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Assuming the ambient manifold is Kahler, the theory of complex 
submanifolds can be placed in the more general context of cal- 
ibrated submanifolds, see [HL]. It is therefore natural to try to 
extend some of the many results in complex geometry to the other 
calibrated geometries of [HL]. In particular, the question of de- 
formability of calibrated submanifolds is addressed here (analogous 
to Kodaira's work on deformations of complex submanifolds [K]). 
Also, a formula for the second variation of volume of an arbitrary 
calibrated submanifolds which generalizes a result of Simons' in 
the complex category [S] is given. 

1. Introduction and summary. 

General Remarks. In this paper, we discuss the deformation theory of 
calibrated submanifolds of Riemannian manifolds with restricted holonomy. 
Most of the definitions of the terms used in this introduction can be found 
in the seminal paper of Harvey and Lawson ([HL]). Throughout, we denote 
the ambient manifold by M and the submanifold by X. 

Recall that a calibration is a closed p-form y? on a Riemannian manifold 
Mn such that ip has comass 1, i.e., ip restricts to each tangent p-plane of M 
to be less than or equal to the volume form of that p-plane. The form ip 
then singles out those submanifolds for which there is equality, that is, those 
submanifolds for which ip restricts to be equal to the Riemannian volume 
form. Such submanifolds are said to be calibrated by the form </?. It is easily 
shown that a calibrated submanifold has least volume in its homology class. 
In particular, calibrated submanifolds are stable minimal submanifolds. In 
this paper, we use the term calibrated geometry for the ambient manifold 
M, the calibration </?, and the collection of submanifolds calibrated by (p. 

The primary example of a calibrated geometry is when the ambient man- 
ifold M has holonomy contained in U(n), that is to say, it is a Kahler man- 
ifold. If K denotes the Kahler form and if tpp = -7^, then ipp satisfies 
the conditions to be a calibration: By the Kahler assumption, cpp is closed, 
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and by the classical Wirtinger's inequality (see [HL]), ipp restricts to be less 
than or equal to the volume form on any tangent 2j>-plane. Furthermore, 
the real 2p-planes for which the ipp is the volume form are the complex p- 
planes. Hence, the submanifolds calibrated by ipp are precisely the complex 
p-dimensional submanifolds. Hence complex submanifolds are volume min- 
imizing in their homology classes. This latter observation is originally due 
to Federer. 

In [HL], Harvey and Lawson give four new examples of calibrated ge- 
ometries. The first is the special Lagrangian calibration. This is a real 
n-form defined on a 2n-dimensional manifold with holonomy contained in 
SU(n). The other three are exceptional calibrations in the sense that they 
only occur in specific dimensions. They are: the associative calibration, a 
3-form defined on a seven dimensional manifold with holonomy contained in 
G2; the coassociative calibration, a 4-form also defined on seven dimensional 
manifold with holonomy contained in G2; and lastly, the Cayley calibration, 
which is a 4-form defined on eight dimensional manifolds with holonomy 
contained in Spin (7). We will give the precise definitions of these forms in 
the appropriate sections. 

Since complex submanifolds can be placed in the more general context 
of calibrated submanifolds (assuming the Kahlerness), it is natural to try to 
generalize results in complex geometry to the other calibrated geometries. 
This is what is done here. The rub is that we must restrict ourselves to 
generalizing results in the the differential geometry of complex submani- 
folds, eschewing results only provable with algebraic geometric techniques. 
With complex geometry in mind, a natural subject is the deformability of 
calibrated submanifolds. 

The literature on the deformation and moduli theory of complex sub- 
manifolds is extensive, but let us recall some key results. One first linearizes 
the problem of finding deformations of a given complex submanifold X, i.e., 
one finds deformations of X up to first order. The space of such first or- 
der deformations is called the Zariski tangent space to the moduli space of 
complex submanifolds. It is easy to see that these first order deformations 
merely correspond to holomorphic sections of the normal bundle of X. That 
is to say, the Zariski tangent space is H0(J\fx) (Cech cohomology with values 
in in the sheaf associated with the normal bundle N(X)). 

The first key result of deformation theory is the following: In [K], Ko- 
daira shows that if Hl{Mx) = 0, then, given a first order deformation of 
X, this first order deformation is realized by an actual deformation. More 
generally, given a deformation to first order (resp., mth order), then there is 
an obstruction, lying in il-^A/x), to extending it to a deformation to second 
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(resp., (m + l)st) order. Hence, if H1(N'x) = 0, then all obstructions vanish 
automatically. 

There is a particular case that will have analogs in what follows. If one 
looks at smooth complex hypersurfaces X of a complex manifold M with 
canonical bundle KM trivial, then by the adjunction formula ([GH], pp. 
147) 

N(X) = KM\X®N(X) = KX. 

Thus, the normal bundle is actually intrinsic, and we may rephrase defor- 
mation questions about X in M intrinsically. For example, if the geometric 
genus Pg(X) = dimH0(Kx) is zero, then X will be rigid as a complex 
submanifold. 

In algebraic geometry, one can put various structures on the moduli 
space depending on the category in which one is working. In particular 
in the algebraic category, Grothendieck [G] has shown that one can put a 
scheme structure, the Hilbert scheme, on the moduli space M. of algebraic 
subvarieties. At unobstructed point X of .M, the tangent space to the M is 
precisely H0(J\fx). (If one is uncomfortable with schemes, one may think of 
the moduli space of complex submanifolds as just a complex variety, possibly 
with singularities and multiplicities.) 

Lastly, we recall a result of Simons (see [S] or [L]) that computes 
the second variation of volume for a complex submanifold X of a Kahler 
manifold M. Let Xt, t E (—e, e) be a normal deformation to X = XQ (i.e., 
the deformation vector field V = -^Xt is normal to Xt.) Then Simons' 
formula is: 

^VOl(X')[.o = ^/xP(V')l|2rf,">'X- 
This simple expression should be contrasted with the usual expression of 
the second variation of volume involving both the curvature of the ambient 
manifold and also the second fundamental form of the immersion, see [Chi] 
or [L]. This gives an infinitesimal proof of the stability of complex submani- 
folds as minimal submanifolds. Also, one sees that the only way to deform a 
complex submanifold through minimal submanifolds is to deform it through 
complex submanifolds. 

In this paper, we first restrict ourselves to two particular calibrated ge- 
ometries, namely, the special Lagrangian and coassociative geometries. In 
these cases, the normal bundle of a calibrated submanifold is actually iso- 
morphic to an vector bundle intrinsic to the submanifold, as in the above- 
mentioned case of complex hypersurfaces of complex manifolds with trivial 
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canonical bundle. In the special Lagrangian case, the normal bundle is iso- 
morphic to the tangent bundle (or cotangent bundle via the metric), while, 
in the coassociative case, the normal bundle is isomorphic to the bundle of 
anti-self dual two-forms. In these geometries, the existence of calibrated de- 
formations of a calibrated submanifold will reduce to topological questions 
of the submanifold itself. It will follow that if the calibrated submanifold 
is topologically simple (e.g. a sphere), then the submanifold will be rigid 
as a calibrated submanifold. These results, of course, will be explained and 
made precise in the appropriate sections. 

Layout. The following is a brief summary of the layout of this paper. 
In the second section, we derive a simple expression for the second varia- 
tion formula for arbitrary calibrated submanifolds that will be applied to 
specific calibrated submanifolds in the proceeding sections. In the third sec- 
tion, we study the deformation theory of special Lagrangian submanifolds. 
In the fourth, we prove results for coassociative submanifolds analogous 
to those for special Lagrangian submanifolds. In sections five and six, we 
turn to the other two calibrated geometries given in [HL]: associative three 
dimensional submanifolds of a seven manifold with holonomy G2, and four 
dimensional Cayley submanifolds of eight dimensional manifolds with holon- 
omy contained in Spin (7). For the calibrated submanifolds of these last two 
geometries, the normal bundles are not intrinsic. Rather, the normal bun- 
dles are actually the spin bundles twisted by extrinsic vector bundles. As 
a consequence, in these latter cases, the results are not as strong as in the 
first two cases. Finally, in the last section, we pose questions, and make 
conjectures. 

Remarks on Submanifolds. In this work, a submanifold of M will be 
an immersion / : X —> M. Two immersions will be considered equivalent 
if they differ by a diffeomorphism of X. The normal bundle will then be a 
smooth vector bundle on X. However, we occasionally lapse into thinking 
the submanifold X as contained in the ambient manifold, and speak of 
restriction of forms, metrics, etc., rather than pull-back of these quantities. 

In this paper, it will always be assumed that X is compact and ori- 
entable. (We do not assume that the ambient manifold M is compact.) The 
compactness of X has the following consequences. Firstly, Hodge theory ap- 
plies to X. In particular, the Hodge-de Rham theorem identifies the space of 
harmonic forms on X with closed and co-closed forms and in turn, with the 
singular cohomology spaces (which are topological invariants). Secondly, a 
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deformation of submanifolds, ft : X —> Xt C M may be assumed to be a 
normal deformation, i.e., §ift{p) is normal to Xt for p G Xt fixed. This is 
because, if X is compact, then one can reparametrize using a time depen- 
dent diffeomorphism of X. Thirdly, there is a tubular neighborhood of X 
in M that is identified via the normal exponential map to a neighborhood 
Ne{X) = {V e N(X) | ||y|| < 6} of the zero section in N(X). We can 
thereby identify nearby submanifolds (in the C1 topology) with small nor- 
mal vector fields. By pulling back various structures of the ambient manifold 
M (calibrating forms, metrics, complex structures, etc.) to this neighbor- 
hood of the zero section in iV(X), we may assume that the submanifold is 
embedded. 

Acknowledgements. The author would like to express his gratitude for 
conversations with Robert Bryant, Reese Harvey, and Lucas Hsu. 

