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1. Introduction. 

In this paper we shall be interested in the existence of maps of non- 
zero degree between compact 3-mamfolds, and epimorphisms between their 
fundamental groups. We shall be particularly interested in the case when 
the manifolds are finite volume hyperbolic 3-manifolds. Throughout, by 
a hyperbolic n-manifold we shall always mean an n-manifold admitting a 
complete Riemannian metric of constant curvature —1. In what follows, all 
manifolds are assumed connected and orient able unless indicated. 

There is a rich history to the study of maps of non-zero degree (see for 
example [14], [15] and references therein), and of particular motivation to 
us is the suggestion of Gromov and others that one can use maps of non- 
zero degree to define a partial order on the set of homeomorphism classes 
of compact n-manifolds. More precisely, say that a compact n-manifold M 
dominates (resp. d-dominates) a compact n-manifold AT, and write M > N 
(resp. M >£ N) if there is a map / : M —> N of non-zero degree (resp. 
degree d). For n ^ 3, by H. C. Wang's famous theorem that for bounded 
volume there are at most finitely many closed hyperbolic n-manifolds, to- 
gether with the work of Gromov (see [24]), each closed hyperbolic n-manifold 
dominates at most finitely many closed hyperbolic n-manifolds. 

In dimension 3, it was shown by Thurston ([24]) that there exists a V > 0 
such that there are infinitely many closed hyperbolic 3-manifolds of volume 
bounded above by V. The difference between dimension 3 and dimension 
n 7^ 3 is further emphasized by an example in [1] of a closed non-orientable 
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hyperbolic 3-manifold which was shown to admit (geometric) degree 1 maps 
to infinitely many closed orient able hyperbolic 3-manifolds. 

It is also worth remarking that if a 3-manifold M 1-dominates iV, then 
M can be viewed as being "larger than N", for many of the known invariants 
which are used to measure the complexity of 3-manifolds, say the rank of 
TTI or homology groups, the number of disjoint embedded incompressible 
surfaces, or the Gromov norm, the numbers associated with M are not 
smaller than that associated with N. 

Of specific interest to us are the following questions and a conjecture. 
Question 2 appears in Kirby's new problem set 3.100, [13] and Conjecture 
3 in Kirby's (old and) new problem set 1.12 (D) [13]. 

Question 1: Which (hyperbolic) 3-manifolds dominate at most finitely 
many (hyperbolic) 3-manifolds? 

Question 2: Does every compact 3-manifold 1-dominate at most finitely 
many 3-manifolds? 

Conjecture 3: For a given knot K in S'3, there exist only finitely many 
knot groups G for which there is an epimorphism 7ri(S'3 — K) -» G. 

In an effort to resolve questions 1 and 2, it was shown in [20] that in 
a sequence of degree one maps M —> Mi —> M2 —> M3 —> ... among 3- 
manifolds satisfying Thurston's Geometrization Conjecture the number of 
homeomorphism types of the manifolds is finite. Also in connection with 
Questions 1 and 2, we refer the reader to [14], [15] (see also the references 
contained there) for results on mappings of non-zero degree between Seifert 
fibered spaces, and conditions for the existence of a degree 1 map onto a 
lens space. 

The main results in this paper are some "substantial partial answers" to 
both Questions 1, 2 and Conjecture 3 above. 

Before presenting the results, recall that a 3-manifold is geometric if it 
admits one of the eight geometries of Thurston [22]. It will be convenient in 
places to make use of the following Geometrization Conjecture of Thurston. 

Conjecture 1.1. Every closed orientable 3-manifold admits a canonical 
sphere-torus decomposition into pieces which have geometric structures. 

Assuming this we show (see Theorem 4.2), 
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Theorem 1.2. Let M be a non-Haken 3-manifold. Then for each positive 

integer d, M d-dominates only finitely many 3-manifolds satisfying Conjec- 

ture 1.1. 

For non-Haken hyperbolic 3-manifolds, this can be strengthened to (see 
Theorem 4.4 ) 

Theorem 1.3. Let M be a non-Haken hyperbolic 3-manifold. Then there 

exists only finitely marly finite volume hyperbolic 3-manifolds N for which 
there is an epimorphism 7ri(M) —» 7ri(N). In particular M dominates at 
most finitely many hyperbolic 3-manifolds. 

In [1], there is a closed orientable Haken hyperbolic 3-manifold M admit- 
ting an epimorphism TTI(M) —> 7ri(N) for infinitely many closed orientable 
hyperbolic 3-manifolds JV. However, the finiteness results may also be ex- 
tended to some closed Haken 3-manifolds. 

Moreover our techniques extend to give finiteness results analogous to 
the above for cusped hyperbolic 3-manifolds that are "non-sufficiently-large" 
in the sense that they do not contain a closed embedded essential surface 
(see Theorem 5.2 and its proof). 

Theorem 1.4. Let M be a 1-cusped hyperbolic 3-manifold of finite vol- 
ume containing no closed embedded essential surface. Then there exist 
only finitely many finite volume hyperbolic 3-manifolds N for which there 
is an epimorphism 7ri(M) —■» 7ri(iV) and for which the peripheral subgroup 
of TTI (M) is mapped into the peripheral subgroup of TTI (N). In particular M 
1-dominates at most many finitely hyperbolic 3-manifolds. 

The proofs of our results depend on the theory of characters of repre- 
sentations of 3-manifold groups developed by Culler and Shalen [6]. This 
gives a powerful tool in detecting mappings of non-zero degree and homo- 
morphisms on finite index subgroups, whose application in this context has 
previously gone unnoticed. Of particular interest is that the methods devel- 
oped here seem to be the first that allow one to say anything meaningful for 
maps between non-Haken hyperbolic 3-manifolds. 

To describe the other results of the paper we recall that a closed 3- 
manifold M is called minimal if for any compact irreducible 3-manifold 
N different from S'3, M >i N implies that M is homeomorphic to N. 
For examples of minimal Seifert manifolds see [14], and for minimal knot 
complements see [1]. The question of which closed hyperbolic 3-manifolds 
are minimal was raised in [1]. In this paper we give the first such examples 
(for example (1, 2) surgery on the figure eight knot complement). 
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A natural candidate for such a minimal manifold is the so-called Weeks 
manifold (see below), which is conjecturally the smallest volume hyperbolic 
3-manifold. Here we show that it is almost minimal in the sense that (as- 
suming the Geometrization Conjecture of Thurston), the only manifolds 
that the Weeks manifold can dominate by a mapping of non-zero degree are 
covered by S3. Indeed if the degree is 1, the only possibilities (which exist) 
are the lens spaces 1/(5,1) and 1/(5,2). This can be viewed as some mild 
positive evidence that the Weeks manifold is the minimal volume hyperbolic 
3-manifold. 

