z G fip^.   We now use the fact 
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that J'^Zn) is infinitesimal to prove that the convergence is strong. Let 
Cn € TZnQPlq be any sequence which is bounded in i/'1'2([0,1],TM)] recalling 
(3.7), we set 

where /x = /in is given by (3.9) and (3.10), while Cn G TZnNp,q. From (3.9) 
and (3.10) it follows easily that also £n is bounded in iT1'2([0,1], T.M), hence: 

(5.4) lim J,(zn)[ln}= lim   / (in, VinCn) ds = 0. 
n^oo n—>oo JQ 

Moreover, since (in, F) is constant and Y is Killing it is: 

(5.5) 

/ (in,Vin(/%-y))d5= / ii,n{zn,Y)&s+ [ /in(iri,Viny)d5-o. 
Jo Jo Jo 

Putting together (5.4) and (5.5), we obtain: 

(5.6) lim   / (in, VinCn) ds = 0,    VCn 6 T^fiJ^ bounded. n^00 Jo 

We isolate the following Lemma for future reference: 

1 9 Lemma 5.4. In the above notations, there exists a sequence an in TZriVtp\q 

that tends to 0 in £2([0,1],T.M) and such that: 

(5.7) /  (in, VinCn) ds = /  {an, VinCn) ds. 
Jo Jo 

Proof. We denote by ©n the vector field along zn which is the gradient 
VJ(zn) of the functional J with respect to the Hilbertian norm || • ||* defined 
by (2.1). By definition, we have: 

/   (in, V^Cn) ds=   f   (V^en, V^Cn)(R) ds, 
Jo Jo 

and, by (5.6), the sequence of vector fields 

An = v2>eB 

goesto0inL2([0,l],TA4). 
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Using the Christoffel symbols of the metric tensors g and p(R), we can 
express the Riemannian covariant covariant derivative V^Cn in terms of 
the Lorentzian covariant derivative VinCn- Then, we write 

(5.8) 

/ (i4n,V£>Cn>(R)d5= / (An,Viri(n + G(zn)[zn}[(n})mds, 
Jo n Jo 

where G?(^)[Ci][C2] is a bilinear functions in the variables Ci, C2 which is con- 
tinuous in the first variable z. Using (1.1), it is immediately checked the 
existence of two sequences Bn and bn going to 0 in i2([0,1], TM) such that: 

(5.9) J   (An, Vi%)(R) ds = J    ((Bn, VinCn) + (bn, Cn)) ds. 

Now, it is: 

/   (bn,Cn)ds = -   f   (JZnbn,Vzn(n), 
Jo Jo 

because Cn(0) = Cn(l) = 0- By Remark 5.2, it follows that /^ bn tends to 0 
uniformly, therefore (5.7) follows from (5.9). □ 

Going back to the proof of Theorem 5.3, we now consider the sequence 
of vector fields 

(5.10) cjn — zn - an. 

From (5.7) we get that ujn is of class C1 and that 

(5.11) VinUJn = 0. 

The next observation is that the L2-norm ||a;n||2 of un is bounded, because 
||in||2 is bounded and an tends to 0 in I/2([0, l],TM). This implies, in 
particular, that, for some sequence {sn} C [0,1], the sequence |a;n(5ri)| is 
bounded, say: 

(5.12) Msn)|<co,    VnGN. 

Once again, Gronwall's Lemma applied to the differential equation (5.11) 
and the boundedness condition (5.12) gives the existence of 70 > 0 such 
that: 

\un(s)\<co-e^S«^\dr,Vse[QM 
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It follows that <jn is bounded in L00.   From (5.10) it follows that zn is 
bounded in L2, and since zn(0) is fixed the sequence zn is uniformly bounded. 

Writing equation (5.11) in coordinates, it becomes: 

(5.13) uj'n + r(zn)[zn,ujn) = 0, 

where T is a continuous function in zn (that can be expressed using the 
Christoffel symbols of g), which is linear in the arguments zn and ujn. From 
(5.13), we obtain that u^ is bounded in L2, and thus ujn is bounded in iJ1,2. 

It follows that a subsequence of cjn still denoted by Ljn, is weakly con- 
vergent in i?1'2, and, in particular, ujn is convergent in I/2([0,1],TM). 

Therefore, there exists a subsequence of zn that tends to z strongly in 
ft1'2 

By the L2-convergence, a subsequence of (zn,Y) converges pointwise 
to (z,Y) almost everywhere, which implies that (z,Y) is constant a.e., so 
z G A/^?g and the Theorem is proven. □ 

We prove now the completeness of the c-sublevels of J using the c- 
precompactness condition: 

Proposition 5.5. Let c G M be fixed. If Np,q is c-precompact, then Jc is a 
complete metric subspace of J\fp^q for all cf < c. 