2. The Second Variation of Calibrated Submanifolds. 

In this section we derive a rather remarkable formula for the second vari- 
ation of a calibrated submanifold. In the usual formulation, the expression 
for the second variation involves the Riemann curvature of the ambient man- 
ifold together with the second fundamental form of the immersion, [Chi]. 
In contrast, the formula derived here only involves terms from the restric- 
tion of the calibrating form and its covariant derivatives to the submanifold. 
This section concludes with an example computing the second variation of 
complex submanifolds of a Kahler manifold. 

Let Mn be a Riemannian manifold with a calibration # G ftp(M). Let 
/ : Xp —> Mn be a calibrated submanifold, i.e., /*(#) = dvolx, and let ft = 
F : X x / —> M be a one parameter family of immersions (not necessarily 
calibrated) with /o = /. Since X is assumed compact we may reparametrize 
so that the family ft = Fis orthogonal, i.e., we assume the variation vector 
field V = F* (^) = -jfift is perpendicular to T(X). 

Consider now #, not as a differential form, but rather a section of 
the vector bundle AP(T*M). Then one may view /*(#) as a section of 
AP(f*(T*M)) = Ap(T*X 0 N*(X)). We have the standard decomposition 

minp,n— p 

(2.1) Ap(T*X 0 N*X) =     0    Ap-k(T*X) ® Ak(N*X). 

Let #0? #1? • • • be the components of /"'('tf) with respect to this decomposi- 
tion. The zeroth component #0, a section of AP(T*X), is just the pullback 



710 Robert McLean 

of ti as a differential form. It follows from the "first cousin principle" (see 
Proposition 2.5 below) that the component tfi will always vanish. The sec- 
ond component #2 plays an important role in what follows. 

The component $2 is a section of Ap-2(T*X) ® A2(N*X) which by the 
Hodge star operator and the metric {( operator on the first factor is isomor- 
phic to A2(TX) ® A2(N*X). Now because of the decomposition 

(2.2) S2(TX ® N*X) = S2(TX) ® S2(N*X) 0 A2(TX) ® A2(iV*X), 

we see that we may view #2 as a section of S2(T X ® N*X) which is used 
in the following definition: 

Definition 2.1. Let V G r(N X) a normal vector field to our calibrated 
submanifold, and VF G r(N X ® r*X) be its covariant derivative. We 
define Q^W) to be the complete contraction of VF o VF with ^2 viewed 
as a section of S2(TX ® Ar*X). (See also (2.23), below.) 

Consider the pull-back of the covariant derivative Vtf as a section of 

(2.3) Ap{f*{T*M)) ® f*(T*M) = AP(T*X 0 Ar*X) ® (T*X © 7V*X) 
minp,n—p 

=    0    Ap-k(T*X) ® Ak(N*X) ® (T*X 0 iV*X). 
fc=0 

Let (W)i be the piece of /*(W) in the component A^-^^X) ®N*®N* 
in the above decomposition. Via the musical and Hodge isomorphisms, we 
may view (W)i as taking values in T X ® N* ® A^*. 

Definition 2.2. For a normal vector field V G r(ArX) with VF G 
r(N X ® r*X) its covariant derivative, we let Sv^V, VV) denote the com- 
plete contraction of V o W with (Vi?)i. (See also (2.24).) 

We need another quadratic form. One pulls back the second covariant 
derivative V2/# to X via / and obtain a section of the bundle 

Ap(f*(T*M)) ® /*(r*M ® r*M) 

^'^ = Ap(r*x 0 Ar*x) ® (T*x © Ar*x) ® (r*x © Ar*x). 

We denote by (V2/#)o the piece of /*(V2/#) taking values in the component 
AP(T*X) ® S2(N*). Via the Hodge star isomorphism, we realize (V2/#)o as 
a section of S2(N*). 
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Definition 2.3. For a normal vector field V e r(NX), we let QV2^(V) 
denote the complete contraction of V o V with (V2'i?)o. (See also (2.22).) 

Theorem 2.4.   The second variation of volume of a calibrated submanifold 
Xp with variation vector field V is given by 
(2.5) 
d2     ""^      =f \\VV\\2-(Q^VV) + Bv4V^V) + QV2^V))dvolx. 

=o   Jx 
^voKX.) 

Remark. If the calibration is parallel (W = 0) which is the only type of 
calibration considered here, then the iSytf and Qv2i? terms do not appear. 
It is also interesting to note that in the case VT? = 0 the second variation 
only depends on VV. 

Proof ( Preliminaries ). Since #(£) and dvol(t) are both top dimensional 
forms on X we may write #(i) as \(t)dvol(t), for some function A(t). By 
our assumption that the original submanifold is calibrated we must have 
A(0) = 1. Now we have 

Volume of XQ = /    $ 
JXo 

L $       by Stoke's theorem. 
Xt 

= / m Jx 

= /  X(t)dvol(t) 
Jx 

In particular, fx X(t) dvol(t) is constant in t.  Differentiating in time and 
evaluating at t = 0, we obtain 

(2.6) 0 = JX^
0)dvom + Sx ^tdvol{t)| _ • 

Differentiating again and evaluating at t = 0, we obtain 
(2.7) 

r  f)2\ P  8\ f) I f    f)2 

or 

d?  f ,   ,,,       r d2x n2    P P  n2\ f  8\ f) (2./) ^ y WQ=- y^ ^(o) ^(o) - jx ^(0 ^^oiw 

t=0 

t=0 
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The theorem will then follow by showing 

(2.8) ? 
— (0) = -\\VV\\2 + {Q#(VV) + BV»{V, VV) + Q^{V)). 

□ 

Proof of (2.8).   We prove the theorem by verifying (2.8), using the moving 
frame, so we first recall various notions from the theory. 

Define the orthonormal coframe bundle of (M, g) as 

(2.9) ^(M) = {u : (TxM,gx) -> (Wl,go) | u a linear isometry}. 

Let LJ be the canonical Rn-valued 1-form on ^(M) defined as by UJ(V) = 
u(7T^(V)) where TT is the projection of ^(M) to M, and V e T„.F(M). Let (p 
denote the so(n)valued Levi-Civita connection form satisfying dw = —cpAu. 
Fix the index range 

1 <i4,S,C,D<n. 

Choosing an orthonormal basis CA of Rn, we write cu = cj^e^, y? = ^B^A ® 
(e^)* so that dujA = —tpg A UJ

B
. The Riemannian curvature of the ambient 

manifold is defined by dtpg + <p£ A tp^ = (1/2)R^CD UJ
C
 Au>D. 

Let T? be a calibration on M. We pull back i? to the coframe bundle ^{M) 
where we have $ = A^1...^p CJ"

41
 A • • • A uAlp. We define the first covariant 

derivative of # by 

(2.10) d\Av..Ap - \BA2-AP VM ^...Ap-iB V^Ap = ^Ai-Ap,^ ^ 

where A741...^P)5 represent the components of Vtf. We will also need V2/#; 
whose components \AV-AP,BC are defined by 

(2.11) d\AV:Ap - ^CA2-AP1B VA! ^AI-AP,C<PB 
= ^AV"AP,BC^   , 

and are subject to the Bianchi-type identity: 

(2.12) XDA2-AP R-AXBC^ l-AAi-Ap_iD RAPBC = XAv-Ap.BC-XAv-A^CB 

(which follows from d2r3 = 0.) 
Suppose now one has a one-parameter family of immersions ft = F: 

Xp x / -► M such that / = /o : X -> M is calibrated by #. We may 
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reparametrize so that the family of immersions is normal and then adapt 
frames as usual, by restricting to the subbundle J7^ of J7^ = F*(^r(M)) 
such that uja = Va dt, J^ J OJ

1
 = 0 where we fix the index ranges 1 < i, j, k < p 

and p + 1 < a, 6, c < n. 
The structure equations for the immersion may be written 

Differentiating a;a = V" dt we find 

(2.14) tf = -A = hfj uJ + V? dt,        where    fe£ = fc^, 

where we have set 

(2.15) dVa + ¥lVh = V? J + Va dt. 

Restricting ft to the adapted frame bundle J7^1), we obtain 

i 

(2.16) $ = p\(\l...pu
l ^^''^UJP+ \i...l..vu

l f\---/\ ua /\--'AUJ
P
). 

Observation. For fixed times (whence ua = 0), we see that 

^=p\\l...pujl A-- AUJ
P
, 

and hence the quantity A = X(t) introduced above is p\ Ai...p. Hence to verify 
(2.8), we need the time derivatives of Xi...p. 

By (2.9) 

(2.17) d\h..p = Ai...A...p <p? + \i...ptA wA, 

and so with the aid of formula (2.12) and since uja = Va dt, we have 

(2.18) dt  1-p     dt 
= \1...L..pVf + \1...P!aV

a. 

-Ai...p = — JdAi...p 

Proposition 2.5 (Generalized First Cousin Principle). 

Xl-a-p\t=0 = 0 and        Ai...pia|t=o = 0. 
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Proof. Associated to the calibration $ there is a function £$ : G(p, T(M)) —> 
R where Gf(p,T(M)) is the bundle of oriented p-planes ^ of the tangent 
spaces of M where if ^i,... , ^ is an oriented orthonormal basis for £, then 
^(0 is i9(vi A • • • A Vp). Recalling (2.9), there is a projection TT : ^(M) —> 
G(p,r(M)) defined by 7r(w) = W^ei A • • • A ep). The forms CJ\ ua, and 
y?^ are then semi-basic for the projection to G{p,T(M)). The function l# : 
G(p,T(M)) -^ R pulled back to ^(M) is just Ai...p. By definition of a 
calibration, ^ takes values in [—1,1] where a p-plane £ is calibrated if £#(£) = 
1. Such a p-plane is obviously a critical point for the function £#. Since by 
(2.17), 

d\i...p = \i...i...p(Pi + \i...p1ito'L + Ai...p)au;a, 

and so at a critical point of £#, i.e., a calibrated p-plane the components of 
the exterior derivative Ai...^...p, Ai..^, and Ai...pja vanish. Finally, given an 
immersion / : X —> M of an oriented manifold X, there is a canonical lift 
/ : X —> G(p, r(M)), and if X is calibrated then all the points of X are 
critical points of £# and Ai...£...p, Ai...^, and Ai...pja vanish. D 

Remark. The original first cousin principle dealt with constant coefficient 
calibrations in flat space, [H] and [HL, page 78]. In particular, Xi...pia\t=o = 0 
was satisfied trivially. Also, combining equations (2.5) and (2.16) and the 
previous proposition; one obtains an infinitesimal proof that the calibrated 
submanifolds are minimal. 

