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A rigidity theorem for periodic minimal surfaces 

JOAQUIN PEREZ
1 

We prove that the Helicoid can be characterized as the only pro- 
perly embedded non rigid minimal surface in R3 that is invariant 
by an infinite discrete group G of ambient isometrics such that the 
quotient surface in R3/G has finite topology 

1. Introduction. 

A classical question about submanifolds is to decide if the inclusion is, 
up to ambient isometries, the unique isometric immersion of such a manifold 
in the ambient space. When we consider this problem in minimal surface 
theory in R3, we find several nice theorems that give an idea of abundance 
of rigid surfaces, and also open questions and conjectures to be solved. 

The standard notion of rigidity for minimal surfaces is the following: 
a properly embedded minimal surface is said to be (minimally) rigid if the 
inclusion map of the surface into R3 represents the unique isometric minimal 
immersion of such a surface up to a rigid motion in R3. 

As every minimal surface can be locally and isometrically deformed by 
its associate surfaces, rigidity theory has a global nature for this type of 
surfaces. For properly embedded minimal surfaces with more than one end, 
Choi, Meeks and White [2] proved that rigidity holds. However, this re- 
sult fails to hold when the surface has only one end, as demonstrates the 
Helicoid. They also conjectured that any properly embedded nonsimply- 
connected minimal surface is minimally rigid. In this direction, Meeks and 
Rosenberg [9] obtained rigidity if the symmetry group of the surface contains 
two linearly independent translations, hence doubly and triply periodic pro- 
perly embedded minimal surfaces are rigid. Again the Helicoid shows that 
this statement does not extend if we only impose that the symmetry group 
contains an infinite cyclic group (singly periodic minimal surfaces). In this 
case, Meeks [8] proved a weak rigidity property, provided that the induced 
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quotient surface has finite topology: every intrinsic isometry is induced by 
a rigid motion of M3. In this paper we demonstrate that except for the 
Helicoid, (strong) rigidity is always satisfied in this family of surfaces. More 
precisely, 

If M C M3 is a non flat, properly embedded minimal surface 
invariant by an infinite discrete group G of isometrics o/M3 and 
M jG has finite topology, then M is rigid or it is the Helicoid. 

Every singly periodic properly embedded minimal surface M c M3 induces 
a minimal surface M C R3/T or M C R3/^, where T is a non trivial 
translation and S$ is a right-hand screw motion around the rrs-axis with 
rotation angle 0 G [0,27r[. For such a surface, Meeks and Rosenberg [10] 
proved that M has finite total curvature if and only if it has finite topology, 
so in this case it has also finite conformal type. Moreover, they studied its 
behaviour at infinity: all the ends are simultaneously asymptotic to parallel 
planes, flat annuli or to ends of Helicoids. Following the ideas in [8] we notice 
that Meeks proved (strong) rigidity except when the ends are asymptotic to 
Helicoids. Hence we will concentrate in the remaining case. The main tool 
of our reasoning is the existence of a one-parameter deformation for a singly 
periodic minimal surface M C R3 with helicoidal type ends that is not rigid. 
This technique has been useful for studying the index of complete minimal 
surfaces [12] and also for obtaining uniqueness and non existence theorems 
[7, 14, 15]. In fact, this deformation makes sense if we only impose that 
the flux of M along every compact cycle is a vertical vector, which gives us 
another characterization of the Helicoid: 

Let M C R3 be a properly embedded minimal surface invariant 
by a screw motion SQ, such that the quotient surface in R3/^ 
has finite topology and helicoidal type ends. If M has vertical 
flux, then it is the Helicoid. 

This statement generalizes a theorem in [14] where the Helicoid was 
characterized as the only such surface in R3/T with genus zero. Finally, 
we would like to point out that the general Choi-Meeks-White conjecture 
remains unsolved: in this line, Hoffman, Karcher and Wei [4] presented a 
genus-one surface in R3 with only one end and infinite total curvature. It 
would be an interesting problem to decide if surfaces like this one also verify 
a rigidity condition. 

The author wish to thank Antonio Ros for many hours of pleasant advice 
and helpful suggestions. 
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2. Background. 

We will begin by exposing some well-known facts about minimal sur- 
faces, besides fixing the notation in the paper. More details can be found 
in Osserman [13] and Hoffman and Karcher [3]. Consider a conformal mi- 
nimal immersion if; : M —> R3 of a surface M into the three-dimensional 
Euclidean space —all surfaces in this paper are supposed to be connected 
and orientable—. The flux of ip along a closed curve F C M is defined as 
the integral of a conormal unit field 77 along the curve, that is 

flux(^,r) =      r/ds, 

where ds is measured with respect to the metric induced by ^. This vector 
does not depend on the cycle F in its homology class and can be viewed 
as the period vector along F of the —in general, not well-defined on M— 
conjugate minimal surface of ip. 

