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1. Introduction. 

Let ft be a bounded domain in Cn with C00 boundary dCt. In this paper 
we are concerned with the Dirichlet problem for complex Monge-Ampere 
equations 

(1.1) det(uZjzk) = ip(Z)U,Vu)    in   f2,     u = ip   on   dfi, 

and related questions. 
When Q is a strongly pseudoconvex domain, this problem has received 

extensive study. In [4]-[6], E. Bedford and B. A. Taylor established the 
existence, uniqueness and global Lipschitz regularity of generalized pluri- 
subharmonic solutions. S.-Y. Cheng and S.-T. Yau [8], in their work on com- 
plete Kahler-Einstein metrics on non-compact complex manifolds, solved 
(1.1) for ip = eu and ip = +00, obtaining a solution in C00^). In 1985, L. 
Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck [7] proved the existence 
of classical pluri-subharmonic solutions of (1.1) for the non-degenerate case 
ijj > 0, under suitable conditions on if;. The degenerate case ip > 0 has also 
attracted a lot of attention, and counterexamples have been found showing 
that there need not be a C2 solution (see [3], [11]). It is of interest in com- 
plex analysis to ask whether C1,1 regularity holds for the degenerate case; 
see [1] for related results and further references. In [20], S.-Y. Li studied the 
Neumann problem for complex Monge-Ampere equations. 

In this paper we treat the Dirichlet problem (1.1) for general domains 
which are not necessarily pseudoconvex. We shall prove 

Theorem 1.1. Let (p,ip be real-valued smooth functions, ip > 0.   Suppose 
there exists a strictly pluri-subharmonic subsolution u G C2(f}) of (1.1), that 
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is, 

(1.2) det(uz.zk) > ipiz^u^Vu)   in   £2,     u = tp   on   dQ. 

Then there exists a strictly pluri-subharmonic solution u G C00(fi) of (l.lj 
with u > u. 

In [13] and [12] J. Spruck and the author treated the Dirichlet problem 
for the real Monge-Ampere equations in non-convex domains. As in the 
real case, the point here is that no restrictions (other than being bounded 
and smooth) to the underlying domain £2 are needed. As complex Monge- 
Ampere equations are closely related to certain problems in geometry and 
complex analysis, it seems reasonable to expect such a result to find interest- 
ing applications. In this paper we will apply Theorem 1.1 to prove the C1'" 
regularity of the pluri-complex Green function for a strongly pseudoconvex 
domain. We recall that, given a domain £2 C Cn and a point £ G £2, the 
function 

g^{z) = sup{^(z) :    v is pluri-subharmonic on £2,    v < 0 

and v(z) < log \z - C| + O(l)} 

is called the pluri-complex Green function on £2 with logarithmic pole at £ 
(see [9], [15] and [18]). In the case that £2 is smooth, bounded and strictly 
convex, Lempert [18] has shown that g^ G C00(£2 — {C})- In the strongly 
pseudoconvex case, however, E. Bedford and J.-P. Demailly [2] have found 
counterexamples which show that g^ in general does not belong to C2(£2 — 
{£}). We will prove 

Theorem 1.2. Let ft be a smooth bounded strongly pseudoconvex domain 
and C G £2.  Then gc G C1'*^ - {C}) for anyO<a<l. 

In [23], S. Semmes developed a theory of generalized Riemann mappings 
that is closely related with the pluri-complex Green functions (see Theorem 
2.2 of [23]). Using the work of Lempert [18], he proved the existence of 
smooth Riemman mappings with given smooth strictly convex images in 
Cn. Theorem 1.2 has the following consequence: if p : Bn —» Cn is a 
Riemann mapping whose image is a smooth strongly pseudoconvex domain 
in Cn, where Bn denotes the unit ball in C71, then p is C^a in Bn - {0} for 
any 0 < a < 1. 
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A fundamental property of the pluri-complex Green function is that it 
is a week solution of the following problem 

(1.3) 

u is pluri-subharmonic in ft — {£} 

det(uZjSk) = 0 mn-{(} 

u = 0 on dft 

u(z) = log\z-t\ + 0(l) as*->C- 

We will prove Theorem 1.2 by showing that the above problem has a unique 
solution in C1,a(Q — {£}) if Vt is a smooth bounded strongly pseudoconvex 
domain. The proof, which is contained in Section 4, involves deriving interior 
estimates for the Laplacian of solutions to the approximate nondegenerate 
equations. We formulate the estimates in the following more general form 
due to its own interest. 