The plan of the paper is the following. In §2 we recall some relevant 
facts about representation and character varieties of 3-manifold groups, and 
in §3 collect some facts on mappings of non-zero degree. In §4 we prove our 
finiteness results in the closed case, with §5 being devoted to the bounded 
case. Finally in §6 we perform the calculations for the examples mentioned 
above which provide the first known minimal hyperbolic 3-manifolds under 
the partial order >i. 

2. Representation and Character Varieties. 

In this section we record facts about the structure of the representation 
and character varieties that we shall use. This section is included to make 
the paper more self-contained. Good references for this section are [2], [6], 
and [17]. 

2.1. 

Let F be a finitely generated group with a generating set {71,... ,7n}. 
We denote by Hom(r) the set of all homomorphisms of F into SL(2, C). 
Then via the embedding 

Horn (T) C SL (2, C)n C C4r\ 

Horn (F) inherits the structure of a complex algebraic variety, where the 
polynomials defining the variety arise from the relations in the rfs. Horn (F) 
is called the Representation Variety of F. 

A related variety is the Character Variety. Recall that by a character 
of a representation p G Horn (F) we mean a function Xp : F —> C with 
Xpd) — tr (^(7)). As discussed in [6], the space of characters denoted X(r) 
also has the structure of a complex algebraic variety. We briefly recall some 
features of this since it will be useful in what follows. 
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For each 7 G F, we can define a regular function r7 : Horn (F) —> C by 

r7(p) = Xp(7)- 

Also following [6] we denote by J7 the regular function on X(r) defined by 

VX) = X(7). 
Let T be the ring generated by all such functions. As shown in [6] 

Proposition 1.4.1, T is finitely generated. Fixing a finite set of elements 
£i> • • • 5 dm that generate T, then X(T) is described as the image of a map 
t:Hom(r)-*X(r), where 

*(P) = faiM)--- iT6m(p))- 

Hence the character Xp is determined by t(p). 
The construction of a generating set for T determined by the above 

discussion (see [6]) contains the following well-known lemma about non- 
elementary subgroups of SL (2, C) going back to Fricke and Klein. Recall a 
subgroup G of SL (2, C) is non-elementary if G has no common fixed point 
for the action on H3. 

Lemma 2.1. Let G = (gi,... ,pn} and p a representation into SL(2, C) 
whose image is non-elementary. Then p(G) is determined up to conjugacy 
in SL (2, C) by the complex numbers 

XpiQi) = tr (p(0i)), Xp(9i9j) = tr (p(^£j)),     i < j 

and 

Xp(9i 9j 9k) = tr {p{gi gj gk)),     i<j< k. 

2.2. 

Here we collect facts about Hom(r) and -X"(r) when F is a 3-manifold 
group. Recall that a compact irreducible 3-manifold is Haken if it contains 
an embedded incompressible surface. 

If M is a compact irreducible 3-manifold, we shall use the notation X(M) 
for the character variety of TTI (M). The following lemma is an easy conse- 
quence of the fundamental theorem of [6]. 

Lemma 2.2. Let M be a non-Haken 3-manifold. Then X(M) consists of 
a fifiite number of points. 
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Proof. A standard fact from algebraic geometry is that a complex algebraic 
variety has only finitely many irreducible components. Thus suppose that 
some component of X(M) has positive dimension. Then we can find a 
curve of characters in X(M). By [6], this determines a non-trivial splitting 
of 7ri(M), and by standard 3-manifold topology an embedded incompressible 
surface in M contradicting the non-Haken hypothesis. □ 

For Haken manifolds, we observe that if the first Betti number of M is 
positive then X(M) always has positive dimension, using representations of 
Z into SL(2, C). However, there are many Haken hyperbolic 3-manifolds 
with 0-dimensional character variety. The following lemma is proved as 
Lemma 9.1 of [2], which allows many examples to be constructed (cf. [2] 
Theorem 0.9, and Example 9.2). 

Lemma 2.3. Let K be a knot in S3 whose complement is hyperbolic. As- 
sume further that M>= S'3\Int (N(K)) contains no closed embedded essential 
surface. Then if r = m/n is a boundary slope with n > 1, M(r) is a Haken 
manifold with X(M(r)) consisting of a finite number of points. Moreover if 
n > 2, M(r) is hyperbolic. 

We will also use the following lemma which is implicit in [6] Proposi- 
tion 3.2.1. We outline the proof for completeness. Recall by an essential 
closed surface in a compact irreducible 3-manifold M we mean a closed 
embedded incompressible surface S in M which is not boundary parallel. 

Lemma 2.4. Let M be a compact orientable 3-manifold whose boundary 
consists of a disjoint union of incompressible tori. Assume X(M) contains 
a curve of characters which take the value ±2 on every peripheral subgroup. 
Then M contains a closed essential surface. 

Proof. Let Ti,...Tn be the peripheral tori in M. Let C be a curve in 
X(M) with the property that the characters x E C have value ±2 on each 
peripheral subgroup 7ri(Ti)... ,7ri(Tn). Using the construction of the tree 
of SL (2) over a field with a discrete valuation ring, together with the as- 
sumption that the characters x have value ±2 on each peripheral subgroup 
the techniques of [6] provide a splitting of 7ri(M), with the property that 
for each i = l,...n, 7ri(T;) is contained in a vertex group (see [6] 2.2,1). 
Standard 3-manifold techniques (cf. [6] Proposition 2.3.1 for instance) then 
imply that M must contain a closed essential surface. □ 
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We also find it convenient to make use of PSL (2, C) versions of the 
above. This is discussed in [2] §2 in some detail. We will not discuss this in 
any detail here, other than to record the following facts, and refer the reader 
to [2]. Denote by X(M) the PSL (2, C)-character variety. Then X(M) maps 
to X(M) by a finite-to-one map, and in particular if X(M) consists of a finite 
number of points then X(M) will consist of a finite number of points. It is 
worth pointing out that the dimension of X(T) can be strictly smaller than 
X(r), e.g. F = Z2 * Zn for any positive integer n > 2. 

If M is non-Haken then Lemma 2.2 holds for X(M), to show that X(M) 
consists of a finite number of points. 

In what follows we will always work with SL (2, C) representations unless 
it is absolutely necessary to pass to the PSL (2, C) versions. 

3. Maps of non-zero degree. 

Throughout this section, unless otherwise indicated, all manifolds are 
assumed to be of dimension 3 and to be irreducible. 

The only facts we shall use about maps of non-zero degree between 
3-manifolds are contained in the following. The first lemma is a combi- 
nation of results to be found in [3], [7] and [15] for example. 

Lemma 3.1. Let f : M —> N be a map of degree d j^ 0. // /* denotes the 
homomorphism induced on fundamental groups then [7ri(JV) : /*(7ri(M))] is 
a divisor of d. Moreover, if the degree is 1 then: 

(1) /* is surjective, 

(2) Tor(iJi(M,Z)) is a direct summand of TOT (iJi(iV, Z)). 

In particular if M is non-Haken, then Hi(M, Z) is finite and |iJi(M, Z)| > 
\Hi{N,Z)\ 

Recall that a map / : (M, dM) -» (iV, dN) is proper if f^dN) = dM. 

