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1. Introduction and the main results. 

This is a sequel to our paper [04] in which we defined the Floer homology 
of submanifolds HF*(H, S,J : M) = HF^(H, S,J : M) for given compact 
submanifold S C M and for each given coherent orientation a G Or([S] : M), 
and applied them to the geometry of Lagrangian submanifolds by construct- 
ing some homotopy theoretic invariants. Obviously, one can also define the 
Floer cohomology HF*(H,S,J : M) by the functorial construction. We 
will mostly follow the notations we used in [04]. In this paper we further 
analyze the case in which S = M and a is the canonical coherent orientation 
in the sense of Theorem 5.5 [04] and Theorem 12 [FH1]. Using the Floer 
theory for this case, we construct some cohomological invariants and study 
their basic properties in terms of the product structure of Floer cohomology. 
We refer readers to [04] for the details of the construction of orientation, 
grading, and filtration for the Floer (co)homology we use in this paper. 

One important new ingredient of our Floer theory in [04] is the incorpo- 
ration of some geometric calculations involving the geometry of Lagrangian 
submanifolds and Hamiltonian systems. Hence our Floer theory can be 
considered as "geometry of action functional" while Floer's original (global) 
theory in the literature as "topology of action functional". This optimal cal- 
culation has been crucial for applications to problems in symplectic topology, 
and indeed provides a systematic way of studying symplectic rigidity (See 
[06] for a simple proof of non-degeneracy of Hofer's norm in this spirit). 

The heart of the present paper is in Section 6 and 7 where we further 
develop this calculation in a more elaborate way, this time involving pants 
product and filtrations in Floer cohomology. Our presentation of pants 
product is given in a way so that an optimal form of this calculation can be 
carried out, which is crucial for the applications in these sections.  In this 
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sense, our presentation of the pants product contains new features that have 
not been addressed in the literature. 

In the case S = M from [04], we have AT* S = OM- Therefore as far as 
the global Floer theory is concerned, this case reduces to the standard Floer 
theory in the dynamical version. Using the symmetry present in this special 
case, 

'y f—> ^y = ^(1 — £),       U\-+u = u(—T, 1 — t),       (J I—> 5, 

H^H = -H(x, 1 - t),    J^Jt = Jx-t 

one can define a natural homomorphism between HF°_^(H,J : M) and 
HF*(H,J : M) := HF*(H,M,J : M) which becomes an isomorphism 
with respect to arbitrary coefficients. This isomorphism enables us to de- 
fine the semi-infinite version of the cup-product, the so called pants prod- 
uct, on HF*(H,J : M). In general, however, the two Floer homologies 
HF£(H, J : M) and HF^{H, J : M) are not isomorphic for general coef- 
ficients (see Section 2.2 below). We prove in Theorem 2.3 that if we use 
the canonical coherent orientation defined in Theorem 5.5 [04], the two be- 
come isomorphic with arbitrary coefficients (resp. Z2-coefficients) when M 
is orientable (resp. non-orientable). With respect to this canonical coherent 
orientation, combining the above two isomorphisms and the isomorphism 

HFZ_k{H, J:M)-> HFZ_k(H, J : M), 

we obtain the Poincare duality isomorphism 

PD^j) : HFZ-k(H, J : M) - HF^H, J : M). 

From now on, we will fix the canonical coherent orientation and suppress 
the a from the notations below in this introduction. 

We first recall the group operation on the space of Hamiltonians H : 
P x [0,1] -> M, 

(1.1) F#^(x,t) = iJ(x,t) + K((^)-1(^^). 

We also denote by H the inverse of H that is given by the formula 

H(x,t):=-H((<t>t
H)(x),t). 

Our pants product is closely related to this group operation. 

Theorem I. Let Ha, H?, Ka, K? and Ha#Ka, H^#K^ be generic and 
Ja, jP are regular for all three Hamiltonians respectively. 
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(1) There exists a natural bi-linear ma'p, denoted by \JF 'which is called the 
pants product 

(1.2)       iJF*(iJ, J : M) <g> HF*(K, J : M)^HF*(H#K, J : M) 

that respects the filtration induced by values of the corresponding action 
functional (see [04]) in the sense that Up restricts to 

(1-3)   HF{Xu00)(H, J:M)® HF^^K, J : M) 

-^^(A1+A2+^),oo)(^#^^:M) 

where e(K) is a constant, which vanishes for autonomous Hamiltoni- 
ans K, and it satisfies the inequality 

\<K)\ < \\K\\ 

in general. 

(2) The above pants product commutes with the natural isomorphism 

h*p . HF*(H^ jP : M) _> HF*(Ha, r : M) 

in that the following diagram commutes 

HF*(Ha, Ja : M) (g) HF^K", Ja : M)   -^   HF*(Ha#Ka, Ja : M) 

tig ® hf h^ riH#K 

HF*(HP, J? : M) ® HF*(K^ J? : M)   ^ HF*(HP#K^ J? : M). 

(3)   There exists a natural isomorphism, which we call the (semi-infinite 
version) of the Thorn isomorphism 

FH = Ifaj) : #*(M, Z) -. HF*(H, J : M) 

that commutes with Up: the diagram 

HF*(HJJ:M)®HF*(K,J:M)    ->    HF*(H#K,J:M) 

FH®FK FH#K 

H*(M,Z)®H*(M,Z) -^ iJ* (M, Z) 

commutes. 
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(4)  There exists an action (which we call the cup action by u £ H*(M, Z) 
on iJi?*(iJ, J : M) u ^ ( • ) Up u which satisfies 

(1.4) FH(V) UFU = FH{V U U) 

and which restricts to an action on HF?X ^(H, J ' M) for all A G M. 

There have been several articles (see [BzR], [Sc2] and [PSS]) which de- 
scribe the pants product as we do in this paper. In fact, they describe 
more general results in the point of view of the symplectic version of rel- 
ative Donaldson invariants in the context of Hamiltonian diffeomorphisms. 
Fukaya [Ful] also dealt with the Lagrangian intersections in a rather brief 
way. Floer [F3] first studied a product of the type (1.4) in the cup-length 
estimate of Lagrangian intersections. 

However, for the first time, in this paper the filtration is taken into ac- 
count as in Theorem I (1) and (4) in the study of pants product. For this 
purpose, it is crucial to put Hj^K on the right hand side of the above dia- 
grams for the pants product KJp when we restrict to the relative cohomology 
as in (1.3), although the global version (1.2) will still hold for arbitrary 
Hamiltonian L not just for H#K. Furthermore, we would like to empha- 
size that in the proof of the statement (3) (see [FO] for the relevant result), 
it is again crucial to have H#K on the right hand side. We call this phe- 
nomenon the conservation law for the pants product. This important feature 
has not appeared so far in the literature partly because almost all of the lit- 
eratures on the Floer homology deal with Hamiltonian diffeomorphisms not 
Lagrangian submanifolds. For the Hamiltonian diffeomorphism, there are 
very few cases for the above filtration to occur or to be useful. These are the 
cases where the closed symplectic manifold (P,a;) satisfies cj^p) = 0. One 
could also study the exact symplectic manifold with contact type boundary 
in the spirit of the present paper, which will be a subject of future study. 

Unlike Floer's definition [F3] of the action (1.4) which uses a complicated 
intersection theoretic method, we will define this action using degenerate 
pants which enables us to prove the commutativity (4) and the statement on 
the filtration easily from an obvious modification of the analysis in [FO]. This 
simple definition of the cup action Up satisfying (1-4) has been possible due 
to our previous analytical work done with Fukaya in [FO], where we carefully 
studied degeneration of the moduli space of marked J^-holomorphic discs 
with Lagrangian boundary conditions of the graphs of dfj's and proved that 
this moduli space is diffeomorphic to that of graph flow moduli space of //s 
defined in [BC] and [Ful]. One important point we would like to address 
is that because we use the functorial definition of the Floer cohomology, we 
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never consider taking the Poincare dual to the cohomology class u in the 
definition of this action which most literature do and which forces them to 
mod out the torsion classes in the definition. 

Using the Floer's isomorphism, which we call the semi-infinite version of 
the Thorn isomorphism for the fibration p : ft —> M, and imitating Viterbo's 
construction in [V], 

F{H,jy.H*(M,Z)->HF*(H,J:M) 

we define the real number 

p(£r,«) = iiif{A|^(lfiJ)(u)^0} 

for each u € iJ*(M, Z), and prove that it does not depend on J, where 
j^ : HF* —> HFT^ ^ is the natural homomorphism. We summarize basic 

properties of p(i?, u) in the following 

Theorem II (Compare with Theorem II [04]). Let u  G   iJ*(M,Z) 
and p(H, u) as above.  Then 

(1) All of p(H,u) are critical values of AH on ft and satisfies that for two 
Ha, H^ with (J)

1
HCX{PM) = (J>

1
H^{OM), we have 

where c^H^^H13) does not depend on u 6 iJ*(M,Z). 

(2) When H = 0, p(H, u) - 0 for all u e #*(M, Z). 

(3) For am/ueiP(M,Z); 

/  -m^H^-H^dt < p(H^u)-p(Ha,u) < [  -mm{Hp-Ha)dt. 
Jo Jo 

In particular, combined with (2), we have 

/   — max Hdt < p(H, u) <  /   — min Hdt. 
Jo Jo 

(4) \p(H^u) - p(Ha,u)\ < WHP - Ha\\co and so H ^ p(H,u) can be 
extended to a continuous function of H with respect to the C0-norm 
ofH. 
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(5) For any u, v G H*(M,Z), we have 

p(H#K, uUv)> p(H, u) + p(K, v) + e(K) 

where e(K) is the same constant as in (1-3). In particular, one has 

p(H,uUv) > p{H,u). 

We would like to compare Theorem II with similar results on the 
Viterbo's invariants c(L,u) defined in [V]: Our invariant hats a direct re- 
lation to Hofer's geometry while c(L, u) has only indirect one. However, we 
prove with D. Milinkovie (see [MO], [Mk] for details) that up to suitable 
normalizations, our invariants p(L,u) coincide with Viterbo's c(L,u). As in 
[V], one can define a capacity of L as follows 

7(L):=p(ir,/iM)-p(ff,l)>0 

which will not depend on H generating L i.e., such that L = <A#(OM)- 

Now we relate j(L) with Hofer's distance. Define Hofer's distance between 
Lagrangian submanifolds (Hamiltonian isotopic to each other) by 

d(L1,L2)=        inf        \\H\\. 