Proof. It suffices to consider the c-sublevel. Observe that, since all the 
curves in Jc lie in a compact set (Proposition 4.2), we can assume that M 
is complete with respect to the Riemannian metric g(R). This implies that 

1 9 
Qp\q is a complete Hilbertian manifold. Let zn be a Cauchy sequence in 
Jc. Then, zn converges to z in ftp\q^ and, up to passing to a subsequence, 
we have convergence pointwise almost everywhere of (zn,Y) to (z,Y). This 
implies that (z,Y) is constant a.e. on [0,1], so z G A/^. Finally, by the 
continuity of J, it is J(z) < c, and Jc is complete. □ 

The Palais-Smale condition, the completeness of the sublevels and the 
boundedness property of the functional J yield immediately the existence 
of minimal points. 

Proof of Theorem 1.2. It is a classical argument in Critical Point Theory. 
Thanks to the Palais-Smale condition and the completeness of the sublevels 
of the functionals J, if the infimum i of J on Npiq weren't a critical value, 
then it would be possible to find a homotopy between the sublevels J*-77 and 
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Jz+r7, where 77 > 0 is sufficiently small. This is clearly impossible, because, 
for every 77 > 0, J1-77 = 0 while Jl+r] / 0. Hence, J attains its minimum on 
Mp^q. From Theorem 3.3, any minimal point for J is a geodesic from p to q, 
and we are done. □ 

With the aim of proving Theorem 1.3, let's assume now that M is non 
contractible, and such that J\fPiq is c-precompact for all values of the c. 
The proof of our multiplicity result is based on the Ljusternik-Schnirelman 
theory for Palais-Smale functionals. We recall that if X is a topological 
space and B any subset of X, the Ljusternik-Schnirelman category catx(jB) 
of B in X is the minimal number (possibly infinite) of closed, contractible 
subsets of X that cover B. The Ljusternik-Schnirelman category of B in X 
is a homotopical invariant, in the sense that catx(S) = cat^(x)(^r(-S)) for 

every continuous map J7 : X \—> 3~(X) which is a homotopy equivalence. 

A well known result by Fadell and Husseini (see [7]) states that, if M is 
non contractible, then the category of the space ^lp\q(M) is infinite. 

We prove now that, if Y is a complete vector field, then there exists 
a smooth map J7 : Qp]q \-—> J\fpiq which is a homotopy equivalence (see 
Proposition 5.9). This implies: 

(5.14) cat^^A/'pJ^+oo. 

Let's assume that M is connected and that the vector field Y is complete. 
The completeness of Y is satisfied, for instance, if M is complete with respect 
to the Riemannian metric gm and if Y satisfies the boundedness condition 
-(Y,Y) = (Y)Y)m<ti. 

We denote by il)(x,t) the flow of the vector field y, i.e., for every x in 
M, the curve t 1—► il>(x,t) is the unique integral curve of Y starting at x 
when t = 0. Since Y is complete, then I/J gives a map defined for all times t: 

ip:MxR\—>M. 

Now, fix p, q two arbitrary points in M and let x : [0,1] 1—> A4 be any 
smooth curve satisfying x(0) = p and x(l) = q. We define a curve w : 
[0,l]^A^by: 

(5.15) ^) = ^(x(5),^)), 
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where (j) : [0,1] i—> R is to be chosen in such a way that 0(0) = 0(1) = 0 
and such that (^(s), Y{w(s))) = C is constant on [0,1]. Hence, we need: 

{w,Y(w)) = {dx^{x^)[x] + dt^x)cj>)ct>,
1Y{w)) = 

= (d^(x,0)[i],yH) + ^ • (YMx,<i>)),Y(w)) = 
(5.16) = C, 

where d^ and dt denotes the differential operators with respect to the 
variables x and t respectively. In (5.16) we have used the fact that 
dtip(x,(f)) = ^(^(x, (/>)), which comes easily from the definition of flow. 
Moreover, using the group property ^(^(x, s),£) = ^(x, 5 + t), one sees 
that dx

fi/j[Y(x)] = Y(w). Since dxip is an isometry, we have: 

(5.17) (dx<iP[x],Y(w)) - (d^[i],d^[y(x)]) = (i,y>. 

Remark 5.6. Observe that, since Y is Killing, the quantity (Y,Y) is con- 
stant along the flow lines of Y, hence it can be computed indifferently on x(s) 
or on w(s). This observation allows to omit the argument of Y whenever 
there is no danger of confusion. 