Lemma 3.2. Let f : (M, dM) -» (N, dN) be a proper degree 1 map. If dM 
is a torus, then dN is a torus. 

Proof. Since the map is proper and dM is a torus, dN is either S'2 or a 
torus. Since N is irreducible, the result follows. □ 

The final result we record here is the following due to Gromov and Thurston, 
see [24], Corollary 6.2.1. 
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Theorem 3.3. Let M and N be hyperbolic 3-manifolds of finite volume, 
and f : M -> N a map of degree d^O.  Then Vol (M) > d Vol (JV). 

4. Finiteness Results: Closed 3-Manifolds. 

Recall that if M is a hyperbolic 3-manifold of finite volume, then TTI (M) 
admits a faithful discrete representation into PSL (2, C) which by Mostow 
Rigidity is unique up to conjugacy in Isom(H3). Furthermore this repre- 
sentation can be lifted to SL (2, C), see [6] for instance. 

The results of this section can be summarized in the following theorem whose 
proof is given in the subsections below. 

Theorem 4.1. Let M be a closed irreducible 3-manifold such that X{M) 
consists of a finite number of points. Then for each positive integer d, M 
d-dominates only finitely many geometric 3-manifolds. 

This can be easily applied to prove: 

Theorem 4.2. Let M be a non-Haken 3-manifold and d as above. Then 
M d-dominates only finitely many 3-manifolds satisfying Conjecture 1.1. 

Proof. From Theorem 4.1 and Lemma 2.2 (and the discussion in §2.2), we 
observe that M d-dominates at most finitely many geometric 3-manifolds. In 
addition, if M is a non-Haken manifold, then M cannot dominate a manifold 
that decomposes non-trivially into geometric pieces, for otherwise we obtain 
a surjection of 7ri(M) onto a non-trivial free product with amalgamation 
over the trivial group or Z © Z. Standard 3-manifold topology provides an 
embedded incompressible surface in M. This completes the proof. □ 

4.1. 

We begin the proof of Theorem 4.1 by establishing the following: 

Lemma 4.3. Let M be as in the statement of Theorem 4.1 and d a fixed 
positive integer. Then there exists only finitely many hyperbolic 3-manifolds 
N for which there is an epimorphism 7ri(M) —> 7Ti(N). In particular M 

d-dominates at most finitely many hyperbolic 3-manifolds. 
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Proof. Note first that since X(M) consists of a finite number of points any 
hyperbolic 3-manifold dominated by M is closed and orientable. The reason 
being that if a compact 3-manifold has non-empty boundary or is non- 
orientable then the fundamental group admits a map to Z (see [10] Lemma 
6.7). As discussed in §2.2 this implies a positive dimensional PSL(2, C)- 
character variety. 

Let F = 7ri(M) be generated by (ai,... , ar). Assume {Mj} is an infinite 
collection of distinct closed orientable hyperbolic 3-manifolds with surjective 
maps fj^ : 7ri(M) —> iri(Mj). Let Tj = 7ri(Mj), and let pj be a faithful 
discrete representation of Fj into SL (2, C). 

By composing pj with fj^ we get a representation (j)j of F into SL (2, C) 
whose image coincides with the faithful discrete representation of Fj. Thus 
we have an infinite number of characters of representations which are de- 
scribed by the tuples 

*j = (x^-faa), X^(a5at), XtjiaaOtaw)) , 

where s = 1.. .r, s <t <w - recall §2.1. 
Now X(M) is assumed to consist of a finite number of points, and so 

by the discussion in §2.2, X(M) consists of a finite number of points. We 
can therefore find a character x such that infinitely many of the tuples $j 
must coincide with x- However Lemma 2.1 then implies that the groups 
(f)j(7ri(M)) = pj(Fj) are conjugate in SL (2, C) (since the groups Pj(Fj) 
are non-elementary). Thus the groups Pj(Fj), which are faithful, discrete 
representations of the groups Fj are conjugate subgroups of SL (2, C) and 
so by Mostow Rigidity this forces the manifolds Mj to be homeomorphic. 

To deal with the last part of the lemma, assume that fj\M-+ Nj 
are maps of degree d ^ 0 for an infinite number of distinct hyperbolic 3- 
manifolds Nj. By Lemma 3.1 there are coverings Mj of iVj, of degree a 
divisor of d for which F surjects under fj^ onto TT^MJ). The argument 
above shows the manifolds Mj are homeomorphic, thus it suffices to show 
that the AT/s are homeomorphic. To see this, merely observe that a closed 
hyperbolic 3-manifold covers at most finitely many distinct hyperbolic 3- 
manifolds. Briefly, by J0rgenson and Thurston's analysis of the structure of 
the set of volumes of hyperbolic 3-manifolds ([24]), there are at most finitely 
many hyperbolic 3-manifolds of a fixed volume. In addition there is a lower 
bound to the volume of a hyperbolic 3-manifold. This completes the proof. 
□ 
Lemma 4.3 has the following consequence of particular interest which 
strengthens Theorem 4.2. 
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Theorem 4.4. Let M be a non-Haken hyperbolic 3-manifold. Then there 

exists only finitely many closed hyperbolic 3-manifolds N for which there 
is an epimorphism 7ri(M) —> 7ri(iV). In particular M dominates at most 

finitely many hyperbolic 3-manifolds. 

Proof. The first part follows from Lemmas 2.2 and 4.3. The second claim 
follows from Lemma 4.3 and the observation that for a finite volume hyper- 
bolic 3-manifold M, there exists a do such that for all d > do, M cannot 
d-dominate a hyperbolic 3-manifold. This easily follows from Theorem 3.3 
and the fact that there is a lower bound to the volume of a hyperbolic 
3-manifold. □ 

We remark here that examples of closed hyperbolic 3-manifolds which map 
onto infinitely many distinct hyperbolic 3-manifolds with degree 2 are given 
in [1]. By Theorem 4.4 these examples must be Haken (as is seen from the 
construction in [1]). 

4.2. 

To continue the proof of Theorem 4.1, we recall the following facts about 
Seifert fibered spaces with base S2 and 3 exceptional fibers, see for example 

[12]. 

Lemma 4.5. Let M be a Seifert fibered space with base S2 and 3 exceptional 

fibers with Hi(M,Z) finite, and with standard form 

(Z; ai,&i; a2,&2; ^3,63), 

where all numbers are integers and ai > bi > 0.  Then the order of Hi(M, Z) 
is 

fh ^b2      b3 

\ai      a2      as 

An easy corollary of Lemma 4.5 is: 

Corollary 4.6. For any given positive integers C, ai, 02 and as, there are 
only finitely many Seifert fibered spaces M with standard form 

(Z; ai,6i; a2,&2; ^3,63) 

such that the order of Hi(M, Z) is smaller than C. 
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We also collect the following information about X(M) when M is a 
Seifert fibered space. 

