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Let M be a compact, connected Riemannian manifold. Let pt(x, y) 
be the fundamental solution to Cauchy initial value problem for the 
heat equation ^ = ^Ait, where A is the Levi-Civita Laplacian. 
The purpose of this note is to show that for every n > 1 the n-th 
derivative of logpt(-,y) at x is bounded above by a constant times 

(i + ^^)2 fortG (0,1]. 

1. Introduction. 

Let M be a compact, connected d-dimensional Riemannian manifold 
and O(M) the associated bundle of orthonormal frames with the fiber map 
TT : 0(M) —► M. Recall that, for each v e Md

5 there is a globally defined 
canonical vector field (£(v) on O(M) which is the unique horizontal lift to 
e of the vector ev £ T^M. In other words, the vector <i7r(E(v)e = ev in 
T^M has v as its coordinates with respect to the frame e. Next, given 
n > 1, we define (B^F : O(M) —► (Rd)®n for F G Cn(0(M);R) so that 

f(£(n)F(e),v1(8)...(8)vriN) - <E (v1 ® • • • ® vn) F 

and, when / G Cn(M; R), we set (g^/ = e(n)(/ o TT). 

Our purpose here is to derive estimates on logarithmic derivatives of the 
heat kernel. To be precise, let A denote the Laplacian for the Levi-Civita 
connection, and consider the Cauchy initial value problem for the associated 
heat equation: 

-$(■ frz) = g Auf^x)^     with     JmM*.*) = f(x)- 
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By elliptic regularity theory and the strong maximum principle, one knows 
that there is a unique smooth function 

(t,x,y) e (0,oo)xMxM i—> pt(x,y) G (0,oo) 

with the property that, for every / 6 C(M), 

Uf(t, x)=       f(y)pt(x, y) ^M{dy),        (t, re) e (0, oo) x M, 
JM 

where AM stands for the normalized Riemann measure on M. In addition, 
because A is essentially self-adjoint on L2

(AM), one knows that pt(x,y) = 
pt(y,x). The estimates which we will derive say that, for each n > 1, there 
is a Cn < oo such that 

(i.i) 
(B^logPT(-,y)](x) <cn|i + dist(*'2/)2V 

rp     " jp2 

for    (r,x,y) e (0,l]xMxM, 

where dist(a:, ?/) denotes the Riemannian distance between x and y. At least 
for n E {1,2}, the results in [6] show that (1.1) is sharp. 

Using methods of stochastic control theory, the problem of finding the 
upper bounds on derivatives of the logarithm of the heat kernel was studied 
by S.-J. Sheu (cf. [8]) in the following general set-up. He worked on Rd and 
considered a uniformly elliptic operators L given by 

where the coefficients a1^ and V are all bounded smooth functions and the 
matrix ((a2J(x))) is symmetric with all its eigenvalues lying between two 
fixed positive numbers. Let p^x^y) denote the fundamental solution for 
the Cauchy initial value problem 

du 
— (t,x) = Lu{t,x),        with    \\mu{t,x) = /(#); 

and EL : (0, oo) x M x M —► R is the action functional given by: 

EL(r,*,y) = iiirf jjf (^(t)-6o0(t), a^o^^-fto^)))^: 

0 6 C1 ([0,r] ;Rd) , #0) = x, and ^(T) = y\. 
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Sheu's estimate can be summarized as the statement that for T E (0, oo): 

i 

(1.2) 
dn\ogp!£{-,y) 

dxa < 
CiT-2(l + EL(T,x,y))2 whenn=l, 

3n n on Q 

CnT-2 (l + EL(T,x,y)) 2 whenn>2. 

When L is the Laplacian for some metric on Ed, one knows that 

^L{J- ^,y) = . 

Hence, when n G {1,2}, our results coincide with Sheu's. However, when 
n > 3, our estimate represents an improvement on his. For those who are 
wondering whether this improvement is a consequence of the difference be- 
tween his and our settings, the answer is "no": our methods can be modified 
to cover Sheu's setting and show that his estimate can be improved when 
n > 3. Furthermore, it seems likely that Sheu's own methods can be sharp- 
ened and made to reproduce our estimates1. 

