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Kodaira Dimension and the Yamabe Problem 

CLAUDE LEBRUN
1 

The Yamabe invariant Y{M) of a smooth compact manifold is 
roughly the supremum of the scalar curvatures of unit-volume 
constant-scalar-curvature Riemannian metrics g on M. (To be ab- 
solutely precise, one only considers constant-scalar-curvature met- 
rics which are Yamabe minimizers, but this does not affect the sign 
of the answer.) If M is the underlying smooth 4-manifold of a com- 
plex algebraic surface (M, J), it is shown that the sign of Y{M) 
is completely determined by the Kodaira dimension Kod(M, J). 
More precisely, y(M) < 0 iff Kod(M, J) = 2; Y(M) = 0 iff 
Kod(M, J) = 0 or 1; and Y(M) > 0 iff Kod(M, J) = -oo. 

1. Introduction. 

One may define an interesting and natural diffeomorphism invariant of 
a compact smooth n-manifold M as the supremum of the scalar curvatures 
of unit-volume constant-scalar-curvature metrics on M. A minor refinement 
[14, 23] of this definition, which does not change the sign of the invariant 
but guarantees that it is finite, restricts the class of allowed constant-scalar- 
curvature metrics to the so-called Yamabe minimizers. We will refer to the 
resulting invariant as the Yamabe invariant Y(M) of our manifold. For a 
more precise definition, see §2 below. 

For 2-manifolds, this invariant is easy to compute; the classical Gauss- 
Bonnet theorem tells us that the Yamabe invariant of a smooth compact 
surface is just 47rx, where x is the Euler characteristic. Many important 
complex-analytic invariants of compact complex curves are thus determined 
by the Yamabe invariant of the underlying smooth 2-manifold. 

One of the most important invariants of a compact complex manifold 
(M, J) is its Kodaira dimension Kod(M). If M has complex dimension m, 
recall that the canonical line bundle K —> M is K = Am'0, so that the 
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holomorphic sections of K are exactly the holomorphic m-forms on (M, J). 
One now defines the Kodaira dimension as 

Kod(M) = hmsup ——^—\  • 

This can be shown to coincide with the maximal complex dimension of the 
image of M under pluri-canonical maps to complex projective space, so that 
Kod(M) G {—oo, 0,1,... , m}. A compact complex m-manifold is said to be 
of general type if KodM = m. 

For Riemann surfaces, the trichotomy Kod(M) = —oo,0,1, exactly co- 
incides with that given by Y(M) > 0, = 0, < 0. The purpose of this paper 
is to show that much the same thing happens for compact complex surfaces 
(M4, J). Our main result is 

Theorem A. Let M be the underlying A-manifold of a compact complex 
surface (M4, J) with &i(M) even.  Then 

Y(M) 

f Y{M) > 0        iff Kod(M, J) = -oo 

Y(M) - 0        iff Kod(M, J) = 0 or 1 

, Y(M) < 0        iff Kod(M, J) = 2. 

The hypothesis that b\ (M) = 0 mod 2 is equivalent [3] to requiring that 
(M, J) admit a Kahler metric. It is also equivalent to requiring that (M, J) 
be a deformation of a complex algebraic surface. Many of the results con- 
tained in this article will also apply in the non-Kahler case, but the overall 
picture remains considerably less clear when b\ is odd. 

One of the main tools in the proof of the above result is Seiberg-Witten 
theory. One of the most striking consequences of this theory is that any 
two diflfeomorphic complex algebraic surfaces must have the same Kodaira 
dimension [11, 12]. Since the Yamabe invariant is obviously a diffeomor- 
phism invariant, Theorem A casts this result in an interesting new light. On 
the other hand, the Yamabe invariant does not by itself distinguish Kodaira 
dimension 0 from Kodaira dimension 1. The distinction between these cases 
instead only emerges when one asks a finer question: when is the Yamabe 
invariant actually the scalar curvature of some unit-volume metric? 

Finally, it should be emphasized that, despite the cited analogy between 
complex dimensions 1 and 2, the phenomenon explored here does not persist 
in higher dimensions. For example, consider a non-singular complex hyper- 
surface of degree m + 3 in CPm+i, where m > 3. This complex m-manifold 
has ample canonical bundle, so its Kodaira dimension is m. However, the 
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underlying smooth manifold is simply connected, non-spin, and has real di- 
mension > 4, so a surgical construction of Gromov and Lawson [13] shows 
that it admits metrics of positive scalar curvature, and thus has Y > 0. 
Thus the Yamabe invariant and Kodaira dimension are correlated only in 
complex dimensions 1 and 2. 

2. Yamabe Invariants. 

This section is expository in nature, and is intended as a convenient 
summary of the Yamabe folklore which Will be needed in the rest of the 
paper. 

Let M be a smooth compact manifold. A conformal class on M is by 
definition a collection of smooth Riemannian metrics on M of the form 

[g) = {vg\v'.M->R+}, 

where g is some fixed Riemannain metric. To each such conformal class, one 
can associate a number Yj^, called the Yamabe constant of the class, by 

/     S9d^9 
JM  

JM 

Y\q\ =   inf 

where s^ and dji^ respectively denote the scalar curvature and volume mea- 
sure of g. If g is a Riemannian metric for which the scalar curvature is 
everywhere positive, or everywhere zero, or everywhere negative, one can 
show that Y[p] is correspondingly positive, zero, or negative. 

While Yjp] has been defined as an infimum, we could have instead defined 
it as a minimum, for a remarkable theorem [2, 20, 22] of Yamabe, Trudinger, 
Aubin, and Schoen asserts that any conformal class [g\ contains a metric 
which actually minimizes the relevant functional. Such a metric will be 
called a Yamabe minimizer. Any Yamabe minimizer has constant scalar 
curvature; conversely, a constant-scalar-curvature metric g with Sg < 0 is 
automatically a Yamabe minimizer. Aubin's piece of the proof hinges on 
the observation that any conformal class on any n-manifold automatically 
satisfies 

yb]<n(n-i)(yn)
2/", 

where Vn is the volume of the unit n-sphere Sn c Mn+1. 
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Given any smooth compact n-manifold, we can therefore [14, 23] define 
an associated real number by 

/    S9 dVg 
Y(M) = snpY{g] = sup inf —^M ^.^ . 