We turn now to the calculation of the second derivative of A = p\ Ai...p, 
differentiating (2.16). We set 

(2.19) dv? + tf v> - 4 v; = V* J + V? dt. 
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Differentiating the first term on the right hand side of (2.16), we find 

d(Ai...i...p V?) = | J2 Ai...£..i...p tpf + Ai..i...p <p* + Ai...A...plB wB j V? 

+ Ai.4...p (rf ^ - ^ v;6 + ^ ^ + ^ dt) 

=    J2 (Ai-a-i-P ^ + Ai...i..i..p (pfj + Ai...p ^ 

+ Ai...6...p^ + Ai...i...pJj^ + Ai...i...pl6^
6    ^ 

+ Ai...i..:p (^ ^ - ^ ^ + v* cJ + v? dt) 

So with (2.12) and our normalization u0, = Va dt, Jj J u1 = 0, we find 

(2.20) = Ai...p V2V? + Ai...A...P)61? V6 + Ai...A...p ^ 

+ ^A1..l.i..pyi
aF/. 

(where V^ = -^a.) 
Next, differentiating the second term of the right hand side of (2.16), we 

compute 

d(Al...p,a Va) = (Ai...ij...pja ft   + \l...ptB<Pa + Ai...p,aB^   ) V" 

+ X1...p,a(-<pa
bV

b + Vfui + Vadt) 

= ^Ai...J...pja ^ + Ai...^ (pl
a + \i...pfi vl 

+ Ai...p,aiu;i + Ai...p?a6a;6)ya 

+ Ai...p?a (-^ Vb + VfJ + Vadt) , 

so, again using (2.12) and u0, = Va dt, J^ J u1 = 0, we find 

|(A1...P,an = |jd(Ai...P,an 

(2-21) = A1..i..P,a ^ Fa + Ai...Pii }£ Va 

+ \l...p,abVaVb + \l...PtaV
a. 
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Lemma 2.6. Att = 0, \i...p,ab = ^i-pM- 

Proof. This follows from the Bianchi identity (2.11).   In particular, from 
(2.11) we have 

^l-p,6c - Ai...p>c6 = \D2-p Ribc "I ^ ^l-(p-l)D Rpbc 

— Aa2-..p Rlbc H + Al...(p_l)a Rpbc 

and from the proposition, at t = 0, Aa2...p = • • • = ^i...(p-i)a = 0, and the 
lemma follows. □ 

By the preceeding lemma, we need not worry about symmetrizing in the 
following equation which defines Qv2tf: 

(2.22) Qv>o(V)=Pl-M...P,abVaVb. 

Also set 

(2.23) Q^VV) = pi £ A1.4.t.P V;a y/, 

and 

(2.24) £W(V; VF) = p! A1.4...P,« ^ ^a + ?! Ai...A...p,b ^ F6, 

and note 

Ai-p ^ ^ = -1 V?V? = -11| VFH2 

So combining (2.20) and (2.21), and the vanishing of terms implied by Propo- 
sition 2.5, we have 

(2.25) dt2    ~ dt2 

= -IIV^H2 + (Q*(VT0 + iBv*(V; VF) + Q^iV)) 

^^A = ^9P!Ai-p 

With (2.7'), the theorem is proved. □ 

Example. We conclude this section with one example, that of Simons' 
result on the second variation of complex submanifolds of Kahler manifolds, 
specialized to the case of complex curves E in a complex Kahler surface M 
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(complex co-dimension 1.) We leave the general case of higher dimensions 
and co-dimensions to the reader. 

Either by working with a local coframe or by working on the unitary 
frame bundle of M (see [Ch2]), one may assume a unitary coframe ul + 
zu;2,a;3 + zu;4, so that the Kahler form is given by t? = XAB^ A <JJ

B
 = 

LJ
1
 AUJ

2
 + UJ

3
 ACJ

4
, and U;

3
,U;

4
|E = 0, #|E = CJ

1
 AUJ

2
 is the volume form of S. 

In particular, A34 = 1/2, and so one computes (2.23) that 

(2.26) 

Hence 

Q* (W) = 2\abV1
aVZ + 2XbaV2

aV1
b 

= 4Aa6y1
av2

6 = 2V1
3vr

2
4 - 2y1

4y2
3. 

IIV^I2 - Q,(W) = (V?)2 + (Vi)2 + (V*)2 

(2.27) + (Vif - 2 (VM - VfV}) 

(The Kahler form is parallel, so the other terms in the integrand of (2.5) do 
not appear.) If we set V = V3 + iV4, then 

dV=1-((V? + V*)+i(V*-VJ))uJ 

1 (2.28) 2 

where UJ = LU
1
 + iuJ1. Therefore 

^=5((v?-itf)+*(v? + V3*))a 

and so 

(2.29)       WdVf = \ ((V? - F2
4)2 + (F2

3 + V«f) = IV^I2 - C*(W). 

Combining (2.29) and our formula (2.5) for the second variation, we recover 
Simons' result: 

(2.30) ^vo1™ = 2 / ||ay||2rf^o/x. 

3. Deformations of Special Lagrangian Submanifolds. 

Since special Lagrangian submanifolds lie in SU(n) manifolds, we first 
develop the structure equations for the ambient SU(n) manifold M2n. We 
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begin with constructions in flat space which will then be repeated on the tan- 
gent spaces of M2n. In this section, we take the index range 1 < z, j, k,l <n, 
and use the notation that a primed index, say i', denotes the index with value 
i + n. 

On Cn, take standard coordinates 

zl = x1 + ixn+\ ...,zn = xn + ix2n 

and let ho = X)^2 ® dz1 be the standard hermitian metric on Cn. Finally, 
we let Co = dz1 A • • • A dzn be the complex determinant form. Viewing Cn 

as R2n, we have on R2n the following structures: 

(1) A complex structure Jo, which is simply multiplication by y/--l, viewed 

as a real map. In particular, JQ (gfr) = -£? and JQ (^J = —^. 

(2) A metric £o = Re(ho) = (dx1)2 + (dx71*1)2 + • • • + (dx71)2 + (dx2n)2. 

(3) A symplectic form, the Kdhler form, 

KO = Im(ho) = dx1 A dx714"1 H h dxn A dx2n. 

(which is compatible with the metric and complex structure in the 
sense that fto(-, •) = ffoO? Jo •)•) 

(4) Two (real) n-forms ao and /3o, the real and imaginary parts of £, 
respectively. 

Now, a real n-plane in Cn, is said to be special Lagrangian if the 
form ao restricts to be the volume form. For example, it is easy to see that 
£n = -r^r A • • • A 3§- is special Lagrangian. For such n-planes, we have the 
easily verified 

Lemma 3.1.  The group SU(n) acts transitively on the set of special La- 
grangian n-planes with isotropy SO(ri). 

Next, we place these structures on the tangent spaces of M: We say that 
M has an almost SU(n) structure if M carries an almost complex struc- 
ture J, a hermitian metric h = g + i K, and a complex volume form ( (i.e., a 
nowhere vanishing complex form of type (n, 0)). We call the SU(n) structure 
integrable if: 1) the almost complex structure, 2) the Kahler form, and 3) 
the complex volume form are covariant constant with respect to Levi-Civita 
connection of the Riemannian metric g. J being covariant constant implies 
the manifold M will in fact be a Kahler manifold, in particular, a complex 
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manifold. Also, the form ( will be closed and hence holomorphic and ( will 
trivialize the canonical bundle. We will simply say that M is an SU(n) 
manifold or that M has an SU(n) structure if these conditions are satisfied. 
Such manifolds are also called special Kahler manifolds or Calabi-Yau mani- 
folds. Their existence and abundance was demonstrated by Yau in his proof 
of the Calabi conjecture, see [Y]. For example, any smooth hypersurface of 
degree (n + 1) in CPn has an SU(ri) stucture. 

Next we develop the SU(n) coframe bundle ^^(M) = T(M) for M 
(compare [Br2]). For a point x G M, let ^(M) = {u : TX(M) -> Cn} where 
we require that u is complex linear, u is an isometry taking h to ho, and 
that u takes £ to Co- We write the components of the canonical Cn-valued 
form on J7 as uji + irji. Then we have: 

K = UJ
1
 A cjn+1 + - • • + LJ

71
 A u2n 

^ C = (u1 + ^n+1) A • • • A (u/1 + iuj2n) 

The structure equations then take the form: 

where p*- = —pf and a*- = aj and trace((j) = 0. The integrability of the 
SU(n) structure guarantees the absence of torsion. In fact, the integrability 
of the SU(n) structure is equivalent the existence of a torsion free connection 
°n rsu(n)(M), see [Brl]. 

A real n-dimensional submanifold X of M is said to be special La- 
grangian if each tangent space is special Lagrangian. Thus, the form a 
restricts to X to be the volume form. From [HL], we take the following 
alternative characterization of special Lagrangian submanifolds: 

Proposition 3.2. A n-dimensional submanifold X is special Lagrangian 
if and only if the forms K and (3 restrict to X to zero. 

Proof See [HL], Corollary IIL1.11. □ 

Corollary 3.3.   The normal bundle N{X)  is isomorphic to the tangent 
bundle T(X). 

Proof Since K(-,-) = gi^J-), then K\X = 0 is equivalent to J maps tan- 
gent vectors of X to normal vectors of X. It follows that J induces an 
isomorphism of T(X) with N(X). D 
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Remark 3.4. Using the induced metric isomorphism b : T(X) —> T*(X), 
we further obtain an isomorphism of N(X) with T*(X). Thus, we have an 
identification of normal vector fields to a special Lagrangian submanifold 
with differential 1-forms on the submanifold. Explicitly, the normal vector 
field V = Vi'-£p. is identified with the 1-form v = Viu;i with V*' = Vi. This 
identification will be important in what follows. 