Putting together (5.16) and (5.17), we obtain that, in order for w to be- 
long to NpM the function (j) must satisfy the first order differential equation: 

(5-18) j, =     (y;y)     , 

and the boundary conditions </>(0) = <^(1) = 0. 
For every choice of the constant C, the initial value problem given by 

(5.18) and the initial condition </>(0) = 0 has a (unique) solution, which is 
defined on the entire interval [0,1], because the right hand side of (5.18) is 
sublinear in x. If we set: 

c-G»a,i& 
an immediate calculation shows: 

-i 

m = [ <f>'ds = Q, 
Jo 

and we are done. 
Incidentally, we have proven the following: 
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Lemma 5.7. Suppose that Y is complete and that M is connected. Then, 
for every pair of points p, q G A4, the sets Cv^q and J\fPjq are non empty.   □ 

We have indeed proven a slightly stronger result: 

Proposition 5.8. Under the same hypothesis of Proposition 5.7, any curve 

in £lp\q is homotopic to a curve in Afp,q. 

Proof. If x is any C1-curve in M joining p and q, set 

(5.20) H(a,s) = i>(x(s),a-<t>(s)), 

in the same notations of (5.15). This gives a homotopy between x(-) = 
H{0, •) and w(-) = H(l, •) € Mm. D 

In the notations above, we can define formally an operator: 

(5.21) F(x) = w, 

1 9 where x 6 tlplq and w is the curve given by (5.15). 
The map J7 is a homotopy equivalence between the spaces Qp]q and J\fp,q. 

This fact and other properties of J7 are collected in the next: 

Proposition 5.9. The map T : Slp\q •—> -N'p.q is smooth, and it is a strong 
deformation retract. Moreover, it is: 

(5.22) J(F(x)) > /(*), 

where the equality sign holds if and only if x G A/^^. 

Proof The smoothness of J7 follows easily from standard theorems on 
smooth dependence on the data for the ordinary differential equation (5.18). 

The map J7 is the identity on A/^. In fact, observe that, if (i, Y(x)) = C 
is constant, then </> = 0 is the (unique) solution of (5.18), with (f)(0) = 0. 
Then, .F(aO(-) = il>(x(-),0) = x(-). 

The map H : O^ x [0,1] i—> fi^ given by: 

W(a:, a) = w(J,     w(T(s) = iJ(cr, 5), 

where iJ is defined by (5.20), gives a homotopy between the identity map 
on Clplq and J7. Hence, J7 is a strong deformation retract. 
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To prove (5.22), recall (5.15), (5.18) and (5.19), and consider that d^ 
is an isometry and dxtp(x,t)[Y(x)] = Y(ip(x,t)). Setting w = Fix) and we 
compute directly: 

{w, w) - (x, x) = 2<t>'(x, Y) + ^')2(Y, Y) = 

(Y,Y) 

Integrating on [0,1], we obtain: 

(5.23) 

2 (JO ») - /(*)) 
\Jo 

(*,Y) 
(Y,Y)^ 

\2 / yi ds y1 

(Y,Y)J 
(x,Y)' 
(Y,Y) 

ds 

Holder's inequality tells us that 

(5.24) 

[Jo <r,y>  ; 

2        /   ,] 

-(/ 
■(x,Y)* 

(Y,Y) -)' (/ 

ds 
(Y,Y) J 

and substituting in (5.23) i jives 

JH- ■ f(x) > 0. 

Moreover, the equal sign in (5.24) holds precisely when (£, Y) is constant, 
i.e. when x € Np^. This concludes the proof. □ 

The proof of Theorem 1.3 is based on the following result of the classical 
Ljusternik-Schnirelman theory on infinite dimensional manifolds (see e.g. 
[11, 12]): 

Theorem 5.10. Let M be a Hilbert manifold and F : M i—> M be a C2- 
functional on M. Suppose that the following hypotheses are satisfied: 

(1) F is bounded from below; 

(2) for all c > inf F, F satisfies the Palais-Smale condition at the level c; 

(3) for all c > inf F, the sublevel Fc is a complete metric subspace of M. 

Then, there exists at least cat^iM) critical points of F in M. Moreover, 
if catM(M) = +oo; there exists a sequence xn of critical points of F in M 
such that: 

lim F(xn) = sup F. D 
n->oo M 



Geodesies in stationary Lorentzian manifolds 183 

Using Theorem 5.10, we can now prove Theorem 1.3: 

Proof of Theorem 1.3.   We show that the functional J satisfies the hypothesis 
of Theorem 5.10. 

By Proposition 3.1, A/^g is a Hilbert manifold and J is a C2-functional on 
ftfp,q. By the pseudo-coercivity of J, Proposition 4.3 says that J is bounded 
from below, and Theorem 5.3 gives the Palais-Smale condition for J at every 
level c G R. 

The completeness of the sublevels Jc is proven in Proposition 5.5. 

