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Particles and Connections on Four-Manifolds 

J.C. HURTUBISE 1 

For the simple, simply connected classical gauge groups G, we 
build spaces V(X, Y) homotopy equivalent to the spaces B(X, Y) 
of gauge equivalence classes of pairs (G-connections on a four- 
manifold X, trivialisations of the G-bundle over Y C X). The 
space consists of configurations of particle-like connections, each 
corresponding to an instanton over 54. 

1. Introduction. 

In understanding the homotopy type of an infinite dimensional space, it 
can be very useful to have some model for the space which expresses it as a 
limit of finite dimensional subspaces. An outstanding example of this is the 
May-Milgram model [May, Mi] for OnEn(X), the n-th fold loop space of the 
n-th fold suspension of a space X, which is described as an infinite particle 
limit of the spaces Jk(X) of configurations of k unordered X-labelled points 
in the n-plane, i.e., each point is labelled by an element of X.( For n = 1, 
this model is due to James [J].) This model carries in a natural way all the 
homology operations that one can perform on the space finEn(X), essen- 
tially by moving points around, and this allows a quite complete description 
of the homology of the loop space [CLM]. In this paper our object of study 
will be the spaces 13(X) of gauge equivalence classes of based connections on 
a principal G-bundle over a compact four-manifold X and our aim will be to 
build a particle model for B(X), in the spirit of the May-Milgram model, so 
that again one has natural operations on homology. Also, the space B(X) 
has on it a natural energy functional, the Yang-Mills functional, and the 
relative topology of B(X) and the (finite-dimensional) moduli space M.(X) 
of minima of this functional (instantons) has been an essential tool over the 
last ten years in understanding the differential topology of four-manifolds. 

1 During the preparation of this work the author was supported by grants from 
NSERC and FCAR. 
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Our particle model ties in well with the Yang-Mills functional, in that the 
particle-like connections used will have almost minimal energy. 

The spaces B(X) have associated to them a natural charge, or degree 
&, which is simply the first Pontrjagin class of the principal bundle. A 
conjecture due to Atiyah and Jones [AJ], stated originally for the four- 
sphere, states that the inclusion Mk(X) —> Bk(X) induces a homotopy 
equivalence through a range which increases with k. As the Bk(X) are 
homotopy equivalent, the Atiyah-Jones conjecture would allow us to define 
a homotopy model for Bk{X) as a suitable limit of the spaces Mk(X). Over 
a large open set of Mk , the connections exhibit particle-like behaviour in 
that they are concentrated in small open neighbourhoods of a finite set of 
points, so that in the Mk, or in a suitable limit, one would have something 
approximating a May-Milgram type particle model. 

The conjecture has not been proven for a general compact four-manifold, 
though Taubes has proven a weaker version of it in [T2]. We will exploit 
instead the fact that the conjecture has been verified for the four-sphere 
[BHMM, Til, Ti2, Ki], and that the conformal invariance of the Yang- 
Mills functional allows us to restrict ourselves to a subset of Mk{S^) of 
connections whose curvature is essentially concentrated in a small ball. One 
can then graft these connections into an arbitrary four-manifold, and obtain 
a family of particle-like connections in B(X) which are almost minima of the 
Yang-Mills functional for that manifold. It is this family which will turn out 
to be homotopy equivalent to B{X). Taubes has given in [T3] another model 
for B(X)\ his construction has the virtue of exploiting the Morse theory 
of the Yang-Mills functional, giving a description which eventually could 
generalise to other functionals. It is, however, considerably more complex, 
in that it involves not only the minima but the other critical points of the 
Yang-Mills functional, and also requires a "multi-scale construction" for the 
glueing in of the S4 instantons. Similar techniques allow him in [T2] to show 
that the limit of the Mk{X) is weakly homotopy equivalent to B{X). For 
finite fc, the space is, however, not easily tractable. 

The version we propose is not directly tied to the Yang-Mills functional 
on X, and exploits the fact that the Atiyah-Jones conjecture holds for SA. 
In some sense, the multi-scale construction of Taubes is subsumed in the 
moduli space of 54. Also, the finite-level spaces in our construction are 
better understood, and indeed, given a plausible analytic assumption can 
be seen to exhibit the type of homotopy stability that one desires. The 
particle nature of the connections used also makes them more amenable to 
the techniques of homotopy theory, for example to performing Dyer-Lashof 
type operations. 
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Our model does provides a space, homotopy equivalent to #(X), of con- 
nections in B(X) of almost minimal energy, and so can still be viewed as 
a first step in proving the Atiyah-Jones conjecture. The work of Taubes 
indicates to us how families of connections of almost minimal energy on a 
four-manifold can be deformed into the space of true minima. In essence, 
there is an obstruction in a finite dimensional space which must vanish for 
the deformation to take place. A similar situation occurs when considering 
when an arbitrary configuration of poles and principal parts on a Riemann 
surface corresponds to a meromorphic map: one obtains an obstruction in 
the first cohomology group of the structure sheaf. In [Hu], it was shown how 
quite generally, one could arrange for the latter obstruction to be deformed 
to zero over a family of sufficiently high codimension, allowing a retraction 
on the level of homotopy groups; it is quite conceivable that such a theo- 
rem could be seen to hold here, giving a homotopy equivalence through a 
range between B(X) and a subspace of M.(X) consisting of concentrated 
instantons. In turn, one could hope for an equivalence through a range be- 
tween these concentrated instantons and the full instanton moduli space, as 
a sort of distant cousin of the Lefschetz hyperplane theorem for algebraic 
varieties [Li]. 

It will be convenient to work with more general spaces B(X, Y) of pairs 

f connections on X,  trivialisations on Y), 

where Y is a suitably nice open set of X, and X is not necessarily compact. 
We give some of the basic properties of the B(X, Y) in section two. Our 
"particles" that we use to build the model of B(X, Y) are not localised at 
points, but rather on small open sets. This turns out to be quite a major 
headache, and section three is devoted to developing the requisite tools for 
dealing with it. In section four, we build the homotopy model /P(S'4,D4) 
for ^(S'4,1}4). This is essentially the instanton moduli space, but where the 
connections are modified to be flat outside of disks, so that the operations 
of glueing together two connections are easier to perform. In section 5, 
we transfer this model to an arbitrary pair (X, y), building V(X,Y), and 
proving that it does have the desired homotopy type. Section 6 considers 
more directly the finite charge spaces Vk(X,Y). We conclude in section 7 
with a few comments. 

The author would like to thank C. H. Taubes for clarifying some delicate 
technical questions. 
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2. Spaces of based connections. 

Let X be a four dimensional smooth manifold with or without boundary, 
and let Y be an open subset of X containing the ends and the boundary of 
X, so that X\Y is compact. We will suppose that X\Y and Y are both 
non empty and of finite type, so that in particular they both have a finite 
number of components. We will also suppose that X\Y is an 4-manifold with 
boundary smoothly embedded in X, so that there is a "collar" of Y", giving 
a family Y^, t £ [— 1,1] of open neighbourhoods with Yt relatively compact 
in Ytt for t < £', YQ = F, and with Yt,t > —1 deforming diffeomorphically 
to Yt' by diffeomorphisms which are the identity on Y(_i+ty2' We will call 
such pairs (X, Y) "admissible". (We will occasionally allow X\Y to have 
corners. This causes no difficulty). We also introduce the following notation: 
if X has a boundary dX, then one can thicken dX to a collar dX so that 
(X, dX) is admissible. 

Let G be a simple, simply connected compact classical Lie group, that is 
either SU(n), Spin(n) or Sp(n): these are the groups for which the Atiyah- 
Jones conjecture over S4 is known. Let us fix over X a sequence Ek of 
principal G-bundles with pi(Ek,Tk) = k £ iJ4(-X", Y;Z). Along with triv- 
ialisations T^ of Ek over Y. We will say that another trivialisation T7 of 
Ek over Y is admissible if Tk and T7 are related by a map Y —> G which is 
homotopic to the constant map. 

Let AkiX, Y) be the space of pairs 

(G-connections on Ek over X, admissible trivialisation of Ek over Y) . 

Let Gk(X, Y) be the group of gauge transformations of Ek over X which 
are homotopic to the identity over Y , and set 

(2.1) Bk(X, Y) = Ak(X, Y)/Gk(X, Y) 

The space Bk(X,Y) has, up to homotopy, other interpretations. First, let 
Gk(X) be the group of all gauge transformations of Ek over X. We will say 
that a trivialisation Tf of Ek over Y is permissible if it lies in the G/c(X)-orbit 
of TV Alternately, as we have trivialisations Tk of our bundles Ek over Y, the 
gauge group Gk(X) give after restriction to Y elements of Map(Y, G), while 
those in GkiX^Y) give elements of Map0(Y, G), the connected component 
of the trivial map. We say that / E Map(Y, G) extends to X if it lies in the 
image of Gk(X, Y). In fact, all of Map0(Y, G) extends to X; more generally 
the maps which extend are a union of connected components of Map(Y, G): 
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Lemma (2.2). // / : Y —> G is homotopic to the constant map, then f 
extends to X. 

Proof. Let Ft be the homotopy of / to the constant map with value the 
identity. One can use the restriction of Ft to the boundary of Y to extend 
/ to the collar of Y in such a way that the extension is constant on the 
boundary of Yi, after which / extends trivially to the rest of X as the 
trivial gauge transformation. 