The following theorem is the analogue of Corollary 2.3 [V] but with the 
estimate in relation to Hofer's distance. 

Theorem III.     (1) 7(1/) = 0 if and only if L = OM- 

(2) 7(1/) < d(L^OM) and in particular combined with (1), Hofer's distance 
is nondegenerate. 

In Theorem III and [04], we have introduced two natural capacities (or 
sizes) of L, osc(/iy) and 7(L) respectively. Here /x, is the basic phase function 
of L defined in [04]. We have shown by some example in [04] that 

osc(/L) ^ 7W 

in general. It seems plausible to us that the inequality 

(1.5) osc(/L) < 7(L) 

holds in general. In fact when L is the graph of an exact one-form, we can 
prove 

(1.6) osc(/L) = 7(L) = d(oM,i) 

(see [MO] for its proof). This immediately implies 
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Corollary. For any smooth function f on M, the path 

11—> graph(£ df) 

is a (globally) distance minimizing path with respect to Hofer's distance d. 

Once we have Theorem II and III, we can apply the above to the com- 
pactification of the graphs of Hamiltonian diffeomorphisms </># on M2n. As 
we mentioned above, another way of studying diffeomorphisms on R2n or 
more generally on any (P,CJ) with wl^iP) = 0 is directly constructing ana- 
logues of our invariants for Hamiltonian diffeomorphisms considering their 
Floer homology, which we will pursue in the future. In a recent preprint 
"On the action spectrum for closed sympletically aspherical manifolds", 
M. Schwart carried out this construction for Hamiltonian diffeomorphisms. 
Combining the construction in the present paper with P. Seidel's result, he, 
among other things, proved a triangle inequality for the diffeomorphisms 
which sharpens Theorem II (5) by elliminating the error term E(K) in The- 
orem II (5) for the case of diffeomorphisms. We will also postpone more 
elaborate applications of the theory developed in this paper and [04] to the 
future works so that this paper does not become too long and its appear- 
ance is not delayed by much. We advise that readers who feel uncomfortable 
about the coherent orientation question safely take Z2-coefficients to follow 
the main stream of the ideas developed in this paper and refer them to our 
future work on the orientation problem in the more general context. 

The organization of the paper is in order: Section 2 explains Poincare 
duality and Floer's isomorphism with orientation in a precise manner. Sec- 
tion 3 provides a functorial construction of pants product which carefully 
exploits the symmetry mentioned in the beginning. As a result, we prove 
Theorem I (1) and (2) except the statement on the filtration. Section 4 
contains the proof of Theorem I (3). Section 5 provides a new construction, 
using degenerate pants, of the cup action defined by Floer [F2] and prove 
Theorem I (4). Section 6 studies interaction of pants product with filtration 
and Hofer's geometry, and proves Theorem II and all the statements involv- 
ing filtrations in Theorem I. Section 7 proves Theorem III. In the appendix, 
we provide a proof of an index formula on a semi-infinite strip which will be 
needed in the construction of pants product. 

We would like to thank K. Fukaya for writing our joint paper [FO] which 
has greatly reduced the author's burden in this paper of writing up the ana- 
lytical details concerning the pants product and without which the appear- 
ance of this paper would have been much delayed. We also like to thank the 
unknown referee for numerous critical comments on the previous versions of 
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the paper, which have vastly improved the presentation and the English in 
the present version. This research is supported in part by an NSF grant and 
a UW Graduate Research Award grant. Part of the results of the present 
paper were announced and outlined in our survey paper [Section 7, 03] in 
the Newton proceedings for the program of Symplectic Topology in 1994. 

Notations. 

(1) H#K(x, t) = H(x, t) + m^y^x), t) 

(2) H{x,t) = -H(cfH{x),t) 

(3) H{x,t) = -H(x,l-t) 

(4) H = Hac(P) = the set of asymptotically constant Hamiltonians on P 

(5) Ho = {Hen\ MOM) rh oM} 

(6) V^C(P) = the set of Hamiltonian diffeomorphisms generated by Tiac 

(7) (f)H = the time-one map of the equation i = XH(Z) 

(8) H H-> </> if and only if 0 = fin 

(9) OM = the zero section of T*Af 

(10) H H-> L if and only if L = ^H{OM) 

(11) ^ : [0,1] - T*M;     ^(t) - ^((^)"
1
(P)) 

(12) fi = {^ : [0,1] -+ r*M I ^(0) G OM} 

(13) ft(M) = {z : [0,1] -> T*M | ^(0), ^(1) G OM} 

Conventions. 

(1) The Hamiltonian vector field X# is defined by XH\U = dff. 

(2) An almost complex structure J is said to be compatible to CJ, if the 
bilinear form (•, •) j = u;(-, J-) defines a Riemannian metric. 
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2. Floer cohomology. 

Let CF{H, M) be the set of solutions 

U = XH{z) 
[z(0),*(i)eoMcr*M. 

which is the set of critical points of AH on fi(M) (see CF(H, M : M) in 
[04]). This convention will apply to various other objects we have defined 
in [04]. Using the grading and the coherent orientation we provided in [04], 
we define a Z-module CF^H, M), for each k G Z, by the free Z-module over 
the set of z G CF(H, M) with 

(2.1) MM(*) + -dimM = fc. 

We will omit the subscript M from HM and just denote n = /x^- 
Let a be the canonical coherent orientation given in Theorem 5.5 [04]. 

We form 

CFk{H, M) := Hom(CFjfe(jy, M), Z) 
(2'2) ^ := Hom(^J)) : C^(ir, M) - C^+1(^ M). 

Then we define for each k 6 Z, i/ie fe-t/i F/oer cohomology group of (if, J : M) 
by 

#**(#, J : M) = Ker«5^J)/Im^J). 

It also follows from the naturality of construction of the cohomology that 
we have the isomorphism 

haP : HF*(H^ J? : M) -+ HF*(Ha, Ja : M) 

for two generic (ifa, Ja) and (if ^, jP). This map is induced from the cochain 
map hf : CF*(H^jP : M) -* CF*(Ha,jP : M) which is dual to the 
chain map h^ : CF*(Ha, Ja : M) ^ CF*(H^ J? : M) (see [04] for more 
explanation on this map). 

2.1. Thorn isomorphism. 

Theorem 5.5 in [04], applied to the cohomological version of the case 
S = M immediately gives rise to the natural isomorphism 

(2.3) ifojj : H*{M,Z) -> HF*a{H, J : M) 
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that preserves the grading. This isomorphism is natural in the sense that 

F{H«,J«) = KP 0 F{HP,JP) 

defined in (2.2). We regard (2.3) as the semi-infinite version of the Thorn 
isomorphism for the fibration p : fi(M) —► M. We would like to empha- 
size that this isomorphism holds with arbitrary coefficients whether or not 
the manifold M is orientable. Recall that the classical Thorn isomorphism 
requires only that the vector bundle has an orientation, not the base man- 
ifold itself. The coherent orientation provided by Theorem 5.2 [04] can be 
interpreted as the "orientation" of the fibration P|Q(M) 

: fi(M) —> M. 

2.2. Poincare duality. 

We first note that the "semi-infinite fundamental cycle" 

ft(M) = {7 : [0,1] - T*M | 7(0), 7(1) € OM} 

has a natural Z2-action that is induced from the time reversal map: t»-» 1—t. 
The Z2-action is given by 

7^7,     7(*) :=7(1-*)- 

This action is compatible with the action on 7Y, 

H^H,    H(x,t) = -H(x,l-t) 

and also with the action on J = the set of almost complex structures, 

(2.4) J ^ J,     J(x, t) = J(xy 1-t) 

in the following sense: If z is a solution of 

U = XH(z) 
\z(o),z(i)eoM, 

then z e CF^H : M), i.e., z satisfies 

\Z(0),Z(1)€OM. 



Sympletic topology as the geometry of action functional, II 11 

Furthermore, if u : M x [0,1] —> T*M is a solution of 

(2.5) 

du      T {du      ,„   , v i 

U(T,0),U(T,1) e OM 

lim   U(T) = 2:Q,     lim   ^(r) = z^, 

then 5 : R x [0,1] -► T*M is a solution of 

du     ~(du     ,.   .„\ 

(2'6' ^5(T,0),5(T,1)SOM 

lim   S(T) = 2^,    lim   S(r) = za, 
-->-oo    v   / r^+oo    v   / 

where 

(2.7) 5(r,t) :=u(-T,l-t). 

In other words, the map u \-+ u (2.7) defines a natural one-to-one correspon- 
dence between Mj{H,M : ^a,^) and Mj(H,M : ^,?a). (2.6) should be 
considered as the "upward" gradient flow.of the action functional AH- By 
(2.1), the assignment 

z i—» z 

defines a natural isomorphism between CFk{H^M) and CFn-k(H,M), 
where n = dimM. This is because we have the following lemma which 
immediately follows from the definition of the Maslov index (see [RS] and 
[04]), and from the identity 

fjb(z) + -dim.M = -n(z) + - dimM = dimM- (^(z) + -dimM j . 

Lemma 2.1. Let /i(z) be /XM(^) 
as defined in Theorem 5.1 [04] for S = 

M.  Then we have 
fz(2) - -Mo- 

using (2.2)-(2.4) and Lemma 2.1, we define the natural homomorphism 

<TH : CFn-k{H : M) -> CFk{H : M) 

as follows. For each generator 2 e CFn-k{H : M) i.e., ^ e Crit^lij with 
^(z) + \n = /c, we define p-jy(2) G CFfc(i7 : M) - Hom(CFfc(iJ : M), Z) by 

(2 8\ <rH(z)(w) = 1       ilw = z 
= 0       otherwise 
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where w's are generators of CFk(H : M). We then extend this definition 
linearly to the whole module CFn-k{H : M). Now, the map (2.5) natu- 
rally push-forwards the coherent orientation a on Mj{H, M : z**, z^) to the 
orientation a Mj(H^M : z^rz

a). We would like to emphasize that a pri- 

ori, this orientation a on M.j(H,M : zP,za)j is not connected to the one 
induced there by a. 