2. Perturbation of Brownian Paths on a Manifold. 

This section gives a brief summary of results from §2 in [9]. For additional 
background, the reader may want to consult [1] and [4]. 

We begin by introducing some notation. Let 

211 = {w G C([0, oo); Rd] : w(0) = 0 j , 

thought of as a Frechet space with the topology of uniform convergence on 
finite intervals. Let B be the Borel field over 2lf, and use /x to denote the 
standard Wiener measure on (2U, B). Also, for each t G [0, oo), let Bt be the 
cr-algebra over QU generated by the maps w -w w(r) as r runs over [0, £]. 

Next, recall that, for each e G O(M), the tangent space TzO(M) decom- 
poses into the direct sum of the vertical subspace VtO(M) and the horizontal 
subspace HtO(M). Furthermore, if, for O G O(d), RQ : O(M) —► O(M) is 
defined so that ifoev = eOv for all (e,v) G O(M) x Rd, and, for A G o(d), 
A(^l) is the vector field on O(M) determined by 

A(.4)e = -^ ^ e 

s=0 

1 After seeing our results, E.P. Hsu re-examined Sheu's method and claims to 
have made the required improvements. 
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then VtO(M) = {A(.4)e : A E o(d)}. The connection 1-form 4* is the o(d)- 
valued 1-form on O(M) such that A (0(Te))c is the vertical part of Tc G 
reO(M). Hence, if the solder form UJ is the Rd-valued 1-form defined by 
d7r% = ecj(2:e), then, for any e 6 0(M) and % 6 TtO(M): 

% = <E(u;(%))t + \(<f>(<Zz))z 

gives the decomposition of Tg into its horizontal and vertical components. 
Finally, given e E O(M), we define the bilinear map 

(£,77) eMdxMd —> *«,»?). € o(d), 

called curvature form, so that 

e<I>(£,77)ev = Riem (*, ety) ev, v€Rd 

where 
Riem (Xx, yx) Z, = V[xx]xZ - [Vx, Vy], Z 

is the usual Riemann curvature tensor on M.   In this setting, the Ricci 
curvature matrix Rice is the symmetric element of Hom(Md; Md) determined 
by 

d 

mcev = 53*(^,v)er,        v6Md, 
i=l 

for any choice of orthonormal basis {£z}i in Rd. 
For every frame e G O(M), we define ^ : [0,00) x 20 —> 0(M) to be the 

/i-almost surely unique {Bt : t G (0, oo)}-progressively measurable solution 
to the Stratonovich stochastic differential equation 

dffe(t,w) = (£(odw(t))ffe(t>w)    with   ^c(0,w) = e. 

Because A = Yli^^iC)2 for any orthonormal basis {£z}i> I^'s formula 
tells us that 

(2.1)   W[fon(Ut,v))] = [Ptf}(ir(t)) 

= I f(y)Pt(*(t),y)\M(dy),-   (t,e)€(0,oo)xO(M). 

In order to use (2.1) to analyze pt(x, y), we need to introduce two perturba- 
tions of the paths 3e( •, w). To this end, we first define the Ricci flow 

A: [0,oo)xC([0,oo); O(M)) —* Horn (R*;M.d) 
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so that 

(2.2) i4(t,ff) + iRics(t)A(t,ff) = 0    with    A(O,30 = J, 

and set Ae(t,w) = A(t,$c(- ,w)). 

Then, for each v G Rd, the backward perturbation 

(t,w) e [0,oo)x2IJi—> 

(G^(t,w), ^(t,w)) G C00^; Md) x C00(R; O(M)) 

is a right-continuous, {i3t : * G [0, oo)}-progressively measurable map such 
that 

(a)   f[^;(-,w)l(0), [^(-^^^^(w^eC-.w)); 

(b) ce(s) =   ^^(0, w) (s) satisfies 

A 
ds 

e/«(*)=.3;e«(s) = c(v)««W 

with ee(0) = e; 

(c) for each s € M, the /^-distribution of 

w ~* @e,v(-,w) Us),   ye,v(-,w)   (s) 

is the same as that of w ~» (w,^^ •, w)); 