We note that this shows that an admissible trivialisation is permissible. 

Let a/c(X, Y) be the space of pairs 

(G-connections on Ek over X, permissible trivialisation of Ek over Y) . 

Then, 

(2.3) Bk(X,Y) = ak(X,Y)/Gk(X). 

We have simply augmented both the space of trivialisations and the gauge 
transformations. Next, let Ak(X,Y) be the space of connections on Ek 
which vanish in the T^-trivialisation over Y, and Gk(X, Y) the gauge trans- 
formations which are trivial over Y. 

Proposition (2.4). Bk(X^Y) is homotopic to 

Bk(X,Y) = Ak(X,Y)/Gk(X1Y). 

Proof. We choose once and for all lifts ptj of the retractions ptj ' Yt —> Yj/, 
t7 < t to Ek which preserve the trivialisations Tfc. The map pi^ gives an 
"extension" of any trivialisation T over Y to a Ti over Yi, in such a way 
that Ti = T over Y_i5 say. For any such T, let ao be the connection over 

2 
Yi corresponding to Ti, i.e., ao = 0 in the Ti-trivialisation. We then choose 
a smooth function 

p : X x [0,1] -> [0,1] 

with <p(X x {0}) = 1, <p((X\Y) x [0,1]) =1 and ^((Y_i) x {1}) = 0. We 

then set, for all (a,T) in Ak(X,Y): 

(2.5) J2(a, T) - (pa + (1 - p)c*o, T) 
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This defines an equivariant retraction of Ak(X, Y) to A%(X, Y), a subspace 
of Ak(X,Y) consisting of pairs (a,T'), where a is flat on Y_i and trivial 

2 

("zero") there with respect to the T-trivialisation. We note that if a is zero 
in the T-trivialisation, then g • a is zero in the g • T trivialisation. One has 

Ak(X, Y)/Gk(X, Y) - A£(X, Y)/Gk(X, Y). 

One then uses the fact that Gk(X,Y) acts transitively on the admissible 
trivialisations to reduce to the space 

if (X, Y) = { (a, T) € Al{X, Y)\T = Tk}, 

and so: 

(2.6) Al{X, Y)/Gk{X, Y) ~ if (X, Y)/Gk{X, Y) 

Finally, A^{X, Y) is not quite the same as Ak{X, Y), but one has inclu- 
sions 

(2.7) Ak{X, Y) c if (X, Y) c ifc (x, y_ i) C p0]_i (if (X, y)) 

defining equivariant homotopy equivalences. 

Proposition (2.8). Let Y' C Y",  Y7 / $ 6e nice open seis, and let the 
trivialisations Tk(Y), Tj^iy') be compatible.  The natural map 

(2.9) Bk{X,Y)^Bk{XX) 

is a fibration with fiber 

Mapx((y,Y'), (G,e)), 

^/ie subspace of Map ((Y, Y7),  (G, e)) consisting of maps which extend to X. 

Proof We have that 

Bk(X, Y) = ak(x, Y)/G(X)    and    ^(X, Y7) - ak(X, Y')/G{X). 

The  fiber  of the  restriction  map  ak(X,Y)   —►   afc(X, Y7)   is,   however, 
Mapx((Y,Y0? (G,e)). 

We emphasize that the trivialisations T^ allow us to define for each com- 
ponent of X\Y a relative Pontrjagin class, so that the total Pontrjagin class 
of the pair {Ek, Tk) is given by a multi-index k = (fci,..., ks). The existence 
of several components is the reason for defining admissible trivialisations, 
as, in flattening a connection with respect to a trivialisation, one wants to 
prevent "charge" from "leaking" from one component to another. 
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Lemma (2.10). For all K,, the spaces Bk(X,Y) are homotopy equivalent 
and are connected. 

Proof. The homotopy equivalences are given by the well known loop sum or 
glueing constructions, as in [DK]. The connectedness follows from that of 
AK(X,Y) and the space of admissible trivialisations. 

When it is not necessary to specify fc, we will simply let the multi-index 
be implicit, and refer to the spaces as B(X,Y). It is however useful to bear 
these components in mind, for example when restricting from B(X,Y) to 
B(X,Y') for Y' C y. The inclusion X\Y C X\y/ typically amalgamates 
certain connected components of X\Y, while also allowing for new ones in 
X\Y. The "charges" k = (fci,..., ks) get summed and rearranged accord- 
ingly. 

Lemma (2.11). Let X = X1UX2, Y = Yi U Y2 with Xi n X2 = Yi n Y2. 
Suppose that the trivialisations on Yi,Y2 are compatible.  Then 

B(X,Y)^B(X1,Y1)xB(X2,Y2). 

Lemma (2.12) (Excision). Let V be closed in Y. Then 

B(X,Y) = B{X\V,Y\V). 

The proofs are straightforward. As a particular case, we can take V to be 
the closure of lb- This gives us 

(2.13) B(X, Y) = B(X\Y, d(X\Y)) 

and so, from (2.11), we can consider each component of X\Y separately. 
From now on, we take the multi-index k to be an integer. 

3. Particles and disks. 

3.a. Amalgamations. 

We will be building a homotopy-theoretic "particle model" for the space 
of connections on a bundle, in analogy with the May-Milgram model for 
finEnX. We will use for this spaces of concentrated "particle like" connec- 
tions, which are flat outside small disks. This makes them more amenable 
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to the type of "loop sum" additions of configurations that one would like to 
perform. 

The "particles" we will use are thus localized on disks, not at points. 
The size of these disks can be an obstruction to moving them around as 
points; we get around this by building a rescaling into the model to allow 
them to be as small as need be. Another problem is that when the disks 
come together or coalesce, their localisation is not always well defined. We 
will give in the next few paragraphs a few notions and lemmas which will 
be of use in getting around this problem. Constructions similar in spirit to 
what follows can be found in [KM]. We fix a metric on X, with bounded 
curvature. 

Let A be a finite set, with some measure on fi on it of total mass 1. Let 
Bp be a geodesically convex ball in X, and, if A is a positive bound for the 
sectional curvatures on X, let us ask that Ap < TTA

-1
/

2
. Following Karcher 

[Ka], we define a center of mass for a map / : A —> X. To do this, consider 
the function 

(3.1) Pf(m)= f d(mj(a))2da 
JA 

for m G Bp. One has [Ka]: 

Theorem (3.2). With the above assumptions, the function Pf is convex, 
with a unique interior minimum Cf in Bp, the centre of mass of f. The 
map (/,//) —» Cf is continuous, and uniform in f. 

This centre of mass using the counting measure will allows us to think 
of n points which are close as one big point localised at the centre of mass. 
As points vary in X, we want to think of them as distinct when they are far 
apart, and agglomerated when they are close. This is done as follows. 

Let SPn(X) be the n-th symmetric product of X. We note that if X has 
r connected components, then the components of SPn(X) are labelled by 
r-tuples of integers (fci, A^? —, &r), h > 0, ^ ki = n. We will write elements £ 
of SPn(X) as sums Y^aiPii ai ^ ^+5 Pi distinct e X. The partitions {Vi}iej 
of a set have a natural ordering, given by "clustering": set {VJ} < {V/} if 
each element VJ of the second partition can be written as a union of sets 
Vi in the first partition. There is a similar ordering on the partitions of an 
integer. The space SPn(X) admits a stratification corresponding to this 
order, given by multiplicity pattern, i.e. the integers a* in the sum J2aiPi' 
If K : {ai > a2 > • • • aj} is a partition of n, let SK be the corresponding 
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stratum of SPn(X). One has 

(3.3) 5*=   U   SK,. 
K<Kf 

Definition. Let ^ = J2aiPi be an element of SPn(X). An amalgamation 
of ^ is a partition of £ into disjoint Q E SPni(X), J2jnj — n5 so that 
£ = 5^ • Cj. Here disjoint means that each pi appears in only one Q. The 
word amalgamation is used to indicate that each Q is to be thought of as 
one composite particle, agglomerating the pi that compose it. 

There is a natural ordering on amalgamations, corresponding to the or- 
dering of partitions. We also remark that there is a natural length function 
on amalgamations, given simply by the number of clusters Q. Passing to a 
larger amalgamation always decreases this length. The minimal amalgama- 
tion of £ = Yli=i aiPi has length s; its maximal amalgamation always has 
length 1. 

Definition. Let d = (rf(l),d(2),d(3),...) be an increasing sequence of 
positive real numbers and e > 0 a positive real number. Let £ = ^T, aiPi be 
an element of SPn(X). A (d,e) amalgamation of £ is a partition of £ into 
disjoint Q G SPni(X), Y^j nj — ni such that each pi in Q is within ed{nj) 
of the centre of gravity of the points in Q. 

Lemma (3.4). There exists a sequence d = d(l),d(2),(i(3),... such that 
for all £o(n) > £ > 0; any X G SPn(X) has a unique maximal (d, s) 
amalgamation, and if {Cj}iCj £ SPni(X) is this amalgamation, then for 
j T^ i, the centres of gravity Cjid 0f Cjid respectively are separated by at 
least 3s(d(nj) + d(ni)). 