In order to conclude the proof, we only need to show that J is unbounded 
from above in Afp^. From Proposition 5.9, it suffices to show that / is 
unbounded from above in Qp]q. To prove this, we use local coordinates as in, 
the proof of Lemma 4.1 (see also Appendix C). We assume, without loss of 
generality, that M = Ux]a, 6[, where U is an open subset of M^-1, and, in 
the coordinates x = (xi,..., ZJV-I) 6 U and t G]a, b[ the metric g is written 
as in (4.2). We can also assume that the vector field 6 and the scalar field 
/3 are bounded in ?7x]a, b[. If we fix two points p = (XQ, to) and q = (xi, ti) 
in C/x]a, 6[, we choose a smooth function t : [0,1] i—►ja, b[ with t(0) = to 
and i(l) = ti. We can find a sequence of smooth curves x^ : [0,1] i—> U, 
k > 1, joining XQ and xi, such that (x/^x^o diverges uniformly on [0,1] as 
k —> oo. Setting Zk = (x^, t) G fip^, since 6 and (3 are bounded it follows 
immediately that  lim f(zk) — +oo, and we are done. □ 

6. Multiplicity of Timelike Geodesies. 

The purpose of this Section is to prove Theorem 1.4. We will assume 
henceforth that all the hypotheses of Theorem 1.4 are satisfied. 

We will work with the spaces Np,lq(t), and, with a slight abuse of nota- 
tions, we will denote by J the restriction of the action functional / on each 
of them. To avoid confusion, for every c, tG M, we will denote by JcnJ\fpn ^ 
the c-sublevel of the functional J in Afpn ^. 

For all t G R, we define a map >Q between the spaces Mptq and J\fp^ (t) 
as follows. 

For x G A/^g, let Cx denote the constant (i, Y), and JCt(x) = w the curve: 

(6.1) wW = #*(*),&(*)), 
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where ip(', •) is the flow of Y, and fa is the function: 

(6.2) M.)^.(j;£--y1££-. 
Since ^t(0) = 0 and ^(1) = t, it is clear that £t(x) G Q^ ^. Moreover, 

using the fact that d^ is an isometry, dxil;[Y(x)] = Y(w) and d^ = Y, we 
compute directly: 

{w,Y) = (dx^[x},Y) + & ■(Y,Y) = Cx + t. ^ 
dr 

(Y,Y) 

So, the quantity 

(6.3) Cw = (w,Y) = Cx + t-^  -^yj 

is constant and £t(x) E Np,lq(t)' 
The map Ct satisfies the following properties: 

Proposition 6.1. Let t be a real number and Ct : J\fp,q \—► Np,lq(t) be the 
map described above.  Then, the following are true: 

(1) Ct is a bijection; 

(2) Ct is a map of class C2; 

(3) for all compact subset B C Afp^q it is 

lim   sup J{Ct{x)) — —oo. 
|t|-H-oo x£B 

Proof. For part (1) it is enough to observe that, since 77g(*)(—*) = V and the 
quantity (Y, Y) is constant along the flow lines of Y, then the map 

F-t : Mpnq{t) i—> ^ 

is an inverse for Ct. 
For part (2), observe that, from (6.2), fa depends regularly on x. 
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For part (3), we denote by w = £t(x). Using (6.2) and (6.3) we compute 
J(w) as follows: 

1 Z"1 

J(w) = 2 /   ("''t0) ds = 

= I J\(dxm^m)+2#<daiv#],r> + (<f>'t)
2(Y,Y))ds= 

(6.4) 

= If {(x,x) + 2<f>'tcx + (^)2(y,r)) ds = 
1   /V   -XA    ,  <%-C£   Z-1    ds 

= 2jo{x>x)ds+-^^Jo (m= 

(Y,Y)- 

If B is a compact subset of A/^g, then there exist positive constants D = 
D(B), ii = //(&), and z/ = z/(S) such that for all x E £ it is \CX\ < D and 
—M < (^(x('s))^(:c(5))) ^ ~u- Hence, from (6.4) we obtain: 

J(w)<c+^-^. 

In order to conclude the proof, it suffices to show that Cw = Cw(x,t) can 
be made arbitrarily large as \t\ —> +00, uniformly in x. This follows imme- 
diately from (6.3), that gives: 

ici^if^ -dS      'CJ>i*«-D. 

D 

We can now prove Theorem 1.4. 

Proof of Theorem 1.4.   Since .M is non contractible, a well known result of 
Fadell and Husseini (see [7]) says that there exists a sequence {Kn}n&   of 

1 2 compact subsets of Qp\q such that: 

lim c&tQi,2(Kn) = +oo. 
n—»oo        ^p,9 

Let J7 : fip^ i—^ A/^^ be the strong deformation retract described in Sec- 
tion 5, and consider the compact subsets of J\fPjq: 

Kn = T{Kn), neN. 
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Since T is an homotopy equivalence, then: 

cat^CKn) = catni,2(ifn) i—> +00. 

Let CQ < 0 and to > 0 be chosen as in the statement of Theorem 1.4 and fix 
c < CQ. From part (3) of Proposition 6.1, it follows that, for every m G N, 
there exists a positive number t — t(m) > to such that the first m elements 
of the sequence: 

are contained in the sublevel Jc ^Np^t) for all ^ with \t\ >t. 
For every t G M, since Ct : J\fpjq 1—> Np,<yq(t) is a homeomorphism, then 

Ct(Ki) is a compact subset of Npn (t) and 

caWpi79(t)(Ct(Ki)) = cattf^iKi),    i = 1,2,..., m. 