Lemma 4.7. Let M be a closed orientable Seifert fibered space with infinite 
fundamental group. Then X(M) has positive dimension, unless the base is 
one of the following 2-orbifolds: 

(a) sphere with 3 cone points or, 

(b) RP2 with 2 cone points of order 2. 

Proof If M is covered by S2 x R then there are only four possibilities for 
M; the two S2-bundles over S4, RP2 x S1, or RP3#RP3. In all but the 
last case we have a map from 7ri(M) onto Z, and as pointed out in §2.2 
having a such map implies the dimension of X(M) is positive. In the last 
case 7Ti(M) = Z2 * Z2. As for Z, Z2 * Z2 admits a positive dimensional 
PSL (2, C)-character variety. For Z2 * Z2 surjects all finite dihedral groups 
which can be realized as subgroups of PSL (2, C) . 

We now assume the base of M is a Euclidean or hyperbolic 2-orbifold. 
Assume first of all that the base is orientable. If the genus of the base is at 
least 1 then the first homology of the base is infinite and so the discussion 
in §2.2 shows that X(M) will have positive dimension. Also, recall that the 
Teichmiiller Space of a hyperbolic 2-orbifold can be viewed, using Fricke co- 
ordinates, as a component of the real points of the corresponding character 
variety. Since the hyperbolic structure on a hyperbolic 2-orbifold is com- 
pletely determined by the Fricke co-ordinates, and there are infinitely many 
distinct hyperbolic structures in the case of genus 0 and at least 4 singular 
fibers (and hyperbolic) we deduce that X(M) has positive dimension in this 
case. 

There is a unique Euclidean orbifold Q with base S2 and 4 cone points 
of order 2. Since the isometry group of the Euclidean plane embeds in 
PSL (2, C), and since such an orbifold admits infinitely many distinct Eu- 
clidean structures we deduce, arguing as above, that M as in the hypothesis 
of the Lemma with base Q, has positive dimensional X(M). 

Case (a) of the Lemma is well-known to contain the class of non-Haken 
Seifert manifolds, and so X(M) cannot have positive dimension in such 
cases. There are Seifert fibered spaces with base S2 and 3 exceptional fibers 
which are Haken, and these manifolds automatically have positive first betti 
number (see [12]), so we can omit these also. 
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In the case of non-orientable base, the argument is almost identical to the 
above. If the base is hyperbolic, using the fact that Isom (H2) = PGL (2, R) 
embeds in PSL (2, C) we quickly reduce to the case of non-orientable 2-fold 
quotients of base orbifolds arising in case (a). However, the base orbifold 
cannot have corner reflectors (cf. [22]), and so this cannot arise as a base of 
a Seifert manifold. In the Euclidean case, again using the fact the base has 
no corner reflectors, the only possibilities are the Klein bottle or RP2 with 
2 cone points of order 2. However, the first homology of a Seifert manifold 
with base a Klein bottle is infinite, and as above this will contradict the 
assumption on X(M). This leaves case (c). □ 

With these preparatory lemmas we now prove Theorem 4.1. 

Proof. Suppose there exists an infinite collection of non-homeomorphic geo- 
metric 3-manifolds {Nj} and maps fj : M —> Nj of fixed degree d ^ 0. 

Let Nj be the covering space of Nj corresponding to the image of the 
homomorphism fa* : iri(M) —► 7ri(iVj). By Lemma 3.1 the degree of the 
covering is a divisor of d. Since Nj is assumed geometric, TV' is geometric 
with the same geometry (see [22]). 

If Nj is not hyperbolic or covered by S'3, then it and Nj are both Seifert 
fibered with infinite fundamental group, or admit a Sol-structure. 

Now the hyperbolic case is dealt with by Lemma 4.3. If Nj admits 
a Sol structure, then there exist homomorphisms from TT^AT') onto Z or 
Z2 * Z2 (cf. [22]). As pointed out in §2.2 having a map onto Z will imply 
the dimension of X(M) is positive. Similarly, as pointed out in the proof 
of Lemma 4.7, since Z2 * Z2 surjects all finite dihedral groups which are 
subgroups of PSL (2, C) we also contradict the hypothesis on X(M). 

Thus it remains to deal with Seifert fibered spaces. 

Claim 1. Only finitely many of the Nj are non-homeomorphic Seifert 
fibered spaces with infinite fundamental group. 

In the case where Nj admits a geometry modelled on S'2 x R, Lemma 
4.7 implies Nj and hence M has a positive dimensional PSL (2, C)-character 
variety. 

Thus assume that Nj is Seifert fibered with infinite fundamental group, 
and is not covered by S'2 x R. Since X(M) is finite, by Lemma 4.7, we 
see that the base of any of the Seifert manifolds Nj is one of (a), or (b). 
From [22] there is a unique orientable Seifert manifold with base RP2 with 
2 cone points of order 2, thus it suffices to show only finitely many Seifert 
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manifolds with base as in (a) or (b) of Lemma 4.7 can arise. Consider case 
(a) — the argument to deal with (b) is identical. 

So assume infinitely many of the iVj have a base S2 with 3 cone points 
and each base is a Euclidean or hyperbolic 2-orbifold. Composing /j5* with 
the projection map induced by the Seifert fibration, we obtain a homomor- 
phism from 7ri(M) onto a Euclidean or Fuchsian triangle group, and hence 
a representation into PSL (2, C). Since X(M) consists of a finite number of 
points, it follows that there at most a finite number of topological types for 
the base orbifolds of the Seifert fibrations of the N1-. Furthermore, X{M) 
being finite implies iJi(M, Z) is finite (recall §2.2), so Lemmas 3.1 and 4.5 
together with Corollary 4.6 show that infinitely many of the N'- are home- 
omorphic. It follows that some N'- covers with degree at most d infinitely 
many of the manifolds iVj. By passing to a finite cover of N'- if necessary 
we obtain a Seifert manifold N' that is a regular cover of bounded degree of 
infinitely many of the manifolds Nj. However, in [16] it is shown that any 
finite group action on a Seifert manifold as above is geometric, and so there 
are only finitely many distinct actions. Hence only finitely many homeo- 
morphism types of the manifolds Nj. This completes the proof of Claim 1. 
□ 

Claim 2.  Only finitely many of the N1- are non-homeomorphic manifolds 
covered by Ss. 

The claim will follow from the next proposition. 

Proposition 4.8. With M as above, 7ri(M) surjects the fundamental 
groups of at most finitely many non-homeomorphic manifolds which are cov- 
ered by S'3. 

Before proving the proposition we complete the proof of Claim 2. 

We are assuming that M d-dominates infinitely many manifolds covered 
by 53. In the notation above, we have coverings iVj of Nj with covering 
degree a divisor of d, where each Nj is also a manifold covered by S3 and 
7ri(M) surjects ^(iVj). 

Applying Proposition 4.8 to the epimorphisms 7ri(M) —» 7ri(JVp, we 
deduce that there are only finitely many distinct iVj up to homeomorphism. 