(d) for each t G [0, oo), 

fc,v(t,w) |'(())= ^[£^(t,w)|(s) 
s=0 

= €(^e(*,w)v)?c(tiW) 

+ A(jT* (odw(T),^(r, w)v)),f(TiW)) 
(*.w) 

(e) for each t G [0, oo), 

d 
ee,v(t,w)|(0)= — [ee,v(t,w)|(s) 

= Ae(t,w)v 
ft /   rr 

s=0 

+ I* (j[T* (0 ^w(r'), 4(r', w)v)St(T/)W)) o dw(r). 
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Our interest in the backward perturbation derives from the fact that, 
because of (a) and (b), 

«(v),^=^B^[j!'([§^(-,w)](5)> [£^,w)](*)) 
'- J   s=0 

when J7(e) = E" [F (w, ^( •, w))] . 

In particular, by (a)—(d), when U(t) = W[G(•*,&( •, w))/o7r(5r
e(T, w))], 

and one can make sense out of all the derivatives involved, 

(2.3)   £(v)eU=W G(w,&(.,w))(&(r,w),4e(r,w)v/) 

d 
+ Efl -Gn^(-,w)](S), [^(-.w)]^) /0 7r(5e(T,w)) 

s=0 

As (2.3) makes explicit, the backward perturbation allows us to differ- 
entiate under the expectation value. However, it leaves us with a derivative 
on /, which we now want to remove with a second perturbation. Namely, 
the forward perturbation 

(t, w) € [0, oo) X 2111—► 

(0^(t,w),^(t,w))GCoo(R;R<i) xCoo(R;0(M)) 

is a right-continuous, {Bt : t € [0, oo)}-progressively measurable map such 
that 

(a')   (j0^(-,w)](O), [^:(.,w)](0)j = (w,5-e(-,w)); 

(b')  [f^(0,w)](5) = e; 

(c') for each s 6 R the /xS)e)v-distribution of 

w ^ ([e^( •, w)] (s), [^( •, w)] (s)) 

is the same as the ^-distribution of w •w (w, ye( •, w)), where /xS)e,v 
is the probability measure on 20 such that, for each T 6 (0, oo) and 
BeBr, 

/ia,c>v(B) = E^[[i2e,v(r,w)](s),B] 
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with 

[i2e,v(r,w)](8)=exp -J (J*A (t, [^( •, w)] (a)) vda,dw(t)\ 

-\j  \j A[t> [ffe^(t,w)](a))vdo- 

(d') for each t € [0, oo), 

[^(i,w)]V)) = ^ [^ w)](S) 

= t€(i4t(t>w)v)?c(t>w) 

+ A i / r$ (o dw(r), ^e(r, w)v)Se 

(e') for each t G [0, oo), 

(T,W) 

d [e^(t,w)] (o) = — [0^(t,w)](s) 
s=0 

= t>le(t)w)v 

+^(^Tr,$(odw(r'),^(T',w)v)Se(T/)W))odw(r). 

The virtue of the forward perturbation is that, by (a')—(d'), 

= W 

-W 

/  {At{t, w)v, dw(t))Rd G (w, U ■, w)) / o TT (ffe(r, w))l 
vo J 

^G([0^(.,W)](S),[^:(.,W)](S) /0 7r(^(T,w)) 

when G depends only on (w,5e) \ [OjT1].  Hence, after combining the pre- 
ceding with (2.3), we see that 

T*{y)tU = w\( (A(*.w)v,dw(t))R(l G(w,ffc(.,w)) 
Uo 

(2.4) /o7r(^(r,w))l 

+ E'i[[l?r,vG](w,^(.,W))/o7r(5e(r,w))] 
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when G depends only on (w, $) \ [0, T] and 

(2.5) 

with 

and 

pT,vG](w,&(.,w)) = T (w.ff.C-.w)) 

(w.&C-.w)), 

VVG 

VVG 

(w, U ■, w)) = -^G ([^( •, w)] (a), [£^( •, w)] (S)) 

(w,ffe(.,w))=^G([e^(.>w)](5)>[5^(.>w)](s)) 

s=0 

s=0 

For future reference, we record a simple fact about the action of T>v 

and Dv on integrals. Namely, assume that I : [0, oo) x 233 —► M is a 
right-continuous, ^-almost surely continuous, {Bt : t € [0, oo)}-progressively 
measurable function for which there are right-continuous, /i-almost surely 
continuous, {Bt : t € [0, oo)}-progressively measurable versions of (t, w) -w 