[g] [g] geig] (M 
By construction, this is a diffeomorphism invariant of M, and it will be 
called the Yamabe invariant of M in this paper. Notice that Y(M) > 0 iff 
M admits a metric of positive scalar curvature. If Y(M) < 0, the invariant 
is simply the supremum of the scalar curvatures of unit-volume constant- 
scalar-curvature metrics on M, since any constant-scalar-curvature metric 
of non-positive scalar curvature is automatically a Yamabe minimizer. 

The minimax definition of Y(M) is rather unwieldy for many purposes. 
Fortunately, it can often be calculated in a simpler manner. 

Lemma 1. Let [g] be any conformal class on a smooth compact n-manifold 
M.  Then 

inf  /  \8§\n'2 dN = \Y[9 

Proof. If n = 2, the Gauss-Bonnet theorem tells us that 

/ \s\ diJi>       sd/i = |47rX(M)| = |yM| 

with equality iff 5 does not change sign. We may therefore assume henceforth 
that n > 3. We will break this into two cases, depending on the sign of Y^j. 

First suppose that Y^j > 0 and n > 3.  The Holder inequality tells us 
that each metric g satisfies 

/ r \2/n /   ssd[j,s 

,      „ x    1 — .£ 

(M 
with equality iff s§ is a non-negative constant. Since the infimum of the 
right-hand side over g G [g] is Yj^j and is achieved by a metric of constant 
scalar curvature s > 0, the claim follows. 
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Finally, we come to the case in which Yj^i < 0 and n > 3. Let g G [g] 
be a metric of constant negative scalar curvature, and express any other 
metric in [g] as g = i/g, where £ = 4/(n — 2) and u is some smooth positive 
function. The scalar curvatures s = Sg and s = s§ are related by 

sui+1 = su + (n- l)£Au 

where A = d*d is the positive Laplacian of g. Thus 

/   su£diJL=       (s + (n-l)e-d*du)dtJL 
JM JM \ u       J 

<   /   sd/jb, 
JM 

where d/i = d/Xp. The Holder inequality therefore implies 

(/ 
su "■fa cf/x d/x > 

> 

/ (—suej dfi 

—     sdfj, 

/   dfi 
JM 

(n-2)/n 

Hence 

/  \s^2d^= [   su'^dvL^lYw 
JM JM 

m/2 

D with equality iff u is constant. The result follows. 

This leads to a very useful reinterpretation of Y(M); cf. [1, 5, 14, 23]. 

Proposition 1.  Let M be a smooth compact n-manifold, n > 3.  Then 

inf /    5on/2d/x9 = < /0 
9 JM   

g { \Y(M)\n/2 if Y(M) < 0. 

iJere the infimum on the left-hand side is taken over all smooth Riemannian 
metrics g on M. 
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Proof. By Lemma 1, 

inf/j^^Mlib, n/2 

If Y{M) < 0, we have Y^j < 0 for all [p], so the right-hand-side may be 
rewritten as (— supY^)n/2 = |Y(M)|n/2, and we are done. On the other 
hand, any smooth manifold of dimension > 3 admits metrics of negative 
scalar curvature [4], and Yj^j depends continuously on [g]. Since the space 
of metrics is connected, Y(M) > 0 implies there is a conformal class [g] on 
M with Yjp] = 0, and the infimum therefore vanishes. □ 

3. Results from Seiberg-Witten Theory. 

It is easy to see that some complex surfaces of Kahler type carry metrics 
with positive scalar curvature. 

Proposition 2. Let M be the underlying A-manifold of a Kdhler-type com- 
plex surface with Kodaira dimension —oo.  Then Y(M) > 0. 

Indeed, the Kodaira-Enriques classification [3] tells us that any such 
complex surface is either CP2 or else is obtained from a CPi-bundle over 
a complex curve by blowing up points. Now CP2 carries the Fubini-Study 
metric, which has positive scalar curvature. Any S^-bundle over another 
manifold also carries metrics of positive scalar curvature; namely, consider 
any Riemannian submersion metric with round, totally geodesic fibers, and 
then rescale the fibers to have very small diameter while keeping the metric 
on the base fixed. Finally, the blowing-up operation amounts differentiably 
to taking connect sums with copies of CP2; all blow-ups of surfaces with 
positive-scalar-curvature metrics therefore themselves admit positive-scalar- 
curvature metrics because a result of Gromov and Lawson [13] tells us that 
the class of manifolds with positive-scalar-curvature metrics is closed under 
surgeries in codimension > 3. 

On the other hand, it is a truly remarkable consequence of Seiberg- 
Witten theory that the converse of the above statement is also true: 

Theorem 1. Let M be the underlying A-manifold of a complex surface of 
Kahler type with Kodaira dimension > 0.  Then Y(M) < 0. 

Remember, this is just a fancy way of saying that M does not admit 
metrics of positive scalar curvature. When 6+(M) > 1, this was first proved 
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by Witten [26]. In the 6+ = 1 case, this was proved for minimal surfaces 
in [16], and then in the non-minimal case by Friedman and Morgan [11]. 