Proposition 2.2. Let d°   7   (^m j)) ^e ^e canon^ca^ boundary (cobound- 

ary) maps.  Then the following diagram 

CFn-k(H:M)     -^      CFk(H:M) 

(2.9) 

CFn-k-^HiM)   ^   CF(k+1\H:M) 

0(H,J) 

commutes. Hence ajj induces a chain-isomorphism and so induces a natural 
isomorphism 

(2.10) <7(H)J) : HF:_k(H, J : M) -+ HF^H, J:M). 

Proof. It is enough to check 

6
IH,J) °<7H(Z) = (r(H,J) 0 ^.JJC

2
) 

for any generator z G CFn-k(H : M). To prove this, we compute 67H « o 

cr^(5)(ty) and cr^j) o 5°" . (2)(u>) for each generator u; € CFk+i(H : M). 

First, 
8{H,J) 0(TH^){w) = <TH(Z)(&(H,J)

W
) 

= ^H(z)i^2 nfaj) (w, y)y J 

= nfjf,j)(u,»2:)- 
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Secondly, we have 

y 

= n^iJ)(z,i5). 

On the other hand, by the definition of a and n(-, •), we have 

which finishes the proof. □ 

Remark 2.3. As we pointed out, the two orientations provided by a and a 
may not be related in a natural way in general and so the two Floer homology 
HF°_k(H, J : M) and HF°_k(H, J : M) may not be isomorphic. In fact, 
when M is connected and not orientable, we know that by the isomorphisms 

F^jy.H^M^y^HF^H.J-.M) 

and 
h°f3:HF?(Hl3,jP:M)^HF:(Ha,Ja:M), 

we have 

HFZ(H, J : M) ^ HFZ(H, J : M) = HQ{M, Z) = free abelian 

while by the isomorphisms (2.2) and (2.8), we have 

HF${H, J : M) = HF2(H, J : M) ^ Hn(M, Z) == torsion. 

This shows that the Floer cohomologies with respect to different coherent 
orientations can actually be different. 

However, we have the following theorem. 

Theorem 2.4. Let (K, J) be any generic parameter. There exists an iso- 
morphism between HF£(KyJ : M) and HF£(K,J : M) that preserves the 
grading with Tj-coefficients when M is orientable (and so with respect to arbi- 
trary coefficients) and does so with ^-coefficients when it is non-orientable. 



14 Yong-Geun Oh 

Proof. We first consider the case when M is orientable. With the natural 
isomorphism, it will be enough to consider the case when K — f o TT for suf- 
ficiently C2-small f on M where TT : T*M —> M is the canonical projection. 
Consider the diagram 

HF°_k(K,J:M)    ™>   HFZ_k(K,J:M) 

F(K,J) F(K,J) 

#*.*(/, Z) ^ HZ_k{f,Z) 

where TK : HF°_k(K, J : M) -> HF°_k{K, J : M) and y : Hn-k(f,Z) -+ 
Hk(f, Z) are the homomorphisms induced from the identity homomorphism 

id : CFn_k{K, J : M) -+ CFn-k(K, J : M) 

and 
id:Cn_k(f,Z)->Cn-k(f,Z). 

The definition of the boundary map dj uses the orientation of the Morse 
complex given by orienting the stable manifolds instead of unstable mani- 
folds, while <9? does the one given by the unstable manifolds (see [Section 
7, Mi]). It is also a routine exercise to check that this geometric orientation 
coincides (maybe upto simultaneous change of sign) with the analytically de- 
fined canonical coherent orientation a defined in [FH1, Scl]. The boundary 
map dft uses the analogoue to that of dj for the Floer complex. 

Note that for K = f o TT sufficiently small and of Morse-Smale type, 
it has been known (see [Appendix, 05] for the proof) that the kernels of 
the linearisations of the corresponding trajectories in the Morse complex 
of / and the Floer complex of K have natural one-to-one correspondence. 
Therefore we can also naturally identify the two maps 

When M is orientable, it is proven in Section 7 [Mi] that 

(2-12) 3}\chv) = (-l^ktf) 

which proves that 
Tf : H*_k(f,Z)-+HZ_kU,Z) 

becomes an isomorphism. Then by the way how the vertical homomor- 
phisms are defined (see Theorem 5.5 [04]), the above diagram commutes. 
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Furthermore, both vertical arrows are isomorphisms. Therefore the arrow in 
the top becomes an isomorphism. When M is non-orientable, (2.12) holds 
mod 2. So Tf is an isomorphism in ^-coefficient. □ 

Remark 2.5. We would like to emphasize that the isomorphism in Theo- 
rem 2.4 does not follow from the standard continuity argument as in (2.3). 
This continuity fails because it is not generally possible to connect the two 
coherent orientations a and 5, as shown in Remark 2.3. The isomorphism 
in Theorem 2.4 is essentially the classical Poincare duality of the underlying 
manifold M. The (classical) Poincare duality depends on the orient ability of 
the manifold and so holds only for the cohomology with appropriate coeffi- 
cients, when M is not orientable. For the non-relative Floer theory Theorem 
2.4 is always true simply because the symplectic manifold has the canonical 
orientation. This point has not been addressed carefully in the literature as 
in [PSS]. 

Combining (2.10) and Theorem 2.4 applied to (H, J), we obtain an iso- 
morphism 

(2.13) P£>(HiJ) : HFg{H, J : M) - HF?-k(H, J : M) 

which is called the Poincare duality of the Floer theory in literature. However 
this isomorphism is not natural while the homomorphism (2.10) is so, when 
one considers the filtration later. In fact, we will use (2.10) in a crucial way 
in the definition of the pants product but will never use the isomorphism 
(2.13) in the rest of the paper. 

The identity 

(2.14) AB(z) = -AH(Z) 

and the map defined in (2.5) are important ingredients in the study of fil- 
trations in Section 5 and 6. 

3. Pants product. 

We will fix the canonical coherent orientation a and suppress a from 
the notations in the rest of the paper. We will take Z as coefficients unless 
otherwise specified. 

In this section, we study the product properties of HF*(Hi J : M) using 
the so called pants-product. A version of pants-product has been described 
in several literature (see [BzR], [PSS], [RT] and [Sc2] for example) mostly in 
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non-relative Floer theory. Some aspects of the relative point of view were 
also described in [Fill,2]. In fact, they described a more general version of the 
pants-product in the context of the symplectic version of relative Donaldson 
invariants. Fukaya and the author [FO] studied, degeneration of the Floer 
moduli space to the Morse moduli space (or graph flow moduli space in the 
terminology of [BzC]) in full analytic details, which is essential to relate 
the pants products defined in the Morse theory and Floer theory. [FO] also 
defines and proves the graph flow moduli space in a precise way. 

One novelty of our approach to the pants product in this paper is to use 
the most functorial version for two different reasons: 

(1) In applications to the construction of symplectic invariants, it is cru- 
cial to analyze how the filtration in the Floer complex is affected under 
the pants-product, and to estimate the optimal change of the filtrations. 

(2) When one tries to relate the the pants-product on HF* and ordinary 
cup-product on H*(M)

rL), the functorial version of the pants-product 
is essential in some analytical reason (see [FO]). 

Both of these two aspects will be crucial in deriving the product inequality 
(6.1) of the symplectic invariants we will construct in Section 6. 

We first recall how the classical cup product in the cohomology can be 
defined 

iT (M, Z) ® H* (Af, Z) -^iT (M, Z) 

in the point of view of the Witten's Morse homology (see [Scl] for a detailed 
exposition on Morse homology and [BzC] or [Ful] for the product operation): 
One chooses a suitable triple of functions (gi, 52? ffs) on M and consider the 
gradient flows of ^'s, i = 1,2,3. Floer's construction will define the Morse 
homology denoted by H*(M : gi) for i = 1,2, 3 each of them is isomorphic 
to H*(M,Z) the singular homology of M. By the dual construction, one 
can also define the Morse cohomology H*(M : gi). Now for a given tree T 
with 3 edges, we identify (or give coordinates) the edges ei,e2 with [0, 00) 
(incoming edges) and the edge 63 with (—00,0] (outgoing edge). We then 
consider the map 

I:T^M 

such that the restriction Xi — l\    to eacl1 edge ei satisfies 

(cba 
dt 

(3.1) 

-^ = - gr&dg g^Xi) 

lim  Xi{T)=Pi for i=1,2 
T—►+OO 

lim  Xi(r) =^3 
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where pi € Grit (ft).   We define by M(M : g,p) for g = {91,92,93) and 

e 

Figure 1 

p z=z (pi,p2<)P3) the set of all such maps / as above. Geometrically, one can 
also identify this set with 

where W+(h) (resp. W~(h)) is the stable (resp. unstable) manifold of the 
gradient flow of the function h at the critical point p 6 M. Under a suitable 
transversality hypothesis [Theorem 3.1,FO] (see Theorem 4.1 below), the 
set M(M : g,p) becomes a smooth manifold of dimension given by 

D = D{p) := (n - /x(pi)) + (n - //(P2)) + /^(pa) + n - 3n, 

= M(P3)-M(Pi)-M(P2) 

= (n - (n - M(P3))) - M(Pi) - M(P2) 

where /x(pj) is the Morse index of gj at pj. When D — 0, one can prove 
for a generic choice of g^s (see [02] and [FO] for details) that M(M : 
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g, p) becomes a compact zero-dimensional manifold and so we can count the 
algebraic number of the elements in M{M : g, p). We denote this number by 
n(M : g,p) and define a chain, denoted by ^TG?) £ C*(Af, g^ ® C*(M, ^2) ® 

C#(M,-^3), 

(3.2) ^T(9)'=^2n(M:g,p)(p),   (p) = pi®P2®Ps, 
p 

where we define n(M : g,p) — 0 if D ^ 0. One can prove by the standard 
cobordism argument that ^T{9) defines a cycle and so induces an element 
in H*{M,gi) ® H^M.g^) ® H*(M,-g$) which we also denote by *T(^). 

Now, we define a bilinear map which we call the pants-product 

H*(M,g1)®H*(M,g2) -> H*(M,g3) 

by the dual to the homology class ^rig)- More precisely, for each given 
ai e Hk(M,gi), 0,2 G Hi(M,g2), choose their representative cocycles, which 
we ambiguously denote also by ai and a2. Then we consider the contraction 
cycle 

(3.3) (ai ® as, *r(ff)> € Cn_(jb+£)(M, -53) 

and the cocycle 

(J/((ai ® a2,*r(e)» € C^(M^3). 