Corollary 3.5. If the ambient submanifold M is a torus, then a special 
Lagrangian submanifold X must have T(X) © T(X) trivial. In particular, 
all Pontryagin classes of X must vanish. 

Proof T{X) © T{X) ^ T{X) ® N(X) = T(M)\X and T(M) is trivial by 
hypothesis. □ 

This corollary is vacuous for X of dimension two or three but is nontrivial 
in higher dimensions. In particular, the signature of a four dimensional 
special Lagrangian submanifold in a complex four-torus must vanish. This 
follows from the signature theorem in dimension four. 

With these preliminaries, we turn now to the deformation theory of 
special Lagrangian submanifolds. We have the following 

Theorem 3.6. A normal vector field V to a compact special Lagrangian 
submanifold Xn is the deformation vector field to a normal deformation 
through special Lagrangian submanifolds if and only if the corresponding 
1-form (JV) is closed and co-closed, i.e., harmonic. Thus, we are assert- 
ing: First, the Zariski tangent space at Xn to the moduli space of special 
Lagrangian submanifolds is naturally identified with T-il{Xn), the space of 
harmonic 1-forms. Second, in contrast to the case of complex submanifolds, 
there are no obstructions in extending a first order special Lagrangian de- 
formation to an actual special Lagrangian deformation. 

Corollary 3.7. A special Lagrangian submanifold Xn of a flat 2n-di- 
mensional torus equipped with a 577(n) structure will have /3 (X) = 
dimiH^X^yn. 

Proof of Corollary 3.7. The 2n Killing vector fields will project to N(X) 
yielding at least n linearly independent normal vector fields which obviously 
give rise to special Lagrangian deformations. □ 
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Corollary 3.8. If X is a compact special Lagrangian submanifold with 
f31(X) = 0, then X is rigid as a special Lagrangian submanifold. 

More generally, we have the following 

Corollary 3.9. The moduli space A4 of special Lagrangian submanifolds 
near X is a smooth manifold of dimension (3*-(X). 

Corollary 3.10. The moduli space M carries a Riemannian metric gM 
defined as follows: Given two tangent vectors vi,V2 G Tx(M), iden- 
tify them with harmonic 1-forms 9i and 62 and define gM(viiv2) to be 
fx(0liO2)dvolx' Here (•, •) is the pointwise inner product on 1-forms. 

Remark 3.11. The moduli space also carries an n-form 0^: Given n 
tangent vectors ^i,... ,vn G Tx(M): identify them with harmonic 1-forms 
0i,..., 6n on X and define 67^(^1,..., vn) to be Jx 61 A • • • A 9n. 

Proof of Theorem 3.6.   We define a non-linear map 

F:Uc T(N(X)) -> Qn(X) 0 Q2(X) 

as follows: For a small normal vector field V = Vi-^- E U, then 

(3.3) F(V) = ((errpv)*(/3), (ertp^J^-zc)) . 

Here U is an open neighborhood of the zero in T(N(X)) for which V G U 
implies that the exponential map expy is a diffeomorphism of X onto its 
image Xy- Under the identification of small normal vector fields with nearby 
submanifolds, it is easy to see that JP-1 (0,0) corresponds to the set of nearby 
special Lagrangian submanifolds: F is the restriction of ft and — K to Xy, 
then pulled back to X via expy*. Hence, F-1 (0,0) is simply the set of 
normal vector fields V in U for which /? and K restrict to Xy to be zero, i.e., 
Xy is special Lagrangian by Proposition 3.2. 

We now compute the linearization of F, 

(3.4) F'(Q) : T(N(X)) -► Qn(X) 0 fi2(X),   where F'(0)(V) = — F(tV). 

Therefore 

F'mV)=^F(tV) 
01 t=Q 

(3.5) =(CV(/3)\X,-CV(K)\X) 

= ((Vjd[3 + d(Vjp))\x,-(VJdK + d(VjK))\x) 

= (d(Vjf3)\x,-d(yjK)\x). 
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Here Cy denotes Lie derivative, and the Cartan formula is used. Actually, 
one technical point is being glossed over. In order to take the Lie derivative, 
one must extend the normal vector field of the submanifold, and then show 
the above expression is independent of extension. Arguments of this sort 
may be found in [Gr]. Now 

(3.6) -VAK = - (^i) J (y Ac/) = V1' J = ViJ = v 

where v is the 1-form corresponding V under the identification of N{X) 
with T*(X). Also, 

(VAp)\x = (^'^7) Jlm (u1 +i<»V) A • * * A (^ + ^n,) 

^'^ =^1 *u;1 + ...14 *a;n 
X 

Substituting (3.6), (3.7) into (3.5), we see that F'(0)(TO = (*d*v,dv). 
Hence, F'{Q) as amap F'(Q) : ^1{X) -> fin(X)efi2(X) is just -*d* 0 d = 
—d * © d. The first order special Lagrangian deformations (kernel of JP

7
) 

correspond to closed and co-closed 1-forms, i.e., harmonic 1-forms. 
Next, to show that the deformation theory of special Lagrangian sub- 

manifolds is unobstructed, we call on the Banach space implicit function 
theorem. For this, we consider F as a map from C1^ 1-forms to C0'01 n- 
forms and 2-forms. 

Lemma 3.12. F is actually a map from r(N(X)) to exact n-forms and 
exact 2-forms. 

Proof It is obvious that the image of F lies in the closed n-forms and 2- 
forms, since F is the pull back of the closed forms /? and K. However, 
expy : X —> M is homotopic to the inclusion i : X —► M by replacing V 
with tV. Therefore, expy* and i* give the same map in cohomology. Thus, 
if [•] denotes cohomology class, then [expy*(/?)] = [i*(/3)] = [P\x] = 0 since 

X is special Lagrangian. Similarly, [expy*^)] = 0. So the forms in the 
image of F are cohomologous to zero, i.e. they are exact forms. □ 

Hence, considering F as a map from C1,a 1-forms to exact C0'a n-forms 
and 2-forms, then F^O) = — d * 0d is surjective. The Banach space implicit 
function theorem says that JF~1(0,0) is a manifold with tangent space at 0 
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equal to kernel of F' = Hl{X). Elliptic regularity implies that i7,~1(0,0) is, 
in fact, smooth. □ 

Next, we have the following result which is the special Lagrangian analog 
of Simon's result for complex manifolds. 

Theorem 3.13. Given a normal family of submanifolds Xt with X = XQ 

special Lagrangian and V the normal vector field and v = (JVy the corre- 
sponding l-form, then 

(3.8) ^TO =  / {\\dv\\2 + \\d*v\\2) dvolo. 
t=o    Jx 

Corollary 3.14.   Under  the   identification   of the   normal   bundle   with 
T*(X), the Jacobi operator is identified with the Hodge Laplacian A. 

Because the kernel of A is the same as the kernel of d 0 d* on a compact 
manifold, we see the only way to deform a special Lagrangian submanifold as 
a minimal submanifold is to deform it as a special Lagrangian submanifold, 
although this is easily demonstrated since any minimal deformation of a 
calibrated submanifold is necessarily calibrated. However, the integrability 
of Jacobi fields of a general minimal submanifold is a difficult question, but 
in this context we have: 

Corollary 3.15.  Given a Jacobi vector field, one can realize it as a defor- 
mation vector field to a family of minimal submanifolds. 

Proof of Theorem 3.13.   We compute Qa(VV). From the expansion of a: 

a = Re (CJ
1
 + iujn+1) A ■ • • A (u/1 + iuj2n) 

= uj1A"-Aujn- (ujn+1 A ujn+2 A a;3 A • • • A ujn + • • • 

+ OJ1 A ..• A UJ71-2 A LJ271'1 A uj2n) + • • • 

from which one can read off \i...k,..i'...p = —(l/n\)(S%
k6^ — 5J^). With these 

coefficients one can compute that 

Qa(vv) = Y/-^(yi'vf-vfvf) 

= -2^(V^i-^). 
i<j 
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Then one easily shows 

IIW||2 - Qa(VV) = XX-)2 + 2 J2 (VUVJJ - VaVn) 

agrees with 

H^ll2 + ||d*t,||2 = (^^)2 + ( £Vu - Ya 

and the result follows from the Theorem 1.4 for the second variation.       □ 

Examples. 

(1) It is easy to write down flat complex n-dimensional tori equalling Cn 

mod various lattices with real n-dimensional sub-tori that are special 
Lagrangian. By the above results, the sub-tori translate in n dimen- 
sional families. 

(2) Since SU(2) ^ Sp(l), then if M has an SU(2) structure then M 
has an Sp(l) structure. That is to say, M will carry three distinct 
SU(2) structures with complex structure maps /, J, and K satisfying 
as usual I2 = J2 = K2 = —identity and the compatibility condition 
IJ = K. It turns out that a surface is special Lagrangian with respect 
to one of the 517(2) structures, say / if and only if it is complex 
with respect to one of the other structures, in this case K. Thus, 
the special Lagrangian theory is equivalent to the complex theory. 
One can reinterpret the above special Lagrangian results as results 
in complex geometry. For example: There do not exist any rational 
curves (complex 5'2,s) on a complex 2-torus. A genus g Riemann 
surface on either a complex 2-torus or a K3 surface will move (as a 
complex submanifold) in a real 2g dimensional family. 