The proof proceeds by first showing that for every metric g on M, there 
must be a solution of the Seiberg-Witten equations 

D9^ = 0 

and an unknown unitary connection 6 on some line bundle L —> M and an 
unknown twisted spinor $ G r(5+ ® L1/2). Here De is the Dirac operator 
coupled to #, FQ' is the projection of the curvature of 6 to the bundle A+ 

of g-self-dual 2-forms, and a : S+® L1/2 —► A^ is the real-quadratic map 
induced by the natural isomorphism 02S+ = A+ ® C. Moreover, L can 
either be taken to be the anti-canonical line bundle of (M, J) or its pull- 
back via some diffeomorphism M —> M. However, these equations imply 
the Weitzenbock formula 

0 - 4V'*V' + s$ + |$|2$, 

where 5 is the scalar curvature of g. Taking the inner product with $ and 
integrating, this tells us that 

0= /   [|2V^|2 + 5|$|2 + |$|41^, 

which is a contradiction if s > 0. 
Pushing this argument further yields a stronger result [18] for surfaces 

of general type: 

Theorem 2. Let M be the underlying A:-manifold of a complex surface 
with Kodaira dimension 2. Then Y{M) < 0. Moreover, if X is the minimal 
model ofM, then Y(M) = Y(X) = -47rx/2c2(X). 

(Recall [3] that the minimal model X is characterized by the fact that M 
can be blown down to X, but that X cannot be blown down any further. The 
minimal model X of a surface M of general type is unique, and c2(X) > 0.) 

Indeed, applying the Schwarz inequality to the integrated Weitzenbock 
formula tells us that 

([ s2dv)   (f mUf,)   > [ (-S)i$i2(i/x> / I*Iv 
\JM        J      \JM J JM JM 
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We must therefore have 

JM JM JM 

for any metric. However [17], 

|F+|2*>V([c1(L)]+)2 

/«' 

where [ci(L)]"f is self-dual part of the ^-harmonic deRham representative of 
ci(L). Moreover, for each g one can show [18] that L can be chosen so that 
([ci(L)]+)2 > cl{X). This shows that 

/ 
JN 

s2diJJ>327r2c((X) 
M 

for all metrics on M. But by gluing together Kahler-Einstein orbifolds, 
gravitional instantons, and standard metrics on the blow-up of C2 at the 
origin, one can also construct [18] sequences of metrics which show that this 
bound is actually sharp: 

inf / s2dfi = 327r2cl(X) > 0. 
9  JM 

Thus Y(M) = -47rv
/2cf(X) < 0 by Proposition 1. 

4. Rational Elliptic Surfaces Revisited. 

A complex surface (M4, J) is said to be elliptic if it admits a holomorphic 
map M —> E to a complex curve such that the regular fibers are elliptic 
curves T2. While this notion is of greatest importance in the study of 
surfaces of Kodaira dimension 0 and 1, there are also elliptic surfaces of 
Kodaira dimension — oo. One family of examples of the latter type are the 
rational elliptic surfaces treated this section. 

The smooth oriented 4-manifold CP2 # 9CP2 may be concretely realized 
as the blow-up of CP2 at 9 points. One choice of these 9 points is to take 
them to be the points of intersection of a generic pair of elliptic (i.e. cubic) 
curves in the projective plane. There is then exactly a CPi's worth of cubics 
passing through the 9 points, corresponding to linear combinations of the 
defining equations of the original pair of curves. When CP2 is blown up at 
these 9 points, this pencil of cubics gives rise to a holomorphic projection 
CP2 # 9CP2 -> CPi, the generic fiber of which is a smooth elliptic curve E « 
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T2. The term rational elliptic surface is thus used to describe CP2#9CP2 
equipped with the deformation class of this projection to CPi. 

There is a useful way of constructing special rational elliptic surfaces by 
analogy to the Kummer construction of KS's. Let A = Z © Z be any lattice 
in C, and let E = C/A be the corresponding elliptic curve. Recall that each 
such curve can be realized as a branched cover over CPi because reflection 
z \—> — z through the origin in C induces in an involution of E with 4 fixed- 
points2; the orbifold quotient E/Z2 can then be identified with a Riemann 
surface of genus 0, and this realizes E as a branched cover p : E —> CPi. 
The involution of E that occurs in this argument is called the Weierstrass 
involution of E, and will be denoted here by $ : E —> E. Notice that $ is 
an isometry of the obvious flat metric on E. 

Now let \I> : CPi -> CPi be the involution [ZQ : zi] H-> [-ZQ : zi], which 
has two fixed points and amounts to a 180° rotation of S'2 around an axis. 
The product involution 

$ x * : E x CPi -> E x CPi 

then has 8 fixed points, and the quotient E x CP1/Z2 is a complex orbifold 
with 8 singularities modeled on C2/± 1. Let M be the blow-up of of E x CPi 
at the 8 fixed points of $ x \I>, and let M = M/Z2. The non-singular complex 
surface M is thus obtained from E x CP1/Z2 by replacing each of the 8 
singular points with a (—2)-curve. 

Now consider the holomorphic map w : M —» CPi induced by following 
the second-factor projection E x CPi —> CPi with [ZQ : zi] H-> [ZQ : zf}. 
All but two fibers of w are copies of E] the only two exceptions are the 
fibers over the north and south poles [0 : 1] and [1:0]. Each of these two 
exceptional fibers consists of five (—2)-curves5 linked together according to 
the Dynkin diagram D4: 

These two exceptional fibers are of thus of Kodaira type I^D^). 
Now vu : M —> CPi is deformation equivalent to the above-described 

standard model of the rational elliptic surface.   In fact, M can be blown 

2corresponding the half-lattice ~A 
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down to CPi x CPi in such a way that the fibers of w are sent to the elliptic 
curves of the pencil 

to^o(^o - ^1)2/0 + ^lOo - ax\)y\ = 0, 

where the number a is given in terms of the lattice A by the Weierstrass 
j-function. Notice that for each [t] G CPi this locus is an element of the 
anti-canonical linear system |C?(2,2)| on CPi x CPi, and that each elliptic 
curve of the pencil passes through the points ([0 : 1], [0 : 1],), ([1 : 1], [0 : 1]), 
([a : 1], [1 : 0]), and ([1 : 0], [1 : 0]), and all are tangent to the second-factor 
CPi at these points. 