From the Weierstrass representation [3, 13] we know that ip can be de- 
termined by giving a meromorphic function g and a holomorphic one-form 
u> on M, so 

^ = (1 f I u -  f g2LJ J , Real f gujj G C x E = M3. 

We recall that g is the stereographic projection from the North Pole of the 
Gauss map of ip. We will also use the following notation 

F = -Ju,        G = -[g2u,        x3= Re&ljfo, 

where (^3 = gu;. Hence, ip — [F — G, £3). Now we recall what has come to 
be called the Lopez-Ros deformation (the reader can read the details in the 
work of Perez and Ros [14]): It is defined by considering, for each positive 
number A, the Weierstrass pair {g\ — \g,u)\ = JLJ). These meromorphic 
data define, up to an additive constant, a possibly multivalued minimal 
immersion ipx : M —> M3. This map is single valued on M if and only 
if flux('0, F) is vertical, for each closed curve F C M —in this case, ip is 
said to have vertical flux—. Moreover, completeness and finiteness of the 
total curvature are preserved by this deformation. We will emphasize two 
geometric properties of {V

;
A}A>O for later uses (their proofs can be found in 

[14]). 
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Lemma 1. Let ip : M —> R3 be a conformal minimal immersion with 
vertical flux.  Then, 

i) // ifj is invariant by a screw motion SQ obtained by rotation around 
the xs-axis by an angle 6 €]0, 27r[ followed by a non trivial translation 
along the same axis, and this screw motion induces a holomorphic 
transformation of M, then all the IJJ\ 

;
S can be chosen invariant by the 

same SQ. 

ii) If p G M is a point where the Gauss map of ^ is vertical, then for any 
neighbourhood D of p there exists a positive number A such that ij; \D 

is not embedded. 

In the case 0 = 0, that is, when So is a vertical translation, Perez and 
Ros proved that all the T/^'S can be chosen invariant by translations that 
could depend on A. 

If I/J : M —> M?/SQ, 0 < 0 < 27r is a proper non flat minimal embed- 
ding, the strong halfspace theorem of Hoffman and Meeks [5] insures that 
ip lifts to a connected properly embedded singly periodic minimal surface 
^ : M —> R3 invariant by S^, that is, there exists a holomorphic trans- 
formation S of M such that M/S = M and SQ O ^ = $ o S. Note that the 
Weierstrass representation of I/J can not be induced on M unless 9 = 0, but 
the one form ^3 is always well-defined on the quotient surface. Suppose now 
that M has finite topology From the work of Meeks and Rosenberg [10] we 
know that I/J has finite total curvature —in particular, M has the conformal 
structure of a finitely punctured compact Riemann surface— and the only 
allowed behaviour at infinity is one of the following: 

1. All the ends of I/J are asymptotic to non vertical parallel planes (planar 
type ends) that lift to planar type ends in M3, as in the Riemann 
example. If 6 7^ 0, these planes are necessarily horizontal. 

2. All the ends of tp are asymptotic to flat vertical annuli (Scherk type 
ends). This case forces the angle 6 to be rational, and we can cite the 
Scherk's second surface as an example. 

3. All ends of I/J are asymptotic to ends of Helicoids (helicoidal type ends). 

We will consider the helicoidal type ends. Take an annular end A of he- 
licoidal type of a properly embedded minimal surface in RS

/SQ as above. 
Then, [10] implies that A is conformally a punctured disk D*(e) = {z e 
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C / 0 < \z\ < s} and the well-defined one form (^3 = 2^.dz can be written 
as 

if3 
(f>3=  l—f + f{z)jdz,      0<H<£, 

where /? is a non zero real number called the slope of the end, and / is a 
holomorphic function in D(s) = D*(£) U {0}. Moreover, 

i) If 9 > 0, the Gauss map g is multivalued on A, but it can be continu- 
ously extended to z = 0, with vertical limit normal vector. If ^(0) = 0, 
we can write g(z) = zk+a, k being a non negative integer and a = ^. 
If (7(0) = 00, the expression of g is g(z) = ^~(/c+a), with fc, a as above. 

ii) If 8 = 0, g is singly valued on A and the remaining assertions in case 
i) hold, with a = 0. If g has a zero of order k at z = 0, then ^3 has 
a pole of order k + 1 without residue at this point. Symmetrically, if 
g has a pole of order k at the puncture, then ^3 has a cero of order 
fc — 1- and the residue at z = 0 of g(/>3 vanishes. 