V^I(t, •)   (w) and (t,w) ^   ^/(*, •)   (w). Then, 

(2.6) 

( p J(t, •)] (w) =  T [^/(r, •)] (w) dr, 
J(t,w)=l  /(r,w)dr =*  | ^ 

0 | [vtj(t, ■)] (w) = J   [vtl(T, ■)] (w) dr, 

and, for any £ 6 Rd (cf. (e) and (e') above): 

(2.7) 

J(i,w)= fur^diZMTVi =* 

' [^J(t, •)] (w) = jT* [^7(r, •)] (w) d (£, W(T))J 

+ jf 7(r, w) d ^, [^(r, w)] (0))   , 

'Vtj(t, ■)] (w) =  T K/(r, •)] (w) d (£, w(r))^ 

+ ^t/(r,w)d^,[©^(r,w)](0) 

/l 
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Additionally, we want to record the action of Vw and T>v on a few special 
functions. First, by using (2.2) and the method of variation of parameters, 
one can see (cf. (d) above) that 

©^(i.OjCw) 

= -^Ae{t,w)f Ae(T,w)-1 ((S(^e(r,w)v) Ric 

+A ( [T$(odw(T'), J4e(T/,w)v) ) Ric ) At(T,w)dT. 

At the same time, a simple computation shows that, for any A G o(c!), 
\{A) Ric = [Ric, ^4]. Hence, 

(2.8) 

I>v4»(t,  •)   (W) 

= - ^«(t, w) I ^e(r, w)-1 ( <S(Ae(T, w)v) Ric 

Ric,   /     $(0^(7-'), Ae(T,,w)v)^(T,]W I       ^(T") w)dr. 
^(T.W) 

Similarly (cf. (d')) 

(2.9) 

+ 

Furthermore, 

(2.10) 

2?VA(*, •)J(w) 

= -^Ae(t,w)J ileCr.w)-1 f r(S(A(r,w)v) Ric 

Ric, /   r'$(odw(r'), ^e(T,,w)v)St(T,)W) 
•^ 0 

At(T, w) dr. 

S'eCr.w) 

^c(t, -r1]^) = -Ae^.w)"1 [^Ae(t, •)](w)Ae(t,w)-1 

[vtAe(t, O"1]^) = -^(^W)"1 [^c(t, •)](W)A(*,W)-1. 
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Finally, we will need to know how 2?v and T>v act on horizontal deriva- 
tives of $. Thus, let V = v1 <g> • • • <g> vn and (£, rj) € Rd x Rd be given. 
Then, 

= f(S(v® (^e(t,w)V)) +A(X(*,w)) OCCV)) $«,»7) 
V    v / \ / /8fe(t,w) 

where (cf. (d)) 

X(*,w)= /  *(odw(r),ylc(r,w)v)^(riW), 

But, for any >A E o(d), 
n 

[A(.A), (£(V)] = (£(^V),    where   ,4V = ^ v1 ® • • • ® ^vm ■ 

and 
771=1 

\{A) *«, T?) = [*(€, »7), ^] + * {M, V) + ^ (t Ar,) ■ 
Hence, 

(2.11) 

Similarly, 

(2.12) 

= (E(v®(^(t,w)v)) ^,77) 

+ €(%(*,w)v) *(*,»7) 

+ [X(t,w),(S(V)ye(tiW)$(^»7)] 

+ €(V)yt(tiw) (* (X(*, w^.ty) + $ (£,X(t, w)i7)) . 

%(V)yc(ti.)*«,i7)](w) 

t(£(v®(^(t,w)v)) *(€,T7) 

+ <S(J(*,W)V) ^,77) 
\ /Sc(t,w) 

+ [^(t,w),€(V)j,(tiW)*(€,»7)_ 

'vn, 
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where (cf. (d')) 

X(t, w) =  /  T$ (o dw(r), Ae(T, w)v)Se(T>w), 
JO 

3. Estimates on Derivatives of the Heat Flow. 

Let / : M —> (0,00) be a smooth function. In this section we will 
combine (2.5)— (2.12) with elementary estimates on Ito stochastic integrals 
to estimate (cf. (2.1)) 

gW((Pr/)o7r) 
(Pr/)o7r 

To be more precise, this section is devoted to the proof of the following 
statement. 