To see this explicitly, let us first consider E x CPi as a ruled surface over 
E, and blow it up at the 8 relevant points to obtain M: 

CPi 

\ 1   N \ 
-2 

) r / 
f 

-4 
1 

M 

E 

Dividing by $ x ^ then gives us a non-minimal rational ruled surface: 

-2 

CPi 

X 
\ 
-2\ 1    \ 1    \ \ 

-1 
w 

} 
/ 

-Y 
/ 

M 

CPi 

(Note that tu, which is depleted horizontally in the above picture, is not the 
ruled-surface projection, ^hich is here depicted vertically.) Contracting 8 
exceptional curves in a judicious order, 
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 1 

0 CPi x CPi 

CPi 

we get a rational ruled surface which can be recognized as CPi x CPi by 
inspecting self-intersections of holomorphic curves. Our pencil now becomes 
the sub-family of the linear system |0(2,2)| consisting of curves which are 
tangent to the second factor at 4 points in the claimed special position. It 
follows that w : M —> CPi is deformation equivalent to the standard model 
of the rational elliptic surface, since we may first deform our pencil into a 
generic sub-pencil of |0(2,2)|, and then map CPi x CPi birationally to CP2 
in the usual way, using one of the base points of the pencil as our center. 

This leads to the following: 

Proposition 3. Let V be the (flat) A-orbifold obtained from R x T3 by 
dividing by the involution induced by — 1 : M4 —> R4

; let B = (R x S1)/^ 
denote the analogous 2-orbifold, and let TT : V —> B be the map induced by 
projection R x T3 —» R x Sl to the first two coordinates. Then a smooth 
model of the rational elliptic surface CP2 # 9CP2 —> CPi may be obtained 
from TT : V —» B by replacing each of the 8 singular point of V with a 2- 
sphere of self-intersection —2, forgetting the orbifold structure on B, and 
adding a smooth fiber at infinity in the obvious manner. 

Proof. We have already seen that the rational elliptic surface can be viewed 
as a desingularization of {S2 x T2)/^. Now let x € S2 be some point 
which is not fixed by the involution, and let x7 ^ x be its image under the 
involution. Identify S2 — {x, x'} with the cylinder R x S'1 in such a manner 
that the involution becomes simultaneous reflection in both factors. The 
result follows. □ 

The orbifold V comes equipped with a family of flat orbifold metrics. 
Replacing the singularities with gravitational instantons yields the main 
result of this section: 



144 Claude LeBrun 

Proposition 4. Let V denote the complement of a generic fiber in the 

rational elliptic surface CP2#9CP2 -> CPi, let n : V —► C be the induced 
elliptic fibration, normalized so that all critical values are contained in the 
open unit disk A C C. Let f be any given flat metric on the 2-torus T2. 
Then there is a family gt, t G [1, oo) of Riemannian metrics on V such that 

• the Ricci curvature of gt converges uniformly to 0 as t —> oo; 

• (TT-^C - A),flt) is isometric to ([0,oo) x 51,dx2 + d92) x (T2J/t); 
and 

• lim Vol(7r-1(A),ft) = 0. 
t—>oo 

Proof The basic idea is to replace the singularities of of V with Eguchi- 
Hanson metrics. The Eguchi-Hanson metric [9, 15] is a complete Ricci-flat 
metric on the 0(—2) line bundle over CPi, or in other words on the blow-up 
of C2/(zbl) at the origin. Essentially by introducing polar coordinates on 
(R4 — 0)/(±l), we may think of this as the completion of the metric on 
(l,oo) xSO{2>) given by 

9EH = TTT + r2 (fi + <% + (l " ^) 4) 

where the left-invariant co-frame {(Jj} is orthonormal for the curvature +1 
bi-invariant metric. By rescaling and homothety, we can turn this into a 
1-parameter family 

of Ricci-flat metrics which bubble off to the flat orbifold metric on R4/(±l) 
as A -» 0. 

Let us now modify the Eguchi-Hanson metric. Let </>(<) be a smooth 
monotonely non-increasing function which is identically 1 on [0,1] and iden- 
tically 0 on [2, oo]. For small values of the parameter A, the modified metric 

then agrees with the Euclidean metric for r > 2, is Ricci-flat when r < 1, 
and has Ricci curvature < CA for some constant C independent of the small 
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parameter A. Making another homothety and rescaling, the metric 

l-<f>(r/e) As* 
+ r2 (cr2 + 4 + (l - ftr/e)^) a?) ,    r > eVX 

is Euclidean for r > 2s, Ricci-flat for r < e, and has Ricci curvature < 
CA/s2. Thus the metrics 

G^* O/O O/- , /      #    \   C-     \      o  \ o 

1 - ^(r/e) 
+ r2^2 + (72 + (1_^(r/e)£_)a32^      r> 

have Ricci curvature uniformly 0(£2) as £ \ 0. Notice that the volume 
form of g£ coincides with the Euclidean volume form r3dr A ai A (72 A as, but 
that the appropriate domain of integration is the r > £2 rather than r > 0. 
Thus, smoothing a flat orbifold singularity modeled on R4/(±l) by gluing 
in the modified Eguchi-Hanson metric g£ reduces the total volume, namely 
by 7r268/2. 

