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Some new examples for nonuniqueness of the 
evolution problem of harmonic maps 

MIN-CHUN HONG 

We find some new examples to show nonuniquence for the heat flow 
of harmonic maps where weak solutions satisfy the same mono- 
tonicity property. 

1. Introduction. 

Let (M, g) be a compact Riemannian manifold (with or without bound- 
ary) and let (N,h) be another compact Riemannian manifold without 
boundary. Let u be a map from M to N which belongs to Hll2(M,N). 
We define the energy of u by 

(1.1) ■E{u7M)= [  \du\2dM 
JM 

where \du\ denotes the Hilbert-Schmidt norm of the differential du(x) 
(see [EL]). In local coordinates {xl) and (ya) on M and AT, we have 

\du(x)\2 = g%'{x) —, -^j hap{u(x)). 

The map u : (M7g) —> (N^h) is called a weak harmonic map if 
u € F1'2(M, N) and satisfies 

(1.2) AM^ + A^idu, du) = 0 

in the sense of distributions in M where AM denotes the Laplace-Beltrami 
operator on M and A{u){du, du) is the second fundamental form of N. In 
local coordinates {xl) and (ya) on M and AT, the harmonic map u satisfies 

r {U) - 9   \dxidxi        i « dx* +   i <#W dxi dxi ) ~ U 

where MY and ^F  are the Christoffel symbols of the connections on 
M and N. 
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The heat flow for harmonic maps is defined as follows. We say u(x, t) : 
M x [0, oo) —> N is a weak solution of the following evolution problem: 

— = AM^ + A{u)(du, du) 

(1-3)                    u{x, 0) = UQ{X)    for x e M 

u(x, t) = uo(x)    for (x, t) € dM x [0, oo). 

The evolution problem for harmonic maps is introduced by Eells and 
Sampson in a fundamental paper [ES] to prove the existence of smooth har- 
monic maps in the case that the N has the nonpositive sectional curvature 
and UQ is smooth. Coron and Ghidaglia in [CG] proved that if M = N = Sk 

with k > 3 the heat flow must blow up for some smooth maps UQ. Later, 
Chang, Ding and Ye in [CDY] showed that the heat flow (1.3) must blow up 
in finite time for some smooth maps UQ even for M = N = S2. When the di- 
mension of M is 2, Struwe in [SI] proved early the existence and uniqunence 
of a weak global solution to the heat flow (1.3) where the solution is smooth 
away from a finite singular point in M x [0, oo). 

For higher dimensional case; i.e. dimM > 3, Chen and Struwe in [CS] 
(also [CL] and [S2]) proved a global existence of weak solutions of heat flow 
(1.3) in which the solution is partial regular. 

Let M = B3 and N = S2 where B3 and S2 denote respectively the 
unit ball and the unit sphere in R3. In this case, the Problem (1.3) has the 
following simple form: 

— = Au+ \Vu\2u 
at 

(c) u(x, 0) = UQ(X)    for x e B3 

u(x, t) = uo(x)    for (re, t) € dB3 x [0, oo). 

Following Chen and Struwe [CS], u(x, t) : B3 x [0, oo) —> 52 is called a weak 
solution to problem (C) if the u(x, t) satisfies the following (i)-(iv): 

(i)  ^ € L\M X [0, oo)), E{(U{; t)) < E(u(; 0))    Vt € [0, oo), 

(ii) u satisfies the first equation of (C) in the weak sense on B3 x (0, oo), 

(iii) u(x, 0) = ^o^) in the trace sense, 

(iv) u(x, t) = uo(x) on dM x [0, oo) in the trace sense. 
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Coron in [Co] constructed some examples to show that the heat flow 
can have infinitely many weak solutions for the same maps UQ in the case 
that M = B3 and N = S2. Coron's idea is to show that the weak solution 
in [CS](also [CL]) has the following monotonicity property: For any 0 in 
CQ

0
(B

3
)) any compact K of the interrior of {8 = 1} there exists a constant C 

such that for a. e. £i, £2 with ti < £2 and for a in K 

(*)   t^2 [   9" I Vn|2 (x, tt-ti) exp - J^E 

1/2      ,l/2x   ,  ,-1/2  f    & ■„ ,  ,2  k - a|2 

<c(*f-*;/2)+t2-1/2/ r |Vuorexp 

Then he find some harmonic maps as weak solutions which do not satisfy 
the above monotonicity property (*). Coron in [Co] also pointed out that 
his method does not allow to produce an initial data such that the heat flow 
has at least two weak solutions satisfiying (*). Then there exists an open 
problem for the evolution problem of harmonic maps whether weak solutions 
of heat flow (1.3) with the monotonicity property (*) or the monotonicity 
inequality for all regular points in [CS] are unique. 

In this paper, we give a negative answer to the above problem. 

Theorem A. There exist some initial data UQ such that the problem (C) 
has infinitely many weak solutions which satisfy the same monotonicity 
inequality (*). 

Finally, we know from [F] and [CLL] that all "stationary" weak solu- 
tions to Problem (C) also satisfy the energy inequality and the monotonic- 
ity inequality defined in [CS] and [CLL], thus all weak solutions in Theorem 
A satisfy the energy inequality and the monotonicity inequality in regular 
points as in [CS]. 