Let M(m) = max{catiA/-pj7 (t)(A(^)) • i = 1,2, ...,m}. Clearly, M(m) 
tends to +00 as ?ri —> +00. 

For j G N, we denote by At(j) the set of closed subset of Afp^t) w^h 
Ljusternik-Schnirelman category greater or equal to j. A classical minimax 
argument in Critical Point Theory for Palais-Smale functionals (see e.g. 
[11]) show that, for j = 1,2,..., M(m), the numbers: 

Cj =    inf 
AeAtd) 

sup J(x) <c<0, 

are critical values for J on Mpa (ty If the Q'S are not all distinct, and there 
exist i / j such that Q — Cj, then there are infinitely many critical points 
for J at the level Q. If they are all distinct, then there are M(m) distinct 
critical points for J. Hence, if |t| —> +00, the number of timelike geodesies 
in Npn (t) is arbitrarily large, and we are done. □ 

Remark 6.2. It is easy to check that,  for all t  G   M,  the map Qt   : 
N<yp(-t),q '—> -^^(t) defined by ^(x) = w, with ^(5) = il>(x(s),t) satis- 
fies the properties: 

(a) Qt is a bijective isometry; 

(b) J(&(aO) = J(rc), for all z G Ar7p(_t)5g. 

It follows immediately that if / is c-precompact in .A^,7 (t)> then it is c- 
precompact also in J\f7p(_t)^. 
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A. Examples and Remarks on the Hypotheses 
of Theorem 1.2. 

The primary goal of this section is to give examples where the hypotheses 
of Theorems 1.2 , 1.3 and 1.4 are satisfied. 

We recall that the Lorentzian gradient V^ of a smooth real function 
\I/ defined on (an open subset of) M is the vector field V\I/ defined by the 
relation d\&(z)|V] = (V^z), v) for all z and all v G TZM.. A smooth function 
is said to be a time function if its gradient is timelike everywhere. 

In this Section we will assume that M is the domain of a smooth time 
function T satisfying: 

(A.i) <vr,y> = i. 

It is easy to see that such a time function T always exists locally (see Ap- 
pendix C, (C.8)). Observe also that the condition (A.I) is equivalent to: 

(A.2) WOc, t)) = T{x) +1,    Wx e M, t e R, 

which means that the flow lines of the vector field Y are parametrized by the 
time function T. Observe also that, if Y is complete, then a necessary and 
sufficient condition for such a function to exist is that M. admit a spacelike 
surface E that intersects exactly once all the flow lines of Y. 

We denote by Ao = VT-1 the orthogonal distribution to the vector field 
VT on M. Equivalently, Ao is the integrable distribution on M given by the 
tangent spaces to the spacelike surfaces T = TQ. By (A.2), these surfaces are 
preserved by the flow of Y, hence AQ is a Y-invariant, integrable spacelike 
distribution of codimension 1 on A"!. 

We now fix some notation needed to introduce the concept of spatial 
sublinear growth for vector fields on M. 

We denote by E the spacelike hypersurface of M given by T_1(0); we de- 
note by ds the Riemannian distance function on E induced by the restriction 
of the metric of M on E. 

Since E intersects exactly once the flow lines of Y, then, for every point 
x e M it is well defined the projection P(x) of x on E, given by: 

P(x) = Enlx, 

where jx is the maximal integral curve of Y through x. Finally, we introduce 
the spatial pseudo-distance function d^ on .M, given by: 

d0.(xo,xi) = ds(P(a:o)JP(xi)). 

Roughly speaking, d^ measures the distance between the flow lines of Y. 
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Definition A.l. A function b : M. i—> M is said to have spatial sublinear 
growth on M if there exists po € M, a constant a e]0,1[ and two constants 
A, B e R such that, for all x e A'f it is: 

(A.3) |^)l<^-da(x,por + B. 

A vector field W on M is said to have spatial sublinear growth on M if, for 
every x G M and every £ G (Ao)x it is: 

l<w,0l <*(*)• </<££), 

for some function b having spatial sublinear growth on M. 

Obviously, since a G]0,1[, the choice of the base point po in (A.3) is purely 
formal. 

We give the following integral characterization of the spatial sublinear 
condition for a vector field W: 

Lemma A.2. Let z : [0,1] i—> A4 be an absolutely continuous curve, and, 
for almost every s, set z{s) — £(s) + \(s)'Y(z(s)), whereas) G (Ao)z(s) and 
\(s) G M. If W is a continuous vector field having spatial sublinear growth 
on Ai, then there exists a continuous function x '• K+ i—> M+

; depending 
only on the initial point z(f$)} such that: 

(A.4) ^1|We)|dS<x^1V/(^yd^, 

where x(r) has order of infinity less than 2 for r —► +00, i.e., 

limsup^ = 0. 