Now let / be any fixed flat metric on the 2-torus, and let i denote the 
injectivity radius of (T2, /), and set i = min(z, TT). Endow R x T3 with the 
sequence of flat metrics gt = dx2 + dd2 + //t, and push these down as flat 
orbifold metrics on V = (R x T3)/Z2. For each t, let St = 2/^V^j so that 
the balls of radius 2et centered at the orbifold singularities of V are pairwise 
disjoint. On the blow-up V of V, we can then define a metric gt as the gt on 
the complement of these balls, and the modified Eguchi-Hanson metrics g£t 

on the blown-up interior of these balls . Since £t —> 0, the Ricci curvature 
of gt tends uniformly to zero. Moreover, the volume of the region \x\ < a 
in (X,gt) is less than 27raa/t —> 0, where a is the area of (T2,/), so the 
volume of the pre-image of any compact set in C tends to 0 as t —» oo.     □ 

5. Collapsing Elliptic Surfaces. 

Definition 1. Let M be a smooth manifold. We will say that M collapses 
with bounded scalar curvature if there is a sequence gj of smooth metrics 
on M for which the absolute value of the scalar curvatures is uniformly 
bounded, but with total volume tending to zero: 

\sgj\<B, limVol(M, #) = (). 
3 

Similarly, we say that M collapses with bounded Ricci (respectively, sec- 
tional) curvature if there is a sequence gj of smooth metrics on M with 
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uniformly bounded Ricci (respectively, sectional) curvature and total vol- 
ume tending to zero. 

This collection of definitions is loosely inspired by the work of Cheeger 
and Gromov [7], who studied sequences of metrics gj with bounded sectional 
curvature and injectivity radius tending to zero at all points. A standard 
comparison argument for the volume of small balls shows that a sequence 
of metrics with sectional curvature bounded above can have volume tending 
with to zero only if the point-wise injectivity radii uniformly tend to zero, 
too. Note, however, that a sequence of metrics gj with bounded sectional 
curvature and injectivity radius tending to zero may have volume bounded 
away from zero — as even happens for flat metrics on the 2-torus. Nonethe- 
less, a remarkable result of Cheeger and Gromov [8] shows that if a compact 
manifold admits a sequence of metrics gj with bounded sectional curvature 
and injectivity radius uniformly tending to zero, there is typically another 
sequence gj with bounded sectional curvature for which the volume tends to 
zero as well. Thus the present definition of collapse with bounded sectional 
curvature is in rough accord with the definitions used by others. 

Collapse with bounded scalar curvature is directly relevant to the com- 
putation of Yamabe invariants by virtue of the following result: 

Proposition 5. Let M be a smooth compact n-manifold, n > 3. Then the 
following are equivalent: 

(i) M collapses with bounded scalar curvature; 

(ii) inf /  |5,r/2^ = 0; 

(hi) Y{M) > 0. 

Proof. The implication (i) => (ii) is trivial, since JM \sgj\
n^2diigj -» 0 for any 

sequence of metrics with bounded scalar curvature and volume tending to 
zero. The implication (ii) => (hi) follows from Proposition 1. Finally, the 
implication (iii) => (i) follows from the fact [2] that any n-manifold, n > 3, 
admits of metrics of constant negative scalar curvature; if Y(M) > 0, there 
is a thus a sequence of unit-volume metrics with constant negative scalar 
curvature tending to 0 from below, and rescaling these metrics so they have 
s = — 1 then makes the volumes of the rescaled metrics tend to zero.        □ 

If M is the underlying 4-manifold of a complex elliptic surface, these 
various notions of collapse can be completely understood. 
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Theorem 3. Let M be the underlying A-manifold of a complex elliptic sur- 
face.  Then M collapses with bounded scalar curvature. 

Theorem 4. Let M be the underlying A-manifold of a complex elliptic sur- 
face. Then M collapses with bounded Ricci curvature ^ M is relatively 
minimal. 

Theorem 5. Let M be the underlying ^-manifold of a complex elliptic sur- 
face.  Then M collapses with bounded sectional curvature <^ x(M) = 0. 

In order to prove these results, we will need special diffeomorphic models 
[10, 21] of elliptic surfaces. These are built up in stages, starting with 
surfaces we shall call twisted products. Let E be an elliptic curve, equipped 
with a compatible flat metric, let o E E be a chosen base-point, and let G 
be the finite group of orientation-preserving isometries E —>• E which fix o. 
(Thus G is a cyclic group of order 2, 4, or 6.) A twisted product surface is 
simply the total space B of a fiber-bundle B —> E over a compact complex 
curve, with fiber E and structure group G. 

Now let B —■> E be such a twisted product, and let a finite collection of 
points Xj G E be specified, and assign each of these points some integer mul- 
tiplicity rrij > 1. Give E an obifold structure by introducinging orbifold local 
coordinates of the form z = ^1/mi near Xj, where z is a local complex coor- 
dinate on E with Z(XJ) = 0. A process called the logarithmic transform now 
allows us to delete the fiber Ej = E over each Xj, and replace it with E//Zm., 
where the Zmj-action is generated by any specified translation Tj : Ej —> Ej 
of order rrij. Namely, let Tj (t) be a 1-complex-parameter group of transla- 
tions of EXj with Tj(l) = Tj, let A C C be a disk centered at 0 and contained 
in the range of the orbifold coordinate i, and glue (Ej x A)/((r7-,e

27r2//mj)) 
to B - EXj by [(y,5)] <-> {Tj{-mjlog(z)/27ri)(y),z := zmJ). 

With these constructions in mind, we can now prove 

Lemma 2. Let M be the underlying A-manifold of any complex elliptic 
surface with Euler characteristic 0. Then there is a compact 2-orbifold E 
and a smooth submersive map TT : M —> E, such that for every orbifold 
metric h on E there is a Riemannian metric g on M for which TT becomes 
a Riemannian submersion with flat, totally geodesic fibers. Moreover, TT can 
be chosen so that its fibers over some open disk in E are also regular fibers 
of the original elliptic fibration of M. 
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Proof. Any complex elliptic surface with Euler characteristic zero is 
C^-deformation equivalent to some logarithmic transform of a twisted- 
product surface [10, Proposition 7.2]. But this model is an orbi-bundle 
over the 2-orbifold E with structure group equal to the isometry group of a 
flat 2-torus E. Starting from any orbifold metric h on E, now construct a 
metric g on M by gluing together local product metrics with a partition of 
unity subordinate to a trivializing cover of E. Each fiber of TT : M —> E is 
then a flat quotient of E, and each fiber has vanishing second fundamental 
form because the orthogonal space of the fibers is the horizontal subspace of 
a connection with structure group equal to the isometry group of the fiber. 
D 