Proof. The e factor is an overall scaling which for the purposes of the proof 
can chosen arbitrarily, as long as it is sufficiently small; for the proof, we 
will just set it to one. We define d(i) inductively, starting with d{l) = 1. 
Let & G SPni(X), & € SPnz(X) with all the points pij of & within 
d(ni) of their centres of gravity ^. For £1 and £2 to be united in a larger 
amalgamation if the ^ are less than 3(d(ni) + rf(n2)) apart , one simply has 
to choose d(ni + 722) large enough so that all points of £1 and £2 he within 
d(ni + 722) of their common centre of gravity. This is ensured for example 
by 

(3.5) d(m) > C Md(n) + (m + 4n)d(m-n) 
m 
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for all 0 < n < m, allowing an inductive definition. (The constant C would 
be one if the manifold were flat; it can be taken greater than one to allow 
for curvature.) 

Let us fix such a d, and fix a "window" [0, a], with a sufficiently small 
for the centres of mass to be well defined for points in a ball of radius ad(n). 
We then define for each 

^ = Y^aipieSPn(X) 
i=i 

its amalgamation sequence (ei, £*), i — s(£) — 1,..., 1 where 0 < £s(£)-i — 

• • • < er(0+i < er(0 = • • • = ei = a, C* = {Cj}, Cj tSF^HX), ^nj- = n. 
One considers, for each e > 0, the maximal (d,e) amalgamation. As a 
function of e, this is locally constant, except at a finite number of exceptional 
values p^, where it changes from CM to a bigger (^ as one increases e. Let £i 
be the infimum of a and the e with a (d, e) amalgamation of length less than 
or equal to i, and let £2 = {C} be this amalgamation. Fixing e and varying 

£ as, say, £(£), one sees that if £l = C(0) is the maximal amalgamation for 
£ = £(0) at £, then it is an amalgamation for nearby £(i), but it might not 
be maximal. It follows that the £; vary continuously with f, but the C2 do 
not, in that 0(0) might have smaller length than 0(£) (in which case some 
of the £i coincide). 

The rough picture one can have is as follows. For each point xn present 
in the sum £ = J2 an^n £ SPn(X), one has a disk centred at xn, whose size 
depends on an. The diameter increases with £, and when two or more disks 
get too close, they get replaced by a bigger disk which includes them, with 
centre the centre of gravity of the points. This disk keeps on growing, until 
it meets another disk, etc. The final result is r(£) disks, at e = a. 

Lemma (3.6). Fixing d(k) as above, for all e, 6 > 0 sufficiently small, 
there exist continuous "concentration" maps 

fN:SPN(X)->SPN(X) 

with the following properties. 

(a) If the maximal (d, e) amalgamation of ^ G SP   (X) is 

{Cj},    CjeSFni{X),3 = l,...,rt 

then setting 7] = (ni,..., nr), 

fN(0 €   U Sv, 
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where S^ are the multiplicity strata of the symmetric product. (Thus 
also,fN(Oe   U  S^forteSr,.) 

'q,>r) 

(b) If the maximal (d, £ + 6) amalgamation of £ G SPN(X) is 

{fa},    <f>keSPm*(X),k = l,...,s, 

with centres of gravity (f)k, then fw maps the points lying in fa to the 
(e + 8)d(mk) ball centred at (j)k. If the maximal (d, p) amalgation of £ 
is constant for all p G [£,£ + <$], then , 

k 

(c) Scaling e8 to zero by te, t5, t G [0,1]; gives a homotopy /jv,t between //y 
and the identity map. This allows one to follow individual points xi of 
£ as they move to their image in /JV(£). The paths taken by these points 
all lie within the (s + 8)d(mj£) ball centred at the fa corresponding to 
the point xi, and all the points in Q move to the same point. 

(d) If V}v(y),2/ G X is the subset of SPN(X) of configurations with no 
point of X within <S(e + 8)(d{N) + d{l)) ofy, then one has a commuting 
diagram 

VN{y)     -^     VN(y) 

+v +y 

SPN+1{X) -^ SPN+1(X) 

Proof The idea of this map is that it moves the points in Q to its centre 
of gravity <^, and then perhaps concentrates them a bit more if there are 
further amalgamations in the interval [e, e + 6]. 

Let (£i,0 = {C}}) be the amalgamation sequence of £ = J2anxm xn G 
X, an G Z4", for the window [0,£ + 8\. Let us restrict this to consider only 
the sis lying in the interval (e, e+8), and renumber them as Si < • • • < £fc_i, 
setting SQ = ^5 and Sk — £ + 8. Let Q- be the centers of gravity of the Q. 

Set C(rrn) to be the (nested) sequence of elements of SP1^ {X) to which xn 

belongs. Let us suppose for a moment that X = R*. Set 

Wn = Wn(xn) = ^ —6  Ci(iBB) 

i=l 
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where the sum is the Rfc-sum, not the symmetric product sum.  One then 
writes (using the symmetric product sum) 

(3.7) /JV(0 = E^ .Wrt 

From our discussion of the amalgamation sequences, this is continuous, and 
one checks that it has the right properties (e.g., if £i = e + (5, so that the 
amalgamation sequence is constant on [£,£ + <5], then /jv(0 = X]anCy(x ))• 

n 
The formula above for wn is simply that of the centre of gravity of the 

^Vx V weishted by the factors ^~^~ . For a general X, we then use this 
same centre of gravity. 

3.b. Local flattenings. 

We now assume that we are on a compact subset C (here X\Y) of 
a Riemannian manifold (X,g); let 3JR be the injectivity radius. On any 
geodesic ball Br(X^xo) of radius r less than i?, centre XQ in C, there is a 
natural way to "flatten" g. We consider the exponential map 

tp: B2r(TXQ(X),0)^B2r(X,xo). 

This is a diffeomorphism, and we use it to define a flat metric (y?-1)* ff(a:o) 
on B2r(X,XQ). Let us call this the geodesic metric centred at XQ. One can 
then patch this in to the metric g using a partition of unity to get a global 
metric which is flat on Br{X, XQ). 

Now let us consider £ = Ylaixi ^ SPN(X). We would like to flatten 
the metric on balls containing the x^ continuously in £. More precisely, let 
Cj G SP™! {X) be the elements of the maximal (d, 26) amalgamation of £, 
with centre of gravity Q. We can flatten the metric on balls centred at the 
Cj, and of radius at least 26d(mj), if we choose 6 sufficiently small so that all 
our balls lie within the injectivity radius and so that the centres of gravity 
and the concentration maps are well defined. 

Let {TJ},TJ G SPnJ(X) be the maximal (d, 35)-amalgation of £, with 
centres of gravity Tj. The concentration map /jy = /AT(35,45) associates 
each point xi of £ to a Tj, and then possibly moves Tj to a fj. For each 
Xi,Xk, i 7^ fc, either the corresponding f;, fk are the same, or the balls 

DgSdirm) (X, Ti) ,       Dgsd(mk) (X, Tfc) 

are disjoint. In the latter case, the balls 

Dudtrm) {X, Ci) 5      ^4(5d(mfc) (-X") Cfe) 
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are also disjoint. 

Lemma (3.8). For all 6 > 0; sufficiently small, there exists a continuous 
function 

P ■■ (Xf —> (K+)iV 

which is equivariant with respect to the action of the symmetric group, and 
such that if £ = ^2 aiXi has Q G SP771^ (X) as its maximal (d, 26) amalga- 
mation, and Zk G SPMi{X) as its maximal (d, 35) amalgamation then: 

(1) p{x)i is the same for all xi in Q. 

(2) For Xi in (^, Zg, 
26d(mj) < p(x)i < 26d(M£). 

Proof As in the proof of (3.6), let (5;, C), i = 0,..., m be the amalgamation 
sequence for £ on the interval [25, 35], with 5o = 25, 5m = 35. We set, for 

771 

(3-9) p(x)k = ^22(6i-6i_1)d(ni{x)). 
1=1 

We then use this lemma to define bump functions which are one on 
the balls of radius p(x)i, centred at the £, zero outside the balls of radius 
p(x)i + 5. One then has that for each pair of points x^ Xk of £, that either 
the corresponding functions <^, cpk have disjoint support or that Xi and Xk 
correspond to the same point in /AK^)- Let p, be a positive function which 
is one on the complement of the p(xi) + 5 balls and zero on the p(xi) balls, 
such that (^2i <Pi) + p is bounded away from zero. These choices can be done 
continuously in £. 

As remarked above, all the points in (j correspond to the same (j in 
/AT {X). Let gj the geodesic metric centred at £j, and set 

Etai)    +M 
3 

(3.10) g 

where the sum is taken from 1 to n over the points Xi of ^, repeating if xi 
is multiple. This is the desired metric, and varies continuously with £. We 
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note that the centres for defining the geodesic metric are not necesseraily in 
the balls of radius p(xi), and indeed are defined in such a way that if two 
of these balls come together, the center used to define the metric is already 
the same on both balls, so that the resulting metric stays flat. 

4. Instantons and connections on E4. 

4.a. Instantons on M4. 