(3) A particular result of the previous example is that if an elliptic curve 
((7 = 1) lies on a K3 surface then this curve will move in a two dimen- 
sional family. Since the curve is of real codimension 2, it can be hoped 
that the elliptic curves will foliate the K3 surface. In fact, the ellip- 
tic curves do foliate the K3 surface, if one allows certain degenerate 
leaves. 
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(4) Suppose that on an SU(n) M, there is a real structure, i.e., an anti- 
holomorphic involution r such that the real points, i.e., those points 
fixed under the involution, form a smooth non-empty submanifold X. 
Then, in [Br2], Bryant shows that X is special Lagrangian. For exam- 
ple, 

M = {(^)-+2 + . . . + (^n+2 _ (^+1^+2 = 0j c cpn+1 

then the real structure T(zi) = z1 of CPn+1 restricts to r : M —► M. 
The real points consist of the subvariety 

X = {(z0)n+2 + • • • + (xn)n+2 - (xn+1)n+2 = 0} C 

is a special Lagrangian submanifold of M. However, some care should 
be exercised since the induced metric is not the Calabi-Yau metric: Let 
KF.S. denote the Kahler form associated to the Fubini-Study metric. X 
is Lagrangian with respect to the restriction to M of the Fubini-Study 
metric, i.e., KF.S.\X = 0. This is because the T*(K,F.S.) = —KRS. and r 
is the identity on X. However, X is also Lagrangian with respect to 
the Calabi-Yau metric on M. This is because the associated Kahler 
form KC.Y. 

on M is KF.S.\M + iddf with / a real valued function on 
M and 

T*(iddf\X)=iddT*(f\x) 
= -iddT*(f\X), 

but r is the identity on X, so, indeed, iddf\x = 0. 

For n even, X is homeomorphic to Sn and n odd X is homeomor- 
phic to RPn. Explicit maps can be given as follows. For n even, let 
[y0,... , yn]+ be an oriented line in IRn"fl with the space of all such 
lines being RF1 = (Rn+1 \ 0)/M+ ^ Sn. We define the map from RIT 
to X via 

(3.9) [y0,...)yn]+^[y0,...,y«)((y0r + ... + (y«r)1/" 

For n odd, we use the same map considered as a map from MFn to 
X. In both cases, it is easy to check that (3.9) provides the required 
homeomorphism. In both cases, too, we have Hl(X) vanishes so that 
by the above results X is rigid as a special Lagrangian manifold. 

One can obtain Calabi-Yau manifolds by taking complete intersections 
in higher dimensional projective spaces, and by taking real slices one 
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ought to find special Lagrangian manifolds that are not rigid although 
calculating the first Betti number of the real algebraic varieties would 
probably prove difficult. 

4. Deformations of Coassociative Submanifolds. 

We turn now to the deformation theory of coassociative submanifolds. 
This is analogous to the theory for special Lagrangian submanifolds, so we 
will try to parallel the previous section. Since coassociative submanifolds sit 
in seven dimensional manifolds with holonomy contained in (J?2, we will first 
develop the structure equations for such manifolds M7. We start with some 
constructions in flat space which will then be transferred to the tangent 
spaces of M. 

On R7, define the associative 3-form ^o by: 

(4.1) (j>o = dx567 + dx5(dx12 - dxM) + dx6(dx13 + dxM) + dx7(dxu - dx23) 

where dx567 = dx5 A dx6 A dx7, etc. 
Following [Brl], one defines £?2 to be the subgroup of GfL(7,R) fixing 

the form ^o- Fairly readily one shows that G2 preserves the metric given 
by: 

(4.2) go = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2 + (dx7)2. 

Therefore, G2 also preserves the cross product on R7 defined as follows: For 
v,w € R7, then v x w equals JJ (w J (v J (</>o))), where |} : (R7)* —> R7 is the 
metric isomorphism. For example, 

(4.3) A x A = A. 
dx1     dx2      dx5 

With the cross product structure on R7, one easily defines an octonionic mul- 
tiplication on R8; however, only the cross product structure will be needed. 

Following [HL], let the coassociative 4-form ^o be the Hodge dual to 
</>0' One calculates that 

(4.4) Vo = dx1234-dx67(dx12-dxM)+dx57(dx13+dx24)-dx56(dx14-dx23). 

A 4-plane in R7 is defined to be coassociative if ^0 restricts to be the 
volume form. For example, the 4-plane 

^        d d d d 



Deformations of calibrated submanifolds 727 

is coassociative. 
We identify R7 with H 0 ImH by 

(x1,... ,x7) H-> (x1 + i x2 + j x3 + k x4 ,i x5 + j x6 + kx7) = (u,v), 

and let 
\p,q] E Sp(l) X Sp(l)/{±(1,1)} = so (4) 

act on R7 = H 0 ImH via: for u 6 H then u \-^ puq and for v E ImH 
then v v-* qvq. This action of SO(4) on R7 is just the sum of the standard 
representation of SO (4) on R4 together with the anti-self dual representation 
on A?.(R4) £ R3. SO (4) preserves the subspace 

H- —A —A —A — 
dx1     dx2     dx3     <9x4' 

and also SO (4) preserves the the associative 3-form ^o- This last statement 
is seen by writing </>o as 

1 1 
^0 = -^ ^0 A z/o A z/o - ^ Re (I/Q A fio A /io) 

where /XQ = dx1 + i dx2 + j dx3 + k dx4 and UQ = i dx5 + j dx6 + k dx7. We 
then have 

Proposition 4.1. G2 acts transitively on the set of coassociative A-planes 
with isotropy SO (4). 

Proof. See [HL], Theorem 1.8, Chapter IV. □ 

Next, we place these structures on the tangent space to a seven manifold 
M. We say that M has an almost G2 structure if M carries a positive 
3-form (f). Here positive just means there is some identification of each tan- 
gent space to R7 taking </> to </>o. Via such an identification, one may pull 
back the metric go to each tangent space, giving a well-defined Riemannian 
metric on M. The almost G2 structure is said to be integrable if the form </> 
is parallel (covariant constant) with respect to the corresponding Levi-Civita 
connection. In [Brl], it is shown that integrability is equivalent to the clo- 
sure and co-closure of the form </>. Let us call such manifolds with integrable 
G2 structures, G2 manifolds, and we assume M to be such a manifold. 

We now define the G2 coframe bundle of M7, ^(M), as follows. For 
p e M let Fp be {u : TP(M) -> R7 | u*(f>o = <£}. ^> 7^ 0 by our definition of 
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positivity of 0, and so by our definition of G2, .?> = G2. There is a canonical 
M7-valued 1-form on T defined by 6j(V) = u o ^(y) where TT denotes the 
projection of T to M and V G T^F). With this the structure equations 
take the form: 

(4.6) d 
^   P-{y)l) \u>\ 

where 1 < i, j, fe, • • • < 4 and 1 < a, 6, c, • • • ^ 3, ^j. = -y^, /3f = -/?*, and 
p_ : 5o(4) —> 5o(3) denotes the anti-self dual representation. Also, /? is not 
arbitrary, but if one thinks of the three columns of /?* as quaternions /?i, #2 
and /33 then they satisfy the relation i/3i + j fa + k fo = 0. (Integrability 
ensures that there is no torsion.) 

One has </> and -0 (pulled up to J7) given by: 

(4.7) 0 = u567 + UJ
5
 A (a,12 - a;34) + a;6 A (a;13 + a;24) + a;7 A (a;14 - a;23), 

and 

(4.8) V - ^1234 " ^67 A (a;12 - a;34) + w57 A (a;13 + a;24) - a;56 A (a;14 - a;23). 

A four dimensional submanifold X4 C M7 is said to be coassociative if 
each tangent space is coassociative, that is the 4-form ip restricts to X to be 
the volume form. Now if X4 is a coassociative submanifold of M7, we may 
pull back the G2 coframe bundle of M and take the first adapted bundle 
^(1)(X4) where the a;a's restricts to zero and the u;2,s are semibasic for 
the projection to X. By the previous proposition, this is a principal SO(4) 
bundle over X. For coassociative submanifolds, we have the following result. 

Proposition 4.2.   The normal bundle to a coassociative submanifold is iso- 
morphic to the bundle of anti-self dual 2-forms, i.e., N(X) = A^_(X). 

Proof. This result follows just from the fact that both bundles arise as vector 
bundles associated to the principal bundle ^^(X4) via the same represen- 
tation p_ : SO(4) —* GL(ImH), namely, p-([p, q])(x) = qxq for x G ImH. 

One can give an explicit map from Ai(-X') to N(X). For a G A^_(X), 
choose an orthonormal basis ei of TP(X), such that a = A(/xi/i2 — MS/M) 

where A is a scalar and the ^'s are dual to the ej's. Send a to Aei x 62. 
To show this map is well-defined and normal, we may use the G2 invariance 
and identify Tp(X) with ^4 as in (4.5). To show the map is well defined, 
one notes that the isotropy in SO(4) of a;12 - a;34 is a U(2) = {[ei9, q] | 6 G 
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M, q E Sp(l)}, and this 17(2) fixes ei x 62.   By (4.3), the map is normal 
valued. 

Let a1 = u12 - u34, a2 = UJ
13

 + u;24, and a1 = UJ
U

 - CJ
23

. The general 
normal vector field 

V = y5-—+ Vrb—^ + V( 

OUJ
5 du6 duo7 

is identified with the anti-self dual 2-form ay = V\ a1 + V^ a2 + V3 a3 where 
we set Vi = F5,y2 = F6,y3 = ^7. □ 

Corollary 4.3. For a coassociative submanifold X of a flat seven torus, 
T7, with a G?2 structure, then (1) r(-X') 0 h?_(X) is trivial, and so (2) 
Pi(M) +p1(A2

1(X)) = pi(X) +pi(X) + 2e(X) = 0, and therefore (3) 
3x(-X") + ^(-X") = 0 where x and> & are the Euler characteristic and sig- 
nature, respectively. 

Proof. The first statement follows from the fact the tangent bundle to 
the torus is trivial, and so the restriction to X is trivial, and T(M)\x — 
T{X)®K2_{X). The second statement follows from the fact that pi(K2_{X)) 
equals pi{X) + 2e(X), which follows from an easy classifying space argu- 
ment. The third follows from the signature theorem for four manifolds: 
a{X) = \jxpl{X). U 

Next, we turn to the deformation theory of coassociative submanifolds. 
For this we need the following reformulation of coassociativity. 

Proposition 4.4. A four dimensional submanifold is coassociative if and 
only if the 3-form (j> restricts to X to be zero. 