The ideas of Cheeger and Gromov [7] now immediately lead to a 

Proof of Theorem 5.   Consider the metrics 

on M as t —> oo. We have 

Vol(M,<ft) = ivol(M,c7)-0, 

so it suffices to show that the components of the curvature tensor remain 
bounded in an orthonormal frame as t —> oo. But this follows from O'Neill's 
Riemannian submersion formulas [4]. Indeed, the vertical sectional curva- 
ture is 0 for all t, and the horizontal sectional curvature is given by 

K(H) = KP)-lgt(v,v)-*K(X), 

while the sectional curvature of the 2-plane P spanned by a vertical vector 
and a horizontal vector is 

K(P) = ±gt(y\\,v^^0. 

Here i^(E) is the Gauss curvature of (E,/i), and v is the (^-independent) 
vertical component of |u?i, ^2], where wi and W2 are horizontal vectors which 
project to an oriented orthonormal frame on E, whereas v^ is the orthogonal 
projection of v into P. This shows that the point-wise norm of the curvature 
tensor, and hence all sectional curvatures, remain uniformly bounded as 
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£—►00.   Any elliptic surface M with x(^0 = 0 therefore collapses with 
bounded sectional curvature. 

Conversely, if M collapses with bounded sectional curvature, the Gauss- 
Bonnet formula tells one that x(M) = 0. □ 

The next operation we will need in order to create smooth models of 
elliptic surfaces is the fiber sum. The fiber sum of two elliptic surfaces is the 
smooth manifold obtained by removing a tubular neighborhood of a regular 
fiber in each and then then identifying the boundaries in a manner com- 
patible with the orientations and given local trivializations. Any minimal 
complex elliptic surface M is diffeomorphic [10, Corollary 2.17] to a fiber 
sum of an elliptic surface M with Euler characteristic 0 and copies of the 
rational elliptic surface. 

Proof of Theorem 4. Let us thus begin with some elliptic surface M with 
x(M) = 0, and let TT : M —> E be a smooth submersion of the type used 
in the previous proof. Let #1,... , x^ G E be the points we will use as the 
centers of the fiber sum construction. Let t/i,... , Uk be disjoint disks around 
these points, chosen so that M —> E may be trivialized over their closures, 
and identify each with the disk of radius 2 about 0 G C Choose h so that its 
restriction to the annulus \z\ G [1,2] is isometric to the cylinder S1 x [1,2], 
and now construct the family of metrics gt used above, with the stipulation g 
is actually taken to be a product metric on 7r~1(C/i),... ,7r_1(?7/c). Letting 
Ui C C/i,... ,t/fc C Uk each correspond to the unit sub-disk \z\ < 1, the 
Riemannian manifold-with-boundary (M-UTT

-1
^),^) has ends isometric 

to ([0,1] x Sl,dt2 + d82) x (£?,//*), where / is a fixed flat metric on an 
elliptic curve E. 

However, these cylindrical ends precisely match those of the metrics 
on V constructed in Proposition 3, and we can therefore glue these objects 
together to obtain metrics with bounded Ricci curvature and volume tending 
to zero on the fiber sum M of M and k rational elliptic surfaces. Since a 
diffeomorphic model of any minimal elliptic surface can be constructed in 
this way, it follows that any minimal elliptic surface collapses with bounded 
Ricci curvature, as claimed. 

Conversely, suppose an oriented 4-manifold M admits a sequence of met- 
rics gj with bounded Ricci curvature r and volume tending to zero. We then 
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have 

lim / 
JM 

" o 2  "I 

r,2 r 
% 9j 

24 2 

J 

tygj = 0> 

where r denotes the trace-free part of the Ricci curvature. But 

2- 

\W+\2g + 24 tyg 

p o 2-1 

„2 r 
afl P 
24 2 

_ J 

dflg 

for any metric on M. It therefore follows that (2% + 3r)(M) > 0. On the 
other hand, 2% + 3r = c^ < 0 if M is an elliptic surface, and equality occurs 
if M is relatively minimal [3]. Hence an elliptic surface M must be minimal 
if it collapses with bounded Ricci curvature. □ 

Finally, any elliptic surface is obtained from a minimal elliptic surface 
by blowing up an appropriate number of times. Recall that the blow-up of 
C2 at the origin is by definition the line bundle 0(—l) over CPi. A point in 
an arbitrary complex surface can similarly be obtained by replacing a small 
ball with a tubular neighborhood of the zero section in this bundle. This 
procedure is then iterated as needed to produce the desired surface. 

Proof of Theorem 3. The idea is to graft Burns metrics onto the previous 
examples. The Burns metric [15] is a scalar-flat Kahler metric on the blow- 
up of C2 at the origin. By introducing polar coordinates, this can be viewed 
as the completion of the metric on (1, oo) x S3 given by 

dr2 

+ r< 4 + 4 + 1- -32 

where {<TJ} is an 5?7(2)-invariant orthonormal frame on 6'3. By repeating 
the sequence of homotheties, rescalings, and cut-offs used in the proof of 
Proposition 3, the metric 

dr2 

ge = 
i-*(5)i 

+ ri ol + al+W i-*®£ 4 r > e 
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is flat for r > 2e, scalar-flat for r < e, and has scalar curvature uniformly 
0{e2) as e \ 0. Moreover, blowing up a flat region by replacing a small ball 
by a copy of ge reduces its total volume, namely by 7r2e12/2. 