Let X be a compact Riemannian manifold.  The Yang-Mills functional 
for connections on Ek —► X: 

(4.1) yM(A) = f IF, 
Jx 

A? 

has as minima the anti-self-dual connections (instantons), whose curvature 
FA satisfies the equation 

(4.2) *FA = -FA 

One then has the framed moduli space Mk{X, p) of gauge equivalence classes 
of pairs (A,T), where A is an anti self-dual connection and T is a trivial- 
isation of Ek over a base point p. For X = 54, Mk{SA,p) is a smooth 
Sfc-dimensional manifold. It lies in the space B(SA,p) of all pairs (A,T) of 
pairs 

(connections,    trivialisations over p), 

which, in turn, is homotopy equivalent to Bk(S4,D), where D is a ball 
containing p. One has the theorem: 

Theorem (4.3) (Atiyah-Jones conjecture) [BHMM, Til, Ti2, Ki]. For 
gauge groups G= SU(n), SO(n), Sp(n), the inclusion 

Mk(S\p)->Bk(S\p) 

induces isomorphisms 

(4-4) tfi(Mt(54,p))^7ri(M1S'4,p)). 

fori< [fc/2]-l. 
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The spaces Mk = A/(/c(S'4,p) will then, in the limit, provide a homo- 
topy model for ^(S4,]?), and, as we shall see, consist (up to homotopy) of 
concentrated, particle-like connections which are not quite flat, however, far 
from the "particles". We will modify the connections so that they are flat 
outside disks, to obtain a space Vk{SA) which is homotopic to MkiS^^p). 
The connections in Vk{SA) can then be easily grafted or glued into any 
four-manifold. 

We note that the Yang Mills functional and equation (4.2) are confor- 
mally invariant, so that solutions to (4.2) on SA are solutions on R4; indeed, 
a theorem of Uhlenbeck [U] tells us that L2 solutions to (4.2) on M4 are 
equivalent to solutions on 54. The instantons of charge k on 54 are all given 
by the ADHM construction [ADHM] (see also [DK, ch. 3]). For gauge given 
SU(n) this construction takes as input linear maps 

(4.5) n, T2 : C^ -> Cfc,    a, TT* : Cn -> C*, 

and produces an instanton.    As this construction is being presented to 
demonstrate the analytic behaviour of the instantons, it will suffice to think 
of other groups as being represented into SU(n).    Here Ck and Cn are 
equipped with their standard Hermitian metrics. 

The matrices must satisfy the equations: 

1 " ^ [r1,r1*] + [r2,r2*] + ao-*-7r*7r = 0, 

as well as some non-degeneracy conditions: set zi — xi + ZXQ, Z2 = xs + ix^ 
and define : 

(4.7) a* = (ri - 21, T2* - Z2, TT*),     f3x = (-T2 + Z2, n - ^1, cr) 

then the map 

(4.8) Rx = o£ + Px : Ck 0 Ck 0 Cn -► Ck 0 Ck 

must be surjective for all x. The kernel Kx of Rx is then a subbundle of 
the trivial bundle C^ 0 C^ © Cn, and one obtains a connection on Kx by 
orthogonal projection of the standard flat connection on Ck 0 Ck © Cn. 
Explicitly, if 

(4.9) M = M(x) :Cn ->Ck®Ck®Cn 
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provides a basis (not necessarily Hermitian) for the kernel Kx, then 
M(M*M)~2 gives a Hermitian basis and the connection matrix is given 
by 

(4.10) A = d{M*M)2 (M*M)-5 + (M*M)-sM*dM(M*M)-2 

and the curvature by 

(4.11) FA = (M*M)-2 [dM* (1 - M(M*M)-1M*) dM] (M*M)-5 

The equations (4.6) guarantee that these are instantons. The group U(k) 
acts on the matrices by 

(ri,r2,cr57r) ^ (gng'1, gT2g~1, eg'1, gn) 

and one has the theorem: 

Theorem (4.12)[ADHM]. Mk is the quotient of the variety of matrices 
(TI, T2, a, TT) satisfying equations (4.6) and the non-degeneracy condition (4.8) 
by the group U(k). 

The construction is quite explicit, and one can show that the curvature 
tends to concentrate around the points in R4 corresponding to the eigenval- 
ues of the matrices (TI,T2), in particular when a and TT are small, so that 
Ti, T2 almost commute. 

Let us write Rx as 
RX = (NX,P) 

where P is 2k x n, A/^ = (iVo - I/cxfc ® 7 * x) is 2fc x 2fc, with 7 • re the 
representation of the quaternion x as a 2 x 2 matrix. Far from the origin, 
iVa; is invertible, and we can set 

(4.13) M=(Q),    Q = -(N-l)P 

so that M provides a basis for the kernel Kx. One then has for the connection 

(4.14) A= (d[I + Q*g]^[I + Q*Q]-2 + [I + g*g]-^Q*dQ[][+Q*Q]-^ 

and for the curvature: 

(4.i5)  FA = [i + Q*Q]-5w) (1 - g[i + Q*Q]-
1
Q*) (dg)[i + g*g]-^ 

Note that as a; gets large, Q is O (a:-1) and dQ is O (|a:_2|). 
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Recalling that the equations are conformally invariant, one has that the 
action of the dilation V\ with centre 0, factor A on R4, acts on the moduli 
space by: 

(ri, T2, (7, TT) »-> A(ri, r2, cr, TT) 

and similarily on A^o, P- For A < 1 this concentrates the connection around 
the origin. 

We define a space .M^ = .M£(£,<S) of concentrated instantons by the 
properties: 

1. The operator norm of ATQ is less than 3sd(k)/2 

2. The operator norm of P is less than 8 

Proposition (4.16).     (a) M^ is a strong deformation retract of Mk- 

(b) Mfc is invariant under dilations by a factor A < 1. 

(c) There is a constant C such that outside the ball of radius 2 £d(k) 
the L00 norms of A is bounded by C6\x\~3, that of FA by C<5|x|~4

; 

and the L2 norm of FA by C6. 

(d) One can define a function p : M^. —> (0, 2ed{k)), equivariant with 
respect to the action of dilations, such that the instanton A has all but 
C8 of the L2-norm of the curvature concentrated in a ball of radius 
p(A) around the origin. 

Proof For (c), one has that outside the sphere of radius 2ed(fc), the norm 
of Q is bounded by C • l^l-1, and that of dQ by C • \x\~2 for some suitable 
constant C. The estimates then follow from the formulae (4.14), (4.15). 
Parts (a), (b), (d) then simply follow from the action of the dilation on the 
ADHM matrices. 

Underlying much of gauge theory is a technique due to Taubes for glueing 
two or more instantons which are concentrated at different well separated 
points: one first patches them together using a partition of unity, and then 
deforms the result to an instanton. We will now use this construction with 
our concentrated instantons as building blocks to build a space of concen- 
trated particle-like connections. In our version, we will first consider an 
element f = J2imixi 0^ SP1*^) whose maximal (d,e) amalgamation is 
minimal, i.e. Q = miXi. This guarantees that xi and Xj are separated 
by 3s(d(mi) + d(mj)). On small balls containing the x^ we will glue in 
to a trivial background connection T elements Ai of M°   = .M£L.(R4), as 
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follows. Choosing an orthonormal frame at the Xi we obtain via the expo- 
nential map an identification between ^^^^(R4,^) and D3^(m.)(R4,0) 
(there is a canonical choice of frame for R4, but we will be doing this for 
other manifolds). We choose a radial gauge for A^ with centre at infinity in 
S4, the pole opposite to the one at which the instanton is concentrated. This 
gauge allows one to identify the bundle Ek over D^£(i(mi) (M

4,0)\{0} with the 
trivial bundle over i?3£cf(mi)(M4

5^)\{^i}, in such a way that Xi corresponds 
to 0. One fixes a bump function function (f> which is one on JDI(M

4
,0) and 

vanishes outside D3/2(R4
50), with gradient bounded by 4, rescales it to the 

radius p(Ai) < 2sd(mi) of (4.16) and centres it at the xf. let fa denote the 
resulting function. One then sets, over -D3£d(mi)(K4,^)\{^}5 

A = (1 - fa)r + faAi 

where T is the product connection over the trivial bundle and Ai is the 
representative for fa in the radial gauge. The result is a connection which 
is trivial on the complement of balls, and indeed trivialised on that set. 

This connection is almost anti-self-dual, and for a suitable choice of 6 
can be deformed to an anti-self-dual connection. Indeed, from the properties 
(4.16) of our concentrated connections, the L2 norm of the self dual part 
of the curvature of A is small, and with appropriate choices of constants 
in (4.16) can be made as uniformly small as one wishes. One can then 
appeal to the following theorem of Taubes. Let / be the group of conformal 
automorphisms of M4 generated by the rotations and the dilations centred 
at the origin. 

Theorem (4.17). Let Bf, be the space of based equivalence classes of con- 
nections on Ek —> S4" whose anti-self dual curvature has L2 norm less than 
6. For 6 sufficiently small, there is a strong deformation retraction R^. of 
B6

k onto Mk-  (R® = Id, Ri(B6
k) = Mk)-  This retraction is I-equivariant. 

This result, apart from the invariance, is proven in [Tl], over the four-sphere. 
To obtain the /-invariance, one must transfer the proof to R4, and indeed, 
this can be carried out [T4]; the key point is the conformal invariance of an 
appropriate Laplacian. Furthermore it follows by standard estimates (as in 
[DK, ch.7-8]) that the result is again concentrated, though indeed, if it were 
not, one could just build a concentration into the retraction. In any case, 
applying R to A, we obtain A € Mk- 

The next step is to implement this glueing construction of particle-like 
connections supported in disks in some continuous fashion over SPk(R4). 
The Taubes retraction will be used when the disks get too close together to 
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turn the almost instantons supported on small disks into an almost instanton 
on a bigger disk which contains them. We divide SPk(M4:) into its multiplic- 
ity strata S^ ji = (mi,m2,...,ms), mi > m2 > • • * > ms > 0, ^rrii = k\ 

(4.18) Sp = | ][] miXi E ^P^E4), Xi / x,- for i / j I . 