Proof. Let x denote the projection of z on E, i.e., x{s) = P(rc(s)) for all s. 
Since Y is Killing, it is: 

(x(s),±(s)) = (^(5),^(5)), for almost all s. 

By the spatial boundedness of W, we can assume without loss of generality 
that 

(A.5) 

\{W(z(s)U(s))\ < [A ■ &a{z{s),x{0)T + B] ■ V(^U(s)), 
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for some real constants A, B and some a e]0,1[. Moreover, from the defini- 
tion of do-, we have: 

(A.6) MsOO, *((>)) <  T ^/(i^ydr <  I1 J^&s. 
Jo Jo 

Integrating (A.5) on [0,1], using Schwartz's inequality and substituting 
(A.6), we obtain: 

/   IW0|d3<A.ra+1+B.ri 
Jo 

where r = f* y/(£,€)ds. This concludes the proof. D 

The spatial sublinear growth for the vector field Y implies the c-pre- 
compactness of A/^, as explained in the following Proposition: 

Proposition A.3. Suppose that M is connected and complete with respect 
to 5(R); and that Y satisfies the boundedness assumption (A.11) in M. IfY 
has spatial sublinear growth in M, then J\f^q is c-precompact for every pair 
0f (P? 0.) and every c G R. 

Proof. Let p, q e M and c 6 R be fixed and set T? = T(q) - T(p). 
Let z e Jc be a fixed curve; for almost all s we decompose the tangent 

vector z(s) as the sum of a vector £(s) in (Ao)z(a) and a multiple of 1^0)). 
Recalling (A.l), an immediate calculation gives: 

*(*) = ^(s) + (iW, VT(z(,))) • y(*(*)),    e(5) € (Ao)^). 

Setting Cz = (i? y)j We have 

c^(e,y) + (i,vr).(y,y), 
and, integrating on [0,1], we obtain 

'■jf^-^-jf^-r^ 
which gives: 

^   -(-r^^-a1^)- 
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Now, we write the product (i, z) as: 

(A.8) (i)i) = (^)_M)!+ 
c' 

(y,y)    (r.y)- 

Now, using the Holder's inequality gives : 

Then, integrating (A.8) on [0,1] and using (A.7), we get: 

(A.9) 

2c >  / (i,i)ds> 

Finally, using (4.11), from (A.9) we obtain: 

(A.10) / <£,£)dS<.4i- /  K£,y>|da + £i, 
Jo Jo 

for some real constants Ai, Si that are independent from z.  Since Y has 
spatial sublinear growth, from Lemma A.2 it follows that the integral 

./o 
ds 

is bounded independently of z, hence, by (A. 10), also the integral 

Ids Cmy)v 
Jo 

is bounded independently of z. From (4.11) and (A.7), it follows that \CZ\ 
is bounded in the sublevel Jc. Since 

yo (i,i>(R)dS = j(z)-2c2
zjo 1^y-y 

is bounded, then the Ascoli-Arzela Theorem implies that J\fPjq is c-pre- 
compact. This concludes the proof. □ 
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As an example, consider the manifold M given by a global splitting Mo x R, 
described by coordinates x 6 MQ and t G R, where (.Mo, (•, ^o) is a complete 
Riemannian manifold, and Lorentzian metric g given by: 

5(x)t)[(^T),(e,r)] = (e,Oo + 2(<5(x),x)-/3(x)r2
)    £ € Tx.Mo, r 6 R, 

where 5 is a smooth vector field on Mo and {3 : Mo "—> K+ is a smooth 
scalar field. Let Y be the timelike Killing vector field (0,1) = J^. The 
timelike vector field: 

^■^WHW)).^'-1'' 
is integrable (see Appendix C, (C.6)) and it is easily checked that (Y, W) = 1. 
Here, the orthogonal distribution AQ = W1- is identified with the tangent 
bundle of Mo, and, for (x, £) G TOVfo, it is 

(y,02 = (fi(x),e)§ < (<5(x),«5(x))o • (£,£)<> = («5(x)^(x))o • (U)- 

Moreover, (Y,Y) = —/?. In this case, if /? is bounded from above and 
bounded away from zero, and if ||<5||o = Y

/
(5(X),(5(X))O has sublinear growth 

in A^o? then Y has spatial sublinear growth in M, and the hypothesis of 
Proposition A.3 are satisfied. By Theorem 1.2, M is geodesically connected. 
Thus, the results of [6] and [8] follow from ours. 

We recall that a C1-vector field W is said to be irrotational if its curl van- 
ishes on the orthogonal distribution of W. The curl of W is the differential 
dcuw of the dual form UJW(V) = (W,v). 