Any elliptic surface is an iterated blow-up of a minimal one. Up to 
diffeomorphism, we can therefore model any such surface by blowing up one 
of our previous models at distinct points. But the constructed metrics on 
the previous models can be taken to be flat in the neighborhood of certain 
fibers provided the orbifold metric h on E is also taken to be flat on certain 
regions. So let gj be a sequence of metrics with bounded Ricci curvature 
and Vol —> 0, each containing a Euclidean ball of radius QJ, on a minimal 
elliptic surface M. On any blow-up M = M #££¥2, we can then produce 
a sequence of metrics gj, with bounded scalar curvature and Vol —> 0 by 
replacing £ disjoint, Euclidean (2ej)-balls with copies of g€j, where we may, 
for example, take ej = QJ/2£. □ 

By Proposition 5, this immediately implies 

Corollary 1. Any complex elliptic surface M has Y(M) > 0. 

The reader may prefer to deduce this corollary directly from Theorem 4 
and the fact that Y(CP2) > 0 by citing a general result of [14]. At heart, 
however, this is much the same proof as is given above. 

Combining this corollary with Theorem 1 now yields 

Theorem 6. Let M be a Kdhler-type complex surface with Kod(M) = 0 
orl.  ThenY(M) = 0. 

Proof. Any surface of Kodaira dimension 0 or 1 is deformation-equivalent to 
an elliptic surface [3, 11], and so has Y(M) > 0 by the previous result. But 
if M is of Kahler type, Seiberg-Witten theory tells us that there is no metric 
of positive scalar curvature on M, so that Y(M) < 0. Hence Y(M) = 0, as 
claimed. □ 

Combining this with Proposition 2 and Theorem 2 now proves Theo- 
rem A. 

6. Concluding Remarks. 

Theorem A does not allow one to distinguish between Kodaira dimen- 
sions 0 and 1 by comparing Yamabe invariants.   Such a distinction arises 
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immediately, however, if one asks whether 

y(M) = supyw 

is actually realized by the Yamabe constant of some conformal class. 

Proposition 6. Let M be the underlying A-manifold of a complex algebraic 
surface of Kodaira dimension > 0. Then M admits a Riemannian metric 
of scalar curvature 0 if M is minimal and has Kodaira dimension 0. In 
particular, the Yamabe invariant Y(M) is unachieved whenever Kod(M) = 
1. 

Proof Any minimal Kahler-type complex surface with Kodaira dimension 0 
has ci = 0 in real cohomology, and so carries a Ricci-flat Kahler metric by 
Yau's solution [27] of the Calabi conjecture. Such a metric has 5 = 0, and 
so realizes Y(M) = 0. 

Conversely [4], if a manifold with Y'(M) = 0 admits a scalar-flat met- 
ric, the metric in question must be Ricci-flat, since otherwise it could be 
deformed into a metric of positive scalar curvature [4]. In dimension 4, this 
implies that 

2X + 3r = —5- / 
47r2 JM 

2\W+\2 + ^- 

21 

d/x>0. 

Our complex surface must therefore satisfy cf > 0. If ci is not a tor- 
sion class, the Seiberg-Witten invariant of (M, [J]) is therefore both metric- 
independent and non-zero, even if 6+(M) = 1. But the Seiberg-Witten 
estimate [17] 

/  5
2^>327r2(c+)2 

JM 

then forces ci to be anti-self-dual with respect to any scalar-flat metric; thus 
Ci < 0, with equality iff ci = 0 in real cohomology. Hence ci is a torsion 
class, and our surface must be a minimal surface of Kodaira dimension 0. □ 

While this makes a satisfactory distinction between minimal surfaces of 
Kodaira dimensions 0 and 1, it is still unsatisfactory for non-minimal sur- 
faces. However, it is not hard to see that there are sequences of unit-volume 
constant-scalar-curvature metrics on any blow-up of, say, a K3 surface which 



Kodaira dimension and the Yamabe problem 153 

bubble off to any given Kahler-Einstein metric on the minimal model. The 
metrics in this sequence have uniformly bounded diameter. It seems plausi- 
ble to conjecture that this does not happen in the case of Kodaira dimension 
1: 

Conjecture 1. Let M be the underlying A-manifold of a complex algebraic 
surface of Kodaira dimension > 0. Suppose that there is a sequence of 
unit-volume constant-scalar-curvature metrics onM with uniformly bounded 
diameter and s / 0.  Then Kod(M) = 0. 

Of course, beyond simply knowing the sign of Y'(M), one would like to 
ask to know its actual value. When &i(M) is even and Kod(M) > 0, this 
question is completely answered by Theorems 2 and 6. For algebraic surfaces 
with Kod(M) = — oo, however, the only case in which Y{M) is actually 
known is for M — CP2, where Y{M) is actually realized by the Fubini- 
Study metric [19]. It is, in particular, unclear whether blowing up leaves 
Y{M) unchanged when Kod(M) = —00, although this is what happens 
when the Kodaira dimension is larger. 

There are a number of places in this paper where we have assumed that 
the surface in question has b\ even in order to assure that there is a non- 
trivial Seiberg-Witten invariant. However, this is superfluous in Kodaira 
dimension 0, since Kodaira surfaces are symplectic and so have non-trivial 
invariants by the work of Taubes [25]. For Kodaira dimension 1 the situation 
is less clear, but Biquard [6] has also shown that some non-Kahler surfaces 
in this class have non-trivial Seiberg-Witten invariants. Thus it would be 
surprising if the following were not true: 

Conjecture 2. Let M be the underlying A-manifold of a compact complex 
manifold of Kodaira dimension 0 or 1. Then, even ifbi(M) is odd, one still 
has Y(M) = 0. 

Even allowing for the case of bi odd, the following is an immediate 
consequence of the results proven here: 

Theorem 7. Let (M, J) be any compact complex surface. If Y{M) < 0, 
then M is either of general type or of type VII. 