Hence the trace of the end on a vertical cylinder CR of radius R large 
is very close to a helix of slope /? that rotates an angle 27r(fc + a) when 
0 < arg(z) < 27r. Thus all the slopes of a properly embedded minimal 
surface in M^/SQ with finite topology and helicoidal type ends are equal up 
to sign —two slopes coincide if and only if the vertical limit normal vector 
at the ends are the same— and the number k in the expression of g above 
does not depend on the end. 

Finally we recall a characterization of the Helicoid as the only such sur- 
face with the simplest topology, which will be useful for later purposes. The 
case 9 = 0 is due to Toubiana [16], while when 9^0 the result was proved 
by Meeks and Rosenberg [10]: 

Theorem 1 [10, 16]. The only properly embedded minimal surface in 
R3/Se, 0 < 9 < 27r; with genus zero and two helicoidal type ends is the 
Helicoid. 

3. The theorem. 

Take 9 G [0,27r[. Let ip : M —> M3/^ be a properly embedded minimal 
surface with finite topology and helicoidal type ends whose singly periodic 
lifting 'i/j : M —> R3 has vertical flux. By lemma 2.1, ^A is well-defined on 
M for each A > 0 and can be chosen invariant by the same screw motion SQ 
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provided that 0^0. We claim that this property can be extended to the 
translation case. If 0 = 0, each end p of M can be conformally parametrized 
by the punctured disk 2)*(e) = {z G C / 0 < \z\ < e}, s > 0 and the Gauss 
map 3 is well-defined on Z)*(e). If #(0) = 0, we can write 

g(z) = zk,        <h=[-tA + f(z?jdz,        z€D*(e), 

where k is a positive integer, (3 G R — {0} and / is a holomorphic function 
in -D(e). As the third coordinate function is invariant by the deformation 
and g\(z) = \zk, we conclude that (gx^s) are the Weierstrass data of a 
helicoidal type end in the same ambient space M3/5o, with horizontal limit 
tangent plane and the same slope /3 as in the case A = 1. This implies that 
all the 'ipx are 5o-invariant (note that putting g(z) = zk+a, a = ^ we obtain 
a new proof of the Sfl-invariance for any 9). For any 6 G [0,27r[, we will 
denote the induced surfaces by ip\ : M —> R3/5^. 

Next we will deal with the behaviour at infinity of this curve of mini- 
mal surfaces. The normal part of the variational field for this perturbation 

defines a function u\ = (-^jN\) (here N\ denotes the Gauss map of ip\) 
satisfying the Jacobi equation, that is 

AA^A + ||VAJVA||
2
^A = 0   onM, 

where the subscript •\ means that the corresponding object is measured 

with respect to the metric induced by ^A- AS T^A is ^-invariant, both -^ 
and N\ are invariant by a rotation of angle 9 around the X3-axis, thus u\ 
induces a well-defined function on M, that we will also denote by u\. We 
claim that this function can be continuously extended by zero through the 
punctures. Using the notation in section 2, we have 

hence 
2A       p u"= - AWTI 

Real AF + G 

Consider an end of M such that the extended Gauss map takes the value 
(0,0, —1) at the puncture. Thus its meromorphic data can be written as 

g(z) = zk+\    <h=(~ + fi{^dz,        0<M<e, 
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where k is an integer greater than or equal to zero, (3 € R — {0}, a* — -^ and 
fi is a holomorphic function. This implies that the well-defined functions 
Fg, Gg satisfy Real(F#)(0) = 0, (G#)(0) = 0, hence uA(0) = 0, as desired. 
The case #(0) = oo can be solved in a similar way, and our claim is proved. 

As consequence, the ends of ^A are asymptotic to the ones of -0, for each 
A > 0. This fact will play an important role in the following result: 

Lemma 2. In the above conditions, ^A is a proper embedding, for each 
A>  0. 

Proof. We will argue as in [14]. Denote by B — {A > 0 / ^x is one-to-one}. 
As 1 E 5, the lemma will be proved if we deduce that B is open and closed 
in ]0, oo[. 

If AQ G B, two distinct ends of ^^o will have the same slopes up to sign, 
and from the maximum principle at infinity [11] they are separated one from 
another by a positive vertical distance, that does not depend on A by the 
argument before this lemma. Thus ^A is embedded for A near AQ and B is 
open. 