We define the third element ai U as G Hk+i{M,g^ = H^M.gs) by the 
cohomology class represented by the cocycle 07((ai ® as, ^T(flO))- Here we 
used the isomorphism 07 between H^t^AM, — gs) and iJ^+^M,^) that 
is defined similarly as (2.8). One can again check by the standard arguments 
that this class is independent of the choice of the cocycles ai and as- The 
above construction can be applied to any (51,52? 53) that satisfies suitable 
transversality hypothesis. However, it was first noted by Fukaya [Ful] that 
in relation to the quantized Morse homology, i.e., Floer homology (for the 
Lagrangian intersections on the cotangent bundle), it is natural to consider 
the triple (51,52,^3) such that 

(3.4) 93 = 91+92- 

It turns out that this conservation law is crucial in the analysis needed to 
establish the equivalence between the Fukaya's ^4°° structures in the Morse 
theory and in its quantization, the Floer theory (see [FO] for detailed proofs). 
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The analogue of the conservation law to (3.4) is a crucial ingredient in study- 
ing the filtration under the pants-product later in this paper. We recall the 
operation # defined in (1.1): 

H#K(x,t) = H(x,t) + K((cPt
Hr

l(x),t) 

We note that if we apply (1.1) to the time independent Hamiltonians of the 
form 

g o TT : T*M -► R 

for g : M —» R, (1.1) reduces to (3.4) because of the following simple formula, 
which can be easily proved, 

(3.5) (h o 7r)#(fc o TT) = (A + fc) o TT. 

The following is the main theorem we prove throughout the rest of this 
section, Section 4 and 5. This is the content of Theorem I without taking 
filtrations into account. We will study its relation to filtrations in Section 6. 

Theorem 3.1. Assume that Ha
JH^Ka,K^ and Ha#Ka, H^#K^ are 

in Ho and Ja, J^ are regular with respect to the Hamiltonians respectively 
of a and (3. 

(1)  Then there exists a natural bilinear map denoted by U^ which we call 
the pants-product and which satisfies the following commutative dia- 
gram 
(3.6) 
HF*(Ha, Ja:M)® HF*{Ka, Ja : M)    -»   HF*(Ha#Ka, Ja : M) 

Up 

HF*(HP,JP :M)®HF*(KP,Jt3:M)    -►    HF^H^K^P-.M) 
Up 

where the vertical isomorphisms are the ones defined in Theorem 5.4 
[04]. 

(2) Furthermore Up respects the diagram 

HF*(H,J '.M)®HF*(K,J : M)    -+    HF*(H#K,J : M) 
Up 

(3.7) FH®FK H#K 

H*(M,Z)®H*(M,Z) -> H*(M,Z). 
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(3)  There exists a (right) action by H*(M, Z) on HF*{H, J : M), denoted 
again by Up, which respects the diagram 

HF* (H, J:M)®H* (M, Z)    ->   HF* (H, J : M) 

(3.8) FH®id FH 

H*(M,Z)<2>H*(M,Z) H*{M,Z). 

Remark 3.2. (1) In the literature, the above product has been described 
for fixed Hamiltonian or for arbitrary triples without imposing any 
restriction (in the non-relative Floer theory). [PSS] and [RT] also 
announced that this product is compatible with the various versions 
of other products (e.g., the Floer's product [F3] or the quantum cup 
product). 

(2) In Section 6, we will prove a refined version of Theorem 3.1 which 
takes the filtration into account and use this to prove some product 
inequality of the symplectic invariants that we will construct. 

In the remaining section, we construct the pants-product Up and outline 
the proofs of the statements (1), (2) and (3) in Theorem 3.1. 

We will consider the quantized version of the space M(M : g,p) in the 
Floer theory. Let 0 = 60,3 be a domain of genus 0 in C with 3 cylindrical 
ends. In general, we denote by Qgj the domain in C with genus g and with 
j marked points in the boundary. © is conformally equivalent to the unit 
disc with 3 marked points on the boundary dO. We denote 

Gi = ^([0, 00) x [0,1]) C 9    for    i 

©3 = <M(-oo,o])x[o,i])ce 
1,2 
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where ^'s are one-one holomorphic maps from the corresponding semi-strips 
into C respectively. For notational convenience, we also denote 

H1 = H,H2 = K,H3 = H#K,    and   H={H\H2,H3). 

Given z = (21,22,23), zj € CF^ffl : M), we consider the space 

MQ{z) = Me{H,J:z) 

of all smooth maps u : Q —> T*M that satisfy the conditions: 

(1) The maps ui = u o fa satisfy 

f du fdu     __    , A p + JU~^(u)J=0 
^ ' ^ I limT_+00'Ui(r) = ^ for   i = 1,2, 

(2) u satisfies the boundary condition 

(3.10) u(de) C OM C T*M 

(3) ix satisfies "some equation" on the complement 

0o = e-lj0i 

t/iat is 0-th order compact perturbation of J-holomorphic equation: 
Overall on &, this defining equation should come from a suitable 
smooth section of some smooth vector bundle over the space of maps 
u : 0' —► r*M satisfying the boundary condition (2). In (6.7) of Sec- 
tion 6, we will give the precise formula for this equation. 

For defining the product, the choice of perturbations over ©0 is not 
essential but is essential for studying its relation to filtrations (see Section 
6 for the optimal choice). We have the following theorem for the index of 
ueMQ(H,J:z). 
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Theorem 3.3. For a generic choice of (iJ, J), A4Q(H, J : z) becomes an 
orientable smooth manifold of dimension 

D 
(3.11) 

(i?,j)(F) : = n- (rizi) + ^) - (M22) +1) - (-Kzs) +1) 

- (M*3) + |) - (^(^1) + ^) - (^(^2) + I) 

^Ziere n = dimM. 

Proof The orientation problem can be solved similarly as in Theorem 5.2 
[04] and so we will omit the details except that we would like to emphasize 
that again our dynamical version of the Floer theory makes it easier to prove 
that MQ(H, J : z) is orientable. It will be enough to compute the Fredholm 
index of the linearization operator at u G MQ(H, J : Z). The formula can 
then be obtained by the gluing formula (or excision formula) by considering 
the following picture: Cap each Zj as drawn in the picture. 

Figure 3 

We will prove in the appendix that each cap has the index given by 
"fJL(z) + § when z is an incoming  asymptotic limit in the cap. Note tha/t 
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the glued operator of the linearized operators over the four regions, under 
the trivializations of the type satisfying an analogoue to (5.19) in [04] on 
G, is homotopic to the Cauchy-Riemann operator on the unit disc with 
boundary condition on W1 C Cn. It is well-known that the latter operator 
has the Fredholm index n. Now by the excision formula for the Fredholm 
operator (this can be easily checked by modifying arguments in [BzR] or 
[Sc2] that were used for similar applications of the excision formula for the 
non-relative Floer theory), we have 

D(a,j)W + (M(*I) + 7J-) + {tiv) + ^) + (-tin) + ^)=n 

which is equivalent to (3.11). This finishes the proof. □ 

Remark 3.4. One can apply the same argument to find the dimension 

formula for general MQ k(H, J : zl,z+), which is the space of solutions of 
the perturbed Cauchy-Riemann equation that is the generalization of (6.7) 
for arbitrary (5, fc). In fact, for a generic choice of J?, one can prove the 
following general dimension formula 

k- &+ 

dim.M©9,fc(i?, J : zZ,zl) = nil-g)-^ ("M^) + £)-£ {^ZP + f) 
3=1 3=1 

where k = fc_ + fc+, and /c_ and k+ are the number of outgoing and incoming 
edges respectively (Similar formula was given in [BzC], [BzR] and [Sc2] and 
others in different contexts). Since we do not need this general formula in 
this paper, we will not discuss more about this generalization. 

Furthermore when D,g jJz) = 0, i.e., Me(HJ J : z) has dimension zero, 
it follows by the standard dimension counting argument that it is compact 
and so has only finitely many elements, provided we establish the following 
a priori area estimate. We will prove this in Section 6. 

Theorem 3.5. For all u G Mo(H, J : z) that is defined by the equation 
(6.7), we have 

I -*- - -AEXK (4V) + -W (4^0 - AH (4H{P1)) + AH (*£) 

where u = (f>^ o u is defined in (6.7) below. In particular, we have a priori 
area bound for JQU^LJ that is independent of u. 
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Then we define an integer 

ne(H,J:z) = #(Me(H,J:Z)), 

and the chain in CF*(H, J:M)® CF*(K, J -.M)® CF^Hfk, J : M) by 

(3.12) ^e(^,J)=53ne(^)J:i)(f),     (f)=zi®^®^. 

Again we can prove by the cobordism argument (see [BzR]) that this 
becomes a cycle and so induces a Floer homology class in HF*(H, J : 

M) (g) HF4K,J : M) ® HF*(H#k, J : M), which we also denote by 

Similarly to the case of Morse cohomology, as in (3.3), for each 

ai G HFk(H, J : M), a2 e HF\K, J : M) 

we define 

by the cohomology class represented by the dual to the contraction cycle 

(a: ® a2, *©(#, J)} G CFn_{k+i) (H#Kj: M) 

i.e., by the cocycle 

(3.13) <rmK,J) («i ® «2, *e(^, J)) 6 CFk+e(H#K, J : M). 

Theorem 3.1 (1) can be proven by now standard arguments considering the 
boundary of the one-dimensional component of A4o(H, J) as in [BzR]. Note 
that our case is easier because the bubbling does not occur. The existence 
of an action of H*(M, Z) without the commutative diagram (3.8) was first 
proven by Floer in [F3] in the context of the geometric version of the Floer 
theory for Lagrangian intersections. The proofs of Theorem 3.1 (2) and (3) 
can be reduced to the main result from [FO] (for k = 3). We will explain 
this reduction in detail in Section 4 and 5 partly because the setting in 
[FO] is different from that of the present paper and no explicit statement 
like Theorem 3.1 is given there. Furthermore, our construction in Section 5 
using degenerate pants of the cup action (3.8) is new and useful for the proof 
of commutativity in Theorem 3.1 (3): Our construction can be considered 
as the limiting case of (3.7) as e goes to zero for the special Hamiltonian K 
of the form F = ef o n for a suitable Morse function /. The commutativity 
of the diagram (3.8) will follow from the definition of FJJ and from the result 
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in [FO]. This will finish the proof of Theorem I except the statements on 
the filtration. 