For all known surfaces of type Vi7, however, one can check by hand that 
Y > 0. It therefore seems reasonable to make the following 

Conjecture 3. Let (M, J) be any compact complex surface. IfY(M) < 0; 

then M is of general type. 
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Finally, we have accidentally computed the infima of some other Rie- 
mannian functionals by showing that minimal elliptic surfaces collapse with 
bounded Ricci curvature. 

Proposition 7. Let M be the underlying 4-manifold of any complex elliptic 
surface. Then 

7+\2d(L=:0. inf f  \W+ 
W] JM 

Here W+ denotes the self-dual Weyl tensor, and the infimum is over the set 
of all conformal classes of Riemannian metrics on M. As a consequence 

inf/  \W-\2dn = -127r2T(M). 
[9] JM 

Indeed, if M is minimal, this follows from Theorem 4 and the Gauss- 
Bonnet formula for (2x + 3r)(M) = 0. Since the Burns metric is anti-self- 
dual, it is easy to extend this to the non-minimal case; cf. [24]. 

By Taubes' existence theorem [24] for anti-self-dual metrics, any complex 
surface, after being blown up sufficiently many times, admits metrics with 
W_l_ = 0. The last result raises, once again, the fascinating question of 
determining precisely how many times a given complex surface must be 
blown up before this happens. 

Acknowledgement. The author warmly thanks Michael Anderson, Peter 
Kronheimer, and Heberto del Rio for their helpful comments and sugges- 
tions. 

References. 

[1] M.T.Anderson, Extrema of Curvature Functionals on the Space of Metrics on 
3-Manifolds, Calc. Var. Partial Diff. Eq., 5 (1997), 199-269. 

[2] T.Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Sprin- 
ger- Verlag, 1982. 

[3] W.Barth, C.Peters and A.Van de Ven, Compact Complex Surfaces, Springer- 
Verlag, 1984. 

[4] A.Besse, Einstein Manifolds, Springer-Verlag, 1987. 

[5]  G.Besson, G.Courtois, and S.Gallot, Les Varietes Hyperboliques Sont des Min- 
ima Locaux de VEntropie Topologique, Inv. Math. 117.(1994), 403-445. 



Kodaira dimension and the Yamabe problem 155 

[6]  O.Biquard, Les Equations de Seiberg-Witten sur une Surface Complexe Non 
Kahlerienne, Comm. in Anal. Geom. 6 (1998), 173-197. 

[7]  J.Cheeger and M.Gromov, Collapsing Riemannian Manifolds While Keeping 
Their Curvature Bounded I, J. Diff. Geom. 23 (1986), 309-346. 

[8]  J.Cheeger and M.Gromov, Collapsing Riemannian Manifolds While Keeping 
Their Curvature Bounded II, J. Diff. Geom. 32 (1990), 269-298. 

[9] T.Eguchi and A.J.Hanson, Asymptotically Flat Self-Dual Solutions to Eu- 
clidean Gravity, Phys. Lett. 74B (1978), 249-251. 

[10] R.Friedman and J.Morgan, Smooth A-Manifolds and Complex Surfaces, Sprin- 
ger-Verlag, 1994. 

[11]  R.Friedman and J.Morgan, Algebraic Surfaces and Seiberg-Witten Invariants, 
J. Alg. Goem. 6 (1997), 445-479. 

[12] R.Friedman and Z.Qin, The Smooth Invariance of the Kodaira Dimension of 
a Complex Surface, Math. Res. Lett. 1 (1994), 369-376. 

[13]  M.Gromov and H.B.Lawson,  The Classification of Simply Connected Mani- 
folds of Positive Scalar Curvature, Ann. of Math. Ill (1980), 423-434. 

[14]  O.Kobayashi, Scalar Curvature of a Metric of Unit Volume, Math. Ann. 279 
(1987), 253-265. 

[15]  C.LeBrun, Counter-Examples to the Generalized Positive Action Conjecture, 
Comm. Math. Phys. 118 (1988), 1205-1208. 

[16]  C.LeBrun, On the Scalar Curvature of Complex Surfaces, Geom. Func. An. 5 
(1995), 619-628. 

[17]  C.LeBrun,   Polarized A-Manifolds,   Extremal Kdhler Metrics,   and Seiberg- 
Witten Theory, Math. Res. Lett. 2 (1995), 653-662. 

[18]  C.LeBrun,   Four-Manifolds without Einstein Metrics,  Math.  Res.  Lett.  3 
(1996), 133-147. 

[19] C.LeBrun,  Yamabe Constants and the Perturbed Seiberg-Witten Equations, 
Comm. An. Geom. 5 (1997), 535-553. 

[20]  J.Lee and T.Parker, The Yamabe Problem, Bull. Am. Math. Soc. 17 (1987), 
37-91. 

[21] Y.Matsumoto, Diffeomorphism Types of Elliptic Surfaces, Topology 25 (1986), 
549-563. 

[22]  R.Schoen, Conformal Deformation of a Riemannian Metric to Constant Scalar 
Curvature, J. Diff. Geom. 20 (1984), 478-495. 



156 Claude LeBrun 

[23] R.Schoen, Variational Theory for the Total Scalar Curvature Functional for 
Riemannian Metrics and Related Topics, Lee. Notes Math. 1365 (1987), 
120-154. 

[24] C.H.Taubes, The Existence of Anti-Self-Dual Metrics^ J. Diff. Geometry 36 
(1992), 163-253. 

[25] C.H.Taubes, The Seiberg-Witten Invariants and Symplectic Forms, Math. Res. 
Lett. 1 (1994), 809-822. 

[26] E.Witten, Monopoles and Four-Manifolds, Math. Res. Lett. 1 (1994), 809-822. 

[27] S.-T.Yau, On the Ricci-Curvature of a Complex Kdhler Manifold and the Com- 
plex Monge-Ampere Equations, Comment. Pure Appl. Math. 31 (1978), 339- 
411. 

RECEIVED FEBRUARY 19, 1997. 

SUNY 
STONY BROOK 