Theorem 3.1. Set 

Yf(T w) = /07r^r'W» 

Then, for any n > 1, there is a constant Cn < 00, depending on n and the 
derivatives of the Riemann curvature, such that 

(3.2) 
g(")(iV/)0 7r 

(Prf) o TT 

<cnT-f (i + iogiiy/cr.w)!!^^)7, Te(0,1]. 

Given the calculations made in §2, the proof of Theorem 3.1 is basically 
an exercise in bookkeeping, most of which is taken care of by the next lemma. 

Lemma 3.3. Let {v771}^   C  Rd  be given,  and,  using induction,   define 
{Jn}? so that (cf (2.6)) 

{rtAl d 

/     (i4e(r, w)v1, dw(r))R , if n = 1; 
Jo 

Jn(t,w) = [DtjVn Jn_i(t, ')](vi)1 ifn>l. 

Then, for each n > 1, Jn is a finite linear combination of elements from (cf. 
the Appendix) 

(3.4) Vn=      U      V{kJ). 
k<n<k+2£ 
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Proof. Let * denote the class of functions * : [0, oo) x W \—> R which can 
be expressed as a finite product in which each factor is either constant or 
has the form 

(77,Ae(i A l,w)0j,   (r/^A^w)-1^,   or (e^&^fcfcw)*',^, 

for some £, ^^ 77, 77' G Md, and m = 0,1, 2,... . We will say that J is an 
integral of order (k, £) if 

a *l(n, w) dai(ri, w)) • • • dak+i-^Tk+e-u w)) dak^(Tk+£, w), 

where, for each m = 1,..., fc + ^, ^r
m G * and 

{£, for ^ subscripts m; 

(^m, w(t))S , otherwise, and £m e Rd. 

Since, by Lemma A.l, every integral of order (k,£) is an element of Vn, it 
suffices for us to check that, for each n > 1, Jn is a finite linear combination 
of integrals of order (fc, £) with k < n < k + 2£. But, trivially, this is the 
case when n = 1, and the general case follows by induction when one takes 
into account the computations in (2.5)— (2.12). □ 

Proof of Theorem 3.1. Given Lemma 3.3 and (2.4), it is clear that, for any 
n > 1 and V = v1 ® • • • ® vn e (Md)0n, there is an /v € span (Vn) such 
that 

'<S(V)PTfo7r rpn 

PTf OTT 
(e) = E^ ivcr.w)'0^^'^ 

i¥/(7r(e)) 
,    T 6(0,1]. 

Thus, (3.2) follows from (A.4). □ 

4. Derivation of the Main Estimate. 

At this point, the derivation of (1.1) is quite easy. Indeed, the first step 
is to observe that, for any n > 1 and V = v1 ® • • • <g> vn, <£(V) log Prf can be 
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estimated by quantities of the sort already estimated. To be more precise, we 
denote by Sm)n the set of all partitions of the set Sn = {1,..., n} into non- 
empty disjoined increasingly ordered blocks /31,..., /3m. If f3 = (/?i,... /?&), 
with 1 < Pi < • • • < Pk < ^ is a block in a partition of <Sn, we set \/3\ = k 
and V^3 = v^1 ® • • • ® v^fc. Then, using induction, one can check that: 

(4.1)    (£(V)logPr/ 
n 

= £ (-l)
7"-1^-!)! 

m=l (PT/)
7 

But, by (3.2), for any T € (0,1]: 

(V) Prf 

in 

E   n^K)w 
{/31,...,/3m}eEm,n^=l 

Pr/ (*(0) 

<Ci 1^1 V^ .r-V^ + iogiiy^r.wji^j) 2 , 

and so we now know that 

[<£<"> log ((PT/)o7r)(e)' 

<C;T-f (l + logliy/CT.wJI^j)7,    T€ (0,1], 

for a C'n < oo which depends only on n and bounds on the Riemann curva- 
ture and its derivatives. In particular, since P<2T{X>> y) = [PT (PT{ •»2/))] C^), 
we find that 

®n 
<S(n)logp2T(7r(-),y)](e) 

<c;r-?fi + iog pr(-,y) 
P2T(7r(e),y) C(M;i 

T 6(0,1]. 

