
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 6, Number 4, 749-798, 1998 

Generalizations of the Bonatti-Langevin 
example of Anosov flow and their 

classification up to topological equivalence 

THIERRY BARBOT 

We give a complete classification of the Anosov flows on certain 3- 
manifolds up to topological equivalence. These manifolds are the 
orientable ones obtained by glueing the non-trivial circle bundle 
over the two-punctured protective plane along its two boundary 
components. We show in particular that most of these manifolds - 
those which are not circle bundles - admit a non R-covered Anosov 
flow transverse to a torus. These particular Anosov flows are nat- 
ural generalizations of the Bonatti-Langevin's example, and are 
obtained by Goodman's surgeries performed on this example. By 
the way, we get the first known examples of 3-manifold admitting 
at the same time R-covered and non R-covered Anosov flows. 

0. Introduction. 

We consider the problem of topological equivalence between Anosov flows 
(see the preliminaries for the definitions). How much does interfer the topo- 
logical properties of the ambient manifold on the dynamical properties of 
the flow? If we consider the analogous problem for diffeomorphisms, we get 
a good answer, which even work in higher dimensions. This is the theorem 
of J. Franks: every Anosov diffeomorphism whose stable foliation is of codi- 
mension one is topologically conjugate to a linear hyperbolic diffeomorphism 
of atoms ([11, 21]). 

But the problem for Anosov flows is deeply more intricate, even in dimen- 
sion 3. The incarnation of Frank's theorem in this context is the theorem of 
J.F. Plante: every Anosov flow whose weak stable foliation is of codimension 
one on a manifold whose fundamental group is solvable1 is topologically e- 

1This theorem can be improved (see [2]): it's enough to assume that the funda- 
mental group admit a normal abelian non-cyclic subgroup. It implies for example 
that a torus fibered bundle over a non-solvable manifold cannot support an Anosov 
flow of codimension one. 
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quivalent to the suspension of a linear hyperbolic diffeomorphism of a torus 
(see [23] and the remarks of [18] or of [2]). In another direction, E. Ghys 
showed that every Anosov flow on a circle bundle over a surface is topolog- 
ically equivalent, up to finite coverings, to the geodesic flow of a hyperbolic 
riemannian surface ([13]). His proof can be easily extended to Anosov flows 
on 3-manifolds whose fundamental groups have non-trivial center ([5]). 

All these (well-known) theorems are dealing with algebraic Anosov flows, 
i.e. roughly speaking, with left quotients by discrete subgroups of right ac- 
tions on Lie groups of one-parameter subgroups (see [27]). In a preceding 
work ([5], theorem C) we presented other examples of Anosov flows that are 
completely characterized by the topology of the ambient manifold, although 
they are not algebraic. These examples take place in the context of graph- 
manifolds (see [28, 29]), i.e. 3-manifolds decomposable along incompressible 
tori in seifert fibered spaces.The Anosov flows considered in this previous 
work did not admit transverse tori2. 

The purpose of the present paper is to extend these results to the case 
of Anosov flows on graphmanifolds admitting tranverse tori. A typical illus- 
tration of this phenomena is the example of C. Bonatti and R.Langevin (see 
[6]). Let's give a brief description of this flow: let E be the two-punctured 
real projective plane. Let N be the total space of the non-trivial circle bun- 
dle over E: it's an orientable 3-manifold containing two tori Ti and T2 in its 
boundary. On this manifold, C. Bonatti and R. Langevin have constructed 
an oriented foliation $0 of dimension one, transverse to the boundary and 
satisfying the following properties (cf. [6]): 

• $0 admits one and only one periodic leaf (i.e.  homeomorphic to the 
circle). We denote by #0 this leaf. 

• There are two vertical annuli As and Au embedded in N saturated by 
$0, whose intersection is exactly 9o, and such that the boundary of As 

(respectively Au) is contained in Ti (respectively T2). 

• All the leaves contained in As except 9o start from Ti and accumulate 
in the future on 0o- 

• All the leaves contained in Au except #0 meet T2 in the future and 
accumulate in the past on OQ. 

• All the leaves outside As and Au are going from Ti towards T2. 
2It was not an assumption of theorem C of [5], but the graphmanifolds considered 

in this theorem had the particularity that on some of them, there was no Anosov 
flow admitting transverse tori. 
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We call such a foliation a BL-foliation, or BL-local flow. By glueing Ti 
and T2, we obtain an oriented foliation on a closed graphmanifold. Taking 
any parametrization, we get what we will call a BL-flow. C. Bonatti and 
R. Langevin exhibited a glueing for which the BL-flow associated is Anosov. 
In this paper, starting from this example and using surgeries, we extend this 
result in the following way (section 5): 

Theorem A. Every oriented 3-manifold obtained by glueing N to itself 
along Ti and T2 and which is not a circle bundle is the ambient manifold of 
an Anosov BL-flow. 

All the oriented manifolds obtained by glueing Ti over T2, including the 
ones which are circle bundles, will be called BL-manifolds. The theorem 
A expresses the abundance of graphmanifolds, actually, most of the BL- 
manifolds, supporting Anosov flows transverse to a torus. In this paper, 
we give the complete classification of Anosov flows on BL-manifolds up to 
topological equivalence. 

In order to prove the theorem A, we will use Goodman's surgeries (cf 
[15]). In fact, the surgeries involved are not stricto sensu those written out 
in [15], because in Goodman's paper, the surgeries are presented as related 
to the choice of a periodic orbit of the Anosov flow. We will just remark here 
that, as it appears implicitly in [15], the periodic orbit is not the essential 
feature. The real starting point of the procedure is the choice of an annulus 
transverse to the flow, satisfying what we will call the basket's property. 
We will just stress in this introduction that every transverse annulus whose 
boundary is nowhere tangent to the weak foliations contains a subannulus 
satisfying these properties. As observed S. Goodman, transverse annuli of 
this kind are easily found in the neighborhood of a periodic orbit. But 
there is another way to produce transverse annuli: in our context, they are 
provided by the existence of a transverse torus, and most of the transverse 
annuli obtained by this way are not related to periodic orbits. In section 2, 
we give a brief description of this surgery along transverse annuli. 

The BL-manifolds not satisfying the hypothesis of theorem A are exactly 
the circle bundles over t/3, the non-orientable surface of genus 3. Thanks to 
Ghys's theorem noted above, all the Anosov flows on them are well-known 
(section 4): 

Proposition. Only one of the BL-manifolds which are circle bundles does 
support an Anosov flow: the unitary tangent bundle of U3. Every Anosov 
flow on this manifold is topologically equivalent to the geodesic flow of Us- 
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Some precision is needed: by "the geodesic flow of U^ we mean the 
geodesic flow of a hyperbolic metric on L/3, i.e. a metric of constant negative 
curvature. This notion is coherent up to topological equivalence, since all 
these geodesic flows are topologically equivalent one to the other (this is 
due to the connectivity of the Teichmiiller space). We assume from now 
that some hyperbolic metric on C/3 is fixed. The choice of this metric is 
innocuous. 

Eventually, the Handel-Thurston's methods 3 provide other examples of 
Anosov flows on BL-manifolds: these flows will be called Handel-Thurston's 
examples. They are obtained by a surgery along a periodic orbit of the 
geodesic flow which is over a simple closed geodesic of 11$ (see remark 2.6). 
If this surgery is non-trivial, the ambient manifold is no more a circle bundle. 
Therefore it verifies the hypothesis of theorem A: 

Corollary. There is an infinite family of BL-manifolds such that each of 
them admits at least two Anosov flows, not topologically equivalent one to the 
other: one which is a Handel-Thurston example, and the other a BL-flow. 

An Anosov flow is said R-covered if the lifting in the universal covering 
of one of its weak foliations is topologically conjugate to the foliation of 
R3 by horizontal planes R2 x {*}. According to [5] a R-covered Anosov 
flow cannot be transverse to a transverse torus, unless it is a suspension. 
On the other hand, as it is proved in [5], all the Handel-Thurston examples 
are R-covered. Thus, the corollary provides the first known examples of 3- 
manifolds admitting at the same time R-covered and non R-covered Anosov 
flows. 

At this step, we completely understood what are the BL-manifolds sup- 
porting Anosov flows. We are left with the problem of the classification of 
the Anosov flows up to topological equivalence on each of them. We will 
prove that the list above exhausts all the possibilities: 

Theorem B. Let M be a BL-manifold. 

(1) If M is a circle bundle, then it supports an Anosov flow if and only if 
it's diffeomorphic to the unitary fibered tangent space of the surface C/3. 
In this last case, every Anosov flow on M is topologically equivalent 
to the geodesic flow of Us. 

3 Which is nothing but a particular application of Goodman's surgery. The paper 
[15] is in fact directly inspired by the construction of Handel-Thurston [16]. 
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(2) If M is not a circle bundle, then it admits at least one non H-covered 
Anosov flow. All the non H-covered Anosov flow on M are BL-flows 
and are topologically equivalent one to the other. 

(3) // M is not a circle bundle, the H-covered Anosov flows on M, if 
they exist, are all topologically equivalent to an example of Handel- 
Thurston. 

Furthermore, all these Anosov flows are topologically equivalent to volume 
preserving flows. 

The first point of theorem B is exactly the proposition above. The third 
point is proved at section 4. Note the anecdotic fact that the ambient mani- 
fold of the Bonatti-Langevin's example is not one of the manifolds satisfying 
the third point of theorem B. Note also that the BL-manifolds admitting 
examples of Handel-Thurston are easily characterized. Unfortunately, there 
is no elegant or concise criterion distinguishing them from the others. 

The second point of theorem B is proved at the section 9. It's certainly 
the most original result of this paper. Its proof can be sum up as follow: 
we first show that every non R-covered Anosov flow on a BL-manifold is 
transverse to a torus (theorem 7.3). We denote by T this transverse torus. 
Cutting along T, we obtain an oriented one-dimensional foliation $i on N. 
The weak foliations of the flow give rise in N to two foliations of codimen- 
sion one, transverse one to the other and transverse to the boundary. The 
intersection of this two foliations is exactly $i. Studying these foliations, we 
prove that $i is a BL-foliation (proposition 8.5). In particular, $i preserves 
two vertical annuli As and Au. Since the topology of the BL-manifold M 
is quite simple, the triple (T, AS,AU) does not depend up to isotopy to the 
initial Anosov flow: if we fix two non R-covered Anosov flows on M, we 
can always assume after isotopy that they are associated to the same triple. 
Thus, to show that they are topologically equivalent is equivalent to show 
that (T, As, Au) characterizes the Anosov flow up to topological equivalence. 
This plan is fulfilled at section 9 in the following manner: we associate to 
(T, As, Au) a combinatorial dynamical system which encodes the itineraries 
of the orbits of the flow whose intersection with T is infinite. Its definition 
looks like the definition of the Bernouilli system associated to a Markov 
partition (see [7]). The crucial point is that this combinatorial dynamical 
system can be defined only using the topological properties of M, indepen- 
dently of the flow. We then conclude by checking that the knowledge of the 
restriction of the Anosov flow to the set of the orbits meeting an infinite 
number of time the torus T is enough for recovering the whole Anosov flow. 
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I would like to thank J.M. Lion and C. Bonatti for stimulating conver- 
sations. The idea of this paper emerged when C. Bonatti reported me a 
lecture of P. Foulon dealing with the interpretation of Goodman's surgery- 
reproduced at section 2 of the present paper. 

1. Preliminaries. 

Let M be a closed orientable 3-manifold. Let <£>* be a flow on M gen- 
erated by a vector field of class Cr (r > 1). We denote by $ the oriented 
foliation whose leaves are the orbits of $*. Two flows are topologically equiv- 
alent if the corresponding oriented foliations are topologically conjugate. 
The flow $* is Anosov if there is a continuous decomposition of the tangent 
bundle TM as a Whitney sum TM = E0 ® Es 0 Eu of £>$' invariant one 
dimensional subbundles and there are constants fiQ > 1, /xi > 0 so that: 

(i) E0 is tangent to the flow, 

(ii)   D&(y) < fioe-^ v for any v G Es, t > 0, 

(hi)   DQ-^v) < /ioe"M1* v for any v eEu
1t>0. 