One defines for each of these strata a subspace S^ consisting of those el- 
ements with well separated points. If fi — (mi,m2,... ,ms), set |/i| = s. 
Se will consist of those elements whose amalgamation sequence satisfies 
£i > .(fc — i)e. 

We now consider the space 

(4.19) V^ {(zi,...,zs),(/i,...5/s), {Ax,...,As) |]rm^e^, 

U e Frx„ A* e M^} , 

where Frx ~ 50(4) is the space of frames at x. We quotient this space by 
the simultaneous action of S'0(4)s on the framings and the moduli spaces, 
to remove the redundancy given by the framings so that we only consider 
essentially different instantons, and further quotient by the subgroup Sym^ 
of the symmetric group which stabilises /x, so as to have unordered points, 
labelled by concentrated instantons, which are to be thought of as being 
glued in near the points. Let the quotient be 

(4.20) 7^= [V^SO^yj/Sym,. 

We perform the Taubes glueing construction on these spaces, so that the 
Vk are embedded in S(Sr4,p) as a space of concentrated connections, flat 
outside small balls. 

These spaces will be the constituant strata of a space V^ = V^S4") 
which will turn out to be homotopy equivalent to MkiS^^p). We again 
have a partial ordering on the Pf which corresponds to the ordering on 
the strata of the symmetric product, so that /i = (k) corresponds to the 
highest stratum and ^= (1,1,1,...,!), the lowest. 

We will build Vf^ in the spirit of a CW-complex, starting with the "small- 
est" stratum (/z = 1) and glueing on the "bigger" ones. To illustrate what 
is involved, we will start with the case k = 3. We have then three strata, 
labelled by (3), (2,1), (1,1,1). 

(a) Glueing the boundary of 7?| ,2 ^ to V^ ^ . (Note: "boundary" in 
fact refers here only to the part of the boundary corresponding to particles 
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becoming close to each other, not, for example, to boundaries in the moduli 
spaces). Consider an element A of V^ ^ ^ lying over an element £ = 2xi + X2 
of <S£(2,i), and consider the amalgamation sequence of £: this is simply given 
by one number £i > 2s, at which the (2,1) configuration amalgamates to 
a (3) configuration. If £i < 3s, we use the Taubes retraction to retract the 
connection A towards Ms; assuming the full retraction takes place over [0,1], 
we perform the retraction for a time of length [3s — si]/s. This procedure 
gives a connection which is no longer flat outside small balls, so we must 
re-flatten. The Taubes retraction moves us towards an instanton of charge 
three, and we use (4.16) to choose its associated radius p. One flattens 
the associated connection with a bump function built from our standard (f> 
with radius p and centre the centre of mass of the two points. Flattening 
the connections with this bump function lands the boundary si = 2s of 
the stratum 'Pf /2 ^ in V^ ^; let the resulting glueing of the two strata be 
denoted V^2+. 

(b) Glueing the boundary of V^ ^ 1 ^ to P| 2+ . Let us next consider 
an element A of P| n 11)> tying over ^1 + ^2+^3 in 5(1}ljl). Its amalgamation 
sequence consists of two numbers S2 < si, with s < £2, 26: < £1; if £2 < ^1? 
then one first amalgamates to a (2,1) configuration, before going to the (3) 
configuration. If £% < 2s , we first deform the instantons corresponding to 
the two points being amalgamated (say xi and X2), towards an instanton 
of charge 2, using the Taubes retraction. We do this for a time [2s — s^js. 
Again we reflatten outside balls, using the bump function with radius given 
by the function p evaluated on the Taubes retraction of the two charge 
one connections, and with centre the centre of mass of x\ and x^. Next, 
if s\ < 3s, retract the result to the instantons of charge three, for a time 
[3s — si]/s, and again reflatten. At the boundary of the stratum, we then 
have one of two situations: either £2 = £, or si = 2s. In the first case, we 
have first retracted to P|,2 1x, and then possibly moved to Pf (3), using the 
recipe of (a) above. In the second case, we have deformed our element A to 
an element of P| ^. In any case, the boundary is now glued to P| 2+. 

The general case proceeds in a similar fashion. One glues the edge of each 
stratum Vi „ onto a space made out of the higher order strata. If f G Vi .., 
one considers its amalgamation sequence (s^, £;), with ss < ss-i <•••<£!. 
If ss < (k — s + l)s, we retract the subconfigurations being amalgamated 
towards the appropriate moduli space, for a time [(k — s + l)s — es]/e, then 
reflatten. We then move on to ss_i: if ss-i < (k — s)e, retract for the 
appropriate time, and reflatten. One repeats this procedure all the way up 
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to £1. 

Proposition (4.21).  The spaces Vf. and Mk are homotopy equivalent. 

Proof. On each stratum V^. there is a natural infinitesimal action of the 

contraction x »—► ex, c < 1 towards the origin in M4 , acting both on SP^R4) 
and on the moduli spaces of instantons. This vector field is not complete, 
as particles eventually get too close to each other, with Ei < (fe — i)e, and 
"fall off the edge". One now notes that all our glueings, retractions, radii 
for bump functions, etc. have been chosen to be equivariant with respect to 
this contraction, so that one can redefine the contraction so that instead of 
falling off the edge when one reaches the edge of a stratum, one falls into a 
higher stratum. Continuing in this way, one eventually falls into the highest 
stratum 7^/^, which is invariant under the contraction. In other words, 
one has a deformation retraction of Vf: to VI /M, and the latter is homotopy 
equivalent to jMfc, by the Taubes retraction. 

Instead of considering particles over R4, we can only consider those con- 
figurations in S^ which lie inside a suitably large ball £)4. This gives us a 
space 

(4.22) V*k{
s\D4)=n(D\dD*) 

which will be our starting point for building other particle spaces. We will 
see that V^D4, dD4) is homotopy equivalent to V^ for E sufficiently small. 

5. Particles and connections on a pair. 

5.a. Particle spaces. 

Let us now return to our pairs (X, Y), and define a suitable space of 
connections for these, based on what we have already done on R4. We 
assume that we have chosen a suitable metric on X. 

As above, we consider the partition of SPk(X\Y) into strata: 

(5.1) Sn(X,Y) = I J^mxi € SPk(X\Yo), a* ^ xj for i ? j 1 . 

We first perform the flattening construction of section 3.b on our metric, 
which in a neighbourhood of each element of ^(X, Y) gives us in a continu- 
ous way a flat metric with which to work. We will assume that the ratio S/e 
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of the parameter 6 associated with the flattenings to the parameter E asso- 
ciated to the scale of the bump-like connections is sufficiently large for all 
constructions associated with the glueing of our strata to place well within 
the flattened locus. We must choose both 8 and e sufficiently small so that 

The flattening construction performed above remains within the injec- 
tivity radius of the manifold. 

The constructions involving centres of gravity are well defined. 

The width of the "collar" Y^\io is greater than the radii involved in 
all our constructions, so that all our "particles" will lie in the comple- 
ment of YQ. 

- The ratio of the flattened metrics to the actual one is close to one. 

Now define <S^(X,Y) to consist of those elements of S^X^Y) whose 
amalgamation sequence in the flattened metric satisfies £i > (fc — X)E. We 
define a location map L^ : «S*(X,Y) —> SPk{X) which is similar to the 
concentration map of (3.4). More precisely, for £ = ]C^=i m3x3 ^ ^(^"J ^OJ 

set ti = £_1min(0, (k — i + l)£ — £;) for each Si in the amalgamation sequence; 
note that U £ [0,1), with i* = 0 for points far from the edge of Sp(X, Y), 
and with the boundary of S^(X,Y) corresponding to one of the U being 
1. Now for each Xj, let XjjS = XJ,XJJS-I, ..., ar^i be the centres of mass 
of the successive amalgamations to which Xj belongs. Set, by descending 
induction, 

CjjS — xj,si       Cj,i — ^^vvQ+l? ■*■       ^/5  \3'j1ii''i)) 

where CM((y, s), (x, t)) denotes the centre of mass of y and x, weighted by 
the factors s and t respectively. We set L^^rrijXj) = J2mjcjA- ^ ^^ 
collar is wide enough, then the inverse image under Z^ of any configuration 
containing a point of YQ must contain a point of Yi/2. We will suppose that 
this is the case. 
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Now put 

S^X,Y) = [j^niiXi e <S*(X,y) | Lp (^rW) € SPk (X\Y1/2)} , 

(5.2) 

V;(X)Y) = {(xl,...,xs),(f1)...,fs),(A1,...,As) 

Y^rmxi € S^X,Y), fi € FrXi, Ai € Mc
mi} , 

(5.3) 

V£
k^X,Y) = [v£(X,Y)/(SO(4rl/synv 

Over the flattened locus, we can perform all of our glueing of instan- 
ton operations as if they were in R4, using the isomorphisms given by the 
framings fi and the exponential maps of the flattened metrics. As long as 
we stay within an area on which the metric is flat, the identifications we 
make with R4 are unambiguous, up to a rotation and a translation, and our 
construction is equivariant with respect to these. We then obtain a space of 
particles V^(X^Y). The connections in our particle spaces are all flat, and 
indeed trivial and trivialised, over the complements of balls in X\Y. In par- 
ticular they are trivialised on y, and so define elements (a, t) of Z3(-X", y).We 
note that there is a natural location map 

(5.4) L:V£
k(X,Y)->SPk(X) 

which, on the strata V^ (X,Y) is the composition of the projection to 

SfAX, Y) with the concentration map L^ : S^X, Y) -> SPk(X). Indeed, at 
each step of the construction of V^X, y), we glued the edges of successive 
strata to the higher ones using the Taubes retraction towards instantons 
located at the successive centres of gravity of the amalgamation sequence 
of our element of S^(X, Y). Following the definition of the concentration 
map, we just have to define the location of the instanton as a suitably 
weighted average of these centres of gravity. This is done above for the 
strata Vf. JX^Y) via the map L^. From the definitions of the glueings 
of the strata, L is continuous, and behaves sensibly, so that for example, 
L (^rriiXi, fi, Ai) = J2mixi away from the edges of the stratum. 