Finally, since (cf. [5] or [3]) there is a 0 £ (0,1), so that 

-jexp 
dist(x, y)2 

ex <Pr(a:,y)<-^3-,        (T, s, y) € (0,1] x M x M, 
6^2 

the estimate in (1.1) follows after an elementary manipulation. 
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5. Appendix. 

We collect here some elementary facts and estimates. To begin with, 
let V denote the vector space of right-continuous, {Bt : t G [0, oo)}- 
progressively measurable functions I: [0, oo) x 2U i—> M, and define 

/*(r,w) = sup{|i(t,w)|: te [o,r]},     (r,w) e [o,oo)x2n. 

Next, for I G N, let P(0,1) denote the class oil eV for which T-£I*(T, w) 
is in L00^); and, for (kj) G (N \ {0}) x N, let V(kJ) be the set oil eV 
with the property that 

Em R-2 log (    sup   fji (T-^-£ J*(T, W) > Rk) ) < 0. 
n-*00 \TG(O,OO)    V 'J 

Lemma A.l. For each (k,?), V{k^) is a vector space, and if I G V(k^) 
and J G V(m,n)j then IJ G V{k + m1^ + n). In addition, if I G V(k,£) and 

J(t, w) = /  J(T, W) dr, (t, w) G [0, oo) x 211, 
Jo 

tfien J G V(k,£+ 1). Finally, if {li}* Q V{k,£) and 

d       nt 

j(t,w) = J2 / ^ (r5 
w) dwi (r) >     (*» w) G [o, oo) x an, 

t/ien JG V(k + 1,£). 

Proof Everything except the final statement is completely elementary. 
Moreover, the final statement follows immediately once one recalls the fact 
that (cf. [7]), for any progressively measurable I: [0, oo) x2H —> R^, 

/JLI   sup    /   (I(r,w),dw(r))Rd  > pR and   /    |l(t, w)|L dt < R2 J 
\te[o,T] \Jo Jo J 

<exp(4). 

D 
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Lemma A.2. Let X and Y be random variables satisfying the conditions 

E ,x2 
< M < oo,    E[y] = 1,    Y > 0,     and WYW^ < oo. 

Then, for each p € (0, oo) there is a universal Cp € (0, oo) such that 

(A3) E[\X\pY} KCpitegWYW^ + logM)* . 

Proof. By Jensen's inequality, it suffices to handle p's which are even integers. 
Further, without loss in generality, we will assume that X > 0 and Y > 0. 
In particular, by Jensen's inequality, this means that 

E[X2Y] -E[YlogY] =E log 
Y 

Y <logE ,x2 

and therefore 

A2 = E [X2Y] <E[Y log Y] + log M < log ||y(^ + log M. 

More generally, if ^m = E [X2mY], then 

^2(m+l) = ^2mE   X 

< A2m IE 

iX2my 

A2m 

x2mY,   x^y.   ,   „, 
log—    +logM 

^42m Aim 

< mE [X2TnY log X2] + (log ||yU^ + log Af) ^2m - ^2m log A2r, 

< -^^ + (mlog 2m + log HYI^ + logM) ^2m, 

where we have used the easily verified facts that 

x logx > —e~l    and    logx < h log 2m — 1    for all x G (0, oo). 
2m 

Clearly, the preceding shows that 

^2(m+i) < 2 (m log 2m + log yyHoo + log Af) A2m, 

and the desired estimate follows immediately from this. 
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Finally, for / G P(M), with k > 1, define 

Af (/) = inf i M € [1, oo) :     sup   E 
[ Te(0,oo) 

and conclude from (A.3) that 

exp-  »/^'') <M 

(A4) E^ [/*(r)y] < ckM{i)T-^ (iogM(i) + log imioo) 
for all T > 0 and non-negative y's with W\Y} = 1. 

D 
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