Proof See [HL], Corollary 1.20, Chapter IV. □ 

With these preliminaries we have 

Theorem 4.5. A normal vector field to a compact smooth coassociative 
submanifold is the deformation vector field to a family of coassociative sub- 
manifolds if and only if the corresponding 2-form is closed (and hence co- 
closed by anti-self duality) hence harmonic. Thus the Zariski tangent space 
to the moduli space of coassociative submanifolds at X is isomorphic to 
7{L(X). Furthermore, there are no obtructions. 
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Corollary 4.6. If f3P_(X) = dimiJ^.(X,R) is zero, then X is rigid as a 
coassociative submanifold. 

More generally: 

Corollary 4.7. The moduli space of coassociative submanifolds is locally 
a smooth manifold of dimension equalling 0^_{X). Furthermore, the mod- 
uli space carries a natural Riemannian metric: Given two tangent vectors, 
identify them with anti-self dual forms a and a1 on X, then their inner 
product is defined to be — fx a A a7. 

Let us recall some of these dimensions for familiar four manifolds: 

X /£(*) 
s4 

0 
CP2 0 

CF 1 
rp4 3 
K3 19 
K3 3 

tie four sphere oi Some particular cases: If the four sphere or CP2 occurs as a coassociative 
submanifold, then it will be rigid. If CP2 occurs, it will move in a one di- 
mensional family. The four torus would move in a three dimensional family, 
etc. 

The most intriguing case is, if a K3 occurs it would move in a three 
dimensional family. Since it would be of codimension three in M, one may 
hope that the family would fill up the whole ambient manifold, possibly with 
some degenerations. 

Corollary 4.8. A coassociative submanifold of a flat torus with G2 struc- 
ture has f3<2_{X) >3. 

Proof of Corollary 4.8. The seven killing vector fields on the torus will 
project to at least three linearly independent normal vector fields on the 
submanifolds giving rise to three distinct families of coassociative submani- 
folds. □ 

This result, with the restriction on the Euler character and signature 
from Corollary 4.3, severely restricts the topology of coassociative subman- 
ifolds of G2 tori. 
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Proof of Theorem 4.5. We define a non-linear map F : U C N{X) —► 03(X) 
by pulling back the form 0 via the map expy. By Proposition 4.4, F~1(0) is 
the space of nearby coassociative submanifolds. Again we need to compute 
the linearization of F\ 

F'mV)=^tF(tV) 
t=o 

(4.9) = CvWlx 
= (Vjdil> + d(Vjil>))\x 

= d(Vj^)\x. 

From (4.8), we find 

VAip\x = (va-^) ^\x = V1a
1 + V2c? + Vza

z = ay, 

where ay is the anti-self dual 2-form corresponding to the normal vector 
field. (See Proposition 4.2.) Thus i?/(0)(Vr) = day, and so F^O) is just 
exterior differentiation when F'^S) is considered as a map S$L{X) —> fi3(X). 
The kernel is the harmonic anti-self dual 2-forms. (Recall closed and anti- 
self dual implies co-closed, hence harmonic.) This proves the Zariski tangent 
space is H^_(X). 

To show that it is unobstructed, we view F as a map of anti-self dual 
2-forms of class C1,a to 3-forms of class C0'a. One notes that F actually 
maps to those 3-forms cohomologous to zero. The reasoning is the same as 
in the special Lagrangian case, see Lemma 3.11. Thus, via standard Hodge 
theory, F : n2_(X) -> dtiL(X) C ns(X). Hence ^'(0) = d is surjective, so 
the Banach space implicit function theorem asserts that i7"-1^) is a smooth 
manifold with tangent space at 0 equal to the kernel of F^O), i.e., H^_(X). 
D 

Next, we turn to the second variation of volume of a coassociative sub- 
manifold. 

Theorem 4.9. For a normal family of submanifolds Xt with X = XQ coas- 
sociative, V = §iXt the deformation vector field, and ay the corresponding 
anti-self dual 2-form, then 

d2 

(4.11) ^ vo\(Xt) =  f (day , day). 
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Corollary 4.10. Under the identification of the normal bundle with 
A^_(X), the Jacobi operator is identified with the Hodge Laplacian A. 

Because the kernel of A : tiL^X) —» Q?_(X) is the same as the kernel of 
d : fi?.(-X") —> Q3(X) on a compact four dimensional manifold, we see the 
only way to deform a coassociative submanifold as a minimal submanifold is 
to deform it as a coassociative submanifold. Again, this follows from the fact 
that minimal deformations of a calibrated submanifold are all calibrated. We 
have the analog of Corollary 3.15 

Corollary 4.11. Given a Jacobi vector field, one can realize it as a de- 
formation vector field to a family of minimal submanifolds, i.e., all Jacobi 
fields are integrable. 

Proof of Theorem 4.9. Using the formula of the second variation of cali- 
brated submanifolds, one only needs to calculate Q^(W). If 

W + p-MSV^Vfu,*, 

where V^2 are the components of the covariant derivative of V, then using 
equation (4.8), we read off the coefficients A6734 = —1/4!, etc. From which, 
we compute 

Q^W) = 2 {Vf Vl - V? Vj + Vf Vj - Vi F37 

-v,5 v4
6+vi v,6 - vi v2

6+vi v3
6) 

= 2{V22 F31 - V21 V32 + V23 F34 - V24 V33 

+ Vn V33 - Vl3 V31 + V12 V3A - Vu V32 

-Vu V24 + Vu V21 - V13 V22 + V12 V23). 

Since 

day = (VuJ) (a;12 - u,34) + (V^) (a;13 +a;24) 

Ul3) +(W)("14-W
23) 

1 ' = (V13 - V22 - V3l) u
123 + (Vl4 + V21 - V32) u

124 

+ (V24 - Vn - V33) a;134 - (Vl2 + V23 + V34) a;234, 

it is easy to show that 

\\VV\\2 - Q^VV) = (dav, day). 
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so the theorem follows from Theorem 2.4. □ 

Examples. This section is somewhat short, due to the fact that so very few 
examples of G2 manifolds are known. In fact, one of the prime motivations 
for studying calibrated submanifolds is hopefully to shed some light on the 
ambient manifold. 

(1) The first example is the case of just the flat torus given by M7 = 
HSlm H modulo a lattice A and a coassociative subtorus. By the above 
results, the subtorus will move in only the obvious directions. Such tori 
and subtori certainly exist, for example, A = Ai © A2 where Ai C H 
and A2 C ImH results the sub-torus moves in a three dimensional 
family. Also, it only moves in the three dimensional family. 

(2) If one takes the product of a if 3 surface with its Calabi-Yau metric 
and a flat three torus, then the total space carries a G2 structure for 
which the i^SxIpt.} are coassociative. They, again, only move in the 
obvious 3-dimensional family. 

(3) In [BS], Bryant and Salamon construct G2 structures on the total space 
of rank three bundles (in fact h?_) over the four-sphere and CP2 where 
the zero section is a coassociative submanifolds of the total space. By 
the above results they are rigid. 

5. Deformations of Associative Submanifolds. 

In this section, we turn to the associative submanifolds of manifolds 
with holonomy G^- Associative submanifolds are those three manifolds X 
for which the 3-form </>, of the previous section, restricts to be the volume 
form. Hence, we will follow the notation of the previous section with the 
exceptions: the roles of the tangential and normal variables are reversed. 
Accordingly, we relabel so that the associative 3-form (j) is given by: 

(5.1) </> - a;123 + u;1 A (a;45 - a;67) + u2 A (a;46 + a;57) + a;3 A (a;47 - a;56) . 

In this section, the index ranges are: 1 < i, j, k < 3 and 4 < a, fe, c, d < 7. 
Given an associative three dimensional submanifold X in M7, we pull 

back the G2 coframe bundle and then take the adapted frame bundle, 
^^■'{X) where 77 restricts to zero. As in the previous section, this is a 
principal right £0(4) bundle. We collect the following facts, most of whose 
proofs may be found in the text by Lawson and Michelson [LM]: 
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(1) The tangent bundle of X is the vector bundle associated to the prin- 
cipal bundle ^^(X) via the representation 

p_ :SO(4)->GL(ImH) 

where /?-([p, <j\){x) = qxq for all x G ImH = M3, and 

\p,q] G SO (A) = Sp(l) X Sp(l)/{±(1,1)}. 

Tangent vector fields are given by equivariant maps W : ^^(X) —> 
ImH where R^^W) = qWq. 

(2) Oriented three manifolds are always spinnable. A choice of a spin 
structure on X determines an Sp(l) x Sp(l) bundle V which double 
covers ^^(X). The spin bundle § of X is associated to the principal 
bundle V via the representation 

a:Sp(l)xSp(l)^GL(U) 

where o-(p,q)(y) = yq for y G HI.   Spinors are given by maps from 
S : V -> H such that R^iS) = Sq. 

(3) The normal bundle is the vector bundle associated to ^^(X) via 
the representation r : SO (4) —> GL(M.) where r([p, q})(y) = pyq for 
y G H. Normal vector fields, K^, are given by maps V : ^^(X) —> 
H satisfying i?f i(V') = pT^g. Alternatively, the normal bundle is 
associated to V via the representation 

f:Sp(l) xSp(l)-*GL(H) 

where f(p, qf)(2/) = pyq for y G EL 

(4) Let us denote the vector bundle associated to V via the representation 
£(Pi <7)(y) — PV by E. We see that the normal bundle is S 0^ E. 

(5) If V = Va-fcjE is a normal vector field, and 

dVa + ipa
bV

b = Vfri, 

so that V(V) = Vf-j^jz ® Wj, then, viewing V as a twisted spinor: 

V = V4 + i V5 + j V6 + kV7, 
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we have: 

(   .      $<y) = -{v? + vf + vZ)+i(vt + v$-v2) 
{') +3(v2

A-v£ + v1
7) + k(v*-vi-v°). 

Recall in dimension three the Dirac operator is given by: 

(5.3) $ = 2Vl+jV2 + fcV3. 