Theorem 1.3. Letu € C4(ri)nC1(fi) be a strictly pluri-subharmonic solu- 
tion of (1.1). Assume that there exists a strictly pluri-subharmonic function 
v G C2(fi) with v = ip on dft.  Then 

(i-4) K^)l < p^^p  ^ zen, 

where C and N are constants depending on n, £1, IMIc^OV IMIc2(QV ^ ^ 
to its second derivatives, and a lower bound I/JQ > 0 of ^{x, u, Vu), which in 
turn depends on IMIcimy 

This may be regarded as an analogue of Pogorelov's C2 interior estimates 
for the corresponding real Monge-Ampere equations (see [21]). For ij) — 
ip(z,u) and 9? = 0 (in this case, Q must be strongly pseudoconvex, and one 
may take v = 0, though it is not strictly pluri-subharmonic), this result was 
proved by F. Schulz [22] whose proof uses the integral method approach of 
N. M. Ivochkina [14] to the real Monge-Ampere equations. S.-Y. Cheng and 
S.-T. Yau J8] also obtained similar estimates which in addition depend on 
SUPQ J2 u^kuzjUzk • Our proof, which is presented in Section 3, is an extension 
to the complex case of Pogorelov's original argument. We also should point 
out that, as we will see in Section 4, Theorem 1.3 can not be directly used 
in the proof of Theorem 1.2 as our problem (1.3) is degenerate. 

In Section 2 we will establish a priori bounds on the boundary of Jl 
for the second derivatives of strictly pluri-subharmonic solutions of (1.1), 
thereby proving Theorem 1.1. Section 3 contains the proof of Theorem 1.3. 
In Section 4 we prove the solvability of (1.3) in C1'Q:(J1 — {C})- 
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Notation. Let zi,... ,zn be complex coordinates in Cn, Zj = Xj + iyj 
and z = (2:1,... , ^n). If iA is a C2 function on an open set of Cn we use the 
notation 

uj = Uzj = d3ui   uj = uz5 = djU,   ufr = uZjzk = djdiu,  etc, 

and 

where 

d- = — = I f — - z—1     ^ = — = - (— + i— 3      dzj      2 \dxj       dyjj '     J'      9^-      2 V^j       ^2/j 

A notable property of the complex Monge-Ampere operator is that under a 
holomorphic change of variable z »-» w we have 

det(i^J = |det(^z)|
2det('uw;i^fc). 

We also recall that a real-valued function u G C2(Q) is strictly pluri- 
subharmonic if the complex Hessian matrix {uZjzk} is positive definite in 

O. We denote by {v?k} the inverse matrix of {uZjzk} when it is invertible. 

2. Boundary estimates for second derivatives. 

It is now well known, through the work [10], [16] and [7], that the solv- 
ability of the Dirichlet problem (1.1) depends upon the establishment of 
global a priori estimates, up to the second derivatives, for prospective solu- 
tions. Let u G CA(tt) be a strictly pluri-subharmonic solution of (1.1) with 
u>u. Our goal of this section is to derive a bound 

(2.1) Mem ^ a 

Theorem 1.1 then may be proved by the method of continuity and degree 
theory as in the real case in [12]. 

From [7], we have the global C1 estimate 

(2.2) \u\ + \Vu\ < K   in   SI. 

It follows that ^(x, u, Vu) is bounded below from zero. We set 

^0=        min     _ip(x,z,p) > 0,    ^1=        max    .V'O^JP)- 
M+blSK, xeft |z|+|p|<ii:, xen 
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It is also shown in [7] how to derive global bounds on ft for the second 
derivatives from (2.2) and a priori estimates on the boundary 

(2.3) max|V2u| < C. 