Since 7ri(iVj) is finite and the covering degree is bounded, so |7ri(iVj)| is 
bounded. Since Nj is covered by S'3, there are only finitely many homeo- 
morphism types of the manifolds Nj with fundamental groups of bounded 
order [22]. This completes the proof of Claim 2. □ 
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We break the proof of Proposition 4.8 into two cases. 

(1) the groups are the fundamental groups of a manifold N with N a 
lens space L(n,m) with \Hi(N, Z)| = n or one of the spaces with 
standard form, (Z; 2,1; 3,62; 3,63) with \Hi(N, Z)| = |9 + 662 + 663 + 
18Z|, or (Z; 2,1; 3,&2; 4,63) with |ffi(iV,Z)| = |12 + 8fe2 + 663 + 24Z|, or 
(Z; 2,1; 3,62; 5,63) with {H^N,Z)| = |15 + IO62 + 663 + 30Z|; 

(2) the groups are the fundamental groups of a manifold TV with N a prism 
space (Z; 2,1; 2,1; 71,63) with \Hi(N,Z)\ =4|n + 6|, where b = b3 + nL 

To deal with case (1) we show: 

Lemma 4.9. With M as above, 7ri(M) surjects the fundamental groups of 
at most finitely many distinct manifolds described in (1). In particular M 
1-dominates at most finitely many manifolds in (1). 

Proof. Since X{M) is finite, as above, it follows that ifi(M, Z) is finite and 
so by 3.1 there is an upper bound on the orders of the groups Hi(Nj,Z). 
Then the conclusion of the Lemma follows since there are only finitely many 
lens spaces whose fundamental group is of a given order, and for the other 
spaces we simply apply Lemma 4.5 and Corollary 4.6. □ 

We now handle the manifolds in case (2). The important distinction for 
case (2) is that there are infinitely many distinct prism spaces with the same 
first homology group. 

For convenience we write the standard form for the manifolds in case (2) 
as (2,1; 2,1; n, b) with first homology of order 4|6 + n| — here b can be any 
integer. We first prove an analogous result to Lemma 4.9. 

Lemma 4.10. With M as above, 7ri(M) surjects the fundamental groups 
of at most finitely many distinct manifolds described in (2). In particular 
M 1-dominates at most finitely many distinct prism spaces. 

Proof. Assume we have infinitely many epimorphisms fj^ : 7ri(M) —> 7ri(Nj) 
where Nj is a prism space of type (2,1; 2,1; ny, bj). By Lemma 3.1, \nj + bj\ 
is bounded by the order of i?i(M, Z). By passing to a subsequence, we may 
assume that nj + bj = C is fixed. 

Consider the Z2 action on (2,1; 2,1; nj, bj) which induces the identity on 
the base orbifold and rotation on each regular S'1 fiber by TT. The quotient 
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(2,1; 2,1; nj,bj)/Z2 has standard form (1,1; 1,1; njJ2bj) if rij is odd and 
(1,1; 1,1; nj/2, bj) if rij is even. 

Now (1,1; 1,1; rij^bj) = L{2{bj - n^), *) and (1,1; 1,1; nj/2,bj) = 
L(bj — rij, *) where * E Z. This construction provides epimorphisms of 
TTI (M) onto infinitely many finite cyclic groups (arising as the fundamental 
groups of the lens spaces as above). 

The argument for rij odd or even is identical, so without loss of generality 
we assume that infinitely many of these rij are odd. Then 7ri(M) surjects 
the fundamental groups of the family of lens spaces {L(2(bj — rij), *)}. As 
in proof of case (1) it follows that 2|6j — nj| must be bounded. By passing 
to a subsequence we may therefore assume that 2(6j — nj) = C" for some 
constant O'. 

Now substitute, 2nj = 2bj — C into rij + bj . = C to deduce that bj 
is constant. Hence it follows that rij is a constant. Hence only finitely 
topological types of lens spaces {L{2(bj — rij), *)} which is a contradiction. 
This contradiction finishes the proof of Lemma 4.10. □ 

Lemmas 4.9 and 4.10 complete the proof of Claim 2, and hence the proof 
of Theorem 4.1 is now complete. □ 

4.3. 

We can extend some of the results in the previous section to other Seifert 
fibered spaces. 

Proposition 4.11. Every closed orientable Seifert fibered space M with 
|iJi(M, Z))| finite or |Tor (iJi(M, Z))| not divisible by 4; 1-dominates only 
finitely many geometric 3-manifolds. 

Proof. If a 3-manifold dominated by M is geometric, then it must also be 
a Seifert manifold (see [25]). When 7ri(iV) is infinite, it is known ([21]) 
that each degree one map / : M —> N is a vertical pinch (see [21] for 
a definition). Since each vertical pinch of M either decreases the genus 
of the base orbifold or decreases the number of singular fibers, M admits 
only finitely many vertical pinches (up to homotopy). It follows that M 
1-dominates only finitely many Seifert manifolds with infinite TTI. 
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The fact that M 1-dominates at most finitely many 3-manifolds in case 
(1) of the proof Theorem 4.1 follows from Lemma 3.1(2). Similarly, if 
Hi(M\2i) is finite, then the proof in Theorem 4.1 applies to show that M 
1-dominates at most finitely many 3-manifolds in case (2) of the proof of 
Theorem 4.1. 

Now if |Tor Hi{M, Z)| is not a multiple of 4, by the fact that |#i(iV, Z)| 
is a multiple of 4 for each 3-manifold in case (2) above, we deduce 
from Lemma 3.1(2) (i.e. that Tor (i?i(iV, Z)) is a direct summand of 
Tor (iJi(M, Z)) for a degree 1 map), that there is no degree one map 
/ : M —► iV for each N in case (2) above. □ 

5. Finiteness Results: Bounded 3-Manifolds. 

Throughout this section, M will denote a compact 3-manifold whose 
boundary consists of tori, and whose interior is hyperbolic. With a slight 
abuse of notation, such a manifold will be referred to as a cusped hyperbolic 
3-manifold. The boundary of M will be denoted by dM. If doM is a 
component of dM then 7ri(<9oM) is called a peripheral subgroup of 7ri(M). 

If M is a cusped hyperbolic 3-manifold, N a hyperbolic 3-manifold of 
finite volume and / : ni(M) —► 7ri(iV) an epimorphism, then / is called 
peripheral preserving if for any peripheral subgroup P < 7ri(M), f(P) is 
conjugate into a peripheral subgroup of 7ri(JV).   We allow the case that 

f(p) = i- 
The only hyperbolic geometric fact we shall require in what follows is 

simply that with M as above, and p : 7ri(M) —► SX(2, C) a faithful dis- 
crete representation, for any component OQM of dM, p(7ri(doM)) consists 
of parabolic transformations so that tr (p(7ri(doM)) = ±2. 

Following the notation of [2], we call M NSL (Non-Sufficiently Large) if 
M does not contain a closed embedded essential surface. The main result 
of this section is the analogue for NSL manifolds to Theorem 4.4. All maps 
of non-zero degree are assumed proper. 