With these remarks at hand, we turn to the deformation theory of asso- 
ciative three manifolds. Again, we call on an alternative characterization of 
associative submanifolds found in [HL]. There it is shown that ImO = M7 

carries a triple cross product that is invariant under G2. The cross prod- 
uct may be transferred to the tangent spaces of a G2 manifold, and can be 
thought of as a differential 3-form x taking values in the tangent space, i.e., 
X is an element of $13(M,T(M)). One can compute that 

+ (a,156_w147_a,345+CJ367)_^_ 

+ (a,245_a,267_a,146_w157)_^_ 

(5.4) + (u,567 - a,127 + U,136 - U,235) A 

+ (u,126-u,467+u,137+u,234)-^ 

+ (a;457-a;127-a;134+a;237)    d 

du6 

+ (a;124-u,456-u,135-a,236) 124      , ,456      , ,135      , ,236^     ^ 

dcv7 

Proposition 5.1. A three dimensional submanifold is associative if and 
only if the form x restricts to be zero. 

Proof See [HL], Corollary 1.19, Chapter IV. □ 

With these preliminaries, we can finally state the following result: 

Theorem 5.2.   Under the  correspondence  of normal vector fields with 
twisted spinors, the Zariski tangent space to associative submanifolds at an 
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associative submanifold X is the space of harmonic twisted spinors on X, 
that is the kernel of the twisted Dirac operator. In other words, the condition 
on a normal vector field that it be the deformation vector field to first order 
to a family of associative submanifolds is that the normal vector field should 
correspond to a harmonic spinor in the isomorphism N(X) = S ^m E. 

Proof We define the nonlinear map F on a neighborhood U of 0 € T (N (X)), 
i.e., small normal vector fields. F(V) is defined to be the pull back of x using 
the map expy. F takes values in 

n3(x, f * (T(M))) = n3(x, f * (T(X))) © ft3(x, / * (N(x))). 

By Proposition 5.1, F~1(0) corresponds to nearby associative submanifolds. 
As in the previous sections, we compute: 

F\0)(V)=^tF(tV) 
t=o 

(5.5) = £v(x)\x 

= (Vjdx + d(VJx))\x 
= d(VjX)\x. 

From (5.4), we find 

d 
F'mV) =(-{¥? +V2

6 + V3
7) 

+ (y14 + y36_y27) 

dw4 

d 

(5.6) Y 
+ {vi-vi + v?)£-6 

+ (^-^-n6)^)®-123. 

Thus comparing (5.2) and (5.6), we see that the infinitessimal associative 
deformations (normal vector fields in the kernel of ^'(O)) are in one to one 
correspondence with harmonic spinors. □ 

Remarks. The situation here contrasts greatly with the previous two cali- 
brations. On an odd dimensional manifold, the index of any elliptic operator 
vanishes. In particular, the index of the Dirac operator vanishes. Unfortu- 
nately, one has no control on the dimension of the kernel, just that it will 
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be matched by the dimension of the cokernel. Also, trying to decide unob- 
structedness, seems very difficult since, as soon as there are deformations, 
there is a non-zero obstruction space, essentially the cokernel. 

Turning now to the second variation for associative submanifolds, we have 
the following: 

Theorem 5.3.  Given a normal deformation Xt of X = XQ with X asso- 

ciative and V = ^Xtlt^o the deformation vector field, then 

(5.7) |F
VO1

(^) = 2 [ (0(V),p(V))dvolo. 
=o       Jx 

Corollary 5.4.   Under the identification of the normal bundle with the 
twisted spin bundle the Jacobi operator is identified with the Dirac Laplacian 

Because the kernel of p is the same as the kernel of p2 on a compact 
manifold, we reduce the integrability question of Jacobi fields to the above 
(difficult) integrability problem. 

Proof of Theorem 5.3. Reading off the necessary coefficients from our ex- 
pression (5.1) for (/>, one calculates 

<^(W) - 2 (v2
4vi - vfvi + v£v2

7 - vfvj 
+ vfvf - vfv? + vfv? - v*v? 
+v?v2 - v£vZ - v?v$ + vfvf), 

Now from formula (5.2) for 0(V), it is a matter of algebra to compute that 

iiwii2-Q,(vio = <0(n0PO>- 
and the theorem follows from Theorem 1.4. □ 

Examples. Aside from the flat examples, Bryant and Salamon ([BS]) 
construct a metric with holonomy G2 on (an open set of) the total space 
of the spin bundle S of a constant curvature three manifold X. The zero 
section (which we identify with X) is associative. It is clear that the normal 
bundle to the zero section is just the spin bundle S, itself. Hence, the bundle 
E defined in the fourth remark is trivial, and the Zariski tangent space at 
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X to the moduli of associative submanifolds is isomorphic to the harmonic 
spinors rather than harmonic twisted spinors. 

There are three cases depending on the sign of the scalar curvature 5 of 
X. For S > 0, there are no harmonic spinors by the vanishing theorem of 
Lichnerowicz, [Li], so the zero section is rigid. For 5 = 0, the zero section is 
trivially deformable since the spin bundle is flat. For S < 0, there may be 
examples of non-trivial deformations. 

6. Deformations of Cay ley Submanifolds. 

Since Cayley submanifolds lie in manifolds with holonomy contained in 
Spin (7), we need to now give the structure equations for Spin (7) manifolds. 

We begin by giving Bryant's unusual definition of Spin (7), [Brl]. On 
M8, define the Cayley 4-form to be: 

$0 = dx12M + (dx12 - dx34) A (dx56 - dx78) 

(6.1) + (dx13 + dx24) A {dx57 + dx6S) 

+ {dx14 - dx23) A (dx58 - dx*7) + dx5678. 

One then defines Spin (7) to be the subgroup of GL(8) that preserves $o- 
In [Brl], it is shown that this definition corresponds to the usual one, i.e., 
the simply connected cover of SO (7). Also, it is shown there that Spin (7) 
preserves the metric on E8 equal to 
(6.2) 
go = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2 + (dx7)2 + (dx8)2. 

A 4-plane £ in R8 is said to be a Cayley 4-plane if the form $o restricts 
to be the volume form. For example, the 4-plane 

(6-3) £4 = £iA£2A£3A 
a_    d      d      a 

dx1     dx2     dx3     dxA ' 

is Cayley. 
We identify R8 with M 0 H by 

(x1,... ,x8) i-> (xl + ix2 + jx3 + fca;4,x5 + zx6+ jx7 + kx*) = (u,v), 

andlet([p,g,r])eSp(l)xSp(l)xSp(l)/{±(l,l,l)} = i?actonR8 = eeH 
via: for (u,v) e H © H then (u,v) i-> (puq.rvq). The group H preserves 
the decomposition R8 = H0H, and so also the Cayley plane £ in (6.3). The 
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subgroup H also preserves the Cayley 4-form. This may be seen by writing 
$o as 

(6.4)   $o = -j {fio A fjLQ A /2o A ^o + p>o A /XQ A UQ A Z/Q + ^0 A I/Q A Z/Q A i/0) , 

where //Q = dx1 + i da:2 + j dx3 + fc dx4" and Z/Q = d^5 + i dxQ + j dx7 + k dxs. 
Thus H is contained in the isotropy subgroup of Spin (7) preserving the 
Cayley plane £. The converse is true also, and so we have: 

Proposition 6.1. Spin (7) acts transitively on the set of Cayley A-planes 
with isotropy H = Sp(l) x Sp(l) x Sp(l)/{±(1,1,1)}. 

Proof. See [HL], Theorem 1.8, Chapter IV. □ 

We now turn to definition of Spin (7) manifolds. An eight dimensional 
manifold M has an almost Spin (7) structure if it carries a nondegenerate 
4-form, where a 4-form is nondegenerate if there is an identification of each 
tangent space with HI © H taking the $ to $o. Via such an identification, 
one may pull back the metric go to each tangent space giving a well-defined 
Riemannian metric on M. The Spin (7) structure is integrable if the 4- 
form is parallel with respect to the Levi-Civita connection. See [Brl] for a 
proof of the fact that the Spin (7) structure is integrable if and only if the 
4-form is closed. Let us call such manifolds, Spin (7) manifolds or say that 
M has a Spin (7) structure. 

Let M8 be a Spin (7) manifold with defining 4-form $. We define the 
Spin (7) coframe bundle ^(M) by letting the fiber ^"p, for a point p in M, 
be the set of linear maps u : TP(M) —> M8 where it*($o) = $• Since $ is 
nondegenerate there is one such map, so by the definition of Spin (7), there 
will be a Spin (7) worth of such maps, and we can give J7 a right Spin (7) 
action, making J7 a principal Spin (7) bundle. Let u be the canonical E8 

valued form on ^(M), i.e., u = u o TT*. The expression for $ (again pulled 
up to ^(M) using the projection) is 

$ = u,1234 + (u,12 - a,34) A (a;56 - a;78) 

(6.8) +(u,13 + u,24)A(u/i7 + u;68) 

+ (u,14-u,23)A(u,58-W
67)+W

5678. 

A four dimensional submanifold X of M is said to be Cayley if the 
tangent space at each point is a Cayley plane. Thus, the form $ will restrict 
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to be the volume form of X. Given such a submanifold we restrict the 
Spin(7) coframe bundle of M to X and the let ^^(X) denote the first 
adapted coframe bundle where the rjaS restrict to zero. This will be a right 
principal H bundle where H is defined in the previous proposition. 

In order to study the deformation theory of Cayley submanifolds, we 
need the following characterization: A Spin (7) manifold has a natural seven 
dimensional vector bundle, E = ^(M) x^M7, where p is the vector represen- 
tation of Spin (7) on E7 defined by pulling back the standard representation 
of SO(7) on M7. A Spin (7) manifold carries a 4-fold cross product with 
values in the vector bundle E. For Vi, V2, V3, V4 E TP(M) then 

(6.9) x : (VuV^VsM) ^ Vi XV2 xV3 xVA e Ep. 

This cross product may be thought of as a 4-form r 6 fi4(M, E). We have 
the following: 

Proposition 6.2. A four dimensional submanifold of a Spin (7) manifold 
is Cayley if and only if the form r restricts to the submanifold to be zero. 