The Vk(X,Y) have several useful properties: 

a) Metric invariance. 
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Proposition 5.5. Given any two metrics go, gi, for e > 0 sufficiently 
small, the spaces V£

k(X, Y)Q = V£
k{X, Y)(go) and V£

k(X, Y^ = V£
k(X, Y^gJ 

are homotopy equivalent. 

Proof. As all the glueings are performed in R4, it will suffice to define equiv- 
alences H/j, between the strata S^(X,Y)(go) and Sp(X,Y)(gi) which, near 
the boundary (where the glueings are being done), are such that x and H^x) 
correspond to the same configuration in «S£(R4). As the V^(X, Y) fiber over 
the S£(X,Y) one can then make the obvious identification, in a way that 
is compatible with all the glueings. Recall from (3.4) the concentration 
map Fk : S£(X,Y)(go) —► SPk(X,Y), with parameters (5,5), and consider 
as above for each (J2mixi) ^e flattened metrics built from go,gi on balls 
which for each xi contain Xi and the point yj in Fk(J2mixi) corresponding 
to it. We are assuming as usual that the flattening parameter 6 is consider- 
ably larger than 2k£. We use the points yj in Fki^ZmiXi) as centres, and, 
choosing for each yj a frame in the tangent space at that point, we then 
define two local isometries </!>o, </>i of X with R4, one using the flattened #o 
metric, the other the flattened gi metric. 

(5.6) X *- Tyo -> X 

The composition </>J[Vo is independent of the frame chosen and associates to 
(52 miXi), (/i,..., fs) a corresponding element iJM((X] ra^)> (/i> • • • > /*))> 
in such a way that the amalgamation sequences of corresponding points 
are the same, at least up to 2fc£, and that distances between the points 
amalgamated by Fk are the same for both Q^TniZ*), (/i,...,/s) and 
H^^miXi), (/i,..., fs))- (The reason e must be small is for the maps 
to be defined.) 

Corollary (5.7). Fore sufficiently small, 

V£(D\d(DA))~V£
k~Mk 

b) Scale invariance. 

Corollary (5.8).   The spaces Vk(X,Y) have homotopy type which is inde- 
pendent of e for e sufficiently small. 

One simply rescales the metric. We also remark that the Vk(X,Y) are 
invariant under diffeomorphism, using 4he pull-back metric. 
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c) Loop sum. 

Let the support of the connection be the union of the closures of the 
balls over which the connections are not trivial. Now let us suppose that 
the supports of two connections (a, t) e Vf,(X, Y) and (/?, 5) e V^X, Y) are 
disjoint. Then the trivialisations allow us to identify the relevant bundles 
over the complement of the union of the support, and we obtain a connection 
(a, t) *(/?,*) 

Proposition (5.9) (Loop sum). Let V in V£
k(X,Y) x Vf{X,Y) be the 

set of pairs with disjoint support. There is a well defined continuous "loop 
sum" map 

(5.10) V^n+l(X,Y) 

d) Restriction and excision. 

We note that in general, the spaces Vk(X, Y) split into a family of con- 
nected components, corresponding to the different ways of placing parti- 
cles in the different connected components of -X"\Y, and so of partition- 
ing k into K = (fci, ^2,..., fc5), where J^h = k and 5 is the number of 
connected components of X\Y. Let 7\K(-X", Y) denote these various com- 
ponents. Now let Yf C Y; the inclusion X\Y i-> XyY' induces maps 
SPk(X\Y) -► SPk(X\Y/). There are then induced inclusions 

(5.11) I:n^X,Y)-.VlAXX) 

(the multi-index might change as there might not be the same number of 
connected components.) 

Furthermore, if V is closed in Y we see that the natural restriction map 
on trivialisations from Y to Y\V defines an isomorphism 

(5.12) E : n (X,Y) - Vs
k(X\V, Y\V). 
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Finally, if (Xi, Yi), (X2,l2) are such that Xi\Yi and X2 are disjoint, and 
X2\Y2 and Xi are disjoint, we have that the composition 

n&uYi) mx2,Y2) 

E- E- 

(5.13) 

VliXx U X2) n U X2)       x       P|,(Xi U X2, Xi U ya) 

^(M) (*iu x* yiu y2)      x      ^j(0ifc/) (Xi u x2, Y, u y2) 

is an isomorphism. 
These last two properties (5.12), (5.13) allow us, by decomposition into 

products , to restrict ourselves, as in the case of 13(X, Y) to considering only 
Vk(X,Y) for spaces for which X\Y is connected. We now do this. 

5.b. Stabilisation. 

The properties above allow us to define stabilisation maps Vf,{X, Y) —> 
V^+i(X^Y)^ when s is sufficiently small. Indeed, we choose a point p ly- 
ing in the the collar of Y, choosing the metric so that p lies sufficiently far 
from X\Yi for the addition of p not to affect the amalgamation sequence of 
J2 ajQj E SPk(X\Yi) in the ranges involved in the construction of Vk(X, Y). 
We now pick a fixed element a of Ail. Let a£ be the corresponding connec- 
tion on the ball of radius sd(l) centred at p. We then define, for small £, 
and up to homotopy, the map 

(5.14) 
f--n(x,Y) 

(3' 

n+i(x,Y) 
-4 13* aej 

These maps, up to homotopy, are independent of e. We can then define a 
limit space 

(5.15) V(X,Y)=limVUX,Y). 
k—>oo 

The limiting process would force us to take smaller and smaller £, or con- 
nections which are more and more concentrated. Alternately, we can make 
the collar of infinite width.   In understanding these spaces V(X,Y), it is 
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perhaps useful to realise that they come equipped with a "virtual charge". 
This can be defined along the lines of the total charge of the "Dirac sea", as 
the number of particles not in the stabilisation slots minus the number of 
slots which are unoccupied. As the topology of the space precludes moving 
an infinite number of particles continuously, this charge is constant along the 
space. Thus, for example, adding a particle does not in a strict sense define 
a map from V(X, Y) to itself, but rather to a space which is homeomorphic 
to it. 

We will say that V(X,Y) defines a homotopy model for B(X,Y) if the 
limit of the inclusion maps 

(5.16) r(X,Y)—> B(X,Y) 

is a homotopy equivalence. 

Theorem (5.17). V(X,Y) is a homotopy model for B(X,Y). 

Proof. As in [McD], the proof will proceed inductively, using a Morse func- 
tion / on X, whose unique minimum will be the base point, such that 
Y = /~1((cn+i, oo)). If CQ < ci < • • • < cn are the critical values of /, then 
/_1([co,£]) is a fixed 4-manifold Xi for t G (C^Q+I). For such a t, choose 
a 6 with ci < t — 5, and let dXi = f~l{t — 8,1). The manifold dXi is a 
"thickened boundary" of X^ We note that XQ ~ JD

4
, the four-ball, and 

OXQ — S3 x D1. If the critical value Q has index z/^, one has: 

(5.18) X^X^U^^D* 

One can suppose that ui G {1, 2, 3}, for i = 1,..., n, UQ — 0, and z/n+i = 4. 
For our construction, we are interested in manifolds with "thickened bound- 
ary", or a collar. Let dX denote such a collar for any X. The "thickened" 
version of (5.18) is then: 

(5.19) Xi-XiA  I      , A     D
4. 

Now write DA as D"* x ZT4"^, so that 

(5.20) 

dD4 = (S^-1 x D1 x D4"^) I   I      1 , (D^x S3-^ x D1) 

One has 

(5.21) dXi = (dXi-x U dD4^ \ V 
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where 

(5.22) V = S"-1 xDlx D*-vi. 

We have from proposition (2.12) that B(Xi-i,dXi-i) is equivalent to 
B(Xi, dXi U i?4), and from (2.8) that there is a fibration 
(5.23) 

Map ((L>
4
, D

4
 n dx^), (G, c)) -> B (x,, ax, u D4

) -> B (Xi, ax>j. 

(In this case, Map((JD
4, D4naX0, (G,e)) - Mapx((D4, L>4n<9Xi), (G,e))). 

Since the space 

Map ((L>4, D4 H a^i) , (G, e)) - ^"^(G), 

we can rewrite this as a fibration 

(5.24) B (Xi-udXi-i) - B (x^dX^j -> Q3'Ui(G). 