Remark A.4. Observe that, if M is static with respect to Y, i.e. the 
Killing vector field Y is irrotational, then the orthogonal distribution of Y 
is integrable (see Proposition 12.30 of [13]). In this case, the condition of 
spatial sublinear growth is automatically satisfied by Y by taking AQ = Y^. 

Remark A.5. We emphasize the fact that the Riemannian complete- 
ness for M assumed in Proposition A.3 is, in general, not related to the 
Lorentzian completeness, nor to the geodesical connectedness of M. Some 
examples that prove the logical inequivalence of these concepts may be found 
in [2, 3]. 

B. Pseudo-Coercivity and Global 
Hyperbolicity. 

In this appendix we discuss some relations of the pseudo-coercivity prop- 
erty and the global hyperbolicity for .M. We recall the basic notions needed; 
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our main reference for this part is the book by B. O'Neill ([13]). 
A regular (absolutely continuous) curve 7 :]a, 6[C R 1—> M is called 

timelike (resp. lightlike, spacelike, causal) if 7(5) is timelike (resp. lightlike, 
spacelike, causal) for all s E]a, b[ (almost everywhere in ]a, 6[). A Lorentzian 
manifold M. is said to be causal if it does not contain any closed causal 
curve. The manifold M is strongly causal if given any point p E M and any 
neighborhood V of p there exists a neighborhood U C V of p such that all 
the causal curves with endpoints in U remain inside V. 

For a pair p, q of points of .M, the causality relation p < q means that 
there exists a future pointing causal curve from p to q. Two points p and q 
are causally related if either p < q or q < p. The relation p < q means that 
either p < q or p = q. The causal future J+(p) and the causal past J~(p) 
of p are the sets: 

J+{p) = {qeM:p<q),     J-{p) = {q : q < p}. 

Finally, the manifold M is said to be globally hyperbolic if it is strongly 
causal and if, for every pair of points p, q E M the set J+(p) fl J~{q) is 
compact in M. Equivalently, if M is strongly causal, then it is globally hy- 
perbolic if for every pair of causally related points p < q and every sequence 
zn of future pointing causal curves from p to q there exists a subsequence 
znk which is uniformly convergent, up to a reparametrization. 

Our pseudo-coercivity assumption implies the global hyperbolicity, as 
proven in the following: 

Proposition B.l. // / is pseudo-coercive on CPjq for all pairs p,q in M, 
then A4 is globally hyperbolic. 

Nevertheless, the global hyperbolicity is in general not sufficient to guar- 
antee the geodesical connectedness, not even for stationary manifolds. 

To see this, let's consider the following example. Let M be the 4- 
dimensional Minkowski space, with Y = Jj the timelike Killing vector field. 
Take a non convex open subset A of the spacelike surface t = 0, and con- 
sider the Cauchy development D{A) of A, which is the set of points p in M 
such that every past or future pointing, inextendible causal curve through 
p meets A (see Definition 14.45 of [13]). The interior of D(A) is non empty, 
as it contains A, and so by Theorem 14.38 of [13] it is a globally hyperbolic 
manifold. Nonetheless, it is not geodesically connected, because two points 
in A cannot joined by any geodesies contained in D(A). 
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Proof of Proposition B.l. We assume that / is pseudo-coercive in A/^?g for 
all p and q in M. Suppose that the strong causality of M is violated; in 
this case there exist a point p G M, a neighborhood V of p and a sequence 
zn : [0,1] i—> M of causal curves such that: 

(a) pn = ^(0) and qn = ^(1) tend to p as n —» oo; 

(b) ^([0,1]) H (M \ V) ^ 0 for all n. 

Since zn is causal, we can reparameterize each zn and suppose that (zn, Y) — 
Cn is constant for all n. 

We can find two sequences of curves x^, x^ : [0,1] i—>• F, n G N, satis- 
fying 

and such that x^ tends to 0 uniformly in [0,1], i = 1,2. For instance, one 
can take the minimal geodesies with respect to gm that join p with pn and 
qn respectively. 

Let yn : [0,1] i—> M be the junction of x^, 2;n and x^, defined by 
2/n(s) = xl(3s) if 5 E [0, i], yn(s) = zn(Ss - 1) if 5 E [|,§] and yn(s) = 

x^fis -^2) if s E [§, 1]. Now, define wn = Fiyn), where T : VLp\p \—>> Nv,p 

is the map defined in section 5. Notice that, since {zn,Y) is Constant, then 
wn(s) = zn(3s - 1) for 5 E]^, |[. 

Since x^ is uniformly convergent to 0, by the construction of the map F 
one sees that: 

J{wn) < £n, 

where £n is a sequence in R that converges to 0. By taking a re-indexed 
subseqence, we can assume that J(wn) < ^. 