The rest of this section is devoted to deriving (2.3). 
At any point 0 G dQ, we may choose coordinates zi,... , zn with origin 

at 0 and such that the positive xn axis is the interior normal direction to 
dQ at 0. For convenience we set ii = #1, t2 = yi,... , ^2n-3 = ^n-i, ^2n-2 — 
yn~i,t2n-i = ynJ*2n = ^n, and t' = (ti,... ,<2n-i). Near 0, we may repre- 
sent 90 as a graph 

(2.4) a;n = p(0 = ^    J2    B^tatf3 + 0(\tf). 
a,l3<2n 

Since (?i — u)(t', p(t/)) = 0, we have 

(2.5) (u-24)^(0) = -(^-^(O)^,     a,(3 < 2n. 

It follows that 

(2.6) \utatpm<C,     a,p<2n. 

Next we proceed to estimate utaXn (0) for a < 2n. Consider the linearized 
operator L = u^djdj, where {vPk} is the inverse matrix of {u^}. For any 
first order differential operator D of constant coefficients, we have 

L(Du) = D{\ogi){z,u(z),Vu(z))). 

Set £ = L — fpjdj — fpjdj where / = log^- We will employ a barrier function 
of the form 

(2.7) v = (u - u) + t(h - u) - Nd2, 

where h is the harmonic function in Ct with h\dn = ip, d is the distance 
function from dQ, and t,iV are positive constants to be determined. We 
may take 6 > 0 small enough so that d is smooth in Qs — ^ n Bs(0). The 
key ingredient is the following 

Lemma 2.1. For N sufficiently large and t, 6 sufficiently small, 

£v < -j (l + 5^^£)    ^ ^5    v > 0  on 9^, 

where e > 0 is a uniform lower bound of the eigenvalues of {ujj^} on O. 
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Proof. It follows from u^k{u^ — u^) < n — e Y^ ukk that 

(2.8) C(u - u) < CQ - e ^ uk~k. 

Next, since Au > ne > 0, 

(h — u)(x) > cod(x),    for x G ft 

for some uniform constant CQ > 0. Moreover, we have 

£(fc-:u)<Ci(l + 5^TxfcK), 

for some constant Ci > 0 under control. Thus 

Cv < Co + tCi + (tCi - 6) Y^ uk'k - 2N(dCd + u&djdk)   in ntf. 

It is easy to see that 

£d>-C2(l + ^^). 

Furthermore, since {u^k} is positive definite and ^(0) = 0 for all (3 < 2n, 
dt2n(0) = 1, we have, for 6 sufficiently small, 

(2.9) 

u'kdjdk > unfldndn + Ys^dndk + w^dfcdB) > -y - C3<5XI «**   in n«- 
/c<n 

Let Ai < • • • < An be the eigenvalues of {u^}.  We have ^^fcfc = X}^1 

and ^nn > A"1. By the inequality for arithmetic and geometric means, 

Now we fix t > 0 sufficiently small so that tCi < | and fix iV so that 
ciiV1/71 > Co + 6. We obtain 

£*> <-4 (l + XX*)   in ^ 
if we require 6 to satisfy 2(C2 + Cs)N6 < | in Qg. 

Next we examine the value of v on 9^7^. On dft fl 5^(0) we have t; = 0. 
Onfinas6(o), 

v > tcod - Nd2 > (tco - N6)d > 0, 
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if we require, in addition, iV<5 < too. Now we can fix 6 sufficiently small to 
complete the proof of Lemma 2.1. □ 

To estimate u^x^O) for a < 2n we consider in OnB^O) the real, linear 
operator 

Since T is a tangential operator on <9fi, 

T(u-u) = 0    on   dnnBviO). 

Moreover, we have 

T(u-u) <C    in nnBviO), 

and (see [7]) 

C(±T(u-u) - (uyn-uyn)2) <C (l + ^Fk'k)    in   ^n^(0). 

We note that, since on dO, near 0, 

(u-u)yn = -(u - u)Xnpyn, 

by (2.4) and (2.2), 
(uyri-uynf<C\z\\ 

Now by Lemma 2.1 we may choose A » B » 1 so that 

C(Av + B\z\2-(uyn-uyn)
2±T(u-u)) <0   in   0 0 5^(0), 

and 

Av + B\z\2-(uyn-uyn)
2±T(u-u)) >0   on   a(finSCT(0)). 

Consequently, from the maximum principle, 

^ + 5|^|2-(^n-2z2/n)
2±r(t/-M)) >0   in   OH Ba(0). 

It follows that 

(2.10) K*n(0)| < AvXn(0) + 1^^(0)1 < C,     a< 2n. 