Proof. See [HL]. □ 

One can show that the form r has components 

/  (a-14 - u,23) A (a;57 + a;68) - (a;13 + u,24) A (a,58 - a,67)  \ 

(a;12 - a;34) A (u,58 - a,67) - (a,14 - a;23) A (u>56 - a;78) 

(a,13 + a,24) A (u,56 - u,78) - (a;12 - u,34) A (a,57 + u,68) 

(6.10) ^2345 _ ^1346 + ^1247 _ ^1238 _ ^1678 + ^2578 _ ^3568 + ^4567 

0,2346 + ^1345 + ^1248 + ^1237 _ ^2678 _ ^1578 _ ^4568 _ ^3567 

^2347 + ^1348 _ ^1245 _ ^1236 _ ^3678 _ ^4578 + ^1568 + ^2567 

ya,2348 _ ^1347 _ ^1246 + ^1235 _ ^4567 + ^3578 + ^2568 _ a;1567/ 

We again need several facts from the theory of spinors, see [LM]. 

(1) Not all four manifolds have a spin structure, but, given a spin structure 
on the Cayley submanifold X, then this gives rise to Sp(l) x Sp(l) x 
Sp(l) principal bundle V which double covers the bundle ^^(X). 
It is convenient to assume this exists, but none of the constructions 
depend on it. If V exists then various vector bundles correspond to 
representations of Sp(l) x Sp(l) x Sp(l), and sections correspond to 
equivariant maps from V to the representation space. For example: 
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(2) Tangent  vectors  correspond  to  maps  V   :   V   —»   H  such  that 

(3) Normal vectors correspond to maps V : V —> El such that RJ ^ (V) = 
fVq. 

(4) Anti-self dual 2-forms correspond to maps A : V —> ImH such that 

(5) Positive spinors (sections of S+) correspond to maps S : V —> H such 
that i?? ^(5) = ^5, and negative spinors correspond to maps 5 : 
V -> H such that R*pqr)(S) = Sq. 

(6) The bundle i? on M arises from a representation of Spin (7) that when 
restricted to the subgroup H is given as follows. Writing R7 as H © 
ImH then [p,g,r] € H sends (x,y) G H © ImH to (qxq.fyp). This 
may be seen by noting that the form r is Spin (7) invariant and so is 
invariant for the subgroup H, and the described action of is precisely 
the action needed for the invariance under H. In particular, the bundle 
E decomposes naturally when restricted to X into a rank three bundle 
Ei and a rank four bundle E2. 

(7) If F denotes the bundle whose sections correspond to maps V : V —> H 
such that RJ \(^0 = fV, then the bundle E restricted to X may be 

identified with A?_ © §+ (g) F, and the normal bundle may be identified 
with §_ ® F. 

(8) The (twisted) Dirac operator will map sections of §_ ® F to sections 
of §4- (8) F. Thinking of these sections as quaternion valued functions, 
the Dirac operator is just Vi + i V2 + j V3 + k V4, or as a matrix, 

(6.11)        0 = 

/Vi -V2 -V3 -V4\ 
V2 Vi V4 -V3 
V3 -V4 Vi V2 

VV4 -V3 -V2 Vi/ 

In particlular, the normal vector field V = V*1-^ is identified with 
the spinor V5+ iV6 + jV7 + kV8, and 
(6.12) 

ViY) = (V,5 - Vf - V3
7 - Vi) + i ^ - K? + V7 - Vi) 

+3{vi + vi -v7+vi)+k{vi -vi -v7 -v*) 
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With these preliminaries, we may state the following 

Theorem 6.3. Under the correspondence of normal vector fields with 
twisted negative spinors, the Zariski tangent space to Cayley submanifolds 
at a given Cayley submanifold f : X —> M is the space of harmonic twisted 
spinors on X, that is, the kernel of the twisted Dirac operator. In other 
words, the necessary condition on a normal vector field that it be a deforma- 
tion vector field to a family of Cayley submanifolds is that should correspond 
to a harmonic spinor in the above isomorphism N(X) = §_ ® F. 

Remark. The Atiyah-Singer index theorem gives the index of the twisted 
Dirac operator p : §- ® F —►S+^Fas the integral over X of the degree 
four piece of 

i(X)ch(F)=(l + lp1(X) + ...)(2 + c2(F) + ...)• 

Thus 

(6.13) ind (p) = J^ -LpxCX) + c2(F) = \a(X) + c2(F). 

Unfortunately, as in the associative case, knowing the index gives no control 
on the size of the kernel. □ 

Proof of 6.3. We define the nonlinear map F on a neighborhood U of 
0 G r(N(X)), i.e., small normal vector fields. F(V) is defined to be the 
pull back of r using the map expy. F takes values in 

n\x, f * (£?)) = Q3(x, A2_) e n3(x, §+ ® F). 

By Proposition 6.2, F-1^) correspond to nearby associative submanifolds. 
As in the previous sections, we compute: 

F,mV)=§iF(JtV) 
t=o 

(6.14) =£V(T)\X 

= (VjdT + d(VjT))\x 
= d(VjT)\X. 
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From (6.10), we find 

(6.15) F'mV) = 

0 
0 
0 

Vu — V22 - V33 - V44 
Vn - V22 + Vu - K43 
Vis + V24 - ^31 + VA2 

\Vu - V23 - V32 - V41J 

UJ 
1234 

Thus comparing (6.12) and (6.13), we see that the infinitesimal associative 
deformations (normal vector fields in the kernel of F'fi)) are in one to one 
correspondence with harmonic spinors. 

□ 

Theorem 6.4.  Given a family of submanifolds Xt with XQ Cayley, then 
setting V to be the deformation vector field {again assumed normal) then 

(6.16) ^vol(Xt) = 2! ($<y),ifny))dv6k. 
6=0 JX 

Corollary 6.5.   Under the identification of the normal bundle with the 
twisted spin bundle the Jacobi operator is identified with the Dirac Laplacian 

If)2. 

As in the the associative case and because the kernel of 0 is the same as 
the kernel of 02 on a compact manifold, we reduce the integrability question 
of Jacobi fields to the above (difficult) integrability problem. 

Proof of the Theorem 6.4.   One merely calculates from the expression (6.8) 
of*: 

and then show 
||W||2 - Q*(W) = $(y)t${V)) 

and the theorem follows from (2.13). □ 
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Examples. Again, there are flat examples given by Cayley tori in Spin (7) 
tori, but, more importantly, Bryant and Salamon ([BS]) construct a metric 
with holonomy Spin (7) on (an open set of) the total space of the negative 
spin bundle §_ of a spinnable self-dual Einstein four manifold X. From their 
formulae, the zero section (which we identify with X) is Cayley. It is clear 
that the normal bundle to the zero section is just the spin bundle §_, itself. 
Hence, the bundle F defined in the seventh remark is trivial, and the Zariski 
tangent space at X to the moduli of Cayley submanifolds is isomorphic to 
the harmonic (negative) spinors rather than harmonic twisted spinors. 

There are three cases, the scalar curvature S of X is positive, negative, 
or zero. In the case S > 0, X is necessarily the four sphere by a result 
of Hitchin [H], and there are no harmonic spinors by a vanishing theorem 
of Lichnerowicz, [Li]. Hence, the zero section is rigid. In the case S = 0, 
the bundle is actually trivial, and the metric constructed in [BS] is just 
the product metric of the base four manifold with the flat metric on M4. 
The zero section is deformable in the obvious four dimensional family. In 
the case S < 0, it may be that the zero section is deformable as a Cayley 
submanifold. 

7. Conclusion. 

Several interesting problems remain. We list a few: 

(1) First of all, we have shown that the moduli space of either special La- 
grangian submanifolds of Calabi-Yau manifolds or coassociative sub- 
manifolds of G?2 manifolds carry riemannian structures. Now, a differ- 
ential geometer when coming upon a Riemmanian manifold, first cal- 
culates the Riemmanian curvature. Do the curvatures of these moduli 
spaces, satisfy some nice relations? Constant curvature, Einstein, ... ? 

(2) The moduli space of special Lagrangian submanifolds carries an n- 
form. Is it closed?, co-closed?, even relevant? It could zero just by 
dimension reasons. 

(3) There are questions on global problems of the moduli. We have already 
seen that the moduli space of special Lagrangian (^complex) tori in 
elliptic K3 surfaces is essentially non-compact due to the degenerate 
leaves. Can one somehow control the infinity of the moduli space? Is 
there some sort of weak compactness? 

These questions probably would entail studying the possible singulari- 
ties of calibrated submanifolds in flat space. This seems difficult. One 
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first studies conical calibrated submanifolds. One studies these cones 
by first intersecting with a sphere and thereby obtain submanifolds of 
the sphere (of dimension one less) with special properties. For exam- 
ple, conical associative submanifolds give rise to Riemann surfaces in 
the six-sphere that are holomorphic with respect to the standard al- 
most complex structure on the six-sphere. Bryant in [Br3] has shown 
that arbitrarily high genus can occur. 

(4) The most interesting question is that of trying to turn the problem 
around: From knowledge of the submanifolds, try to pin down the 
ambient manifold. The guiding example is that of elliptic K3's. Can 
one repeat the picture for other manifolds? Two examples: 

First, there is a natural generalisation of elliptic KS's to arbitrary di- 
mension: The subclass of Calabi-Yau manifolds of dimension 2n, with 
n-dimensional real tori that are special Lagrangian. By the results of 
the paper, the special Lagrangian tori will move in an n-dimensional 
family. So at least locally, one expects the special Lagrangian tori will 
foliate the ambient manifold. Whether the ambient mainifold is glob- 
ally foliated (again allowing for some degenerate leaves) is a difficult 
question. For elliptic if3's one has this result by algebro-geometric 
arguments. 

The second would be is to try to build a nontrivial G2 manifold fo- 
liated by coassociative i^S's. Given one i^S, then it will move in a 
three dimensional family. Again, one must probably allow for degen- 
erations. Kodaira classified the degenerations of complex families of 
elliptic curves over the disk. Can one classify the degenerations of 
coassociative K3's over the three-ball where the total space has a G2 
structure? 

These and other questions will be left for future investigation. 
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