Finally, define wn(s) = wn(ns — k) for 5 E [|, ^J^], where k = 0,1,... , n—1. 
By construction, it is wn E J\fp,q and J(wn) < 1. But, by (2) above, wn 

does not have any uniformly convergent subsequence, contradicting the 1- 
precompactness of J\fPjP. Hence, M is strongly causal. 

Now, fix any pair p and q of causally related points in M and consider 
any sequence zn of future pointing timelike curves in M joining p and q. 
Since (zniY) < 0 everywhere, they can be reparameterized in such a way 
that (inj Y) is constant. As J(zn) < 0, by the pseudo-coercivity {zn} must 
contain a uniformly convergent subsequence. This implies that M is globally 
hyperbolic and we are done. □ 
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C. About the Local Structure of M. 

For the reader's convenience, in this Appendix we collect a few results 
about the local structure of a Lorentzian manifold that admits a timelike 
Killing vector field, and that were used at some points during the rest of the 
paper. We claim no originality of the results and the proofs presented, that 
are mostly well known among specialists. 

We assume that M is a Lorentzian manifold of dimension N > 2, and 
that Y is a given timelike Killing vector field on M. 

Since Y never vanishes on .M, then for every point z G M there exists an 

open neighborhood Uz oiz and a coordinate system ip = (rci, £2, • • •, XN-II t) 
on 'Uz, such that Y is a coordinate field with respect to <p, say: 

We set XN = t. It is easy to prove that the Killing property of Y is expressed 
by the fact that, in such a coordinate system, the coefficients gij of the metric 
g on A4 are functions that do not depend on the variable t: 

Lemma C.l. For every coordinate system (Uz, cp) around z such that (C.l) 
holds, the coefficients g^ are independent of the variable t. 

Proof. It is a simple calculation that uses the properties of the Levi-Civita 
connection of g. Namely, for every i, j G {1, 2,..., iV} it is 

dgjj _ d_(_d <9_v _ 
dt       dt dxi' dxj 

. d      d . d d     _ 

at dxi' dxj dxi'     at dxj 

, d     d d     d       d 
= { ittdi' d^/ + {[di' d^J' d^'+ 

Since the ^'s are coordinate fields, then [^7, ^] = [Jj, g|-] = 0; moreover, 

by (1.6): 

dxi dt OXJ        dxi     dXj at 

which gives -|^- = 0 and concludes the proof. □ 
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For every coordinate system (U, (p) such that (C.l) holds, the surfaces 

t = const. 

are transversal to Y] it is clear that for every point we can choose such a 
coordinate system such that these surfaces are spacelike,4 i.e. such that the 
restriction of the Lorentzian metric g on them is positive definite. Such a 
coordinate system is said to be adapted to Y . 

It should be remarked that, differently from the situation studied in [6], 
[8] and [11], in our setting t is not a globally defined time function. 

Then, M can be written locally as a topological product Ex]a, 6[, where 
E is a spacelike hypersurface parametrized by coordinates xi, X2,..., XN-U 

and ]a, b[ is an open interval of R. In coordinates x = (#1,... , XN-I) and 
t e]a, 6[, the metric g is written as: 

(C.3) (,(x,t)[(£,r),(£,T)] = (^)O + 2(<5(X),OOT-/S(X)T
2
, 

where (£, r) € TXS x M, (•, •)() is the (positive definite) restriction of g to E, 
6 is a smooth vector field on S given by: 

6(x) = Go(x)-1-5(x), 

where 
iV-1 d 

2=1 

Go(x) is the (iV - 1) x (N - 1) matrix: 

Go(x) = (gi^rJv 

and /? is the smooth scalar field on E given by: 

(3(x) =-(Y,Y) > 0. 

Using the definition (1.1) of g(R) it is easily computed: 

(C.4) 

</(*)[(£,r), (e, r)] = <£, Oo + ^<«W, Oo - 2(<5(x), ^)or + /3(x)r2; 

4for instance, one can take an arbitrary coordinate system (UZl(p) such that 
(C.l) holds, choose a smooth function S(xi1X2,... ^x^-i) such that the graph 
xjsf — S(xi,... ,a;jv-i) passes through z and is a spacelike hypersurface E in A4, 
then foliate a neighborhood of z using E and the flow of Y. 



196 Fabio Giannoni and Paolo Piccione 

moreover, for an absolutely continuous curve z(s) = (x(s), t(s)), the conser- 
vation law (z(s),Y(z(s))) = Cz is given by: 

(C.5) (i(s), Y{z{s))) = (6(x(s)), x(a))o - f3(x(s)) i(s) = Cz. 

Observe also that, in the metric (C.3), the gradient Vt of the coordinate 
function t is given by: 

(C.6) Vi-^^fc-l). 

A quick computation gives: 

(C..7) (Vt, Vt) = -(/?+ (6,5))-1<0, 

which says that t is a local time function; moreover 

(c.8) (vt,y> = i. 
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