It remains to establish the estimate 

(2.11) |u*„xn(0)|<C. 
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Since we have already derived 

(2.12) 1^(0)1, \utaXnm <C,     a,P< 2n, 

it suffices to prove 

(2.13) K*(o)| < a 

Solving equation (1.1) for unn(0) we see that (2.13) follows from (2.12) 
provided that 

(2.14) Y, ^^(0)^/9 > co >0 

for any unit vector ^ = (£i,... , ^n-i) G C71-1. 

Proposition 2.2.   There exists CQ = coC^o, ^,^, dQ) such that (2.14) holds. 

Proof. Without loss of generality, it suffices to show that 

(2.15) ^11(0)>co>0. 

We may also assume u(0) = ^(O) = O^j < 2n — 1. We have, similar to 
(2.5), 

(2.16) (u-u)ZaSl3(0) = -(u-u)Xn(0)pZa^(0),     a,0<n. 

In particular, 

(2.17) txufO) = un(0) -(u- u)Xri(0)Pn(0). 

It follows that if p^O) < 4^^11(0) (where K as in (2.2), so 0 < (u - 
2Ji)xn(0) < 2K), then u^(0) > jMiiCO) > 0. So we may assume Pii(0) > 
43^Mii(0) > 0. The function u = u — Aa:n, where A = ^Xn(0) +^ii(0)/p1i(0), 
satisfies 

(2.18) det(^fc) = det(tx^) > ^0, 

and 

(2.19) (J^ + ^u{t',p(t')) = 0   atO. 
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On dCt, u is expanded in a Taylor series 

(2.20) u\dQ = l   Y,   7a{3tatp + q(t') + 0(\tf) 
a,j3<2n 

where q(tf) is a cubic polynomial. We may assume 711 = 712 = 722 — 0- For 

in view of (2.19), we have 711 + 722 = 0, and hence (2.18), (2.19) still hold 
if we replace u by 

u-- (711^1 + 2712^12/1 + 7222/1) • 

We claim that, after subtracting the real part of a holomorphic polynomial 
(this does not affect (2.18) and (2.19)), we may assume 

(2.21) u\dn<Re  J2  ajziZj + C  Y,   M2> 
l<j<^ l<j<n 

for suitable CLJ G C. TO see this we first note that 

2    2n-l n-l 

^2 ^2 'yaptatp = Re ^2 zi(aijZj 4- a^Zj) + Re(c2iyn). 
a=l /3=3 j=2 

Thus 

1 n—l 

9   Yl   lfoi0tat0 = B^^zi(aijZj + a1jZj) + 'Re(cziyn) + O(tl-] + *2n-i)- 
a,(3<2n j=2 

Next, in ^(t7), the cubic in (^1,^2) has a unique decomposition Re(azl + 
&^i|^i|2), the terms that are quadratic in (ti,t2) can be written in the form 

n—1 n—l 

Re Y^ 4(aijzj + difj) + Re^2 C3Z3 \Zl I2' 
j=2 3=2 

and all the other terms are bounded by CX)3</5<2n^i- Finally, with the 
aid of (2.4) we may replace \zi\2 by (pi^O))-1^ modulo a holomorphic 
polynomial and an error controlled by C']d</?<n k/?!2? if we change the 
coefficients a^ and c appropriately. So we have verified (2.21). 

Now we assume (2.18), (2.19), (2.21) hold simultaneously and consider 
the barrier function 

(2.22) h = -exn + 6\z\2 + —  ^   |a^i + S^|2 

l<j<n 
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in ilnBaiO) for a > 0 sufficiently small. The smallest eigenvalue of {h^} is 
26 and the largest eigenvalue is bounded above by CB with C a controlled 
constant, independent of 6. 

We will choose 0 < e < 6 so that 6\z\2 -exn>0 on 5(0 n Ba(0)) and B 
so large (independent of 6) that /& > u on 9(fi n ^(O)). Having thus fixed 
5, we can choose 6 small enough that det(/iJ^) < ^o in Q n ^(O). These 
choices now determine e. 

Thus h is an upper barrier for u. That is, by the maximum principle, 
u < h in QnBpfi). Consequently, since ^(O) = /i(0), ^^(0) ^ ^xn(0) = — e. 
By (2.18), 

fiil(0) = -fixn(0)pii(0)>6^. 