The line fields Es and Eu are in general only continuous, but they are 
always uniquely integrable. They define two one-dimensional foliations J738 

and JFUW called the strong stable and strong unstable foliations of the flow. 
Furthermore, the plane fields E0 © Es and E0 © Eu are also integrable, 
producing foliations J78, Tu of codimension one which are the weak stable 
and weak unstable foliations of the flow (for all these results see [1]). The 
foliation $ is the intersection of Ts and ^ru. We can derive from this that 
the Anosov property is a property of the foliation. In other words, if one 
parametrization of $ is an Anosov flow, then all the other parametrizations 
are Anosov flows too ([14]). An important property of Anosov flows is the 
structural stability: any flow of class C1 on M C1-near of $* is still Anosov, 
and topologically equivalent to $* ([1]). From this fact arise few comments: 

- this shows the naturality of the problem of the classification of Anosov 
flows up to topological equivalence, 

- since we are only concerned by the Anosov flows up to topological e- 
quivalence, by taking a smooth approximation we can always assume 
that the flow is smooth, 

- finally, it implies that the flow preserves many differentiable structures 
on the topological manifold M, and none of them is a priori better 
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than the others. In this sense, Anosov flows are topological objects. 
Once more, this justify the concern of relating them with the topology 
of the ambient manifold. 

When the Anosov flow is smooth, and we can always assume it thanks 
to the remark above, the weak foliations are of class C1 ([17]). The leaves of 
these foliations are either topological planes, annuli or Mobius bands. The 
last two correspond exactly to leaves containing closed orbits of $. There 
is at most one closed orbit in a leaf of Ts in which case all other orbits 
are forward asymptotic to it. Similarly for Tu. Both weak foliations are 
Reebless, so Novikov's theorem implies that none of them admits a closed 
transversal null homotopic. Also, no closed orbit of $ has a null homotopic 
power. 

The flow is topologically transitive if the non-wandering set is the whole 
manifold [25]. Equivalently, the periodic orbits form a dense subset of M, or 
there is a dense orbit, or every leaf of the weak foliations is dense [1, 22, 25]. 

Let TT : M —> M be the universal covering of M. The foliations^ J*755, 
jruu ? jrs^ jru and $ lift to f0liations fi* j fiuu ^ jrs ^ fu and £ in M   We 

denote by $* the lifting of <£>*. The foliation T8 is a foliation by planes, so 
M is homeomorphic to R3. Let Q^ be the orbit space of <fr obtained by 
collapsing flow lines to points, and TT^ the projection map. This quotient 
is Hausdorff and hence homeomorphic to R2 [3]. We call it abusively the 
orbit space of $*. The map TT^ is a trivial fibration. The foliations J73 

and Tu induce two foliations in Q® by lines transverse one to the other. 
We denote them by Qs and Qu respectively. Remark that each leaf of Qs 

intersects each leaf of Qu on at most one point. 
Let F be the fundamental group of M. Its action on M by covering 

translations induces an action on Q® which preserves the two foliations Qs 

and Qu. This action contains all the information about the flow. More 
precisely [3]: 

Theorem 1.1. Two Anosov flows are topologically equivalent, or one is 
topologically equivalent to the inverse of the other, if and only if there is 
an homeomorphism between their orbit spaces equivariant for the respective 
actions of the fundamental groups. 

This action is effective. Each non trivial element 7 of F is C1 -linearisable 
in the neighborhood of each of its fixed points. Note that since we assume 
M oriented, the orbit space is naturally oriented, and this orientation is 
preserved by the F-action. 
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Let Qs be the quotient of M by the relation "being on the same leaf 
of F8". We call it the stable leaf space of the flow. This is a connected, 
simply-connected one dimensional manifold but in general non Hausdorff. 
Similarly, we define the unstable leaf space of the flow Qu. We denote by 
7rs and 7ru the quotient maps. There are natural maps ps : Q® —► Qs and 
pu : Q® —> Qu. The action of F on M induces an action on each leaf space. 
The properties of the weak foliations incarnate in the properties of these 
actions in the following manner: 

- these actions are effective, 

- the isotropy group of an element of Qs is trivial or cyclic, 

- near a fixed point, a non trivial element of 7 is a contraction or a di- 
latation. 

Since they are simply-connected, the leaf spaces are orientable. Note that 
since the orbit space is oriented, an orientation on one leaf space induces 
an orientation on the other leaf space, and an element of F which reverses 
the orientation of one leaf space reverses the orientation of the other. We 
assume from now that such an orientation has been fixed. 

If one of the leaf spaces is Hausdorff, then the other is Hausdorff too 
(cf. [3]). Such an Anosov flow is said H-covered. We remind the reader of 
some properties of the R-covered Anosov flows non topologically equivalent 
to supensions [3]: 

- each leaf space is homeomorphic to R, 

- such a flow is topologically equivalent to its inverse, 

- there is no embedding of the torus in M transverse to the flow, 

- the flow is topologically transitive, 

- on each leaf space, there is an homeomorphism r without fixed points 
and commuting with every orientation preserving element of F. More- 
over, for each non trivial orientation preserving element 7 of F, the set 
of the 7-fixed points is empty or is the union of two r-orbits. Finally, 
if 7 orientation reversing, then r o 7 = 7 o r-1. 

In any case, the orbit space Q^ embeds naturally in the product Qs x Qu 

of the leaf spaces: the map which associates to an orbit the leaves of T3 and 
^Fu containing it is an homeomorphism on its image commuting with the 
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actions of the fundamental group (the natural action of F on the product is 
the diagonal one). We will sometimes identify abusively an element of Q® 
with its image by this map. We call Markov rectangle a closed subset of Q® 
image by this map of the product Is x Iu of two intervals of Qs and Qu. 

For each element x of Q$, we denote by s(x) (respectively u(x)) the leaf 
of Qs (respectively of Qu) containing x. The orientation of Qu induces an 
orientation, hence, an order on s(x). We denote by 5+(x) the connected 
component of s(x) \ {x} formed by the elements greater than x, and s~~(x) 
the other connected component. Similarly we define u+(x) and u~(x). Let 
S+(x) be the connected component of Q®\s(x) containing u+(x), and S-(x) 
the other one. We define analogously C/+(x) and U-{x). For each element 
s = s(x) of Qs, we denote by 5+ and s- the images by ps of 5+(x) and 
S-{x). There are the connected components of Q® \ {s}. Similarly, we 
denote by u+ and u- the connected components of the complement of an 
element u of Qu. Finally, to each element x of Q® we associate the following 
four open subsets (we denote by Satgs (^(x)) the saturation of ^(x) by 
Qs)' 

£++(x) = Satgs (u+(x)) H Satgu (5+(x)) 

£+-(z) = Satgs (it+(x)) fl Satgu (5"(x)) 

C+ix) = Satgs {u~{x)) fl Satgu (s+(x)) 

C     (x) — Satgs {u~{x)) fl Satgu (s~(x)) 

An open subset £ of Q^ is a lozenge if there are two elements x and y 
of Q* such that £ = £++(x) = £—(2/) or £ = C^-{x) = C-+(y). The 
pair (x, y) is then unique. If an element 7 fixes globally the lozenge, then 
£ is a ^-lozenge. This useful notion of lozenge has been introduced by S. 
Fenley [10]. As noticed in [4], these lozenges correspond in a nice way to 
annuli embedded in M, transverse to the flow except at their boundary 
which is the union of two periodic orbits. In a general way, let S be an 
incompressible surface S embedded in M, whose boundary is tangent to the 
flow and whose interior is transverse to the flow. The universal covering S 
of S embeds naturally in M as a lifting of S. We define the shadow of S as 
the image of S by TT^. It's well-defined up to the action of F on Q®. We are 
interested by this notion because of the following phenomenon, illustrated 
in [4]: roughly speaking, the problem of finding a surface isotopic to S and 
in "good" position with respect to $* is intimately related to the problem of 
finding a "good" subset of Q® preserved by the subgroup of F corresponding 
to the fundamental group of S. This "good" subset can be viewed as the 
shadow of the "good" position of S. We will use this principle in order to 
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exhibit transverse tori. In our case, the shadow of the transverse torus will 
be the support of a s-sequence (or u-sequence) of lozenges: a sequence of 
lozenges Cn indexed by Z is a s-sequence of lozenges if there is a sequence 
(xi) of elements of Q® so that for all integer p: 

Ctp-i = £++(£2p) = C~(x2p-l) 

£2p = C+-(x2P+i) = £~+(x2p) 

The union of this lozenges with the s+(x2p) and the s-fap+i) is an open 
subset of Q®. We call it the support of the s-sequence. 

A sequence Cn is a u-sequence of lozenges if there is a sequence (y*) of 
elements of Q® so that for all integer p: 

^2P-I = ^
++

(»2P) = ^—(I/2P«I) 

Ap = £+~(y2p) = c-+(y2P+i) 

The union of this lozenges with the u+(y2P) and the u-fap+i) is an open 
subset of Q® called the support of the ^-sequence. In the figure 1 we give a 
partial picture of a s-sequence and of a ^-sequence with the same support. 

Figure 1: Partial view of the common support of a s-sequence 
and a -u-sequence. 

Another nice feature involving lozenges is the following result (see [10]): 
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Proposition 1.2. Let x and y be two different fixed points in Q^ of a non 
trivial element 7 ofT.  Then, there is sequence of points 

xi = X,X2,... ,Xk = y 

such that, for every index i, the points xi and Xi+i are the two vertices of a 
^-lozenge. This sequence is unique if we impose that the lozenges involved 
are pairwise disjoints. 

The unique sequence of lozenges appearing in the proposition above is 
called the sequence of lozenges joining x and y. 

We achieve this section by generalities and notations in the context of 
connected simply-connected non-Hausdorff one dimensional manifolds. All 
the notions involved are very similar to the notions appearing in the study 
of the automorphisms of R-trees (cf. [26, 19]). 

Let Q be such a manifold. We fix an orientation on it. If two elements 
x and y of Q are not separated by the topology of Q, we write x & y. Such 
elements are called branching points. An (open) interval of Q is the image 
of a local homeomorphism from R into Q. Two elements x and y of Q are 
said comparable if they belong to the same interval. In this case, we denote 
by]x, yf the set of the elements of Q which disconnect x from y\ it's an 
open interval. We denote by [x, y] the union of ]x, y[ with {re, y}. Note that 
in general [x, y] is not closed. The orientation of Q induce an orientation 
on each open interval, hence, an order between comparable elements. We 
denote by -< this order. For each element x of Q, we denote by x_|_ the 
connected component containing the elements -<-bigger than rr, and X- the 
other connected component. 

More generally, for every pair (x, y) of elements of Q, we denote by 
]x,t/[ the set of the elements of Q which disconnect x and y. The union 
]a;,y[U{a;, y} is noted [x,i/]. If x and y are comparable, this coincide with 
the previous definition. If not, the set [x,y] is a finite union of "closed" 
intervals [xi^yi] such that yi & Xi+i. 

Let 7 : Q —» Q be a homeomorphism. We assume 7 to be orientation 
preserving. We denote by Fix{^) the set of the 7-fixed points. Let Fix^^) 
be the set of the elements x of Q such that 7(2;) « x: it's a closed subset 
containing the closure of Fix{^). Its elements are called quasi-fixed points. 
We say that 7 separates the points of Q if Fix™^) is empty. In this case, 
we define the fundamental axis 0/7 as follows: it is the set of points x such 
that 7(2;+) contains x+, or is contained in x+. 

Proposition.  [2, 5]  The fundamental axis of a homeomorphism 7 sepa- 
rating the points of Q is non empty.   It is an open interval, or an union 
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of closed intervals [xi,yi] indexed by Z such that for all integer i we have 
yi « xi+i. In the last case, there is an integer k such that for each integer i, 
the image of Xi and yi by 7 are respectively Xi+k and yi+k - The fundamental 
axis is preserved by every homeomorphism 7' of Q commuting with 7, or 
conjugating 7 with its inverse. 