Theorem 5.1. Let M be as above, and NSL. Then there exist only finitely 
many hyperbolic 3-manifolds of finite volume N for which there is a periph- 
eral preserving epimorphism 7ri(M) —> ^i{N). In particular M dominates 
at most finitely hyperbolic 3-manifolds. 

We make some preliminary comments. The strategy is similar to that 
of the proof of 4.4.  However in this case, by [24] (see also [6]) X{M) has 
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positive dimension. The key assumption here will be NSL. 
As in the proof of Theorem 4.4, since M is a finite volume hyperbolic 

3-manifold there exists a do such that for all d > do? M cannot d-dominate 
a hyperbolic 3-manifold. Thus the proof of the last sentence in Theorem 5.1 
will follow directly from the first part of the theorem together with the 
observation that a proper map induces a peripheral preserving epimorphism 
on a subgroup of finite index. 

To avoid clutter of notation the argument is best illustrated in the proof 
of the following: 

Theorem 5.2. Let M have 1 cusp, and be NSL. Then there exist only 
finitely many hyperbolic 3-manifolds N for which there is a peripheral pre- 
serving epimorphism 7Ti(M) —■> iri(N). In particular M 1-dominates at most 
finitely many cusped hyperbolic 3-manifolds. 

Proof Fix a framing for dM so that 7ri(dM) = (a, b). Suppose that 7ri(M) 
admits infinitely many epimorphisms as in the hypothesis onto groups 
{7ri(iVj)}, where Nj is hyperbolic 3-manifold of finite volume. Let fj^ be the 
surjective homomorphism induced on fundamental groups with aj = /j,*(a) 
and bj = fj,*(b). Note that, at this point we do not assume that the 
NjS are cusped. If Nj is closed, then peripheral preserving means that 
fj^(iri(dM)) = 1, and the argument below will work equally well. 

Let pj : 7Ti(Nj) —► SL(2, C) be a faithful discrete representation, and 
fy : 7ri(M) —> SL (2, C) the induced representation obtained by composing 
Pj with fj^. Since (pj(a>j),Pj(bj)) is a subgroup of the peripheral subgroup 
of pj(7ri(dMj)), it consists of elements of trace ±2. On passing to the 
character variety X(M), we therefore have an infinite number of characters 
Xfa which take the value ±2 on (a, 6). Now X(M) has a finite number 
of irreducible components and so there is a component XQ containing an 
infinite subsequence of the characters x</>- which take the value ±2 on (a, 6). 
Let W C XQ be the the set of all characters in XQ which take the values ±2 
on (a, b). Then W is defined by a set of equations of the form Ig{x)2 — 4 = 0 
for g G (a, 6) (recall §2.1 for the definition of J^). So W is closed algebraic 
subset of XQ. By construction W is known to contain an infinite number 
of points, and so must have positive dimension, in particular W contains a 
curve C say. Then Lemma 2.4 implies the existence of a closed embedded 
essential surface in M contrary to assumption. The proof is is now complete 

Note that in the case of degree 1 maps, Lemma 3.2 forces the manifolds 
Nj to have one cusp. □ 
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The proof of Theorem 5.1 follows by a similar argument. We point out 
the important extensions. 

As above we assume the existence of infinitely many peripheral preserv- 
ing epimorphisms onto groups 7ri(Nj). As before if (a, 6) is a peripheral 
subgroup of 7ri(M), under the map induced by composing with the com- 
plete representations of 7Ti(Nj) the image will still consist of elements of 
trace ±2 (again we allow some of the peripheral subgroups to map to ±7). 
Therefore as above, there is a component XQ containing an infinite subse- 
quence of characters which take the value ±2 on all peripheral subgroups. 
Now apply Lemma 2.4 to W as constructed in the proof of Theorem 5.2 
to deduce a closed embedded essential surface in M, and this contradiction 
completes the proof. □ 

Many manifolds satisfy the hypothesis of Theorem 5.1, for example by [9] 
all 2-bridge hyperbolic link complements in'S3. Related results to Theorem 
5.1 are proved in [1]. For example, a consequence of [1] Corollary 2.7, is that 
the complement of a fibered knot in a homology 3-sphere with irreducible 
Alexander polynomial is minimal with respect to degree 1 mappings. 

6. Examples: Minimal hyperbolic 3-manifolds. 

In practice it would seem that for many manifolds as in Theorem 4.4, 
there will be no maps of non-zero degree to other closed hyperbolic 3- 
manifolds. As a specific example we shall deal with the so-called Weeks 
manifold, which has the surgery description (—5,1), (5,2) surgery on the 
Whitehead link (see Figure 1). 

(-5.1) 

Figure 1 

We denote the Weeks manifold by Mw> Mw was shown to be hyper- 
bolic in [26], and is conjectured to have the smallest volume of a hyperbolic 
3-manifold. It is known that it is smallest amongst those manifolds which 
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are arithmetic, [4]. That the Weeks manifold is non-Haken can be deduced 
from the work of [5] or [8]. The point being that (—5,1) surgery on one 
component of the Whitehead link is a 1-punctured torus bundle over the 
circle (the "sister" to the figure eight knot) and the methods of [5] or [8] 
show there is no closed embedded essential surface, and allow calculation of 
all boundary slopes. Let pw denote the faithful discrete representation of 
iri(Mw) into SL(2,C). 

We shall prove the following theorem in §6.1 below. 

Theorem 6.1. Mw does not admit any map of non-zero degree to a closed 
hyperbolic 3-manifold or a Seifert fibered space with infinite fundamental 
group. Furthermore, the only geometric manifolds 1-dominated by Mw are 
the lens spaces L(5,1) or 1/(5, 2). 

6.1. 

Before commencing on the proof we recall some salient facts. We shall 
call a representation of a group F in SL (2, C) elliptic if the image contains 
an elliptic element, that is an element x whose trace satisfies tr2(x) < 4. 
The corresponding character is also called elliptic. If M is a hyperbolic 
3-manifold, and F denotes the faithful discrete representation in SL(2, C), 
then as F acts freely on H3, F contains no elliptic elements. 

To prove the first part of Theorem 6.1 we establish: 

Proposition 6.2. X(Mw) consists of a finite number of points which, apart 
from the characters associated to pw or ~pw, consists of elliptic characters. 

Proof. As discussed above Mw is obtained by surgery on the sister to the 
figure eight knot complement. We find it convenient for calculations to use 
a presentation for 7ri(Mw) that is provided by Snap Pea ([27]), namely: 

TT^MW) = (a, 6 |  a26V&-1a6-1 = 1, a^a^ba^b2 = l) . 

We can conjugate a representation in SL (2, C) so that the images of a 
and b are the matrices: 

o    -0       a"d       ("    - 0   x 1y y r   y 

respectively.  As we are looking for representations into SL (2, C) x and y 
are always non-zero. 
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Mathematica was used in the following calculations. Write the first rela- 
tion as w = 0 where w — a2b2a2 — ba~1b. This gives the following equations. 