Thus (2.15) holds with Co = ^^(O) > 0. D 

We have established (2.1). Thus the proof of Theorem 1.1 is complete. 

3. Interior estimates for second derivatives. 

The main purpose of this section is to prove Theorem 1.3. We start with 
the following lemma which we will also need in Section 4. 

Lemma 3.1. Let u be a pluri-subharmonic solution of (1-1) and L = 

u3 djdfi. the linearized operator. Let 77 be a positive function in ft and set 

(3.1) W = max    max    riN ^u^z)^ exp{a|V^)|2} , 
zen |f|=i,£e<L        jk 

where a > 0 and N > 2 are constant. Suppose W is achieved at an interior 
point z0 e ft with £ = (1,0,... , 0) and u^z0) = 0 for j ^ k.  Then, at ZQ, 

^LW - N 
(3.2) 

+ ^M£^ + £^-2 
j j,k M 

+ (/)ii + 2au1iRe^2ukL{uk) < 0, 
k 

when N > 8amaxze^ IV-u^)]2. 
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Proof. Since the function Nlogrj + logu^ + a|V^|2 attains a maximum at 
2°, we have, at that point 

(3.3) 

and 

(3.4)   N^-N 

NVl + _nl + ay^(UfcU   +    u   ) _ o 
r)       Uii *—' J 

+ *"«• 
«ii 

ny 
u\\ 

+ a ( 4 + X^ lu*J I   j + 2Re S ufcufcii - 0- 
\ k ) k 

From (3.3) we have for j > 2, 

2 

(3.5) AT 
2 Hlj 

ull 

2
+^r 4+EKA 

Differentiating equation (1.1), we obtain 

where / = log^. For N >2, 

(3.6) E nkj] 

ukk ufj 

'in 
«il 

-'^E m nji >o. 
—-   0,11   ULAA 
3>l     ii    33 

At ^0 we have L = Y^u^dj&j\ consequently, multiplying (3.4) by Uiiu.} 
33 33 

and summing over j, we obtain (3.2) with the aid of (3.5) and (3.6). □ 

Proof of Theorem 1.3.   Without loss of generality, we may assume det(vij) < 
^0/2 in fi, where 

V^o = min/?/,(^,^(^), Vu(x)) > 0, 

which depends on H^H^im).   (If this is not satisfied we may apply Theo- 
rem 1.1 using v, which is strictly pluri-subharmonic, as a subsolution to 



698 Bo Guan 

obtain a strictly pluri-subharmonic function v satisfying det^j) < ^o/S in 
fi, and v = ip on d£l. We then may replace v by v.) By a standard barrier 
argument one sees that 

(3.7) (v - u)(z) > 6odist(^5 dQ)   for x G ft 

for some uniform constant eo > 0. Moreover, since v is pluri-subharmonic, 
we have 

(3.8) L(r/) = L(v) - L(u) > -Liu) = -n. 

In order to derive (1.4) we take rj = v — u in (3.1); it suffices to derive 
a bound for W. Since 77 = 0 on 9ft, W is achieved at some interior point 
z0 e ft and for some £ 6 Cn. After a holomorphic change of coordinates we 
may assume £ = (1,0,... ,0) and Uj^(z0) = 0 for j ^ k. So we can apply 
Lemma 3.1. 

By a straightforward calculation, we obtain (see also [7]) 

(/)!! > 2Re^/p^jli - C ( 1 + «?! + £ |«ij|2 

From (3.3) we have 

(3.9) 

2Re J2 fpjujil = -2auliRe^ /pj I Ujiifi + J^ UfcUfci ) 
j j \ k / 

j 

> —2aifc1iRey^i/gL(iXfc) — C^ii f aH j . 

Now, multiplying (3.2) by r/2, combined with (3.8) and the above two in- 
equalities, we obtain 

(a - CV^2! + ]r |uy I2) - C(a + N^un - CN < 0. 
3 

Choosing N » a » 1 then yields a bound for iju^ and hence a bound for 
W. Finally, for any z G ft we have 

max^n^2uik(z)^k < -]v exp{-a|V^(z)|2} . 
I«I=U€C   jk V 
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In view of (3.7), this completes the proof of Theorem 1.3. □ 

4. The regularity of the pluri-complex Green function. 

In this section we prove the following theorem which implies Theo- 
rem 1.2. 