We can deduce from this proposition that for every orientation preserving 
homeomorphism 7 of Q and for each non trivial integer n, 7 separates the 
points of Q if and only if 7n does. 

We will need the following proposition: 

Proposition 1.3. Let 71 and 72 be two homeomorphisms ofQ. We assume 
that each of them admits fixed points in Q, and that they commute. Then, 
there is a fixed point of one of them which is a quasi-fixed point of the other. 

Proof. If one of the homeomorphism reverses the orientation, let's say 71, 
then the proposition is obvious since this homeomorphism should admit a 
unique fixed point, and the other homeomorphism 72 should then preserve 
this unique fixed point. Thus, we assume that they are both orientation 
preserving. Let U be the complement in Q of Fix^i^i). It's an open subset 
of Q which is preserved by 71 and 72. If 72 admits no fixed point in £/", 
then it admits some fixed point in Fix^^i) and we are done. Therefore, we 
assume that some element X2 of U is fixed by 72. Let U2 be the connected 
component of U containing X2: it's globally preserved by 72. 

Assume that U2 is not 71-invariant. Then, 71C/2 is another connected 
component of U disjoint from U2. For each element x of the frontier <9[/2, 
let xc be the connected component of Q \ {x} containing U2. Then, U2 is 
exactly the intersection of the xc where x describes all dU2. Moreover, Q is 
the union of U2 and of the Q\xc. Let x be the unique element of dU2 such 
that xc contains 71 [/2- Then, x is fixed by 72. On the other hand, it belongs 
to dU2 which is contained in Fix^f^fi). □ 

The following proposition works in the context of leaf spaces of Anosov 
flows. Its analog in the general case is no more true (cf. [10, 4]): 

Proposition 1.4. Let Q be a leaf space associated to an Anosov flow, and 
7 a non trivial element of the fundamental group of the ambient manifold. 
We assume that the action 0/7 on Q is orientation preserving. Let n be a 
non-trivial integer. Then, every fixed point of the action of 7n on Q is a 
fixed point of the action 0/7 on Q. 
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Figure 2: The natural orientation on A 

2. Surgeries on Anosov flows. 

Let A be an open annulus embedded in M and transverse to an Anosov 
flow $*. Then the weak foliations J78 and J771 are transverse to A and define 
on it two foliations gs and gu of dimension one and transverse one to the 
other. Let AQ be a closed sub-annulus of A. We denote by g^ and QQ the 
restrictions of gs and gu to AQ. We assume that they satisfy the following 
property, that we call the basket's property: 

Each leaf of QQ or QQ is a closed path joining the two boundary components 
ofAo. 

We claim that such a bifoliation induces a natural orientation of A: ci 
and C2 be the two boundary components of AQ. We fix one of them, say ci. 
Then, we parametrise QQ and g^ in such a way that each leaf for these 
orientations goes from ci towards C2. This defines a basis (U®, S®) over each 
point x of AQ, where U® and S® are respectively tangents to <7Q and QQ, and 
thus an orientation of AQ C A. If we exchange ci and C2, we inverse both 
parametrisations: the orientation is thus not modified. 

Let (p : AQ —> AQ be a diffeomorphism which is the identity near OAQ. Its 
isotopy class modulo OAQ is a Dehn twist: since we have fixed an orientation, 
it's uniquely defined by an integer n. We blow up M along AQ: we obtain a 
manifold with corner M* whose boundary is the union of two copies Ai and 
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A2 of AQ sharing the same boundary. The flow $* corresponds to a local 
flow $* on M* transverse to Ai and A2. We choose the notations such that 
<&* is pointing outward M* through Ai and inward M* through A2. 

Then, we glue back Ai over A2 by y, i.e. we identify each point of 
Ai « A with its image by y? in A2 « A. We obtain a new manifold equipped 
with an oriented foliation. Since the topology of the new manifold only 
depends on the integer n, we will denote it by Mn. We call n-surgeries 
these operations of blowing up and glueing back by a diffeomorphism whose 
isotopy class corresponds to n. The proof of the following theorem can be 
easily extracted from [15]: 

Theorem 2.1. For all positive integer n there is a n-surgery leading to a 
foliation which is topologically conjugate to the foliation generated by an 
Anosov flow. 

We will not reproduce here the proof of this theorem which is made in 
[15]. We will just indicate how the positivity condition of the integer n 
appears in the proof. 

Let AQ be the annulus embedded in Mn corresponding to Ai and A2. 
Let x be an element of AQ contained in a closed periodic leaf of $n. Clearly, 
if $n is supposed to be the foliation generated by an Anosov flow, the first 
return map along $n on the section AQ has to be hyperbolic at the point x. 
We will show why it is true when n is positive. For the sake of simplicity, 
we will assume that the periodic orbit through x meets AQ only at x. 

First of all, we have to make a suitable choice of the glueing map (p. We 
define a parametrization p : S1 x [0, 27r] —> AQ adapted to this purpose. We 
fix some parametrization / : S1 —> C2 preserving the orientations. Here, the 
orientation of C2 is the induced one by by the orientation of AQ. Namely, 
if v is a vector over /(#) pointing inside AQ, then (DQf(dQ),v) must be a 
direct basis of T^^ A. Since gg and #0 are transverse one to the other, and 
according to the orientations we have chosen, there is an open neighborhood 
V of C2 in AQ and a positive real eo such that, for each pair 6 < 6' of elements 
2eo-near of R, the leaves go(f(eie)) and <7o(/(e^ )) admit an unique point of 
intersection in V. Therefore, we can define the map p : S1 x [0, eo] —► V which 
associates to (e**, e) the intersection in V of ^(/(e^^6))) and g%(/(e^-*))). 
Rescaling the second factor, and replacing AQ by the image of this map we 
obtain the desired parametrization of AQ. Remark that this map is C1 since 
this is the class of differentiability of the foliations. The pull-back foliations 
P*(<7o) and P*G?o) are generated by the vector fields Xdg + dy and —Xde + <9y, 
respectively, where A is the scalar |^.   Let / be an increasing map from 
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[0,27r] onto [0,1]. Then, we define: 

Note that this map is as desired isotopically the Dehn twist of power n 
relatively to the orientation we have chosen. So, the differential of <£ at the 
point x is expressed in the basis (9^, dy) by the matrix: 

1   nf{y) 
0        1 

On the other hand, the first return map on A along <!>*, where it is 
defined, preserves the foliations gs and gu, contracting the first and dilating 
the second. Hence there are two real numbers IJL

U
 and /xs of absolute values 

greater than one such that the differential of this first return map multiplies 
\de + dy and — Xdg + dy by respectively //* and ^-. Note that since M is 
oriented, the two eigenvalues /xw and /xs are of the same sign. 

Since the first return map at x along $n is the composition of the two 
maps above, its differential at x is given by the matrix: 

Since /'(y) is never negative, this matrix is hyperbolic when n is positive. 
It is not necessarily true when n is negative with big absolute value. 

Remark 2.2. In the construction above, since the annulus A is transverse 
to the flow, it is transverse to the inverse $"* too. At first glance, one might 
think that the positivity condition can be dropped out just by reversing 
the flow, because it corresponds to inverse the glueing map. But this is 
not correct, since when we reverse the flow, we exchange the foliations gs 

and gu, and therefore we reverse the orientation on the annulus. Hence, if 
the glueing map is "negative" relatively to $* its inverse is still "negative" 
relatively to the inverse of the flow. 

Remark 2.3. The surgery above is traditionally used by taking a transverse 
annulus in the neighborhood of a periodic orbit of the flow. In this paper, 
we will use it in another situation: assume that we know the existence of 
a torus T embedded in M transversely to the Anosov flow. Then, F3 and 
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Tu induces on T two foliations that we denote by gs and gu. We assume 
that these two foliations are without (bidimensional) Reeb components. Let 
V the set of primitive elements of jffi(T), i.e. those which are represented 
by closed simple curves in T. 

Lemma 2.4. Each element ofV can be represented by a closed simple curve 
simultaneously transverse to gs and gu. 

Proof. Let 7 an element of V. Assume first that 7 can be represented by 
some closed leaf g® of one of the two foliations, for example of gs. Then, #0 
is transverse to gu. Since the holonomy of gs along go is hyperbolic, we can 
isotop slightly go to some closed simple curve transverse to ps, and which is 
still transverse to gu. Thus, we are done in this case. 

Hence we can assume that no closed leaf of gs or of gu represents 7. Since 
gs is without Reeb component, there is a closed simple curve c transverse to 
gs whose homology class is 7. We can take such a curve c in generic position 
with respect to gu, i.e. satisfying the following three properties: 

(1) the number of points of tangency between c and gu is finite, 

(2) near point such a point of tangency between c and a leaf g of gu, the 
leaf g remains locally on the same side of c, 

(3) each leaf of gu contains at most one point of tangency with c. 

Figure 3: Surrounding a tangency. 
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Figure 4: Trace of c in 71. 

Denote by A the annulus obtained by cuting T along c. The foliation 
gs induces on A a foliation /s transverse to the boundary. Since no closed 
leaf of gs is homologous to c, the foliation /s has no periodic leaf. This 
implies that each leaf of /s is a path joining the two boundaries components 
of dA. In other words, they are the fibers of some fibration of A over S1. 
The foliation gu induces another "foliation" ju which is tangent to dA at a 
finite number of points. Consider one point of tangency of c with gu. 

There is a boundary component c\ of dA which is tangent to gu at some 
point x, and an interval / =]a;i, x^ in c\ containing x such that the holonomy 
along ju defines a map from / onto /, fixing x and exchanging the intervals 
]a;i, x\ and [aj, 0:2 [. The image by this application of each element y ^ x oil 
is the unique element y' of I\ {y} belonging to the leaf fy of fu through y. 

Take a maximal interval satisfying this property. Then the extremities 
xi and X2 belong to the same leaf of fu. There are only two possibilities 
(see figure 3): 

(1) either this common leaf is tangent at some point to the other boundary 
component C2 of A, 

(2) either this common leaf is tangent at ci at xi or at X2. 

Note that according to the generic property (3), these two cases are disjoint, 
and in the second case the common leaf is transverse to ci at xi or £2. 
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Figure 5: Reeb components of fu. 

We show now that isotoping c we can delete one by one every occurence 
of the second case. Consider this case. We assume that the extremities 
where ci is tangent to fu is xi. We denote by fo the /Meaf containing xi 
and X2. 

By pushing fo CT along the leaves of /s we obtain an embedding 

ft:[-l,l]x[-l,l]->T 

such that: 

- it maps [— ^, ^] x {0} onto /o, 

- it maps each vertical {£} x [—1,1] into a leaf of g5, 

- it maps each horizontal [—1,1] x {t} into a leaf of gu. 

The preimage of c by TZ is formed by two paths c^ and c7/ (see the figure 4). 
Then, let c7 be the graph of an increasing function from [—1,1] into 

[—1,1] which coincides with c^ U c" near the vertical boundaries of [—1,1] x 
[—1,1]. The image TZ(cf) meets c along two intervals. Let c" the connected 
component of the complement of these intervals in c which doesn't contain 
x: we check easily that cff U ^(c7) is a closed curve isotopic to c, transverse 
to /s, and which has less points of tangency with fu than c. 

Iterating this process we are led to situation where only the first case 
can occur, i.e. the case where every point of tangency between fu and ci is 
contained in a "Reeb component" of fu (see figure 5). 
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Figure 6: Transverse annuli in the neighborhood of a periodic orbit. 

The composition of these "Reeb components" forms in T Reeb compo- 
nents of gu - but we have excluded Reeb components in our hypothesis. 
Thus, the elimination of all the points of tangency of the first kind gives as 
wanted a representative of 7 transverse to both foliations. □ 

According to the previous lemma, to each element 7 of V we can associate 
a closed transversal to both foliations. A suitable tubular neighborhood of 
this transverse curve will be an annulus satisfying the basket's property 
defined above, which enables to perform n-surgery. This surgery may be 
considered as follows: we cut M along T, and we glue back the two toral 
boundary components by a Dehn twist along 7. Of course, the positivity 
condition prevents us from performing every Dehn twist, except if, as we 
will see in the following remark 2.5, 7 can be represent at ed by a closed leaf 
of gs or gu. 