The statement about filtration in Theorem I (4) will also immediately 
follow from this construction. 

4. Proof of Theorem 3.1 (2). 

We would like to briefly recall how one can prove that iTF^iJ, J : M) is 
isomorphic to iJ*(M, Z). A version of this in the Floer's geometric setting 
iJFj(Lo,Li:T*M) 

{du        du 

U(T, 0) G OM, W(T, 1) E (^(OM) 

was proven by Floer [F2]. Using the invariance property of HFj(Lo,Li : 
T*M) under the change of LQ, LI and J, Floer chooses a special choice of 
H and J to compute the group: 

(4-2) Ho = TT of,    JHo = {<t>tHoTJg 

and considers the map 

for each solution u of (4.1). Then he proves that if |/|c2 is sufficiently small, 
the above % is ^-independent and satisfies the equation 

(4-3) x = -grad5/(x). 

Conversely, it is easy to check that if x ' K —> M is a solution of (4.3), then 

«0-,t) = $ro(x(T)) 

will be a solution of (4.1) for JHQ defined as above. All the solutions of (4.1) 
will be regular if / is a Morse-Smale function with respect to the given metric 
g on M and if l/)^ is sufficiently small (See [Appendix, 05]). Therefore by 
comparing the Morse homology and the Floer homology, we conclude that 
HF*(Ho, JHQ : M) is naturally isomorphic to H*(M,Z). In fact, the above 
isomorphism holds in the chain level for the choice 

H = HQ    and    J = JQ. 
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In the proof of Theorem 3.1 (2), we will follow the similar idea to establish 
the diffeomorphism between the moduli spaces M(M : g,p) and A4Q(H, J : 
z) for suitable choice of (H, J) and the perturbation of the J-holomorphic 
equation. However unlike the case of maps from the strip R x [0,1], it would 
not be possible to make the corresponding choice J as J#0 for the domain 
©, since the definition of JH0 in (4.2) involves the coordinates of R x [0,1]. 
Therefore it would be important to prove the above equivalence theorem 
for the canonical almost complex structure Jg itself. In [FO], Fukaya and 
the author analytically constructed a diffeomorphism between M(M : g,'p) 
and A4o(T*M,Jg : Ae,a:e) on arbitrary discs with any finite number of 
marked points by a version of gluing construction. In particular, the main 
result for k = 2 proves that there exists a diffeomorphism between the 
moduli space Mg(f) and the moduli space Mjg{oM,graphdf) when \f\c2 
is sufficiently small. By comparing the relative indices and orientations, this 
diffeomorphism gives a chain isomorphism between the Morse complex and 
the Floer complex. 

We state the main theorem for k = 3 from [FO] for the reader's conve- 
nience. 

Theorem 4.1 [Theorem 3.1, FO]. Suppose that fi+i — fi are Morse 
functions and that the unstable manifolds W~(fi+i — fi) for i — 
1,2, 3 (mod 3) intersect transversely, i.e., we have 

3 

J](^:(/i+i-/i))rhA    in     MxMxM 

where AcMxMxMis the diagonal A = {(g, g, q) | q G M}. Then there 
exists some EQ > 0 such that for any 0 < e < eo; we have a diffeomorphism 

$€ : Mg(M :g,p)-+ Mj9{T*M : A€,£*) 

where gi = fi+1 - fi, A6 = (Af, A|, A|),     x€ = (rzf, 4, xe
3) and 

A ■ = Graph edft,     zf = (pi, edfi (pi)). 

Note that the three functions gi = fo+i — fi satisfies the conservation law 

91+92+93 = 0 

where the sign of change from (3.4) in front of gs is due to the way how [FO] 
defined the moduli space Mg(M : /,p): In [FO], we give the coordinates to 
the tree T so that all the edges are outgoing. 
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Now, we would like to establish a similar diflfeomorphism between 
Mg{M : g^p) and our moduli space MQ(H,Jg : z) where gz = gi + 52 
and Hl = ir o g1 and the Hamiltonian path Zi is the solution of the equation 

fit = XHi(zi) 

[ziil) =pieoMn (J)H{OM) C T*M     for i = 1,2,3 

We remind readers of the identity (3.5). By imitating the proof in [FO] 
for the equation (6.7) which we introduce in Section 6, we can prove the 
following theorem which is the analogue to Theorem 4.1 in our setting. 
Since the modification from the proof in [FO] will be straightforward, we 
omit the details. 

Theorem 4.2. Let J = Jg and suppose that gi,g2 and gs = gi + #2 are 
Morse functions and that the stable manifolds W^(<?i), ^+(32) and the un- 
stable manifold W~z(gs) intersect transversely. Denote Gi = gi o TT. Then 
there exists some EQ > 0 such that for any 0 < e < EQ, we have a diffeomor- 
phism 

*e : Mg{M : &p) -> Me(&, Jg : 5e) 

where Ge = (eGi, eG2, eG^), ze = (zf^z^z^) and zf are the solutions of 

(zf = X€Gi(zt) 

\zi(i)=pieoM 

Furthermore, the images of this map ty€ approximate the Mg(M : g,p) in 
the Hausdorff topology. 

Once we have proven Theorem 4.2, the proof of Theorem 3.1 (2) will 
follow from the definition of the pants-product in the Morse cohomology 
and our Floor cohomology HF*(H,J : M). The commutativity, Theorem 
3.1 (2) (Theorem I (3)) will follow by comparing the boundaries of the one- 
dimensional component of MQ(G

€
, Jg : z€) and Mg(M : g,p). This finally 

finishes the proof of Theorem 3.1 (2) (Theorem I (3)). 

5. Cup action and the proof of Theorem 3.1 (3). 

Roughly saying, we will define the cup action 

HF*(H, J:M)® H*{M, Z) -> HF*(H, J : M) 
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as the dual to a cycle in HF* (H, J : M) ® iJ* (M, Z) ® HF* {H, J : M). This 
cycle is defined by counting the elements in Mj(H, M) that intersect with 
the stable manifolds of critical points of a given Morse function / on M. 
More precisely, for each given 22, £3 € CF^H, J : M) and pi € C*(f : M), 
we consider the following "degenerate pants". 

Figure 4 

One should regard the current set up as the limit case as e —> 0 of that 
in the definition of the pants product in which K = ef o TT. We denote by 
Mp(f) the set of gradient trajectories of / that has p as the cj-limit and 
consider the evaluation map 

ev(/:p) : -M/(?) -> M]    ev(x) = X(0). 

Of course the image of this map is exactly the stable manifold of p. Now we 
define the map 

ev(/:pi) x Ev :M+(pi) x Mj(H,M : ^3,^2) -> M x M 

(x^)^(x(o)^(o5o)) 

We denote the pre-image (evxEv)~1(A) by Mj(zs^Z2\pi) = Mj{H : 
^35^2!/ • Pi) where A C M x M is the diagonal. Except the orienta- 
tion, the following proposition can be proven by the standard transversality 
argument. The proof of the orientation statement in a much more general 
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context will be given elsewhere and so the proof of the following proposi- 
tion will be omitted. In the mean time, we refer to [BzR] for some relevant 
explanation of this orientation question in the non-relative context. 

Proposition 5.1.  For generic choice of f and H, the set Mj(z3,Z2\pi) 
becomes a smooth manifold of dimension given by 

(Ws) + ^) - (M(*2) + |) - M/(Pi)- 

One can also give orientations to these sets which are compatible to the 

gluing procedure. 

Again by a dimension counting argument, one can prove that the zero 
dimensional component of Mj(H\f) = U^^^)^7(^3, 22IP1) will be com- 
pact and so we can define an integer 

n(z^Z2\pi) = n(H,J\f)(z3iZ2\pi) '= #(Mj(z^Z2\pi)). 

We define a chain in CF*(H, J : M) ® (?*(/ : M) <g> CF*(ff, J : M) by 

*(23,22bi) = ^(H,J : Z3,Z2\f :pi) :=    ^   n(z3, Z2\pi)z2 ® pi ® Z3. 
Z3,P1\Z2 

For each given a e CFk(H, J : M) and (3 e C£(f : Af), we consider the 
contraction cycle 

(a®l3,V(z3,Z2\pi))=   Yl   n(z^z2\PiHz2)^{pi)z3eCFn_{k+e){Hj:M) 
Z3,Z2\pi 

and then the cocycle 

V(H,J)(a® PMzs,Z2\Pi)) e CFk+e(H,J: M) 

which defines an element in HFk+£(H, J : M). 

Definition 5.2. For each given [a] E HF*(H,J : Af) and u G iJ*(M,Z), 
we define the cup action of iJ*(M, Z) on HF*(H, J : M) by 

where [/?] = w. 
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It remains to prove the commutativity of the diagram (3.8). By the 
cobordism argument, it will be enough to prove the case when H = h o TT 

for a Morse function h. The following lemma is the analogoue of Floer's 
theorem in [F2]. 

Lemma 5.3. Let H = ho TT where h is a function of Morse-Smale type. 
Then there exists some e > 0 such that if \h\c2 < e, all the solutions u with 
finite energy of the equation 

' du      T   /du      „   ,  v\ 

U{T,&),U(T,1) e OM 

are t-independent and x(r) = ix(r, 0) is a trajectory of — grad /. 

Now, it is not difficult to see (see [BzC] for some explanation) that in 
the Morse-Witten homology setup, the cup action (or product) can be also 
described as follows: For each P2<)P3 € C*(h : M) and pi E C*(/ : M), we 
study the pair (x, z/) E M^ x M(h : ^3,^2) such that 

x(0) = K0). 

If we define the set of such pairs by M(h : ^3,^2!/ ' Pi), then Lemma 
5.3 implies that there exists an orientation preserving diffeomorphism be- 
tween the space Mjg(H : 23,22!/ : Pi) and Mg(h : ^3,^2!/ : Pi), where 
2:3 = P3, Z2 = P2 are the constant Hamiltonian orbits of Xhon- Then the 
commutativity (3) immediately follows from the definitions of the cup ac- 
tion. This finishes the proof of Theorem 3.1 (3). 

6. Pants product and cohomological invariants. 

So far, we.Jiave proven all the statements in Theorem I except ones 
involving filtrations in (1). 