Theorem 4.1. Let Q be a smooth bounded strongly pseudoconvex domain 
and £ € Q.   Then there exists a unique weak solution of (1.3) in C1,a(Q — 

{<})■ 

Proof. The uniqueness is a easy consequence of the minimum principle of 
Bedford-Taylor [4] as in [19]. In the following we prove the existence. With- 
out loss of generality, we may assume that Bi(() C ft. According to [7], 
there exists a unique strictly pluri-subharmonic solution v G C00(r2) to the 
Dirichlet problem 

det(^^) = 1   in ft,     v = — log \z — C|   on dft. 

Let u = v + log \z — (\ e C00(ri — {C})- We see that u satisfies 

(4.1) ^ 

u is strictly pluri-subharmonic    in ft — {(} 

det(^^) > so in ft — {£}, for some 0 < so < 1 

u < 0,   and u\dQ = 0 

u(z) = log \z — C| + 0(1) as z —► (. 

For each positive s < SQ, set ft£ = ft — B£(Q and consider the Dirichlet 
problem 

(4.2) det(u •£) = £   in ft£,     u = u   on dft£. 

Note that, since u is a subsolution, by Theorem 1.1 there exists a unique 
strictly pluri-subharmonic solution u€ E C00(ft£) of (4.2). By the maximum 
principle, we see that 

(4.3) u < ue < u6' < log \z - C| in fl£ if e' < e. 

Thus the limit 
u(z) = lim^£(z) 
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exists for all z eQ — {(}. We want to show that u e C1,a(Q — {£}) for any 
0 < a < 1. It suffices to establish the following a priori estimate: for any 
compact subset K C Q — {C}5 and for e sufficiently small that K C ft£ 

(4.4) IKIIci.«(K) < C = C(K)    independent of e. 

First, from (4.3) we have, 

max \u£\ < CQ    independent of E. 

We now estimate the derivatives on d£l. Let h be the harmonic function in 
Q£o with boundary value h\dn = 0 and h\dB£ ^ = log^o- Then, for e < SQ, 

u < ue < h    in Cl£. 

It follows that 

(4.5) 0 < ci < |V^£| = ul < Ci   on dQ,   independent of e, 

where u in the unit outer normal to dft. For the second derivatives at 
a point on <9f2, we observe that the proof of the estimates (2.10) for the 
mixed normal-tangential second derivatives in Section 2 still works, while the 
double normal derivative estimate follows from (using notation in Section 2) 

uz(XZ(3 — ~uxnvJ)PzocZp') 

together with (4.5) and the strong pseudoconvexity of fi. Thus, we have 

(4.6) IVV| < C2   on an,   independent of e. 

Next we derive a bound 

n 

(4.7) At/ = ^2,{ue
x x + Uyy) < C   in K independent of e. 

i=i 

Choose £1 > 0 sufficiently small that K C ft — B£l((). For e < £1, set 

M£ = max     max     r?2 V u^z)^, 
zeQe KI=i,C€Cn      ^   '* 

where 77 = |z — C|2"~ ei- We want to estimate Me, which implies a uniform 
bound for |tx -gj on K as in the proof of Theorem 1.3. (We should point out 
here that we can not apply Theorem 1.3 directly for two reasons:   one is 
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because we need a bound which does not depend on e; the other reason is 
that we do not have a priori bounds for the gradient.) If M£ is achieved on 
dQ, then a bound for M£ follows from (4.6). Assume M is attained at some 
point in ft - B£l(C). By Lemma 3.1 (in (3.2), take N = 2, a = 0, / = loge) 
we obtain at that point, 

z—' vr- 
3        33 

By the arithmetic-geometric mean inequality, we have 

^i:>ndet(^)-1/« = n£-
1/n. 

3        33 

It follows that M£ < Ce™. Consequently, we have derived a bound for M£ 

and therefore (4.7) since Aiz = 4^^. Finally, (4.4) follows from (4.7) by 

the standard regularity theory. This proves that u E C1,a(fi — {("}) and 
therefore solves (1.3), completing the proof of Theorem 4.1. □ 
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