We illustrate all this discussion in the context of suspensions. For every 
element of GL(2, Z), let $^ be the suspension of the linear action of A on 
the torus. This is a flow which is Anosov if and only if A is hyperbolic, i.e. 
if and only if the absolute value of the trace of A is greater than 2. Every 
global section of this flow is a torus on which we can perform the previous 
surgery (the traces of the weak foliations on this torus are without closed 
leaf: in particular, they have no Reeb's components). These surgeries don't 
affect the existence of global sections, therefore all the Anosov flows obtained 
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by this way are topologically equivalent to suspensions <&^/ of elements of 
GI/(2, Z) (here we use Frank's theorem, cf. introduction). The positivity 
condition of Goodman's theorem translates in the following manner: 

Fact.   The traces of the matrix A! obtained by n-surgery from A are of 
absolute values greater than the the absolute value of the trace of A. 

Remark 2.5. We discuss here the classical presentation of the Goodman's 
surgery, which is usually related to the choice of some periodic orbit. Let 9Q 

be a periodic orbit of $*. There is some tubular neighborhood W in which 
the flow is CMinearisable. In other words, there is a diffeomorphism FQ be- 
tween W and Wg realizing a topological equivalence between the restriction 
of $ on W and the restriction of $5 on WB, where B is a hyperbolic diago- 
nal matrix, $5 the flow suspension of the action of B on R2, 9B the unique 
periodic orbit of $5, and WB a tubular neighborhood of OB- The existence 
of such a linearization comes from the existence of the weak foliations. By 
the way, we have a good picture of the flow near #0 (see figure 6). 

We denote by TQ and J7^ the traces on W of the weak foliations. Note 
that since M is oriented, the tubular neighborhood W is always a solid torus. 
In W we can find many transverse annuli satisfying the basket's property. 
Let's assume for a moment that we are in the case where both eigenvalues 
of B are positive. Then, we can distinguish four types of transverse annuli, 
corresponding to the four "quadrants", i.e. the four connected components 
of the complement in W of the two annuli in W contained in the leaves 
of TQ and TQ through 9Q. We choose representatives Ai, A2^ As and A4 
of these four types. We choose the indexation such that Ai and A3 are in 
opposite quadrants. Then, A2 and A4 are in opposite quadrants too. Note 
that on dW we have a particular oriented simple curve I homotopic to #0 
in W: one of the two connected components of the trace of the .T-Q-leaf 
containig 9Q. We fix some oriented meridian m: it is a closed simple curve 
in dW homotopically trivial in W. To each integer n, we thus can define the 
topological manifold Mn obtained by performing the (usual) Dehn surgery, 
which identifies to points some curves in dW homologous to [m] + n[Z]. Now, 
we remark that every annulus A^ since they satisfy the basket's property, 
is naturally oriented, and defines an orientation of dW. It is remarkable 
that the orientations defined by Ai and As are the same, and are opposite 
to the orientations defined by A2 and A4. Therefore, and up to a cyclic 
permutation of the indexation of the annuli, for each positive integer n, 
the ambient manifold of the Anosov flows obtained by n-Goodman-surgery 
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along Ai and As is homeomorphic to Mn, and the ambient manifold of the 
flows obtained by n-Goodman-surgery along A2 and A4 is homeomorphic to 
M_n. In other words, every manifold Mn, where n is a positive or negative 
integer, admits an Anosov flow. 

It may occur that the eigenvalues of B are negative. In this case, the 
weak leaves through #0 are Mobius bands. We have then only two quadrants, 
and therefore, only two types of transverse annuli. Moreover, the trace of 
the pQ-leai through #0 is no more homotopic in W to #0, but to the double 
of OQ . We have to define the longitude [I] as the half of the homology class 
defined by this trace. We define in this context Mn as the manifold obtained 
by collapsing some fibers of a fibration on dW where the homology class 
represented by the fibers is 2([m] + n[l]). Performing n-Goodman-Dehn 
surgery, we obtain Anosov flows on Mn. If n is positive, this surgery has to 
be performed along Ai, and if n is negative, it has to be performed on the 
other annulus A2. 

In conclusion, the very pleasant feature of Goodman's surgery applied in 
the neighborhood of periodic orbits is that the positivity condition vanishes: 
it can be by-passed just by considering the good annulus. 

Remark 2.6. Let E a hyperbolic riemannian surface. This surface may be 
non-orientable. Recall that hyperbolic means that the metric is of constant 
curvature —1. We denote by $Q the geodesic flow associated to S. We 
could start with some finite covering of this flow, but it is useless for our 
purpose. This flow is Anosov and its ambient manifold MQ is the unitary 
tangent bundle of S. Consider a closed simple geodesic c of S. We will 
assume here that c is bicollared, i.e. that its tubular neighborhoods are not 
Mobius bands. A similar construction is possible when c is not bicollared, 
but we will not need it for the present work. Let T be the torus embedded 
in MQ formed by the unitary vectors over c. It contains two periodic orbits 

91 and 62 of <I>o> and outside these periodic orbits, it is transverse to the 
flow. The complement in T of the periodic orbits is formed by two annuli 
A® and A®. The weak foliations of $0 are transverse to the fibers of the 
fibration MQ —> S. Thus, they are suspensions of some actions of 7ri(S) on 
S1, which are projective actions. Hence the analog is true for the traces 
of the weak foliations on T. We deduce that every annular component A^ 
of T outside the periodic orbits satisfies the basket's property. Applying 
Goodman-Dehn surgery to these annuli we obtain the so-called examples 
of Handel-Thurston. These surgeries may be viewed as follows: there is an 
element [I] of Hi (T) well-defined up to the sign represented by any periodic 
orbit 9i.  The surgery corresponds them to cutting the manifold along T, 
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and glueing back by a Dehn twist along [I]: it is the presentation in [16]. 

The positivity condition of Goodman's theorem shows that only half 
of the Dehn twists on T along [I] are allowable. In fact, this operation is 
equivalent to a Goodman's surgery along a periodic orbit as described in the 
preceding remark, where the periodic orbit is one of the #;. The two annular 
components A® and A® which are adjacent to 0* in T correspond, if we take 
the notations of remark 2.5, to two annuli Ai and Ai+2 in opposite quadrants. 
Here is the explanation of the persistence of the positivity condition. But it 
can be by-passed, just by taking one of other two transverse annuli, let say, 
Ai+i. Isotoping T we can assume that this annulus is contained in T. We 
recover in this way the missing Dehn twists along [l]. We obtain: 

Proposition 2.7. Every manifold obtained from MQ by cutting along T and 
glueing back by a Dehn twist along [Z] admits an Anosov flow. 

One half of these Anosov flows, those which are obtained by choosing 
the annulus of surgery contained in T, are the examples of Handel-Thurston. 
We will extend this denomination to every Anosov flow obtained by Dehn- 
Goodman surgeries in the sense of remark 2.5 along periodic orbits over 
disjoint simple closed geodesies o/E. All these Anosov flows are supported 
by graphmanifolds (remember that a graphmanifold is obtained by glueing 
seifert spaces along tori). 

All of them are R-covered ([5], theorem B). 

Remark 2.8. The n-surgeries preserves the property of preservation of a 
volume. In other words, any Goodman's surgery on an Anosov flow pre- 
serving a volume form leads to another Anosov flow which still preserves a 
volume form. It comes from the fact that every Dehn twist isotopy class ad- 
mits representants preserving some volume on the annulus. As a corollary, 
the Handel-thurston's examples are volume preserving. 

3. Description of the BL-manifolds . 

Let p : N —> S be the non trivial fibration by circles over twice punctured 
projective plane. Let T\ and T^ be the two boundary components of dN. A 
closed annulus embedded in N is said vertical if its boundary is contained 
in dN and is isotopic relatively to the boundary to the preimage by p of a 
path in S. Such an annulus will be called essential if it is not 9-parallel, i.e. 
if it is not isotopic to an annulus contained in dN. 
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Proposition 3.1.   The manifold N satisfies all the following properties: 

(1) N is orientable, 

(2) there are exactly two incompressible Klein bottles embedded in N up 
to isotopy, 

(3) every incompressible torus embedded in N is isotopic to either Ti, or 
T2, or to the boundary of a tubular neighborhood of an embedded Klein 
bottle, 

(4) every essential vertical annulus whose boundary is contained in Ti 
meets every essential vertical annulus whose boundary is contained in 

Proof Application of classical 3-dimensional theory.  See for example [28]. 
□ 

We prescribe some orientation on N. The boundary is thus oriented. 
The BL-manifolds are the oriented manifolds obtained by glueing Ti and 
T2. Let a : S —> N be a section of-p. We leave the proof of the following 
proposition to the reader: 

Proposition 3.2.   There are two involutions Ji  and J2 from N to itself 
such that: 

- They both preserve the image of a, 

- JiH reverses the orientation of N and preserves every fiber of p, 

- J2 is orientation preserving, permutes Ti withT2, and maps every fiber 
of p on another fiber of p. Moreover, there is one and only one fiber 
of p globally fixed by J2. The restriction of J2 to this fixed fiber is 
orientation reversing. 

Let T be the quotient M2, 2 • Its first homology group is naturally iden- 

tified with Z2. Let [u] = (1,0) and [v] = (0,1) be two generators of i?i(T). 
We take the usual orientation on R2, and thus on T. Let ii : T —► Ti be 
an orientation preserving diffeomorphism, mapping the representatives of 
[v] on loops homotopics to the fibers of p, and the representatives of [u] on 
loops homotopics in Ti to the boundary component contained in Ti of the 
image of the section a. Let 12 be the composition of ii with the restriction 
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of J2 on Ti: this is an orientation preserving diffeomorphism between T and 
T2. The action of 12 on the homology groups is similar to this induced by ii: 
it maps [v] on the homology class of the fibers (which is defined up to the 
sign), and [u] to the homology class of the intersection of T2 with the bound- 
ary of the image of a. These parametrizations enable the definition of the 
glueing process: let A_ be the set of the matrices with integer coefficients 
of determinant —1. For every element A of A_ we define the manifold MA, 

quotient of N by the relation which identifies the points ii(y) and 12(x) of 
Ti and T2 if and only if the induced action of A on T maps x on y. The 
BL-manifolds are exactly up to diffeomorphisms the manifolds of the form 
MA- Note that MA is a circle bundle if and only if A maps (0,1) on (0, ±1) 
i.e. if and only if A is of the form: 

e     0 
n    —e 

where e is ±1. The projections of Ti and T2 in MA are equals. This com- 
mon projection is an embedded torus that we denote by T^, or T when no 
confusion is possible. 

Two different elements of A_ may define the same BL-manifold. In the 
case of BL-manifolds which are circle bundles, we remark that all of them are 
fibering over a surface obtained by glueing the two boundary components of 
E. Such a surface is always diffeomorphic to the non-orient able surface of 
genus three Us. Thus, the fibered BL-manifolds are characterized by their 
Euler class. 

In a more general way, we can show that MB is always diffeomorphic to 
MA in the following cases: 

- B is the inverse of A: the involution J2 maps the relation between Ti 
and T2 defined by A on the relation defined by A-1, 

- B is conjugate to A by the matrix: 

1     0 
0   -1 

The diffeomorphism between MA and MB is here the passage to the 
quotients of Ji, 

B is of the form: 
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where k is an integer. This diffeomorphism corresponds to a modi- 
fication of the choice of the section a. Indeed, when we modify the 
section, we modify ii and J2, and thus 12 as well. The new map i* still 
maps [v] on fibers, but maps the homology class [u] on (ii)*(MHfc). 
The new map 1% maps then [u] on (n)*(MH~/c). 

All these diffeomorphisms map TA onto Tg. 
The converse is true: any diffeomorphism between two manifolds MA 

and MB is isotopic to a composition of diffeomorphisms of the form above: 
it is a corollary of the Waldhausen's classification of graphmanifolds (cf. 
[29]). We don't discuss further this part because it is useless for the present 
work. 