Now take a sequence {An}n€ C B converging to AQ > 0 (recall that 
all the surfaces ^x are in the same ambient space). If ^XQ is not injec- 
tive, by the uniform convergence on compact sets of ^An to ^Ao and the 
classical maximum principle we insure that the image point set of ijix® is 
a properly embedded minimal minimal surface with finite total curvature 
in R3/S0 and the map ^ : M —> ipXoiM) is a finite covering. Again 
the maximum principle at infinity [11] gives an embedded s-tubular neigh- 
bourhood U of I(;XQ(M). Consider the orthogonal projection onto ipXo(M), 
IT : U —► ipXo{M) and the oriented distance to ^x^M), I : U —> R. For n 
large enough we have that T/^ (M) C U and TT O '0An : M —> ?/% (M) is a 
proper local diffeomorphism. As T/^ has finite total curvature and i/jXoiM) 
is not flat, this covering has a finite number of sheets. This number has 
to be one, because the continuous function I o ^xn separates the points in 
the fibers of the covering (^An is embedded). By the uniform convergence of 
noipXn to iroipXo — V^o on compact sets of M we have that also the covering 
ipXo : M —> ipXo(M) has only one sheet, a contradiction. This finishes the 
proof of the lemma. □ 

Now we can state the main result: 

Theorem 2. Let ip : M —► R3/^ be a properly embedded minimal surface 
with finite topology and helicoidal type ends, 0 < 9 < 27r.   If the singly 
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periodic lift of I/J has vertical flux, then ij) is the Helicoid. 

Proof. As usual, we will denote by ip : M —> R3 the lift of ip. AS -0 has 
vertical flux, the deformation {ipx / A > 0} is well defined on M and each 
singly periodic surface induces a proper immersion ^A • M —> R3/^. By 
lemma 3.2, ^A is always embedded hence the same holds for ip\ for each 
A > 0. By lemma 2.1, this implies that the (possibly multivalued) Gauss 
map of ip does not take vertical values on M. As at each end of ^, the well- 
defined meromorphic one-form fo has a simple pole, we conclude that 03 has 
no zeroes on the compactified surface M obtained by attaching the punctures 
to M. As the Euler characteristic of M is given by x(M) = # {poles of 
03}—#{zeroes of 03}, we have that x(M) is positive hence M is topologically 
a sphere and -0 has only two ends. Now the theorem follows directly from 
Toubiana-Meeks-Rosenberg theorem. □ 

We will finish by proving the following characterization of the Helicoid 
in terms of rigidity. As we pointed out in the introduction, there are two 
notions of rigidity for minimal surfaces: 

Definition 1. A minimal surface in R3 is said (minimally) rigid if the in- 
clusion represents the unique isometric minimal immersion of such a surface 
up to a rigid motion in M3. 

Definition 2. A minimal surface in R3 is said weakly rigid if every intrinsic 
isometry extends to an isometry of R3. 

Rigidity implies weak rigidity but the converse fails, as demonstrates the 
Helicoid. In fact, this last example lies in a large family of surfaces for which 
the weak rigidity is true, by the following theorem of Meeks [8] and Meeks 
and Rosenberg [9]: 

Theorem 3 [8, 9]. Let M C R3 be a connected, properly embedded mini- 
mal surface, invariant under an infinite discrete group G of isometrics of 
R3. If M/G has finite topology, then M is weakly rigid. 

In fact, theorems 5.3 and 11.3 in [8], and theorem 10 in [9] prove that 
except when G is generated by a screw motion Sg, 0 < 9 < 2ir and the ends 
are of helicoidal type, we can choose a closed curve in M with non zero flux. 
This implies that the conjugate surface of M C R3 is not well-defined and by 
the Calabi-Lawson characterization [1, 6] this is equivalent to the (strong) 
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rigidity of M. The desirable result in the remaining case would be that the 
only properly embedded minimal surface in M3 invariant by a screw motion, 
with finite topology in the quotient and ends of helicoidal type that is not 
rigid is the Helicoid. Now we can give a proof of this fact. 

Theorem 4. Let ijj : M —> R3 be a non flat, properly embedded minimal 
surface invariant by an infinite discrete group G of isometrics o/R3. // 
M/G has finite topology, then ip is rigid or it is the Helicoid. 

Proof. As we showed in the discussion above, we can restrict ourselves to 
the case in which G is the cyclic group generated by a screw motion S0, 
0 < 6 < 27r, and the ends of t/; are of helicoidal type. If ^ is not rigid, by 
the Calabi-Lawson characterization we have that the flux along any closed 
curve is zero, hence theorem 3.2 applies and we conclude that the surface is 
a Helicoid. □ 
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