In this section, we use the (semi-infinite) Thorn isomorphism established 
in Section 2 to construct some cohomological invariants of Viterbo type 
[V] and prove Theorem II. In the course of doing these, we will also prove 
Theorem I (1). All the properties of our invariants will be directly related 
to the Hamiltonian H's and so to Hofer's geometry. 

Using the filtration given by the values of AH and the canonical grading 
by (2.1) on CF*{H, M), we define 

CFa
fc = Hom(C^,Z) 
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and 

CFa = CFa(Hi j:M) = {ze CFk(H, J : M) I AH{Z) < a] 

as defined in [04]. Then for b > a, we have the homomorphism 

j*ba : CFb
k -> CFH 

defined by the restriction, which becomes surjective. Then we define 

Ctffa>j]:=Ker& 

The coboundary map 6(Htj) : CFk(H : M) -» CFk+1(H : M) induces the 
homomorphism 

<W) = ^(a,6] - CF^ 

and so one can define the relative Floer cohomology group 

HFk
aM(H,J: M) = KerS^/lm6W). 

It is easy to check from the definition that there exists a canonical homo- 
morphism 

f ■ HFk
cA - HFlM 

whenever c > a, d > b. In particular, there exists the natural homomorphism 

tf:irFfc-ILFf_00iAj. 

We are now ready to define, for each u G H*(M, Z), the cohomological 
invariants. First, we define 

p(H, J : u) = inf {A | tf ifo j) («) # 0   in   HF^ (H, J : M) } 

= sup{A|^WJ)(«) = 0    in   F^^^JrM)}. 

Lemma 6.1. For (iJ, J) 5wc/i that (J)H{OM) ^ ^M «^^ J ^ Ji^; p(^ ^ • u) 
is a critical value of AH and independent of J £ JH . 

Proof. The proof is an obvious modification of Lemma 7.2 in [04]. We leave 
the details to readers. □ 

Definition 6.2. For each u ^ 0 € i?*(M, Z) and H G TYo, we define 

p(H,u):=p(H,J:u) 

for some J € J7ff (and so for all J). We set p(H, 0) = +00 for the zero class 
OeH*(M,Z). 
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Now, we study the iif-dependence of />(#, u). The following is again easy 
to prove as Lemma 8.1 in [04]. 

Lemma 6.3.   When H e Ho and as \\H\\ci —► 0; then piH^u) —> 0. 

The following theorem summarizes the basic properties of p(H, u), which 
are Theorem II (3)-(5). Note that Theorem II (2) is an immediate conse- 
quence of (3). 

Theorem 6.4.  We assume that H, Ha and Hp € Ho C H.  Then 

(1) For anyu^Oe H*(M,%), we have 

f -mzx(HP-Ha)dt<P(HP,u)-p(Ha,u)< [ -wm(Hp-Ha)dt 
Jo        x Jo       x 

In particular when combined with Lemma 6.3, we have 

(6.1) /   -m&xHdt<p(H,u)< /   -mmHdt. 
Jo        x Jo 

(2) We have 
\p{H^u)-p(H^u)\<\\HP-H«\\c« 

and so the map H i—> p{H, u) can be extended to a continuous func- 
tion of H on Tico ■    We still denote this extension by p(H, u) for 
ueH\M,Z). 

(3) For any u, v <E H*(M, Z) and H, K G H, we have 

(6.2) p{H#K,u\Jv)> p(H,u) + p(K,v) + e(K) 

where €(K) depends only on K which vanishes for any autonomous K 
and e(K) < \\K\\. In particular, we have 

(6.3) p(H,u\Jv) >p(H,u). 

Proof. (2) immediately follows from (1). To prove (1), we follow the argu- 
ment of the proof of Theorem 7.2 (7.2) in [04]. By the same argument as 
therein, if we set eaP = J0 — mmx{II^ — Ha)dt, then the natural map (with 
respect to the "linear homotopy) hap : CFJ^H01, J : M) -> CF*(HP, J : M) 
restricts to a map 

hap : CFi-^iH", J:M)^ CFt™'^^ (H?, J : M) 
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and so induces the homomorphism 

Therefore for any A, we have the following commutative diagram 

HF*(Ha, J:M)3-^        HF{-oo,\} (Ha>J : M) 

h^ h"? 

HF*(HP, J : M) ^      HF^^^HP, J : M) 

where the left hand side arrow is an isomorphism. By naturality of the 
Floer-Thom isomorphism (2.2) with respect to haP and from the above com- 
mutative diagram, for any u 6 H*(M, Z), we derive 

which finishes the proof of the right half of (1). By changing the role of a 
and /? and using the identity 

max/ = -min(-/), 

we have finished the proof of the other half of (1). We refer to [04] for more 
details in this argument. Now, it remains to prove (3). We first recall the 
formula from (3.7) 

F{H#K){^ U v) = FH(u) UF FK{v) 

and so one can rewrite p(H#K, uUv) as 

(6.4)   p(H#K,uUv)= sup{A | Jl(FH(u) UF FK{v)) = 0 
A 

in   HFl_^x){H#K,J:M)} 

To motivate what we are going to do, we recall how we prove the optimal 
inequality (8.2) [04]. We used the linear homotopy 

(1 - s)Ha + sHp 

connecting H^ and H^. This linear homotopy may not be generic in general 
but can be approximated by generic paths of Hamiltonians (see [04]). And 
all the inequalities we prove are based on the negativity of the kind of term 

2 

<0. 
/ Tt - XH{U) 
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This sort of philosophy is exactly what we need to prove the inequality 
(6.1). 

Figure 6 

We identify © with the piecewise linear domain drawn as above.   We 
recall that the equation on M x [0,1] 

U(T,0),IX(T,1) G OM 

u(—oo) = za 

is equivalent to 

(6.5) 

where 

^(r, 0) € <I>H(OM), u(r, 1) € OM 

u(-oo) = za(l) G <t>H(oM) n OM 

Moreover (6.5) can be re-written as 

(6.6) djH u = 0 
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where . 
^ Tzu +JH{u(z),z)'Tuoi 
9JH{U)(Z) :=     2        '    ^ = ^ ^ 

An advantage of the equation (6.6) is that it can be written in a coordinate- 
free form and so can be written on a general domain G. Motivated by these 
discussions, we will choose the perturbed J-holomorphic equation needed in 
the definition of the pants-product defined in Theorem 3.1, in the following 
way. We first choose a "smooth" map 

(/> : 9 -> ^c(r*M), 

that satisfies 

(1) <l>\die = (^if)"1, 01^29 = <I>K and ^e = id, 

(2) ^|e1(r,t) = ^o(^)-i,    ^|e2(r,t) = (^)-1 = ^o(^o^)-i, 

(3) On the center triangle, we define 

where z £ 0o is the point pictured as below. Here X^C(T*M) is as 
in the notation (6) in the introduction. It is easy to check that the 
family of almost complex structures (<fe)* J naturally extends </#, JK 

and JH#K on e\eo to the whole 9. 

Figure 7 
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Now, we impose on u that u satisfy the equation 

(6.7) 

u(d2Q) C (J)K{OM),  u(dsG) c OM 

(6.7) is the equation we use in the definition of our pants product given in 
Section 4- Note that if we restrict (6.7) to each ©;, it is equivalent to the 
equation (6.4). Furthermore, we have 

Si(+oo) = 2:1(1) G ^K(OM) n OM 

22(+oo) = fa1 (2:2(1)) E <I>H(OM) n OM 

usi-oo) = ^(^(l)) E ^(OM) n <I)K{OM). 

all of which are constant paths. We also note that since u satisfies (6.7), we 
have 

(6.8) /©^y I^M^ILM^0- 

This is exactly the reason why we choose (6.7) as the required equation 
in the pants-product. On the other hand, since u = —d6 where 0 is the 
canonical one form on T*M, we have by Stokes' theorem, 

/ U*UJ = / (</># o 2)*u; = - /    {(j>H o u\dQT0 
JQ JG JdQ 

%«*) Figure 8 

which becomes symplectic area of the shaded region in the picture.  Since 
each u(di@) lies in a fixed Lagrangian submanifold, we apply (2.25) in [04] 

dAH(zrHm) = 8(p)(v) 
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and re-write the above area (after taking the orientation into consideration) 
as 

This proves Theorem 3.5 which we promised to prove in this section. In fact, 
the identity (6.9) can be generalized to the domains © with arbitrary number 
of ends which will imply some generalized version of the inequality (6.2) 
under the higher order Massey product. Since we will not need this general 
identity in this paper, we will not discuss further about this generalization. 

Now, we further analyze the two middle terms in (6.9). 

Lemma 6.5.   We have 

(6.10) AH#K (z+sffi) - AH (4*<">) = AK (*£) + e^Pi) 

where 

e{K,Pl) = f f K (*%_s)K(t),t) dsdt - J K (z%(t),t) dt. 

In 'particular when K is autonomous, we have e(K,pi) = 0 for all pi G 

Assuming this lemma for the moment, we proceed with the proof. Com- 
bining (6.8)-(6.10), we have proven that 

AH#K (4V) - AK
 (41) - AH K2) - e(K,Pl) > 0 

i.e. 

(6.11) AH#K (4V) ^ AK (
Z
K) + AH(

Z
H) + <K>Pi) 

whenever (6.7)  has a solution with the asymptotic condition given.    We 
denote 

€(K)= inf e(K,p). 
p£<t>K(oM)r\OM 

Then it follows from the definition 

\<K)\ < \\Kl 
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and that for the autonomous if's, e(K) = 0. 
Now, we have to interpret the inequality (6.11) in terms of the wanted 

inequality (6.1). We consider the diagram (3.7) 

HF*(H,J:M)(S)HF*(K,J:M)   ^   HF*(H#K,J:M) 

FH®FK FH#K 

H* (M, Z) ® H* (M, Z) ^ ff * (M, Z) 

First if tz U v = 0, then p(u U v, iJ) = oo by definition, the inequality is 
obviously true. Therefore, we assume that uUv ^ 0 and so F(H^(UUV) ^ 0 
since F^JJ^J) 'ls an isomorphism. To prove (6.1) and Theorem I (1), it will be 
enough to prove from (6.3) that whenever 

X<p(H,u) + p{KJv) + e(K), 

then 
J*X(FH(U) UF FK(V)) = 0. 