In this paper we will use the following corollaries of these observations: 
the matrices A+ and A~ define the same BL-manifold, where: 

*+-(!S) '--U-o1 

We conclude this section with the study of the fundamental group of 
BL-manifolds. We choose some base point XQ of iV lying in the unique fiber 
fixed by J2. We can further assume that XQ lies in the image of the section a 
(thus, it's a fixed point of J2). Let Z be the fundamental group of (iV, XQ). 

We denote by h the element of Z represented by the fiber pxo of p through 
XQ. It is well defined up to the sign, but in our work, we will dispose of two 
vertical annuli embedded in TV: after isotopy, we can assume that one of 
these annuli contains ii((0,1)) and pxo. Then, we can fix some orientation 
of pX0, and thus define h without ambiguity, by imposing this oriented loop 
to be freely homotopic in the annulus to H((0, 1)). We call it the fiber of Z. 
The group Z admits the following presentation: 

Z = (a, 6, ci,C2, h I aha     =h  l,bhb 1 = h 1,ci = a6, 02 — a  1&) 

Note that h generates the pseudocenter of Z. ci and C2 correspond to 
the boundary components of the image of a. If we make a good choice of the 
isomorphism between Z and the abstract group defined by the presentation, 
we can assume that the induced action of J2 exchanges ci and C2, and maps 
h on /i-1. 

Let A be an element of A_. 

A = 
a    b 
c    d 
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We note abusively XQ the projection of XQ in the quotient MA- Let TA 

be the fundamental group of (MA.XQ). Sometimes, when no confusion is 
possible, we will denote it F. This group admits the following presentation: >ossible, we will denote it 1. 1ms group admits tr 

TA = (a, 6, ci, C2, h, 11 aha"1 = h~l, bhb"1 = h-1 

m = ah. no = n~ h. tnof~   = d = a6,C2 = a"1^^*"1 = <%hc,thrl = c^hh-d\ 

Once the isomorphism between TA and the group given by the presen- 
tation is chosen, a natural embedding of Z in TA is defined. We will often 
assume that such an isomorphism is fixed and'consider Z as a subgroup of 
F^. Furthermore, this identification being fixed, we will denote by H the 
subgroup of Z generated by h and ci. This subgroup is isomorphic to Z2, 
and is maximal for this property. In other words, it is the unique free abelian 
subgroup of F containing H. Note also that H is stable by division, i.e. an 
element of F admitting a non trivial power in H must belong to H. 

4. Handel-Thurston's examples on BL-manifolds. 

We describe in this section all the R-covered Anosov flows on BL- 
manifolds, i.e. we prove the third assertion of theorem B. 

Assume first that the BL-manifold M is a circle bundle. According to 
[13]4 any Anosov flow on M is topologically equivalent to a finite covering 
of the geodesic flow of C/3. Hence the Euler class of the fibration of M over 
C/3 must be the quotient of the Euler class of the unitary tangent bundle 
of C/3 by the index of this covering. But this last Euler class is —1! Thus, 
the covering must be trivial, i.e. every Anosov flow on M is topologically 
equivalent to the geodesic flow of C/3. 

This proves the first assertion of theorem B. 
There is another family of R-covered Anosov flows on BL-manifolds: 

the examples of Handel-Thurston (cf. remark 2.6). Note that the unique 
Handel-Thurston's examples supported by BL-manifolds are those obtained 
by Dehn-Goodman surgery near a periodic orbit of the geodesic flow of C/3 
over a simple closed bicollared geodesic of C/3 (anyway, if it doesn't appear 
really obvious, this claim is a corollary of the result below). Note also 
that the choice of the closed geodesic is innocuous. Indeed, an hyperbolic 
metric on C/3 being fixed, let 61 and #2 be two different periodic orbits of the 
associated geodesic flow $0 over ^wo closed simple bicollared loops 71 and 

4The orientability hypothesis in [13] on the base surface is not necessary for the 
proof. 
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72 of Us. Clearly, Goodman's n-surgeries preserve topological equivalences: 
assume that some topological equivalence between $o and itself maps 61 on 
62. Then, for every n-surgery near 0i, there is a n-surgery near 02 leading to a 
flow topologically equivalent to the flow obtained by the first one. If the two 
loops 7i and 72 are equals, then we are done since in this case the application 
mapping each tangent vector to its inverse preserves the geodesic flow and 
maps 0i on 02- If not, the complements of these loops in C/3 are however 
both homeomorphic to the two punctured real projective plane. Therefore, 
there are two new hyperbolic metrics on Us and an isometry F between these 
metrics mapping a closed geodesic j[ isotopic to 71 onto a closed geodesic 
72 isotopic to 72. The geodesic flows associated to these metrics are both 
topologically equivalent to the initial flow — l$o- One 0^ these topological 
equivalences maps 0i onto a periodic orbit over 7^, and the other maps 02 
onto a periodic orbit over 73. Composing these topological equivalences 
with the differential of the isometry F, and modulo the observation above 
for the case of two periodic orbits over the same geodesic, we obtain a 
diffeomorphism preserving the foliation $0 and mapping 0i on 02. 

Now, we show that conversely any R-covered Anosov flow on a BL- 
manifold is topologically equivalent to a Handel-Thurston's example. Let 
(M, $*) be such a flow. According to the discussion in the beginning of this 
section, we can assume that M is not a circle bundle. Note that since M 
is not a torus bundle over the circle, $* is not topologically equivalent to a 
suspension. 

We use the notations of section 3. We denote by h' the element tht-1 

of F. h and h' belong both to the subgroup H which correspond to the 
fundamental group of the torus T. 

Assume that h preserves some point in Qs. Since Fix(h) is Z-invariant, 
and since the isotropy group of any point of Qs for the action of F is cyclic, h 
admits an infinite number of fixed points. In particular, h preserves the ori- 
entation of Qs. The same argument shows that every element of F commut- 
ing with h (for example, belonging to H) preserves the orientation of Qs. Ac- 
cording to the preliminary section, there is an homeomorphism r : Qs —» Qs 

commuting with the action of every element of F, if this action is orientation 
preserving. Furthemore, the set of attractive fixed points of h is of the form 
r/c(x), where k describes all Z. Hence, we can associate to each orientation 
preserving element 7 of Z the unique integer £(7) such that: 

72; = Tk^\x) 

We denote by ZQ the group of orientation preserving elements of Z. The 
map k is a morphism between ZQ and Z. Its kernel is the isotropy group of 
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x. Therefore, it is cyclic. Thus, ZQ is an extension of Z by Z. But it is an 
absurdity since this group clearly contains a free non-abelian group. Our 
preliminary assumption was wrong: h acts freely on Qs. 

According to the lemma 7.2 of [4] some element 70 of H fixes some point 
XQ in Qs. The generator of the isotropy group of this point has a non trivial 
power in H. According to the last remark of section 3 this generator must be 
in H. Hence, we can assume that 70 generates this isotropy group. In other 
words, the unique periodic orbit #0 contained in the stable leaf corresponding 
to XQ is freely homotopic to a closed simple loop contained in the torus T. 
In fact, according to the proposition 7.1 of [4] (see remark 7.14 of this paper 
too), modifying T by some isotopy we can assume that it contains OQ. Since 
70 is orientation preserving and commute with /&, there is some integer k 
such that, for every fixed point XQ of 70: 

h(xo) = Tk(xo) 

By the same way, since /z/ = tht-1 belongs to H, there is an integer I such 
that: 

h'ixo) = rl(xo) 

Since t o r = r^1 o t, we obtain: 

h' {r'xo) = r±k (t-'xo) 

Therefore, I = ±fc, and there is some integer n such that: 

ti = h^-yS 

It means that, performing a ±n-surgery on $* near #0, we are led to 
the case /i7 = h^1. Note that the ambient manifold of the new flow is still 
a BL-manifold because 0o lies in T: the surgery is a cut and paste on M 
along T. The identity above means that this new manifold is a circle bundle. 
Hence, the new flow itself is topologically equivalent to the geodesic flow of 
Us. Reversing the surgery, we see that $* is an example of Handel-Thurston. 

5. A new family of Anosov flows. 

We consider here the BL-foliations and BL-flows as defined in the intro- 
duction. In [6] C. Bonatti and R. Langevin have shown: 

Theorem.   There is a BL-flow on MA+ which is Anosov. 
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A+ is the matrix defined in section 3. The diffeomorphism between MA+ 
and MA- induced by Ji shows immediatly that the same is true for MA-. 
Moreover, this Anosov flow preserves some volume form. 

The purpose of this section is to prove theorem A. Our method consists 
of showing that for every element A of A_ which is not a lower triangular 
matrix, there is a finite sequence of matrices Ai,... , Am whose first term is 
A+ or A-, and whose last term is A, and such that M^.+1 is obtained from 
MAI+I by some Dehn-surgery supported in T^. Futhermore, the surgery 
leading from Ai to A2 would have to satisfy the positivity condition of 
Goodman's theorem. Therefore, this first surgery gives some BL-foliation 
on MA2 which is Anosov. We impose thus inductively the similar positivity 
condition to the following surgeries. Hence, all the manifolds M^ will sup- 
port a BL-foliation which is Anosov: it will be true in particular for MA- 

Note that this proof will show that all these Anosov BL-flows are obtained 
from the same BL-foliation on N, and that all of them are volume preserving 
(cf. remark 2.8). 

After this description of the proof, we are left with the calculus. 
We will always denote the coefficients of the element of A_ in the fol- 

lowing manner: 

'-OS 
Since we assume that MA is not a circle bundle, b is not null. Assume 

that MA supports some Anosov BL-flow. Then, the annuli Au and As 

embedded in MA corresponding to the vertical annuli in N tangent to the 
BL-foliation which defines the BL-flow, are respectively contained in the 
unstable leaf and the stable leaf of the Anosov flow containing the periodic 
orbit OQ. Let gs and gu be the foliations induced by the weak foliations on 
the transverse torus TA- the closed leaves of gs are homotopic in T4 to the 
boundary components of As. Therefore, their homology classes are 4:[v]. 
The closed leaves of gu are homotopic to the image by the glueing map of 
the boundary components of Au which are contained in T2. Hence, their 
homology classes are ±(6[n] + d[v]). 

Note that every closed leaf of one of these foliations is a complete 
transversal for the other foliation, so none of them admits a Reeb com- 
ponent. Thus, according to the remark 2.3, for every prime pair of integers 
(P)?)? we can perform allowable Goodman's surgeries along the homology 
class p[u] 4- q[v]. Performing such a n-surgery along p[u] + q[v] we deform 
MA to a new BL-manifold M^/ where A' is the composition to the left of A 
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by a Dehn twist matrix of the form: 

J-n,p,q — 
/ 1 — npq p2n 

1 + npq 

Our question is: given the integers p and g, what is the sign of n corre- 
sponding to the famous positivity condition? 

As we observed in the remark 2.5, this positivity condition vanishes when 
the surgery is performed near a periodic orbit. These particular surgeries in 
our context are exactly whose performed along closed leaves of gs or of gu. 
In other words, there is no condition on n when p or pd — qb is null. 

We apply this observation to A+ and A~: the compositions to the left 
of these two matrices by the matrices rn?i?o are the matrices of the form: 

en    e 

e     0 

Hence: 

Lemma 5.1. For every element of A- whose lower diagonal coefficient d is 
null, the BL-manifold MA supports an Anosov BL-flow, obtained by Good- 
man's surgery from the Bonatti-Langevin's example. 

Consider now the non trivial case, i.e. when p(pd—qb) is not null. Lift gs 

and gu in the universal cover R2 of the torus. The leaves of the first lifted 
foliation are nearly "verticals", i.e. linear lines of null slope. The leaves 
of the second lifted foliation are nearly linear lines of slope ^. Finally, the 
Dehn twist Tn^q is along some curve which lifts to some line near the linear 
one of slope £. But the positivity condition of Goodman's theorem means 
exactly that n can be positive if and only if the inverse of this last slope is 
not between the inverses of the slopes associated to the lifted foliations (see 
figure 7). 
Hence: 

Proposition 5.2. If MA supports an Anosov BL-flow, then the same is true 

for MA
1
 as soon as A! is of the form Tn<p^qoA where p = 0orn(^ — ^ j >0. 