We would like a similar picture for the particle spaces. Our particle spaces 
V(X, Y) can be thought of as spaces with "repelling boundary", that is, the 
particles are kept away from the boundary. In the spirit of [S], we will need 
another type of particle spaces Qj, j = 1, 2, 3, for which at least part of the 
boundary is "absorbing". Write JD

4
 as a product D^ x D4~^ and let the 

thickened boundary of D4 be written as 

(5.25) &D4 = (&-1 x D1 x D4-j) U (Dj x S3"' x D1). 

We will think of the first part 

V1 = (S*-1 xDlx D4-j)\l(Sj-1 x Dl x DA-j) n (Dj x S3"'" x .D1)] 

of our boundary as being absorbing, and the second part 

V2 = (Dj x S3-j x D1) 

as being repelling. More specifically, dividing the interval Di in three, let 
us split Vi into an outer piece Vi)0, a middle piece Vi>m and an inner piece 
Vij and consider the particle spaces P^(Z)4, Vij0 U V2). Now we identify 
these spaces amongst themselves by allowing ourselves to remove any par- 
ticle whose centre (defined by the map L) lies in Vijm. We suppose that 
Vi?m is sufficiently wide for none of the disks associated to our particles to 
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simultaneously intersect Vij0 and Vij. Let Qj denote the space resulting 
from the identifications of the different ^(D4, Vij0 U V2). 

As remarked above in section 5.b, adding a particle does not map 
V(X, Y) to itself. Rather, if V(X, Y) has virtual charge zero (set V(X, Y) = 
V0{X,Y)) it maps V0(X,Y) to a space V1{X,Y) of virtual charge one, 
which by a diffeomorphism on the base, can be mapped diffeomorphically 
toV0(X,Y). 

Proposition (5.26).      a) Addition of a particle V0(X,Y) -> V1(XJY) 
is a homotopy equivalence. 

b)  There is a quasi-fibration 

(5.27) V (Xi-u dXi-x) -+ V (Xh dX^) -+ QVi. 

Recall that a map r : T —> S is called a quasi-fibration if the inclusion of 
the fibers of r into the homotopy fiber induces an isomorphism of homotopy 
groups for all s G S. A criterion for a map to be a quasi-fibration is given 
by the following lemma (see [DdT, McD]): 

Lemma (5.28). Let S — USjt, where each Sk is closed and 

So C Si C 52 C • • • . 

Let r : T —> S be a map. Suppose that for each k 

1. r : r~1(Sk — Sk-i) —> (Sk — Sk-i) is a fibration with fibre F, and 

2. there is an open subset Wk of Sk which contains Sk-i and there are 
homotopies ht : Wk —> Wk, and Ht : r~l(Wk) —* r~l(Wk) such that 

a) Jio = id, ht(Sk_i) C Sk_i, hi(Wk) C Sk-i, 

b) iJo = id, and r o Ht = ht o r, 

c) Hi    :   r~1(x)   —>   r~1(hi(x))   is   a homotopy  equivalence for 
all x e Wk. 

Then r : T —> S is a quasi-fibration with fibre F. 

We then have a picture of a fibration by strata, with a compatibility 
condition between the strata. A typical application ([S, McD]) is in study- 
ing spaces C(Y) of configurations of particles on a space Y, and the effect 
of restriction to an open subset V. Under suitable conditions the restriction 
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C(Y) —> C(V) is a quasi-fibration with fiber C(Y\V) (A piece of the bound- 
ary of V must be absorbing; a precise formulation is found in [S, McD]). The 
strata Sj. are the sets of configurations in V of at most k particles, and the 
problem essentially in passing from Sk to Sk-i is that a particle "leaks out 
" of the base of the fibration and moves into the fiber C(Y\V). What then 
makes the map into a quasi- fibration is when addition of a particle in the 
fibre is a homotopy equivalence. This case is treated extensively in [S, McD, 
Gra, Gu]. 

Our case follows this model quite closely: the Sk will be the images 
QvuKk of V£

k(D
4, Vli0 U V2) in Q^. The open subset Wk will be the set 

of configurations in 7^(£>4, V^0 U V2) with particles lying in the collar Vij. 
The homotopy ht simply pushes the particles in Vij into Vi>m; Ht does the 
same thing in X^ just moving particles in the collar. The fact that Hi is 
a homotopy equivalence is the key element in the proof of b). We proceed 
inductively in i, for both a) and b). First, for i = 0, (XQ = I}4), since 
the map V0(D/L,dD4) -> Vl{DA,dDA\ is just the limit of the stabilisation 
maps fk : Vk(D4,dD4) -» Vk+i{D^,dDA), part a) follows from the proof 
of the Atiyah- Jones conjecture for S4, as it is shown that the stabilisation 
maps induce homotopy equivalences through an ever increasing range of 
dimensions. In turn, for z = 1, this proves part (b), as the map H\ on r"1^) 
is simply addition of a certain number of particles (which as in [Gr], can be 
split into a certain number of charge one particles). More generally, part b) 
for i follows from part a) for i — 1 in the same way. In turn part a) for i 
follows from part b) for i using the long exact sequence in homotopy applied 
to the diagram 

v0 (Xi-U a^-i)  > v0 (Xi, ax,)  ► QVi 

V1 (Xi-u dXi^  > V1 (Xi, dXi}  > Q^. 

A special case of this quasi-fibration is obtained by splitting the interval 
D1 into three subintervals, and considering the corresponding splitting of 
D4 — D1 x D3 into three pieces, with the middle piece serving to define Qi. 
The quasi-fibration (5.27) then becomes: 

(5.29) Z x V (£>4,&D4) x V (D4
,<9£>4) -+ V (£>4,dD^ -+ Qi. 
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The Z factor arises because one has two outer components in which 
particles can live, giving a decomposition of the fiber as 

U V* (DA, dD4) x V'1 (£>4, aD4) = Z x V (DA, dDA) x V (D4
, dDA 

i 

One has a diagram 
(5.30) 

Z x V (L>4, dD^j x V (JD
4
, aD4)  > V (DA

, BDA  >    Q1 

ZxB (L>4, dDA x B (D4, dDA    > B (D4
, ODA   > n2(G) 

We recall that B(D4,dD4) = B{S4,p) is homotopic to a component 
£LQ(G) of Q?(G) [AJ]; if the base point p is chosen to be the north pole 
of S4, starting with a connection on S4 with a trivialisation at the north 
pole, we can integrate this connection along a fixed meridian to obtain a 
trivialisation at the south pole. One then integrates the connection along 
all meridians starting from the north pole to the equator, and similarily 
from the south pole to the equator, obtaining two different trivialisations 
along the equator. Comparing these two trivialisations gives a map from the 
equator into G, that is an element of fi3(G), whose degree is essentially the 
Pontrjagin class of the bundle. The map from Ql to Vt2{G) is defined in a 
similar fashion; one just integrates the connections along the (Z)3, <9.D3) lying 
in the middle of (L>4, dD4). The map from B(D4, dD4) = B(S4,p) ~ft3(G) 
to fi2(G) is just restriction to the equator. 

The first two downwards arrows in (5.30) are weak homotopy equiva- 
lences, by (4.3) and (5.7); from the long exact sequence in homotopy, the 
map Qi —► f]2(G) is also a weak homotopy equivalence. More generally, one 
has: 

Proposition (5.31). Qi is weakly equivalent to Jl3_l(G); fori = 1,2,3. 

Proof. Generalising (5.29), we have a quasi-fibration. 

(5.32) Qi x Qi -> Qi -► Qi+U 

from which the result follows. 
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We can now return to proving theorem (5.17).    From (5.24),  (5.26), 
(5.31), we have a diagram 

vfXi-udXi-^  > vfadXi)  ► tf-^iG) 

(5.33) 

B^Xi-xMi-i)  > B(XiM)  > n3-^(G) 

with the horizontals quasi-fibrations and the left-most and right-most down- 
ward maps weak homotopy equivalences. The middle downward map is then 
also a weak homotopy equivalence, completing our inductive step. 

6. Stability of homotopy groups through a range. 

We now have that the spaces V(X, Y) — limfc Vk{X, Y) give us a homo- 
topy model for B{X^Y) = Bk(X,Y). We could ask for the stronger result 
that the Vk(X, Y) have the same homotopy type as B(X, Y) through a range, 
so that TTi{Vk{X^ Y)) = 7ri(B(X, Y)) for i < i(k), with i(k) increasing mono- 
tonically in k and lim^-^oo^^) = oo ("stabilisation through a range"). This 
is indeed what happens with the space Vk{D^,dDA), with i(k) = [k/2] — 2. 
To prove this for a general pair, it suffices to show that the stabilisation 
map induces 7Ci(Vk(X,Y)) = 7ri(Vk+i(X,Y)) for i < i(k). We would like to 
proceed as in section 5, inductively by adding handles, and in particular, we 
would like the finite particle analogue of (5.25) 

(6.1) F-tVkfadX^Qvi ,<k 

to behave like a fibration through a range. This is not the case: over an 
element in Qu^<k with total charge j < fc, the fiber F is Vk-j(Xi-i, dXi-i), 
and so the fiber varies from a point (j = k) to the full Vk{Xi-i, dXi-i). 

Nevertheless, given a reasonable assumption about the Taubes retrac- 
tion, that the Taubes retraction commutes up to homotopy with addition of 
particles, we can show that stabilisation through a range does indeed hold, 
and we now proceed to sketch how this could be done. 