Acknowledgement. The author would like to thank J. F. Grotowski for 
useful discussions. The work is supported by the Australian Research Coun- 
cil. • 

2. The proof of Theorem A. 

Definition 1. A map u is called a weakly stationary harmonic map from 
B3 into the sphere S2 if u is a weak harmonic map and also satisfies 

£*(«.;*•) = 0 
5=0 
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where us(x) := u(x + s^(x)) and £ has a compact support within Bz. 

Let, for A; in {1,2,3}, 

^-K<L-2(«),- 
We know (see, e. g. [Co], page 341 ) that u is stationary if and only if 

(2.1) /x* = 0   Vfc€{l,2,3}. 

Lemma 1. Assume that UQ is a weakly stationary harmonic map from S3 

into S2.  Then the map UQ satisfies the monotonicity inequality (*). 

Proof. This results is from the Remark 3 in [Co]. Since UQ is a weak station- 
ary harmonic map, UQ satisfies (2.1). Then from the proof in [Co], pages 
340-341, we know that -UQ satisfies the monotonicity inequality (*). □ 

Let us recall how a weak solution of (C) is constructed in [CS] (or [CL]). 
For each e > 0, the Ginzburg-Landau functional E£ is defined by 

ftW-i/^^ + ^d-P-i)')* 

for a function u G iJ1,2(B3,M3). The Euler-Langrange equation is 

(BU.) A„-4(l-M2)« = 0, 
u(x) = uo(x)    for x E OB3 

One consider the Cauchy problem for the heat flow associated to E£ 

9u 1  /.      .   .ov 
^ = Ati + ?(i--N2)^ 

(ce) u(x, 0) = uo(x)    for x e B3 

u(x, t) = UQ(X)    for (re, t) G dB3 x [0, oo) 

where  ^o  is  given  H1*2 (B3,S2).     One  easily sees  that  the  evolution 
problem  (Q)  has  a unique solution u6  in  C0 ([0, oo);^1'2 (53,R3)) D 

Lemma 2.  The solution u£{x,t) of (Ce) ^ends ^o a i^eafc solution U£ of 
problem (BDe) as t —■» oo. 
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Lemma 3. (i) There exists a subsequence £{ such that as £; —» 0; u£i 

tends weakly in H1,2(B3 x [0, oo)) to a map u(x,t) which u(x,t) is a 
weak solution of (C). Moreover, for a sequence ti, the solution u(x,t) 
converges weakly to a weak harmonic map u00(x) in Bs as ti —> oo. 

(ii)   The solution u(x,t) of (C) satisfies (*). 

Proof The first part of Lemma 2 is from [CS] and [CL]. The second part of 
Lemma 2 is from [Co], pages 338-340. □ 

Let us consider a boundary value problem for harmonic maps, 

Au+\Vu\2u = 0   xeB3 

(BD) '     ' , 
u(x) = uo(x) = x on dB . 

Lemma 4. For XQ G dB3, there exists a weak harmonic maps UQ to (BD) 
which is smooth in S3\{a:o}. Moreover, the UQ is stationary. 

Proof The existence of the weak harmonic map UQ, which is smooth 
B

3
\{XQ}, is due to Poon in [P]. It is straightful that the UQ is stationary 

since it is smooth inside B3 (see, e.g. [GSY]). □ 

Proposition 5. For e > 0, let U£ be a solution to (BDe) with UQIOB
3
 — x' 

The Ue weakly converges to the minimizing harmonic map A to (BD) in 

Hl2{B3,R3) a5s->0. 

Proof. Using (BD£), we have the following Pohozaev's identity for u = U£: 

(2.2) 
3 3 3 3 

/  _, \'U>Xj%i'U'Xi)xj :=   / v ^XjXj^i^Xi ~r / v ^XJ   *    / j uXjXiuXiXj 

3 3 

3 
2N2 = pEh(i-Ha)9]Xi-^(i-i«i2) 

i=l 
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Integrating both sides of the above equality gives 

\dUe 

IdB3 
(2.3)    U   \VW\2dx + U 

* JB3 * Jdl dn 

2 
da 

+IMi-m^=\Lv'u'?iT=i* 
where n is the exterior norm vector of <9i?3, Vr denote the differential of u 
on aS3. From (2.3), there exists a function V e Hl>2{B*,S2) with V = x 
on <9J33 such that Uei weakly converges in iir1'2(B3

5R
3) to a harmonic map 

V for Si —> 0 and 

/   |W|2d:r<liminf /   |V^|2dx<87r. 
JB

3 £i-+0 JB* 

Then from the Theorem in [BCL]; Theorem 7.1, we know that for all map 
u e tf1'2^3, S2) with u\dB3 = x, 

(2.4) /   |V7i|2^>87r 
JB* 

and A is the unique minimizing harmonic map from Hl>2{Bz,S2). There- 
fore we know that V must be the map T-T . Since this is true for any subse- 

quence si —► 0, U£i converges weakly to A in fi'1'2(B3,R3). □ 

Proof of Theorem A. Let UQ be a Poon's harmonic map in Lemma 4. 
Then we choose UQ to be a initial value to the problem (C). Then we know 
ui(x, t) = UQ(X) be a solution to the problem (C) which satisfying (*). 