We first deal with the case d — —1: 

Lemma 5.3. Let A be an element of A_ whose upper right coefficient b is 
not null and whose lower diagonal coefficient d equals —1. Then, MA sup- 
ports an Anosov BL-flow obtained by Goodman's surgeries from the Bonatti- 
LangevinJs example. 
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Figure 7: On the positivity condition. 

Proof. The elements of A_ satisfying the hypothesis of the lemma are the 
matrices A(6, c)   (6 ^ 0) where: 

A(6,c) = 
\-bc    b 

c       -1 

For every integer c: 

1   0 W 1-c     1   \     / 1    0 
1    lM     c       -1     0     1    1 

2-c   1 
1       0 

Hence, according to lemma 5.1 and section 3 the BL-manifolds M 
support Anosov BL-flows. 

For every integer n we have: 

A(l,c) 

,4(l-n,c)=T„,i,ooA(l,c) 

Applying the lemma 5.2, we obtain that all the manifolds M^^ for b > 0 
support Anosov BL-flows. 

Finally, since A(-b, -c) is the conjugate of A(b, c) by: 

1     0 
0   -1 
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we obtain that M^^ and M^^^ are diffeomorphic (see section 3). This 
proves the remaining case b < 0. □ 

The following proposition is exactly what we need to prove the theo- 
rem A: 

Proposition 5.4. Let A be an element of A_. // its coefficients b and d 
are not null and if d ^ —1, then there is a matrix A' - whose coefficients 
are a1, b1, d', and d' - and three integers n, p and q such that: 

"   A   = -Lp,q,n 0 A 

-p = O0rn(£-a)<O, 

- M'l < \d\, 

- b' ± 0. 

Proof We have the following equalities: 

b' = (1 - npq)b + p2nd 

dr = —qnb -\- (1 + npq)d 

Note that q = 0 implies df = d, so we will choose q ^ 0. We define: 

The condition \d'\ < \d\ is equivalent to 

0>(d')2-d2 = q4d2a(a--2l. 

Thus, it is equivalent to: 
2 

0 < a < -^ 
q2 

Assuming bf / 0 and p ^ 0 we define 

*-{H}- 
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An easy calculus shows: 

n 
A = 

(b     P) 

l+P2"^-?) 

Thus, the sign of A is the sign of 

2                 1                   J 
a 

Therefore, the two following systems are equivalents: 

A < 0   or   p = 0 
(               2 

0<Q:< -S 
q2 

< < 

2     ^  6P 

Id'l < \d\ 9/0 

q^O 6 7^ np(qb — 

The second inequality of the second system implies that 3^ is not neg- 
ative. Therefore the two systems are equivalent to: 

(S) 

bp 
dq 

>0 

•(H)>' 
|n| \bq-pd\ \q\ < 2\d\ 

H|6g-pd||p|<|6| 

b ^ np(qb — pd) 

q^O 

Proving the proposition 5.4 is equivalent to solve this system. Consider 
the euclidian division of a by b: a = —kb + r with 0 < r < \b\. 

We distinguish two cases. The first one is the case where r is null. Then, 
b divides a.  Since ad — be = —1, it implies b = ±1.  Then, we can choose 
p z=z 0, q = 1 and n = H. 
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The second case we have to deal with is r ^ 0. In this case we choose 
p = r, and q = c + kd. With this choice bq — pd = 1: p and 5 are relatively 
prime. Our choice of n is the integer of absolute value 1 and with the sign 
of 4-E   We have: a       q 

(i) <?^o 

It comes from the positivity of p, from the inequality d =fi — 1 and from 
bq — pd = 1. 

(2, „(»-E)>0 

(3) |n||6g-pd|H=r<|6| 

(4) np(g& — pd) = ±r y£ b 

bq — pd = 1 implies q = -^p^. Hence: 

Mh-rfbl-^^ + ^M 

It implies: 

(5) |n||6iZ-pd|M<2|d| 

b q _b 1 + rd _in 
Finally: 

dp      d     br r \d 

Since r and |d| are both greater than one we obtain: 

(6) *£>o 
a q 

According (1), (2), (3), (4), (5) and (6) our choices satisfy the system (S). 
a 

Let A be any element of A_ whose coefficient b is not null. Applying 
inductively the proposition 5.4 we obtain some sequence A1,... ,Afc, where 
A1 = A and where the lower diagonal coefficient of the last term Ak is equal 
to 0 or —1. This sequence is finite since the absolute value of the lower 
diagonal coefficients is strictly decreasing. According to the lemmas 5.1 and 
5.3, MAk supports an Anosov BL-flow, and according to the proposition 5.2, 
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MAi supports an Anosov BL-flow as soon as M^+i does. This proves the 
theorem A. 

6. Topological transitivity of Anosov flows on BL-manifolds. 

To show the theorem B, we will have to prove that every Anosov flow 
on a BL-manifold is volume preserving. So, in particular: 

Theorem 6.1. All Anosov flows on BL-manifolds are topologically transi- 
tive. 

The proof of this theorem relies on [8] and on the following lemma: 

Lemma 6.2. // some torus embedded in a BL-manifold is transverse to 
some Anosov flow, then it is isotopic to T. 

Proof of theorem 6.1. The main theorem of [8] states that if M support 
a non topologically transitive Anosov flow $* then there is a finite fam- 
ily of disjoint tori embedded in M transversely to & and such that every 
connected component of the complement in M of the union of these tori 
contains one and only one basic set of $*. Moreover, the tori of this fam- 
ily are pairwise nonisotopic. In particular, the complement of this union 
should not be connected, since a non transitive Anosov flow admits at least 
two basic sets: an attractive one and a repulsive one. 

According to lemma 6.2, such a family of tori in a BL-manifold would 
be necessarily formed by a unique transverse torus isotopic to T. But M is 
not disconnected by T: contradiction. □ 

Proof of lemma 6.2. Let T' be a torus embedded in the BL-manifold M 
transverse to an Anosov flow $*. According to [9] or [8], Tf is incompressible. 
Note also that, according to the section 4, and since a R-covered Anosov 
flow which is not a suspension cannot be transverse to a torus, the manifold 
M is not a circle bundle. Hence T" is isotopic to a torus embedded in the 
characteristic manifold of M, which is N C M. According to the proposi- 
tion 3.1, if T" is not isotopic to T, it is isotopic to the boundary of a tubular 
neighborhood W of a Klein bottle K embedded in M. Performing this iso- 
topy on $* we are led in this case to the situation where $* is transverse to 
the boundary of W. In order to conclude, we will show that such a picture 
is impossible. 
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Assume that we are in this case. There is some double covering of W by 
W' = T2 x [0,1]. The restriction to W of the flow and of the weak foliations 
lift in W1\ Reversing it if necessary, we can assume that the lifted local 
flow is inward W through dW. Then we can reproduce the arguments of 
[8] or [4]: consider the lifting Gu of the restriction of F" to W. Let A be 
an annular compact leaf of Gu whose boundary is contained in the same 
boundary component of W. Then, all the positive semi-orbits of the local 
flow restricted to A admits a c^-limit point in A. But the restriction of an 
Anosov flow to an unstable leaf is "going to the infinity" for the induced 
topology: an orbit of such a restricted flow can admit a cj-limit point if 
and only if it is periodic. Since no orbit meeting dW is periodic we get a 
contradiction: such an annular leaf cannot exist. In particular, Gu has no 
half-Reeb component. Since J*u has no compact leaf, Gu is without Reeb 
component. Therefore, Gu is a product foliation: it is conjugate to the 
product by [0,1] of some foliation of T2 (see for example [20]). Consider 
now any point of dW. Its positive orbit by the semiflow admits a cj-limit 
point. Since for Anosov flows the periodic orbits are dense in the set of non- 
wandering points, it implies that the semi-flow admits some periodic orbit in 
W. Then, since $* is incoming in W through T', the Gu-leaf containing this 
periodic orbit cannot meet dW: it is a contradiction with the description 
of Gu we gave above. □ 

7. Existence of a transverse torus for 
a non-R-covered Anosov flow on a BL-manifold. 

During the following three sections, $* is a non-R-covered Anosov flow 
on a BL-manifold M. According to section 4, M is not a circle bundle. 
To achieve the proof of theorem B, we have to show that $* is a BL-flow, 
and, furthermore, that it is unique up to topological equivalence on M. In 
particular, such a flow will be necessarily topologically equivalent to the 
example on M constructed in the section 5. 

We use all the notations of the preliminary section and of section 3. 

Lemma 7.1.   The action of the fiber h on Qs fixes some point. 

Proof. Assume that h? acts freely on Qs. Note that it preserves the orien- 
tation of Qs. We distinguish two cases: 

Case 1. Fix^Qi?) is not empty: 



Generalizations of the Bonatti-Langevin example 785 

Near such a quasi-fixed point we can find some element s comparable 
with its image by h2. The union I of the intervals [h2n(s), h2n+2(s)] where 
n describes Z is a open interval in Qs. It is /i2-invariant. Since h2 admits 
no fixed point, I is the unique /z2-invariant interval: indeed, if I' is another 
/i2-invariant interval, then it must intersect I (if not, the unique element of 
dl disconnecting I and I' would be fixed by h2). This intersection should 
be connected since Qs is simply connected. Studying the dynamic of h2 on 
/ and /', we obtain I = 101' = 1*. 

But, for every element 7 of Z, 7/ is still a /i2-invariant interval. Hence 
/ is globally preserved by the action of whole Z. There is some element t of 
F such that the union of t with Z generates all F, and such that hf = tht~l 

belongs to Z. We can prove the same thing for h! as for h2". it preserves a 
unique open interval. But h! preserves both I and tl. This proves that / is 
preserved by t, and thus by every element of F. Since $* is not R-covered 
I is not all Qs. The boundary dl is a closed F-invariant subset of Q5, and, 
since it is formed by branching points, it is countable. In M, it corresponds 
to a closed subset saturated by T8 and transversely countable. Since M is 
compact, this closed subset must admit a minimal closed invariant subset, 
and because of the countability property, this minimal subset should be a 
compact leaf of F8: contradiction. 

Case 2.   The action of h2 separates the points of Q8: 

Then h2 admits a fundamental axis (see preliminaries). This axis is 
Z-invariant. It is either a open interval or an union of intervals of the form 
[SJ, Sf+i] where S2i ~ S2i-i- The first situation is excluded by the argument 
we used in the first case. In the second one, we obtain a map p : ZQ —> Z 
(here ZQ is the set of the elements of F commuting with h) defined by: 

We derive a contradiction with the non-solvability of ZQ using an argument 
applied in section 4. 

Therefore, h2 admits fixed points in Q8. Considering the action of h on 
Fix{h2) we see that h does admit a fixed point too (cf. e.g. [4]). □ 

Lemma 7.2.  The action of h on Q8 is orientation preserving. 

Proof If h reverses the orientation, then its fixed point would be unique. 
This contradicts the fact that Z preserves Fix{h) and is not cyclic. □ 
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The conjugate h! = tht-1 is orientation preserving too, commutes with 
/i, and admits a fixed point. We would be glad to apply theorem B of [4], 
but two hypothesis of this theorem is not fulfilled in our case. Namely: 

- J73 is not transversely oriented, 

- M admits embeddings of the Klein bottle. 

Anyway, we can use some of the arguments of the proof of this theorem: 

Theorem 7.3. T is isotopic to an embedded torus transverse to $*. 

Proof. According to proposition 1.3, there is in Qu a fixed point s of h quasi- 
fixed by h' (the similar case where h and h* are exchanged can be treated in 
the same manner). Let y be the unique /i-fixed point in Q^ contained in 5 
(s is considered as a leaf of Gs)> Then, h'(y) is fixed by h. According to the 
proposition 1.2 there is a sequence of lozenges joining y and h'ty). Consider 
the union of the iterates of these lozenges by h'. Since s(y) and s^'y) are not 
separated, we can easily show that this union forms a u-sequence of lozenges 
(see preliminaries). We denote by O the support of this u-sequence. It is an 
open subset of Q® preserved by the actions of h and h!. We denote by H' the 
group generated by h and h!. Its action on $1 is proper and discontinuous. 