• wn = rx2 + rx4: + rxy2 + rx2y2 + rx4:y2 — y3 + x5 y3. 

• ^12 = l + x2 + rxy + 2rx3y + rx5y + x3y2 + rxy3 + 2rx3y3 + rx5y3 

+ x^y4 + x6 y4. 

• ^21 =r (x — x2 + rxy — y2 + xy2). 

• ^22 = 1 — x5 + rxy + rx3y + rx4:y + rxy3 + rx3y3. 

Note from the equation for u^i we have either r = 0 or we can solve for 
r in terms of x and y (which as noted above are always non-zero). 

Consider the case of r = 0. From the equation for W22 we note that this 
the forces x5 = 1, so x is a 5 th root of unity. We claim that x is a non-trivial 
5 th root of unity. Assume x = 1. This implies W12 = 2 + y2 + 2y4. Now 
use the second relation. It seems most convenient from the point of view of 
calculation to write the second relation as u = 0 with u = a2b2 — b~2ab~la. 
Observe that un = y5 — 1, and so we cannot have this holding simultaneously 
with W12. Hence x is a non-trivial 5th root of unity. 

Recomputing the relations with the matrices 

0    X-) ^ (0    y-1 

with x a non-trivial 5 th root of unity, it is easy to check that this forces 
y = 1, and hence the representation has image a cyclic group of order 5. 

We now assume r is non-zero and is given from above by: 

(x2 — x + y2 — xy2) 
r — . 

xy 

Using this and re-working the above equations gives: 

• wu = (—l + x) x (l + x2 + y2 - xy2 + x2y2 + yA + x2y4). 

.  Wl2 = (l_x + x2_x3 + x4^ (i + x2 + y2 _ xy2 + x2y2 +y4 + x2y4y 

• w21 — 0. 

• ^22 = (-l + x)(-l + x) (-1 - x2 - y2 + xy2 - x2 y2 - y4 - x2y4). 
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Notice that the expressions for wii,ttfi2 and W22 ah have the common factor 

p(x, y) = (1 + x2 + y2 - xy2 + x2 y2 + y4 + x2 yA) . 

The only way we can simultaneously satisfy all the above equations is for 
p(;E, y) = 0. As before we now use the second relation together with p(x, y) 
to describe all the possibilities. The first thing we notice is that 

un = (x-y) (-1 + xy), 

and so we must have x = y or x = 1/y. With x = y, p(x,y) is simply the 
polynomial in x given by: 

p(a;) = 1 + 2x2 - x3 +2x4 + x6, 

which must solve to zero to determine a representation. Solving for z = 
x + x-1 yields the polynomial in z, z3 — z — 1 = 0. From the equation for r 
we see that r = 2 — z. The complex roots of the equation for z correspond 
to pw and ~pw (cf. [4]), and since the real root is approximately 1.32472, 
this will determine an elliptic representation. A similar argument applies to 
y = 1/rr, which also yields the same characters as above. 

These are the only possible solutions to the representation equations and 
the proposition is now proved. □ 

Note the proof actually shows the following: 

Corollary 6.3. There are 4 representations of 'Ki(Mw) W to conjugacy, 
into SL (2, C); namely pw, ~pw, a* representation with image a cyclic group 
of order 5, and the representation obtained from the real i(Galois conjugate" 

of pw- 

This last representation is actually faithful and has image in SU (2) — 
this is a consequence of the fact that the invariant quaternion algebra of 
Mw is ramified at the real place, cf. [18] for a discussion of such matters. 

We now prove Theorem 6.1. 

The hyperbolic case follows easily from Corollary 6.3, since if Mw dom- 
inated a hyperbolic 3-manifold N it would follow from Corollary 6.3 that 
the complete faithful representation would coincide with pw or 'pw-, and so 
Mostow's Rigidity Theorem implies N would be homeomorphic to Mw- 

From the surgery description of Mw, Hi(Mw, Z) = Z5 © Z5. From this 
it follows that 7ri(Mw) cannot surject the fundamental group of a Seifert 
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fibered space with infinite fundamental group and non-orientable base since 
these have double covers, nor any Seifert fibered space which has a Euclidean 
base since Euclidean triangle groups do not have abelianization with order 
divisible by 5. Thus if Mw dominates a Seifert fibered space with infinite 
fundamental group then we can assume the base is a co-compact Fuchsian 
group. 

Now if iri(Mw) surjects a Fuchsian group (triangle group or otherwise), 
we obtain a homomorphism to a Fuchsian group which determines a rep- 
resentation of 7ri(Mw) into PSL(2, C) with image a co-compact Fuchsian 
group F. We claim that this representation must lift to SL(2, C). Assum- 
ing this claim, we proceed as follows. From the list of representations given 
by Corollary 6.3, if a representation as above lifted, it would follow that 
7Ti(Mw) would have to be isomorphic to a Fuchsian group, and this is im- 
possible since 7ri(Mw) is a closed hyperbolic 3-manifold. Thus we conclude 
that Mw cannot dominate a Seifert fibered space with infinite fundamental 
group 

To prove the claim, we argue as follows. From the theory of the coho- 
mology of groups, central extensions of a group F are classified by elements 
of i?2(r, Z2), (see [11] Theorem 10.3) and in particular this is zero if and 
only if any extension splits. Therefore given a representation of 7ri(Mw) as 
above with image F, there is a central extension of F by Z2 in SL (2, C). 
Now since M is a Z2 homology 3-sphere, we have H2(7ri(Mw), Z2) = {0}, 
and so this holds for F as well. Thus the extension of F we see is F x Z2 
and we so we can then lift the representation of 7ri(Mw) into SL (2, C) with 
image F. This proves the claim. 

To deal with the finite fundamental group case, it suffices to consider 
those geometric 3-manifolds with finite fundamental group which are mini- 
mal with respect to degree 1 mappings. A list of these can be found in [14]. 
From case (2) of the finite fundamental group considerations of the proof 
of Theorem 4.1, any prism manifold has first homlogy of order divisible by 
4. The first homology of Mw together with Lemma 3.1 shows that Mw 
cannot map by degree 1 onto such a manifold. The only other possibili- 
ties provided by Lemma 3.1 are the lens spaces L(5,1) and L(5,2) and the 
Poincare homology sphere. However, since the fundamental group of the 
Poincare homology sphere is the binary icosahedral group and this embeds 
in SL(2, C) as the non-trivial central extension of ^5, the description of 
all the representations of 7ri(Mw) given above rules this out. The proof is 
completed by the following lemma. 

Lemma 6.4. Mw admits a degree 1 map to 1,(5,1) and 1,(5,2). 



Non-Haken 3-manifolds are not large 127 

Proof. We make use of the surgery description of Mw given in Figure 1. 
For i = 1,2, let Ni denote a tubular neighborhood of L^ and T; denote the 
surgery solid tori with core curve U. The Tj's are to be identified with dNi 
under the gluing maps /;, i = 1,2. 