Let us assume that u£(x,t) is a solution of (Qr). Then ue{x,t) satisfies 
an energy inequality; i.e. for any T > 0 and any s > 0, 

(2.5) /   /   \dtu
£\2dxdt+ [   \Vu£(',T)\2dx< [   \Vuo\2dx 

Jo JB3 JB3 JB3 

This is easily obatined by choosing a test function du£ in (C£:)(see [CS]). By 
Lemma 3, there exists a subsequence £& such that as k —> oo, u£k (x, t) weakly 
converges to u(x,t) in iJ1'2(JB

3,R3) for t > 0 where u(x,t) is a solution of 
heat flow (C) by Lemma 3 and u(x, t) = x on dBs. Prom (2.5), we have for 
any T > 0 

rp 

(2.6) limsup /"   f   \dtuek\2dxdt< [   |V«o|2 dx. 
fc->oo JO JB

3 JB
3 
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Then by the Fatou lemma, we know 

(2.7) /   liminf /   \dtu
£k\2 dxdt < [   |V^o|2^. 

Jo    k-*00 JB
3 JB

3 

Letting T —* oo in (2.7), we have 

(2.8) f    liminf/   \dtu
£k\2 dxdt <  [   |V^o|2^ 

Jo       k-*00  JB3 JB3 

From (2.8), there exists a subsequence U such that as U —> oo, 

lim 
U—>oo 

/*   liminf /   \dtu£k\2dxdt = 0 
Jti-l   k-+oo   JB3 

By Holder's inequality, energy inequality (2.5) and the above identity, we 
have 

(2.9) lim   / l   liminf /   \dtu
£k\ \Vu£k\dxdt = 0 

U-+°oJti_l   k-+oo   JB3 

On the other hand, using (Ce), we have the following Pohozaev's identity 
for u = u£k{x,t)\ 

3 3 3 3 

/ j \1Jjxj%i'Uxi)xj ~   /  v ^XjXj^i^Xi   i    /  v ^XJ   '     /   j ^Xj^i^XiXj 

3 3 

= Au^XiUvt + -J2 (^IVtxl2)^ - 5 |Vu|2 

3 
2=1 

=i5:h(i-H2)l(-4^(i-H2)2 
i=l 

3 3 

+2 iz (^IV^I2)„ - 2|v^12+^E^^- 
i=l t=l 

Integrating both sides of the above equality (Note u = i^ (x, t) ) gives 

(2.10) 

^ JB3 z JdB3 

du£k{',t) 

dn ^+/fl>^(1-i^(-.*)ia)s 

= ^ /     |VTue*(-,t*)|2dcr+   /"   ^^(.^J^x^C-,*)^ 
2 J9B3 JB3 

= 47r + y 3 ^iie*( •, t) ^ xittl* (•, t)dx 
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where n is the exterior norm vector of <9I?3, VT denote the differential of u 
on &B3. 

Next, we will prove the the heat flow (C) has at lest two different solu- 
tions by a contradicted method, i.e. assume the weak solutions of heat flow 
(C) are unique, i.e. u(x, t) = UQ (otherwise, weak solutions has at least two 
solutions). Letting £k —> 0 in (2.10), 

(2.11) 
/    \Vuo\2dx<limmf [   |Vue*(-,t)|2dx 

JB3 k->oo   JB3 

< STT + Climinf f   \dtu
£k \ \Vu£k \dx dt 

k-*00   JB3 

Intergrating (2.11) on [£; — l,ti], letting U —> oo and using (2.9) gives 

/    |V^o|2^<87r + C lim   /*   lim inf /    \dtu
£k\\Vu£k\dxdt 

(2.12)     JB
3 ti^ooJti-i k-*00 JB

3 

since UQ does not depends on t. 
From the Theorem in [BCL]; Theorem 7.1, we know that for all map 

u E Hl2{Bz, S2) with u\dBz = x, 

L \Vu\zdx>87r 
B3 

and A is the unique minimizing harmonic map from iJ1'2(B3,S'2), so we 
know that UQ must be the minimizing harmonic map A, this is contradicted 
by our initial condition. This means that the solution u(x,t) is different 
from ui(x,t) = uo(x) This proves that the problem (C) has two different 
solutions satisfying (*). Infinitely many solutions can be easily proven by 
the same steps in [Co]. □ 

From the proof of Theorem A, we have 

Corollary. Aussume that UQ : B3 —* S2 be a non-minimizing weak har- 
monic map with the boundary condition uo(x) = x on dB3. Choosing the 
UQ as a initial data to the problem (C), then the problem (C) has infinitely 
many weakly solutions. 

Remark. From the result in [P], there exists a non-minimizing weak 
harmonic u with the boundary condition u(x) = x on dB3 such that 
u e C^tB^xo}) for any XQ ± 0 e 53. 
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