Let $7 be the preimage by TT^ of O. It is an open subset of M preserved 
by the action of H'. Consider the quotient of this action: TT^ induces a 
R-fibration of this quotient over the quotient of f2 by the action of H'. This 
last quotient is diffeomorphic to the torus. Hence, this fibration admits a 
section. This section lifts as a closed iJ'-equivariant plane in M transverse 
to $*. The projection by TT of this plane is an immersion in M of the torus 
transverse to $*. Using cut and paste techniques (see for example [12]) 
we obtain an embedded transverse torus. According to the lemma 6.2 this 
transverse torus is isotopic to T. □ 

8. The flow is a BL-flow. 

According to the previous section, after a suitable isotopy, the torus T 
is transverse to the flow. Cutting along T we obtain an oriented foliation 
$1 on N transverse to the boundary. We choose the identification between 
M\T and the interior of N so that $i is inward iV through Ti and outward 
N through T2. Our goal is to prove that $1 is a BL-foliation. Since h admits 
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a fixed point in Qs, there is a periodic orbit of $* freely homotopic to the 
loops representing h. If this periodic orbit intersects T then its intersection 
number with T is non-trivial. This is impossible since h belongs to H. 
Therefore, $1 admits closed periodic orbits. We denote by 0o one of these 
periodic orbits (it might be unique, and we will see later that it is unique). 

Since F8 and ^ are transverse to T they induce two foliation Gs and 
Gu on N transverse to the boundary. $1 is the foliation intersection of Gs 

and Gu. We note g? and g% the traces of Gs and Gu on T* (i = 1,2). The 
argument used in the proof of lemma 6.2 shows that Gs and Gu are without 
half-Reeb components. 

Let N be the universal cover of N and Gs and Gu the liftings in iV of 
Gs and Gu. The interior of the leaves of this foliations are homeomorphic 
to the plane. Hence the leaf spaces Rs and Ru of Gs and Gu are connected 
simply connected one manifolds. The group Z acts naturally on these leaf 
spaces. Let Fix8 and Fixu be the sets of h-fixed points in R8 and Ru. They 
are non empty since they contain the liftings of the leaves of G8 and Gu 

through 0o- 

Lemma 8.1. Each foliation G8 and Gu admits a compact leaf which is a 
vertical annulus. 

Proof. Fix8 and Fixu are both countable, and their boundaries are count- 
able too. Therefore their closures are closed countable Z-invariant subsets 
of R8 and Ru. This implies that G8 and Gu admit both closed leaves. These 
compact leaves are contained in leaves of F8 or J:u. Since Ti and T2 are 
incompressible and since no leaf of g8 or gf is homotopically trivial in Ti, 
the boundaries of these compact leaves of Gs and Gu are homotopically non 
trivial in the leaves of J78 or J^ containing them. Therefore, they are home- 
omorphic to the annulus or to the Mobius band. Compact incompressible 
surfaces embedded in circle bundles are classified (see [28]). In our case, 
every compact leaf is either a S-parallel annulus or a vertical annulus. The 
first case implies the existence of half-Reeb components, which is impossible. 
Therefore, the closed leaves are vertical annuli. □ 

Lemma 8.2. The foliation G8 (respectively Gu) admits a unique closed leaf 
A8 (resp. Au). The boundary of A8 is contained in Ti, and the boundary 
of Au is contained in T2. The intersection of these two vertical annuli is a 
periodic orbit of<f>i. 
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Proof. Every compact leaf of Gs and Gu induces compact leaves of g* and 
gf. These loops are freely homotopics in N to the fibers of p : N —» E. The 
glueing map T2 —» Ti maps closed leaves of g^ onto closed leaves of g\. If 
some compact leaf of Gs is joining Ti and T2, it would map the fibers of p in 
T2 on loops homotopic in Ti to the fibers of p. This is impossible since M is 
not a circle bundle. Therefore, the boundaries of a closed leaf are contained 
in the same boundary component of N. Since $1 is inward through Ti and 
outward through T2 the boundary of a closed leaf of Gs is contained in Ti, 
and the boundary of a closed leaf of Gu is contained in T2. According to the 
fourth assertion of proposition 3.1 every closed leaf of Gs intersects every 
closed leaf of Gu. Such an intersection is necessarily formed by periodic 
orbits of the flow. Since every weak leaf admits at most one periodic orbit, 
Gs admits a unique closed leaf, Gu admits a unique closed leaf, and the 
intersection between these closed leaves is a single periodic orbit. □ 

Lemma 8.3. As (respectively Au) is the unique leaf of Gs (resp. Gu) con- 
taining a loop freely homotopic in N to the fibers of p. 

Proof. The proof of lemma 8.1 shows that the lemma 8.2 can be translated 
in the following way: let Ffi be the subset of Rs formed by the liftings of the 
closed leaf As of Gs. FQ is the unique minimal Z-invariant closed subset of 
Rs. Fix3 is a dicrete Z-invariant subset containing FQ. According to the 
previous observation Fix3 \ FQ if not empty must contain FQ in its closure! 
The only possibility is the equality FQ = Fix3. The proof of the analog 
property for Gu is the same. □ 

The previous lemma admits the following corollary: 

Corollary 8.4. The foliation $1 admits a unique closed periodic leaf. The 
two boundary components of A3 are the unique closed leaves of gf, and two 
boundary components of Au are the unique closed leaves of g^- 

Proposition 8.5.   The foliation $1 is a BL-foliation. 

Proof. The only property which remains to prove is that every leaf of Ti 
which is not contained in A3 or Au is joining Ti and T2. Assume it is not 
the case. Then, according to lemma 8.4 such a leaf is not periodic. It must 
admit a limit point in iV. This limit point cannot be the periodic orbit OQ, 

since every orbit passing near As U Au which is not contained in As U Au 
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meets both Ti and T2. The orbit of this limit point lies entirely outside 
As U Au. The shadow lemma ([7]) implies that arbitrarly near this limit 
orbit $1 admits a periodic orbit. Contradiction. □. 

9. Coding the orbits of Anosov BL-flows. 

According to the corollary 8.4 of the previous section: 

Lemma 9.1.  The foliation gs (respectively gu) induced by J78 (respectively 
J7™) on T is without Reeb component and admits exactly two closed leaves. 

Let T0 be the unique lifting of T in M preserved by the subgroup H of 
F. It disconnects M and is transverse to <E>. Therefore, the restriction of TT^ 

to T0 is an homeomorphism on its image. We denote by Q this image. The 
following lemma is an easy corollary of lemma 9.1: 

Lemma 9.2. f2 is the support of a s-sequence of lozenges (Cn)n(=.    and of a 
u-sequence of lozenges (£f

n)ne  . 

We denote by (xi)ie   the vertices of (£n)nG   and (yi)i^   the vertices of 

(£n)n<E   • 
Let U be the preimage 7r_1(r). Let T be the set of the connected 

components of U. In other words, it is the set of the F-iterates of T0. 
Let Wi and W2 be the closures in M of the two connected components of 
M \ {T U As U Au). We define on T the following preorder: we denote by 
ThiT7 if there is some lifting W of Wi or W2 in M such that: 

(1) dW meets f and f', 

(2) $* is inward W through f fl W and outward W through fnW. 

Since $* is a BL-flow it is equivalent to require that there is an element of 
T whose positive orbit meets U, and that the first intersection of this positive 
orbit with U lies on T". The advantage of the definition above is that it does 
not depend on the flow, but only on (M, T, As, Au). We complete inductively 
hi as an order h on T forcing the transitivity: we denote by ThT7 if there 
is a sequence (Ti,... , Tn) of elements of T such that: 

(*) f = f1H1f2h1...l-1fn = f/ 
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Note that if ThT" the sequence (Ti,... ,Tn) satisfying (*) is unique, and is 
a subsequence of every (--increasing sequence starting from T and ending 
with T'. 

We can give another definition of the order h: 

Lemma 9.3. Let f = jf0 and T = if0 be two elements of T. The 

inequality ThT7 holds if and only if the intersection 

7^*(T)n7^*(f,) =1nnin 

is not empty and is contained in one of the lozenge 7>Cn. Moreover, if ThT1 

the intersection jQ, fl j'fl is saturated by the restriction of Qs to 7^. 

Proof. All the proof is based on the following obvious fact: let fi and fi7 

be the supports of two s-sequences of lozenges. Then, either fi and Q! are 
equals, either they are disjoint, either their intersection lies entirely in a 
lozenge of one of them. 

Assume that "{tiniQ, is not empty and is contained in one of the lozenges 
"/Cn. Then, there is some orbit of $* meeting 7T0 and 7/r0. Furthermore, 
the fact that the intersection lies in some ^Cn shows that this orbit meets 
7r0 before 7/r0. Considering the elements of T that this orbit intersects, 
we obtain a sequence of elements of T satisfying (*). 

Inversely: assume that 7T0h-i7/T0. Then, 7Q fl 7^ is not empty. Since 
7T0 and 7'r0 are different, their projections 7$! and 7/fi are different. 
Therefore, the intersection 7^ fl 7/fi is contained either in some ^Cn^ ei- 
ther in some 7/£n. Since the orbits of <fr* intersecting both 7T0 and 7/T0 

meet first 7T0, we are in the first case. In other words, there is an integer 
n such that: 

7ft n yn c 7^n 
Moreover, this intersection is saturated by the restriction of Qs to ^Cn. 
Assume now that we have 7/T0l-i7//T0. Then, for some integer n' we have: 

7/fin7//fiC7/£n' 

Since every leaf of the restriction of Qs to rfil intersects 7£n we see that 
7fin7//fi is not empty. Moreover, this intersection is contained in ^Cn. The 
proof is completed by an easy induction. □ 

Let V be the set of the infinite sequences (To,... , T;,...) such that for 
every non negative integer i we have Tih-iTi+i-   Let V+ be the set of the 
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elements of U whose positive orbit meets an infinite number of elements of 
T. To each element x of V^ we associate its itinerary, i.e. the sequence of 
elements of T that its positive orbit meets successively.   It defines a map 
/+ :£>+ -^©+. 

Lemma 9.4.   The map I+ is surjective. 

Proof. Let (Ti)i€N be an element of V . According to the lemma 9.3 there 
is an integer n such that for every index i, the intersection between TT^TO) 

and 7r^(Ti) is not empty and is contained in 7£n (here 7 is an element of 
F sending T0 on To). Moreover, all these intersections are saturated by the 
restriction of Qs to 7$"}. Let Is be the leaf space of this restricted foliation 
on 7^. Js is homeomorphic to the real line, and the intersections TT^TO) fl 
7r^(Xi) correspond to a strictly decreasing sequence of subintervals. The 
intersection /+0o of this decreasing subintervals is therefore non empty. Let 
x be an element of TQ whose image by TT^ lies on a leaf in ^Cn corresponding 
to an element of /+oo- the itinerary of x is exactly the sequence (Ti^N- C 

Lemma 9.5. Two elements of V^ have the same itinerary if and only if 

they belongs to the same leaf of the trace on U of T8. 

Proof We denote by gfa the trace of J73 onU. It appears implicitly is the 
proof of the previous lemma that J+ is ^-invariant. The other implication 
is equivalent to the following assertion: the interval J+oo defined in the proof 
of lemma 9.4 contains one and only one point. Assume it is not the case: 
then, this interval would be of non empty interior. Therefore, the interior 
of the set of the elements of D+ whose itinerary corresponds to J+0O is 
not empty. Since 4>* is topologically transitive (theorem 6.1) it contains an 
element of M over an element of the leaf J-s(6o). This is impossible, since 
the positive orbit of an element of ,F5(0o) cannot admit an infinite number 
of intersection with the torus T. .    □ 

Considering the negative orbits of the elements of U we construct a map 
^00 • T^oo -^ T^oo such that: 

- VQO is the the set of elements of U whose positive and negative orbits 
by <fr* meet both an infinite number of elements of T, 

- VQQ is the set of infinite sequences (T;);€   such that for every integer 
i we have TjhiTi+i, 
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- for every element x of Poo ^oo(^) is the sequence of the elements of T 
successively met by the $t-orbit of x. 