Generators of #i(il%,Z) = Tor (Hi(Mw, Z)) = Z5 © Z5 are the ho- 
mology classes represented by the two cores ti and £2- To prove the 
Lemma, it suffices by [15] Theorem 2.2 to show that the self-linking numbers 
|lk(ti,*i)| = ^ and |lk(t2,t2)| — f (a good reference for the material on 
linking pairs is [23]). 

We shall deal with the case of £2, and using the fact that the two com- 
ponents of the Whitehead link are unknotted circles which are interchanged 
by a symmetry, the case of ti follows by a similar argument. Thus we aim 
to show I Ik (£2, £2) I = 2 

5" 

Figure 2 

Let m and £, be a meridian-longitude pair on dNz for the complement 
Ss \ Int(JV2). Since the linking number lk(Li,Z/2) = 0, the longitude £ 
bounds an oriented surface F7 in the Whitehead link complement such that 
dF' = £ (with orientation) as shown in Figure 2. 

pushing ^ 
such that 

/j\   F 

Figure 3 
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Let a be the meridian curve on the solid torus T2, and choose a longitude 
b on T2 such that /2(a) = 5m + 2t and /2(6) = 2m + t. Then Z^1^) = 
—5& + 2a. Clearly 56 — 2a and 5£i are homologous and therefore they bound 
an oriented 2-chain F" in the solid torus T2 with dF" = 5*2 — (56 — 2a). 
A concrete description of such an F" can be obtained as follows. Consider 
the cylinder in Figure 3, where the five oriented rectangles meet along the 
central axis of the cylinder. When we identify the top and the bottom of 
the cylinder via a twist of ^ , we get the solid torus T2 and the quotiont of 
the five rectangles in T2 is our required F". 

Let F = F' Uj F" so that orientations agree. Then F is an oriented 
2-chain and dF = 5*2. Now perturb £2 so that it becomes is transverse to 
JP. Then from Figure 3 we see there are 2 points of intersection with the 
same sign. Hence |lk(t2j*2)| — f • ^ 

6.2. 

We now construct a closed hyperbolic 3-manifold that is minimal with 
respect to the partial ordering discussed in the Introduction. 

Theorem 6.5. Let M be the result of'(1,2) Dehn surgery on the figure eight 
knot complement.  Then M is minimal in the class of geometric 3-manifolds. 

The proof follows the same idea as the proof of Proposition 6.2 in that 
we examine all representations into SL (2, C). In this case the calculation is 
easier. Again 7ri(M) is 2-generator (since the figure eight is 2-bridge) and 
in this case the generators are conjugate in 7ri(M). Therefore any represen- 
tation p of 7ri(M) = (a, 6} into SL (2, C) will force tr (p(a)) = tr (p(6)). In 
this case a normalization for the matrices used above is: 

x      1 \ . (x     0 
0   x-A        and r    ari 

or 

x 
-1 
1 \ , (x~X    0 and 

Ox) \ r      x 

We remark here that it was shown in [24] that M is hyperbolic and non- 
Haken. 
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Proof. The figure eight knot complement has a presentation on two merid- 
ional generators as, 

(ab^a^b) a (ab^a^b)'1 b"1 = l) , a, b 

with a longitude being £ = a~lb~laba~2bab~1a. The effect of (1,2)-surgery 
is to introduce the relation a£2 = 1. As before we employ mathematica in 
our calculations, and to do this it is convenient to write the relations as: 

w (ab^a^b) a-b (ab^a^b) =0    and    u = a£ - £ = 0. 

Evaluating w = 0 using the first normalization given above we find either 
r = 0 or 

p(x, r) = 1 — r — 3 x2 + 3 r x2 — r2 x2 + xA — r x4 = 0. 

The case of r = 0 is quickly dealt with since in this case the representation 
is solvable (being a subgroup of the upper triangular matrices) and as M is 
a homology sphere no such non-trivial representation exists. 

Thus assume p(x,r) = 0. Evaluating it, we find that the entries -un, u^ 
and U22 are irreducible polynomials in x and r. U12 is given by: 

r2 (l + x) (l + x2) (1 - r - 3x2 + 3r x2 - r2 x2 + x* - r x4) . 

Note, this last factor is simply p(x, r). We have ruled out r = 0 above, and 
x = 1 and x = i are also easily checked not to give representations. Using 
resultants of p(a;, r) and the remaining u^s to eliminate r, one sees that the 
values of x which yield representations satisfy the equation: 

-l-2x-x2+Ax4+8x5 + Wx6 + 13x7+Wx8+Sx9+Ax10-x12-2x13-xu = 0. 

Using this we see that the trace z = x + x-1 satisfies: 

-1 + 10 z2 + 5 z3 - 12 z4 - 6 zB + 2 z6 + z7 = 0. 

This polynomial has 1 pair of complex conjugate roots, and these correspond 
to the faithful discrete representation and its complex conjugate. The equa- 
tion for z has 4 real roots which have absolute value less than 2 and one 
solution of absolute value greater than 2. Using the invariant quaternion 
algebra ([18]), once again we see that the real roots correspond to faithful 
real representations of 7ri(M), four into SU(2) and one into SL(2,R). In 
particular none of these can be the complete representation of the funda- 
mental group of a closed hyperbolic 3-manifold. Thus we conclude as before 
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that M cannot map by a map of non-zero degree to a hyperbolic 3-manifold. 
The case of the second normalization is handled in the same way. 

Indeed, again as in the case of the Weeks manifold assuming the man- 
ifolds are geometric, the above calculation shows that M cannot map by 
non-zero degree to any closed orientable irreducible 3-manifold. The ar- 
gument is identical to that of the Weeks manifold so we only sketch the 
argument. Exactly as in the case of the Weeks manifold, M cannot map by 
non-zero degree to a Seifert fibered space with infinite fundamental group. 
For the finite case, since M is a homology sphere the only possible way that 
M can map by non-zero degree is for the image manifold to be the Poincare 
homology sphere and as noted in the proof of Proposition 6.2 its fundamen- 
tal group admits a faithful representation into SL (2, C). Thus the existence 
of a map of non-zero degree is precluded by the discussion above. □ 

We have also checked the homology spheres obtained by (1,3), (1,4) 
and (1,5) surgery on the figure eight knot complement. The calculations 
are completely analogous and show that these manifolds are also minimal 
with respect to the partial order >i. It seems to natural to conjecture that 
all the (1, n) Dehn surgeries on the figure eight knot are minimal with respect 
to >i. 

As a final remark we point out that we know of no explicit example of a 
map of degree 1 between non-Haken hyperbolic 3-manifolds. However since 
there are examples of non-trivial coverings between non-Haken hyperbolic 
3-manifolds (see for example [19] for such a pair), there are maps of degree 
d > 1 between non-Haken hyperbolic 3-manifolds. 
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