For such A, there exists some Ai and A2 such that Ai < p(H, u), A2 < p(K, v) 
or A2 < p(H, u),\i < p(K, v), and A < Ai + A2 + e(K). We only consider the 
first case since the other case will be proved in the same way by switching 
the role of Ai and A2. By definition of p, we have 

(6.12) J*XI(FH(U)) = 0   and   Jl2(FK(v)) = 0 

Now let a € CF*(H,J : M), b € CF*(K,J : M) be the cocycles with 
[a] = FH(U), [b] = FH{V) respectively and consider the contraction cycle 

(6.13) (a ® 6, $!Q(H, J)) = Y, n®(H, J : 5)a(zi)6(z2)^. 

(6.12) implies that we can choose the representative cocycles a and b satis- 
fying 

a(zi) = 0    and     6(22) = 0 

whenever AH(ZI) < Xi and AH fa) < ^2 respectively. Therefore only those 
zi, Z2 with AH fa) > Ai and ^(22) > ^2 can give non-trivial contribution 
in (6.13). Furthermore if ne(.ff, J; £) 7^ 0, then by (6.11) 

AH#Kfa) > Axfa) + AH fa) + €(^) 

> Ai + A2 + e(K) 
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and so 
AH#K^ < ~Al " A2 " e^' 

And hence 

(a®b,*Q(fi,J)) G C^:^1"^-^) {H#k : M) . 

Therefore we have from the definition of V(H,J) that the cocycle 

o-(if#^j)(a®6,*e(ff,J)> 

becomes zero when restricted to 

Ci^'Al+A2+€(101 {H#K : M) 

This implies 

i(A1+A2+W^(«) u ^(-)) = 0     m     £r^1+A2+e(i0] (^#^ : M). 

and so J\(FH{U) U FH(V)) = 0 since we assumed A < Ai + A2 + e(.K'). This 
finally finishes the proof of Theorem 6.4 (Theorem II (5)). Note that we 
have also proven Theorem I (1) as well. 

Proof of Lemma 6.5. We connect the Hamiltonians H#K and H by the 
path 5 h-» Hs by 

fPOM) := ##((! - S)10(s, t) = ff(x,t) + (1 - s)ir((«^rV),*) 

and the curves z^^    and z^^1' by the path 5 1—> 7s, 

^s ._ J>H(PI) 
7   '-ZH#(l-s)K' 

More explicitly, we can write 

= ^o ^(I-^A-CC^L^A-CPI))- 

Note that 7s is a Hamiltonian path of Hs and 

7S(1) = ^(pi),     7s (0) = (^(i-^)-1^) = 41 (*)• 

Here the second identity easily follows from the identity 

K#sK = (1 - s)^ 
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which can be proven by a simple computation. Note that 7S(1) is fixed for 
all 0 < s < 1. Now we have 

(6.14) AH (4*<W) - AH#K (zftf^) = jT1 ^^(7S)^ 

where we compute 

(6.15) ^^(7S) = MH-tf)^ + £K ((^)-1(7S(t)),t) . 

Applying the general variation formula (2.17) in [04], 

dAHWZ =  I (^(7,0 " dff(7)0 " <£(<>), 0(7(0))) + (f(l), 5(7(1))), 
Jo 

we get 

dAH-^j; = -{%{Q)^sm) = -(^,0(z^))(s) 

= -wow. 
And 

jf' K (^)-V(*), *) ^ = / ^ (^(i-.)^(i-)*)"1^)' *) * 

= /1^(^-.)if (*).*)*■ 

Therefore, we get by integrating (6.15) 

jf1 ^ff-M* = - J\^re{s) + [ fQK {zli_s)K{t),t) dtds 

= -AK{z%) + e{K,pl) 

where for each p G 4>K(
0

M) H OM, e(if,p) is defined as 

e(K, p) = JlJlK (zP
{l_s)K(t), *) d* rft - jf if (4(t), t) dt. 

Now substituting this into (6.14), we have finished the proof of Lemma 6.5. 
□ 
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7. Non-triviality of the invariants. 

Note that an immediate consequence of (6.2) applied to u = 1 and 
v = MM is 

P(H^M)>P(H,I). 

Now as in [V], we define a capacity of L as follows, which is the analogoue 
of Viterbo's in [V]. 

Definition 7.1 [p-capacity]. For any L that is Hamiltonian isotopic to 
OM i-e., L = (J)(OM) for (f> e D£C(M), we define the p-capacity of L by 

7(L):=p(H,m)-p(H,l) 

for any H h-> L. 

The following is Theorem III (1) which is the analogoue of Corollary 2.3 
in [V]. 

Theorem 7.2.   We have 

7(1/) = 0    if and only if L = OM- 

One can also easily derive from Theorem 6.4 and Theorem 7.2 that the 
Hofer's distance in (2.10) [04] is nondegenerate. In fact, we have the in- 
equality 

(7.1) 7(L)<d(L1OM), 

since we have 

P{H,IIM)<  /   — minHtdt    and yo(iJ, 1) >   /   — maxi^ 
Jo Jo 

dt 

by Theorem 6.4 (1). 
Using 7 applied to the compactification of the graph of Hamiltonian dif- 

feomorphisms on M2n as in [V], one can define an invariant 7(</>) of Hamil- 
tonian diffeomorphisms 0 of R2n. Then (7.1) has the implication 

7(0) ^ IHI = Hofer's norm of </>, 

which is the analogoue to Corollary I.2.C. [BP] i.e, the inequality between 
Hofer's and Viterbo's norm. Here we prove this inequality directly without 
proving the local flatness. 
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The rest of this section will be spent to prove Theorem 7.2. It turns out 
easier to work with the geometric version of the Floer homology to prove 
Theorem 7.2. We consider the equation 

{du i jdu   n 
dr + J at - u 

U(T, 0) G 4>H{PM\ U(T, l)eoM 

which is the gradient flow of aH normalized as in Section 8 [04] so that 
AH"(£#) = QLH(P) for aU P ^ ^H^OM) H OM• Then we have p(if, TX) = p{H, u) 
for all u G H*(M, Z) and in particular 

p(ff, MM) - p{H, 1) = p(ff, MM) - P(H, 1). 

Therefore to prove the theorem, it will be enough to prove 

(7.3) p(H,m)-p(H,l)>0 

when 4>H(
0

M) ^ 0M- Let </>#(OM) T^ ^M and define 

dH := max{ |p|^   |  p G (I>H(OM) C T*M} 

which then will be strictly positive. Here |p|^ denotes the induced norm of 
p G T*/ xM with respect to the metric g on M (as a linear functional on 

T<p)M). 
By making a C1-small perturbation of H into H', we may assume 

(7.4) dH,>dH-e>0 

and 

(7.5) |p(i^^)-p(iJ^)|<6 

for all u G H*(M,Z), where e can be made arbitrarily small. In fact, (7.5) 
follows from Theorem 6.4 (2). The following lemma can be proven by a 
standard argument by contradiction. 

Lemma 7.3. Denote by Bs0(po) the So-ball centered at po in T*M where 
Po £ <I>H(

0
M) is a point with \po\ = du- Then there exists constants c = 

c(iJ, J) and eo > 0 such that for any H' with WH' — H\\ci < ^O; we have 

(7.6) AH'(U(-OO)) - AH<{U(OO)) > c> 0 
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for any solution u of 

{du        du _ 
fr + 'm-" 
U(T,O) e <?!>#'OM), U(T, 1) e OM 

such that 

(7.8) w(0,0) G BSo(po) H <I>H'{PM). 

We now recall the definition of the cap action by ^M on HF*{(J)H'{PM),OM) 

(see [BzR] or [PSS]). This action is the dual version of the cup action (-JU/XM 

which we define in Section 5: Pick a generic point p 6 </>#/ (OM) and count the 
number, denoted by n^p}{zCL, z?) of solutions of (7.7) that passes through the 
point p via the evaluation map from M j(za, z^). Because of the dimensional 
reason, we could have n^py(za, z13) ^ 0 only when 

lj,(za) - IJL{Z
P
) = n. 

Then we consider the assignment 

and extend linearly to CF*(^/(OM), OM)- The cap action by HM on 

HFn{(j)H>{0M),0M) 

is then defined by 

for z* G CFn((j)H'(oM)iOM) and by proving that it descends to 

HFn((l)H'(0M)i0M)' 

The following lemma can be proven by a straightforward modification of the 
main theorem of [F3]. We refer to [PSS] or [BzR] for further explanation on 
the cap action. 
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Lemma 7.4. Let K be a generic choice of Hamiltonian. Consider the cap 
action by HM € Hn(M, Z) on HFn((f)K(oM)i 0M) 

m HF (•) : HFn{(f>K{oM), OM) -* HFO(<I>K(OM), OM)> 

This action becomes an isomorphism with Z-coefficients (resp. ^-coeffici- 
ents) when M is orientable (resp. when M is non-orientable) and restricts 
to a homomorphism 

(7.9)      m np (•) : HFJT^HMOMIOM) - HFJ-^HMOM^OM) 

for any A G K. 

To prove Theorem 7.2, we need to refine (7.9), i.e, we need to decrease the 
filtration level by a positive amount. Let a G CFn(<l)H'(oM)i0M) an(J b € 
CFO((J)H'(OM)IOM) whose Floer homology class [a] G HFn{<j)Hl{oM),OM)) 
and [6] G HFQ{(J)H'{OM)'>OM) become the generators respectively. Then we 
write 

(7.10) 

a = 

[6] = 
L k 

where z^Zk G Crit^^) and we assume that [ze\ ^ 0 / [^]. We define 

Ca := {zi G Cjit{aH) \ at ± 0} 

Ch := {zk G Crit(a^) | ak ^ 0} 

and the subset of (I>H'{PM) 

Nab := fr ^ <f>H'(0M)  I P = ^(O, 0)   for SOme  ^ e U Mj(z^ Zk) }• 
(^,zfc)<EC£xCfc 

Then from the definition of the cap action, the first statement of Lemma 7.4 
implies 

(7.11) Nab = <l>Hf(0M)' 

(See [F3]). Otherwise it is easy to see by choosing a generic point in 
(i>H'(oM)\Nab that the cap action will be trivial. If we choose the point 
p from Bs0(po) fl 0#/(

O
M), we have 

AH'(U(-OO))- AH'(U(+OO)) > c 
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by Lemma 7.3. Therefore it follows that the cap action induces a homomor- 
phism 

(7.12) MM nF (•) : HF^'
X

\4>H'(OM),OM) - tfi^'^W^MW) 

for any A G R. 