According to the lemmas 9.4 and 9.5, and since every leaf of ^ intersects 
every leaf of gft on at most one point we have: 

Proposition 9.6.   The map IQQ is objective. 

Let V : VQQ —» DQQ be the first return map on U. Let a : VQQ —» VOQ be 
the shift map. We have the equality: 

^oo 0 V = cr 0 ioo 

Let V^ be the image of V^ by TT^. It is a dense subset of Q® with 
empty interior. It can be identified with the quotient of DQQ by the action 
of V. Let Voo be the quotient of Poo by the action of the shift map a. We 
have a objection: 

ioo • ^oo uco 

The action of T on T induces a cr-equivariant action on Poo, hence an action 
on Poo- On the other hand, Pj, is F-invariant. Obviously: 

Lemma 9.7.  The map IQQ commutes with the actions ofT on P^ andV^. 

Finally, we have other structures on F on P^ and Poo preserved by 1^: 
Let TZS be the relation on Poo identifying two elements if and only if 

they admit representatives (T;)^ and (27);G such that for all positive 
integers i the planes T; and T/ are equals. In a similar way, we define a 
relation identifying two elements of Poo "sharing the same negative part". 
According to the lemma 9.5: 

Lemma 9.8. 1^ maps the relation "to be on the same leaf of Qs" (respec- 
tively of Qu) on the relation 71s (respectively Qu). 

Consider the quotient Ks — T^^/gs • It can be considered as a subset of 
Qs. Therefore, an orientation of Qs induces an order -<s on Ks. 

Let us fix an transverse orientation of As C N. Since As is contained in a 
leaf of Qs, this defines an orientation of Q5, hence fixes the choice of the order 
-<s. With the orientation of T induced by the orientations of M and $, this 
transverse orientation defines an^order between the connected components 
of the preimage of As meeting T0 and contained in the "positive" part of 
M\f0 (see figure 8). 
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Figure 8: Af (resp. T") is "greater" than AQ (resp. T). 

Jiet T and T' be two elements of T such that T^T and T0hif/. Then, 
if Tf is greater than T in the meaning defined above, we will denote by 
TKIQT'. More generally, for every pair (T, T") of elements of T we will note 

T\~sTf if for some element 7 of F we have ^yT hi0 7T'. It gives an local order 

on Voo'. we will denote by w <CS v£ if the two elements w and wf of DQQ 

admit representatives (Ti)ie   and (T/);€   such that: 

- To = n, 

Note that two elements of VQO which are not ^-equivalent are com- 
parable if and only if the sequences representing them admit a common 
occurence of the same element of T. The relation <CS is F-invariant. 

Proposition 9.9. Let x and y be two different elements ofD^. Then, we 

have Ioo(x) <CS Ioo(y) if and only if x and y belong to the same 7$! for some 
element 7 o/F and that s(x)-<ss(y). 

In a similar way we can define a local order <^u on VCQ cooresponding 
to the order -<u on Qu. We are ready now for the proof of the main theorem 
of this section: 
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Theorem 9.10. Two non H-covered Anosov flows on the same BL- 
manifold are topologically equivalent. 

Proof. Let $* and \I>* be two non R-covered Anosov flows on the same BL- 
manifold M. Let Q® and Q* be their orbit spaces. We note C/J, ^|, G^ 
and 0$ the traces of the weak lifted foliations on Q® and Q®. According to 
the proposition 8.5 $* and ty* are BL-flows. After isotopy, we can assume 
that they have the same associated triple (T, As, Au). Let V^ be the subset 
of Q® defined above corresponding to the orbits of <fr* meeting T an infinite 
number of time. Let V^ be the analog subset of Q®. The itinerary map 
induced a bijection / between V^ and V^. This bijection satisfies the 
following properties: 

- It commutes with the actions of the fundamental group F, 

- It maps the restriction of (G$,Glf) on V^ over the restriction of 
(£|„£|)onP*, 

- Finally, / preserves the local order between the stable or unstable 
leaves. 

Let 9o be the intersection between As and Au. It is_a periodic orbit for 
both $* and ^t. Let ©o = 7r~1(0o) be its preimage in M. Finally, we define 
Qt — Q® \ 7r^(0o) and Q^ = Q^ \ 7r^(©o). We call a periodic markov 
rectangle an open subset R of Qf such that: 

- R is contained in some 7$!   (7 G F), 

- there are two periodic points xi and X2 in 7^ such that R is the 
intersection between >C++(^i) and £ (£2) or the intersection between 
£+-(xi) and £-+(x2). 

In the definition above, the terminology "periodic point" means that xi 
is a fixed point of some element of F, and that X2 is a fixed point of another 
element of F. We denote by Rxllx2 this periodic markov rectangle when 
we want to explicit its vertices. Note that a periodic point in 7JI belongs 
necessarily to V^. 

We define the analog notion in Qf. Since $* and iff* are topologically 
transitive, the periodic markov rectangles are basis of the topologies of Qf 
and Qf. 

Since / preserves the foliations and the local orders in the leaf spaces, 
we have: 
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Lemma 9.11. For every periodic markov rectangle R in Q® we have the 
equality 

f (Poo n Rxi,x2) = ^oo n Rf(x1)J(x2)' 

Lemma 9.12. // the periodic markov rectangle R is contained in the peri- 
odic markov rectangle Rf', then f(R fl V^) is contained in f(Rf D V^). 

We will be a little more explicit for the proof of the following lemma: 

Lemma 9.13. Let x be a point of Qf. Then, the intersection of the 
Rf(xi)j(x2) w^ien Rxi,x2 describes all the periodic markov rectangle contain- 
ing x, contains one and only one element of Qf. 

Proof We denote by Qs($), Qu($), Qs{^) and Qu(*) the leaf spaces as- 
sociated to $* and ^t. Since $* is topologically transitive, for every pair 
(i?, R') of periodic markov rectangle containing x, there is another periodic 
markov rectangle containing x whose closure is contained in the intersection 
R n R'. Let (i?x5l,x^)nGN be a decreasing sequence of periodic markov rect- 
angles whose intersection is exactly {x}. Each of them defines two intervals 
[a(xy),S(x5)] and [u{x^),u{x^)\ in Qs($) and Q«($). K/(a:?))>S(/(s3))] 
and [u{f{x7l))^u{f{x12))\ are strictly decreasing sequences of intervals in 
Q8^) and QU(\I>). Therefore, their intersections are intervals Js and Ju 

of Qs{^) and Qu{^). The intersection of the Rf(xn)j{xn) is homeomorphic 
to the product Js x Ju. If the interior of Js is not empty, then it would 
contain two different leaves s(x) and s(xf) such that x and x' belongs both to 
V^Q. Then s(f~l(x)) and s(f~1(xf)) would be two different elements of the 
intersection of all the [sfa™), ^(x^)]. But this intersection is exactly {s(x)}: 
contradiction. Therefore, Js contains a unique point. By the same way, we 
prove that Ju contains a unique point. Therefore, the intersection between 
the Rf(xn)j(xn) is a single point. This intersection point belongs to Qf since 
a periodic markov rectangle cannot contain an element of TT^GQ). 

If we take another decreasing sequence of periodic markov rectangles 
whose intersection is {rr}, the intersection of this new sequence with the 
sequence (Rxq,x%)neN is st^ a decreasing sequence of periodic markov rect- 
angles. Hence the intersection does not depend on the initial choice of this 
sequence. □ 

With the notation of the lemma 9.13, we can define f(x) as the unique 
element of the intersection of the Rf(xi)j{x2)'   We obtain thus a map / 
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between Qf and Qf. This map is bijective, commutes with the actions of 
F and preserves the natural foliations. Furthermore, since it preserves the 
local orders in the leaf spaces, it is an homeomorphism. Since 7r^(0o) and 
7r^(0o) are discrete subsets of Q® and Q^, we can extend / as a topological 
conjugacy between the actions of F on Q® and Q^. According to the theorem 
1.1 the flows $* and ^ are topologically equivalent (note that / maps C/J 
on g$,). 

This theorem completes the proof of the second assertion of theorem B. 

References. 

[1] D.V. Anosov, Geodesic flows on closed riemannian manifolds with negative 
curvature, Proc. Steklov Inst. Math. AMS Translations (1969). 

[2] T. Barbot, Geometric transverse des flots d'Anosov, Thesis, Lyon (1992). 

[3] T. Barbot, Caracterisation des flots d'Anosov en dimension 3 par leurs feuil- 
letages faibles, Ergod. Th. & Dynam. Sys., 15 (1995), 247-270. 

[4] T. Barbot, Mise en position optimale de tores par rapport a un flot d'Anosov, 
Comment. Math. Helv., 70 (1995), 113-160. 

[5] T. Barbot, Flots d Anosov sur les varietes graphees au sens de Waldhausen , 
Ann. Inst. Fourier, Grenoble, 46 (1996), 1451-1517. 

[6] C. Bonatti and R. Langevin, Un exemple de flot d Anosov transitif transverse 
a un tore et non conjugue a une suspension, Ergod. Th. & Dynam. Sys., 14 
(1994), 633-643. 

[7] R. Bowen, On Axiom A diffeomorphisms, A.M.S. Providence, 35 (1970). 

[8] M. Brunella, Separating the basic sets of a nontransitive Anosov flow, Bull. 
London Math. Soc, 25 (1993), 487-490. 

[9]  J.P. Christy, Anosov flows on three-manifolds, Thesis, Berkeley (1984). 

[10]  S. Fenley, Quasigeodesic Anosov flows and homotopic properties of closed or- 
bits, Jour. Diff. Geom., 41 (1995), 479-514. 

[11] J. Franks, Anosov diffeomorphisms, Global Analysis, Proc. Symp. Pure Math., 
A.M.S., XIV (1970), 61-93. 

[12] D. Fried,   Transitive Anosov flows and pseudo-anosov maps, Topology, 22 
(1983), 299-304. 



Generalizations of the Bonatti-Langevin example 797 

[13]  E. Ghys, Plots d'Anosov sur les 3-varietes fibrees en cercles, Ergod. Th. & 
Dynam. Sys., 4 (1984), 67-80. 

[14] E. Ghys, Deformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. 
Fourier, Grenoble 42 (1992), 209-247.^ 

[15]  S. Goodman, Dehn surgery on Anosov flows, SLN 1007, Springer, New York 
(1983). 

[16] M. Handel and W. Thurston, Anosov flows on new 3-manifolds, Invent. Math., 
59 (1980), 95-103. 

[17]  M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. 
Pure Math., A.M.S., XIV (1970). 

[18]  S. Matsumoto, Codimension one foliations on solvable manifolds, Comment. 
Math. Helv., 68 (1993), 633-652. 

[19]  J. Morgan and P. Shalen, Valuation trees and degeneration of hyperbolic struc- 
tures /, Ann. of Math., 122 (1985), 398-476. 

[20]  R. Moussu, Sur les feuilletages de codimension un, Thesis, Orsay (1971). 

[21] S. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math. 
92 (1970). 

[22]  J.F. Plante, Anosov flows, Amer. Jour. Math., 94 (1972), 729-754. 

[23]  J.F. Plante, Anosov flows, transversely affine foliations and a conjecture of 
Verjovsky, J. London Math. Soc., 23 (1981), 358-362. 

[24]  C. Pugh and M. Shub, The Q.-stability theorem for flows, Invent. Math., 11 
(1970), 150-158. 

[25]  S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 
747-817. 

[26]  J. Tits, A "theorem of Lie-Kolchin" for trees, Contribution to Alg., Academic 
Press (1977), 377-388. 

[27] P. Tomter, Anosov flows on infra-homogeneous spaces, Global Analysis, Proc. 
Symp. Pure Math., A.M.S., XIV (1970), 299-327. 

[28] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, In- 
vent. Math., 3 (1967), 308-333. 

[29] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II, In- 
vent. Math., 4 (1967), 87-117. 



798 Thierry Barbot 

RECEIVED OCTOBER 16, 1996. 

ENS LYON 
DEPARTEMENT DE MATHEMATIQUES 
46 ALLEE D'lTALIE 
69364 LYON CEDEX 7 
FRANCE 
E-MAIL: BARBOT@UMPA.ENS-LYON.FR 