In our induction, we first show that there are subspaces 

Vk (Xi, dXi} , QVii<k   of   Vk (Xi, dX^j , Q^<k 

such that through a range of dimensions the map Tk(Xi,dXi) —> Qvu<k 
is homotopically equivalent to Vk(Xi,dXi) -> Qvi:<k. We then show that, 
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again through a range of dimensions, the map Vk(Xi, dXi) —> QVij<k behaves 
sufficiently like a quasifibration for the induction to go through. 

To do this, we can exploit a description of the moduli space which 
uses complex geometry. There is a natural way of associating to an in- 
stanton in .Mj^S'4) a holomorphic vector bundle on Pi(C) x Fi(C). This 
can be done directly: the connection allows us to define an integrable d- 
operator on M4, which then extends to a compactification; alternately [DK], 
one can simply use the monad construction of section 4: the monad al- 
lows one to define a bundle E over Pi(C) x Pi(C) as the cohomology 
E — ker(B(zi,Z2))/Im(A(zi,Z2)) of the complex, whose central portion 
is of course not exact: 

(6.2) 0 -> C?(-l, -l)efc A{ZUZ2\ 0®2k+2 B{ZUZ2)> (9(1, l)®k -+ 0 

Here 0(—1, —1), (9(1,1) are standard holomorphic line bundles on Pi(C) x 
Pi(C), zi,Z2 are standard coordinates on Pi(C) x Pi(C), and, referring to 
section 4, A(zi, 2:2), B(zi, z^) are the matrices: 

M - zA 
(6.3) A{z\, Z2) = I r2 - Z2    ,    B(zi,Z2) = (-T2 + 22, n - zi, a). 

The vector bundles which are obtained in this way are trivial on Pi(C) x 
{00} U {00} x Pi(C); conversely any bundle on Pi(C) x Pi(C) which is trivial 
on Pi(C) x {00} U {00} x Pi(C) can be written in such a form. Furthermore, 
one can show that there is also a natural framing on E over Pi(C) x {00} U 
{00} x Pi(C) associated to (6.2), induced by the last two entries of C)©2fc+2. 
There is a theorem of Donaldson [D] which states that such bundles, with 
their framings, are equivalent to instantons: 

Theorem (6.4).   The moduli space .M/^S'4) is equivalent to the space of 
pairs 

holomorphic vector bundles E on Pi(C) x Pi(C) with C2(E) = k, 

framings of E along Pi(C) x {00} U {00} x Pi(C) 

As we saw, the approximate location of the instantons in C2 = M4 was 
given by the eigenvalues of TI, T2. The eigenvalues of TI then give the pro- 
jections of these approximate locations onto C = R2, and there is a well 
defined map 

(6.5) n : Mk{S^) -> SPk{C) 
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corresponding to the eigenvalues.    This map was extensively studied in 
[BHMM], and one has 

Theorem (6.6). There exist complex varieties Vi, V^,... with dim (T^) = 

3i such that the fiber ofU over a point ^jf
i=1 ra^, m; 6 N, x* G C, Xi ^ Xj 

is the product Vrai x 1^2 x • • • x V^.. IfSmii_irnj is the stratum of SPk(C) 
corresponding to a fixed pattern of multiplicities, then n-1(<Smi)_jm.) 25 0/ 
complex codimension ^2(mi — 1). In fact, n_1(<Smiv..}m.) is the space: 

(6.7) {(m,...,^, Eu...,Ej) eCjxVmi x..'XVm. \ 

Xi j^Xj  if i^j}/Sym, 

where Sym denotes the subgroup of the symmetric group on j letters which 
stabilises (mi,... ,mj). 

This last statement tells us that n""1(<Smij.#<jm:/.) is a space of labelled 
points with multiplicity, with points of multiplicity m labelled by elements 
of Vm, and each point labelled independently. With this description, it is 
natural to hope that homotopies of SPk(C) which preserve the multiplicity 
stratification should lift naturally to Mk. This is indeed the case, at least 
for the simple homotopy we will consider. 

Now let us return to our construction of the manifold X by adding 
handles, with 

(6.8) Xi ~ Xi-x II      ,     d     D
4. 

If we are considering the particle space Vk(Xi,dXi), we can again consider 
the restriction map Vk(Xi, dXi) —> Q^. The image of this is defined by the 
obvious constraint that there can be at most k particles in the handle, so 
that the target space for restriction will be a space QUij<k, rather than Q^. 
We can identify the handle with M4, and our particles are all of suitably low 
energy for the Taubes retraction to apply. Given an element of Vk(Xi, dXi), 
we can apply the retraction to its restriction to the handle to modify it 
so that one has an instanton over the handle. As one moves around in 
Vk(Xi, dXi), particles will move in and out of the handle and this is where 
one needs an assumption about the Taubes retraction, that, up to homotopy, 
it should commute in a suitable way with loop sum. This should then allow 
us to deform the spaces Vk(XiydXi), QVu<k into spaces Vk(Xi,dXi), QViy<k 
of connections whose restriction to the collar would be instantons. 

Now let us consider the subspace Mk,j oiMk consisting of those elements 
whose image under 11 has at most j points along the imaginary axis, counting 
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multiplicity. The complement of this space has real codimension j in Mk, 
and so ^(.A/f/c) = KiiM-kj) for i < j—1. One then should have similarily that 
the corresponding subspaces Vk,j(Xi, dXi) ofVk(Xi, dXi) are also homotopy 
equivalent to the full spaces through the range j — 2. On the space M-kji 
viewed as a space of labelled particles, there is a natural homotopy which 
"chases" the particles away from the imaginary axis, by simply rescaling 
the real coordinate of their location under the map 11. Transferring this to 
the spaces VkjiXi, dXi), one can "chase" all but j of the particles from the 
handle, so as to obtain after this homotopy a map: 

fikj \Xu dXij —> Qvi,<j 

This map behaves like a quasifibration through a range of dimensions, which 
grows linearly with (k — j). Indeed, the fiber over a point in Quu<j with par- 
ticle number £ < j is the space Vk-i{Xi-i, dXi-i) (£ particles in the handle 
and k — £ without). The homotopy groups of these spaces for £ < j are iso- 
morphic, by the inductive hypothesis, through a range which grows linearly 
in k — j, and the isomorphisms can be induced by the maps between the 
spaces Vk-e(Xi-i, dXi-i) and Vk-i'iXi-i, dXi-i) given as in 5.b, by adding 
fixed particles. This allows us by the corresponding lemma to lemma (5.26) 
to establish that one does have a quasi-fibration through a range of dimen- 
sions. Similarily, as in the previous section, we show that the homotopy 
groups of Qvi,<3 stabilise through a range of dimensions which increases lin- 
early with j. Taking j — [fc/2], and considering the long exact sequence of 
the quasi-fibration shows that the homotopy groups of Vk,j{Xi,dXi), and 
hence those of Vk{Xi, dXi) stabilise through a range growing linearly with 
Jfe. 

7. Comments. 

As explained above, the particle model allows natural definitions of ho- 
mology "operations" on B{X,Y). When {X,Y) = (S4,D4), this idea is 
already present in the work of Boyer and Mann [BoMa], who exploit the 
isomorphism between the standard "little cubes" structure on i3(S'4, D4) = 
ri4(jBG) and the natural one suggested by this particle picture. More gener- 
ally, the inclusion of M4 into X\Y induces a map B(S

4
,-JD

4
) -* B(X,Y), 

which on the level of connections, is simply pull-back from (*54,D4) to 
(X, X\E4), followed by restriction of the trivialisations from X\R4 to Y. 
This tells us that all the R4 operations carry over naturally to (X, Y). 

More generally, choosing a trivialisation of the tangent bundle along a 
d-dimensional cycle in X allows us to transport a configuration of particles 
in R4 along the cycle, giving us a map 

H. {B (S\ DA), Z) - H*+d(B(X, Y), Z) 
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It is also worth mentioning that such a particle picture appears in other 
contexts. One natural case is that of (based) maps of a Riemann surface 
into Pn(C) [S] (more generally a flag manifold [BHMM2], or even more 
generally, a suitable class of "almost homogeneous spaces" [BHM]), where 
the holomorphic maps fulfill the role played here by instantons. Indeed, one 
can represent the map as a configuration of poles on the Riemann surface, 
with a principal part attached to each pole: these play the role of particles. 
The full mapping space then appears as an infinite particle limit of the 
holomorphic maps. For connections, S4 gave us a basic model, to build 
the space for arbitrary X\ for maps the model Riemann surface is the two- 
sphere, and the data associated to the two-sphere then gives the appropriate 
particles for an arbitrary Riemann surface; in this case things are somewhat 
simpler as the spaces are all locally isomorphic [Hu]. 

More generally such particle-like phenomena are often seen to be associ- 
ated to variational problems of critical exponent, with solutions concentrat- 
ing around points ("bubbling"). In some sense the purpose of this article 
is to show that the topology follows the analysis, or vice-versa. For exam- 
ple, one could ask about connections on manifolds of higher dimension, and 
whether a model of the type we have given should exist. This does not seem 
plausible. Indeed, to give a connection on an nrmanifold with curvature 
concentrated near points, one must be able to trivialise the bundle over the 
(n — l)-skeleton. For n =■ 4, this is possible, but for higher dimensions it is 
not. From an analytical point of view, this seems to be reflected in the fact 
that in higher dimensions the Yang-Mills functional is no longer of critical 
exponent. 
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