Proof of Theorem 7.2.   Suppose the contrary, i.e., assume that 

We choose a generic H' that satisfy (7.6) and Lemma 7.3, we have 

(7.13) 0<p(H',m)-p(H',l)<e<^ 

We now consider the following commutative diagram 

HFt00^~c)^w(oM),oM)   ^    HFO(<I>H>(OM),OM) 

MM HF (') MM nF (•) 

The right vertical arrow is an isomorphism by (7.9). From this, we see 
that whenever the bottom arrow becomes non-zero, the top arrow becomes 
non-zero. However FH*{1) or FH'(I^M) is the generator of HF0 or HF71 

respectively by the Floer-Thom isomorphism and it is easy to check that 
the non-zeroness of these homomorphisms are equivalent to j^F^iX) ^ 0 

or 3X_CFH'{^M) 7^ 0 respectively. Here we denote by FH the Floer-Thom 
isomorphism for the geometric version of the Floer cohomology 

FH : H*{M,1) - HF*(<I>H>(OM),OM). 

Combining these, we have derived 

P(H\m)>p(H\l) + c. 

This gives rise to a contradiction to (7.13). Therefore the result follows.  □ 
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Appendix: Index computation on 60,1. 

First, note that the operator glued in the cap in the proof of Theorem 
3.3 is of the following type: Consider the domain Go,i C C as drawn in the 
picture which is conformally a disc with one marked point. 

Figure 9 

We consider the operator 

d_        d dj^l + ji+T, ^^(60,1)^^(60,1),    p>2 

on the space 

Wl* = ^(00,1) := {C € W^eo^C") I Q{9) € Rn for all 9 G d@o,i} 

where J and T satisfy (l)-(4) in Section 5 [04] as r -* 00. Such an operator 
djT is a Fredholm operator and so has the Fredholm index. The following 
index formula is the main theorem we will prove in this appendix. 

Theorem A.l. Let T and J be as above and ^oo be the solution of 

f^-J(oo,*)T(oo,t)tf = 0 

\tf(0) = tt*. 

Then we have 
Index djp — /i(*oo(*) • l) + 

n 

One immediate corollary is the following index formula. This can be 
proved by considering the linearized operator which will have the form of 
the operator considered as in Theorem A.l under the trivialization of the 
type we used in Section 5.1 [04]. 
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Corollary A.2. Let R > 0 be a real number.    Consider the perturbed 
Cauchy-Riemann equation of the map u : ©0,1 —» T*M 

(du 

*+'(£-*'<«> 0,     on r > R + 1 

u    satisfying appropriate zero-order perturbation 
du       Ou 

of the equation ——h J-^- = 0,    for r < R + 1 
or        ot 

Then if the Hamiltonian path z(t) = z^(t) forp € (J)H{
0

M) H OM is regular 
(i.e., <I>H{OM) ^ti OM at p) and so the linearization at u becomes a Fredholm 
operator, then we have 

Index u = —^(z) + —. 

The remaining section will be spent to prove Theorem A.l. 

By deforming the operators without changing the Fredholm index, we 
may further assume that for sufficiently large R > 0 

and 

J(T, •) = 

AT, •) 

J(oo, •) 

T(ocv) 

0 

for r > R + 1 

for T < R 

for r > R + 1 

for r < R 

1   n 
We now transform the above operator on W £ to another operator defined 
on the space 

wj* = {c e w^ieo,!,^) 1 m € m} 

where A : 90o,i —> A(n) is the path defined as 

A(6) = { 

if 0 6 aoGo,! 

if 0 = (T,O) forT<i? + l 

if 0 = (r, 1) for R + 1 < r < R + 2 

if 8 = (r, 1) for r > R + 2. 

Here do0o,i is the portion of the boundary of the compact part 0o in 900,1 
as pictured in Figure 9 and Ai : [R + 1, R+ 2] —> A(n) is a path defined by 

Aifol^tfooMr-£-!)).: for     r > i2 - 1 
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and by extending this definition to the whole G by setting 

A(e) = Rn     for    T<i2-1. 

Here the function p : M —> [0,1] is the cut-off function we used before in the 
main part of this paper. 

Note that since we assume that T = 0 on r < i?, the map ^ : [J?, oo) x 
[0,1] -> Sp(2n) defined by 

tf (r, t) := *(P(T - i2 - l)t)     for     T>R 

can be smoothly extended to the whole © by setting \I> = id for r < iZ. 
Therefore we can now define the push-forward operator 

**(5j,r) = * o dj,T o ^r"1 :    W^p -+ Lp. 

Then this push-forward will have the form 

such that _ 
T = 0     ifr^i^ + l     or     r<iZ 

J = i     if7-<i2 

It is obvious that the two operators djp and djj,-^ will have the same 

Fredholm indices and so it is enough to compute the index of dj^-^. We 
recall that we imposed the transversality \I>(1) • W1 rh Mn and so 

Ai(0)rhlRn     for     9 = {T,1\    T>R + 2 

If we denote 
oo_j_ = lim (r, 1)     and oo_ = lim (r, 0) 

r—►oo T—>oo 

the map A : 500,1 —> A(n) satisfies 

A(oo_) =A(r, 12 + 1) = Mn     and     A(oo+) - tf (1) • Rn = Ai(i2 + 1) 

A(T, 1) =*(p(r - i2 - 1)) • Mn     for     i2 + 1 < r. 

By construction, the two paths £»-> *&(£)• Rn and r i-» Ai are homotopic 
with the same fixed end points and so have the same Maslov indices, i.e., 

(Al) /i(Ai?E
n) = M(*.Mn,Mn). 
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Using the stratum-homotopy invariance of the Maslov index, Theorem 2.4 
[RSI], we can deform the operator dj^^ without changing the Fredholm 

property and without changing the Maslov indices of A into 

where A : d@o,i -^ A-(n) is defined as 

{w1 if   e = (T, o) 
D(t) ■ W1        if    9 = (t, 0) 

i-W1 if     9 = (r, 1) 

with 
/e-(e+ h)™* 

D(t) = 
e-5ir«t 

V 0 -hirit 6-5"*7 

for some integer £. Here we identify 0o i with the semi-strip as drawn below. 

t 

1 *-*, 
0 

(x,l)   . 

/ » 

(T,0)          _ 
R R + 1 

Figure 10 

Noting that both the operator d and the boundary condition A both 
are separable, we have reduced the computation of the index into the one- 
dimensional problem below. Recall that both Fredholm index of c^^A and 
the Maslov index of A are additive under the direct sum. 

We now study the following equation in one-dimension 

(*) C(r,0)€R,    C(T,l)e 

(A.2) 

(A3) 

(A4) 
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Note that C satisfying (A.2), (A.3) and J \D(\2 < oo must have the form 

{(z) = ^2ake~(k~ 2)^,     akeR     and z e 60,1. 
ife=i 

This becomes 

C(0,i) = £afce-(fc-2)^ 
ife=l 

on {0} x [0,1]. Since (A.4) implies 

e('+3Mc(0,i)eR, 

we have 
CO 

J2*ke-{k-£-1)7riteR. 

Equivalently, we have 

00 

We consider two cases where £ > 0 and ^ < — 1 separately. First, let us 
assume that £ > 0. Then from (A.5), we derive 

ak+1+1 = 0     ifk>£ + 2 

a£+i     arbitrary 

ak+e+1 = a-k+t+i     if  - £ < k <-1 

i.e., 
ak = 0     ifk>£ + 2 

a£+i     arbitrary 

ak = a_A.+2(^+i)     if 1 < k < £ 

On the other hand if £ < —1, it immediately follows from (A.5) that (*) has 
no non-trivial solution. Hence if we denote by Ker[*] the solution space of 
the equation (*), then we have 

, x r   1 1^+1 If        ^ > 0 
(A6) (UmKer*=S y      J L J      10 if    £ < -1 
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Now let us study the L2-adjoint problem of (*); 

(**) 

drj = 0, (A.7) 

770,0) GR,    r/(r,l) G iR (A8) 

iri(0,t)ee-«+&nit.R (A9) 

and denote by Coker[*] the solution space of (**). This equation can be 
derived by taking the L2-inner product (*) with 77 and then by integrating 
by parts. It follows from (A.7), (A.8) and J \Dr]\2 < 00 that 77 must have 
the form 

3=1 

By substituting z = (0, t) into this, we get 

■jt 

Condition (A.9) is equivalent to 

. oo 

ie«+ 3)^(0,*) €R     i.e.,    ^i^'+^^eR 
3=1 

and hence we have derived 

oo 

(A. 10) ]r ibj-teP*" € K. 

Prom this, we immediately conclude that if £ > 0, then (**) has no non- 
trivial solution. When £ < — 1, we derive from (A. 10) 

bj-i = 0    if    j>-£ 

b-£ = 0 

b^e = -b-j-t     if    1 < j < -I - 1 

From this, we conclude that 

(All) dimCoker[*] = i0 lf    £-0 
L J      I -^ - 1 if    £ < -1 
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Combining (A.6) and (A.11), we have proven 

(A12) Index[*] = dimKer[*] - dim Coker[*] =£ + 1 

for all £. By applying (A. 12) for £ = 0 and adding the contributions from 
other components of D(t), we get 

(A. 13) Index ^o, A = ^+l + (n-l)=^ + n 

We now compute the Maslov index ^(D(t) • IT, Rn) of the path 

* ^ D(t) • Mn. 

By the additivity of the Maslov index under the direct sum operation, we 
have 
(AM) 

fi (£>(*) • Mn, Rn) - fi (e-i{e+ 5)^ • R, R) + (n - l)fi (e"!** • M, R) . 

However, it is easy to check from the definition of the Maslov index from 
[RSI], we have 

H (e-*1* h)**. R,R\=e+± 

By applying this to £ = 0 for the second term in (A. 14) as well, we conclude 
that 

71 
(A15) [i(D.Rn,Wl)=£+-. 

However from (A.l) and from the way how we deform the operators after- 
wards, we have 

/i(*-Mn,Mn)=/i(Z>-Rn,Mn) 

which finally finishes Theorem A.l. 
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