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In this paper we will discuss local coordinates canonically corre- 
sponding to a Kahler metric. We will also discuss the C00 conver- 
gence of Bergmann metrics following Tian's result on C2 conver- 
gence of Bergmann metrics. At the end we present an interesting 
characterization of ample line bundle that could be useful in arith- 
metic geometry. 
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1. Introduction and Background. 

For any real analytic Kahler manifold, there exists a canonically defined 
local coordinate in a neighborhood of any point, which depends antiholo- 
morphically on the point. Since the coordinates canonically correspond to 
Kahler metrics, we will call them K-coordinates, representing Kahler coor- 
dinates. These coordinates first come to our attention from the literature in 
mirror symmetry. It is given a nice geometric interpretation by Kontsevich. 
We will discuss this interpretation and see its geometric implications. 

K-coordinates actually were already quite well known in early mathe- 
matics literature. To author's knowledge, they first appeared in [B]. Given 
the "canonical" nature of these coordinates, it is quite surprising to me that 

1 Partially supported by Sonderforschungsbereich 237. 
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they were not widely used in the literature, although a finite order approxi- 
mation of it was used in Tian's proof of C2 convergence of Bergmann metrics 
[T]. It is very interesting, at least to the author, to see how useful these co- 
ordinates are in handling problems in Kahler geometry and other fields. We 
will illustrate their use through one example: the proof of C00 convergence 
of Bergmann metrics. 

It was first conjectured by Yau that Bergmann metrics induced by a 
Kahler-Einstein metric should converge to the original Kahler-Einstein met- 
ric. Later, Tian proved that Bergmann metrics induced by any Kahler 
metric of integral Kahler class will converge to that Kahler metric in C2 

norm. The problem is roughly as follows. For (M,g) a Kahler manifold 
with the Kahler class u>g 6 H2(M, Z), one can realize Ug as the first Chern 
class of an ample line bundle L. Multiples Lm will induce certain canonical 
embeddings of M into projective spaces by all its sections for m large. 

cpm : M —> CPNm 

Pull backs of Fubini-Study metrics iPmdFS on M are usually called 
Bergmann metrics. They look like a nice collection of metrics canonically 
associated to the Kahler manifold, very much like polynomials. It then 
sounds natural to expect that a suitably chosen sequence of Bergmann met- 
rics will converge to the original Kahler metric. The precise definitions and 
statements will be given in section 3. 

The starting point for Tian's proof is the construction of a sequence 
of "peak sections", which, when used correctly, will reduce the problem 
to certain kind of computation. He then handled these computations by 
brute force, for which he already ran into quite complicated computation 
in proving the C2 convergence. Higher order convergences do not seem 
manageable in the same way. Although he believes that the C00 convergence 
should be true. 

On our way of understanding the K-coordinates, we find Tian's proof 
very natural in K-coordinate point of view, which enable us to choose a 
more canonical factor in a lemma to make it simpler. This turns out to be a 
crucial modification, which makes the resulting computation problem more 
tackable. For instance, we can give a simple combinatoric proof of the C3 

convergence without serious computation. (See corollary 5.1 and the remark 
after that.) At least in theory, it turns the C00 convergence into a purely 
combinatoric problem, which, in principle, should be solvable. But it turns 
out the corresponding combinatoric problem is very complicated to solve, if 
not impossible. (I have more respect and appreciation to combinatoric prob- 
lems now than before.) Although we were able to solve it to a great extent, 
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even deduced an algorithm to prove convergence to arbitrary order, modulo 
computations that get more and more complicated. (We checked the first 
non-trivial combinatoric identity, which implies the C5 convergence.) We 
are still not able to solve it completely by purely combinatoric computation. 
Another advantage of our approach is that the error terms of our estimates 

are naturally O (~) instead of O f -TL J . 

Finally, it turns out, there is a very simple and elegant geometric proof 
of C00 convergence, which even greatly simplifies the Tian's proof for the 
C2 convergence. It reduces the needed computation to very minimal. But it 
does not seem to uncover the combinatoric mystery of the problem, which 
involves quite a lot of magical vanishings, which is quite interesting in its 
own. 

Our paper is organized in the following way. In section 2, we will discuss 
the construction of K-coordinates, especially Kontsevich's interpretation. In 
section 3, we will introduce the convergence problem of Bergmann metrics, 
Tian's result, and carry out some delicate argument to reduce the problem 
to a combinatoric one. In section 4, We will demonstrate the combinatorics 
involved, and set up notation and combinatoric framework. In section 5, 
we try to sort out the complicated combinatorics to a great extent. While 
these problems are very interesting and challenging, they are not absolutely 
necessary, and not very easy to get through, therefore can be skipped with- 
out serious lossin understanding our geometric proof. In section 6, we will 
present the simple geometric proof. In the last section, we will present some 
interesting application of our results, give a characterization of ample line 
bundles which could be useful in arithmatic geometry. 

2. Construction of K-coordinates, 

Before getting into the construction of K-coordinates, let's first review 
some facts from symplectic geometry. 

Proposition 2.1. Given a symplectic manifold (M,u;) with a Lagrangian 
foliation TT : M —* Q? where each fiber of IT is a Lagrangian submanifold. 
On the tangent bundle of each Lagrangian submanifold, one can canonically 
define a flat connection by: 

Vuu = iZl£>uiuV 

where u, v are vector fields along the leaves of Lagrangian foliation, and 
iu : TM -* ?M ^ defined as i^v = i(v)uj. 
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Proof. Assume w is a vector field along Lagrangian foliation, we need to 
check {CuiuV, w) = 0, and "V" as defined above is a connection. 

{CuiujV, w) = U(UJ(V, w)) — u){vj [u, w]) = 0 

and 

Cui^av) = u(a)iuv + aCui^v 

£(au)iujV = iiaujd^v) + d^au)^^)) = aCuiuV 

Recall that: 

we get the flatness of the connection, therefore define a canonical affine 
structure on each Lagrangian fiber. □ 

We can also see this in terms of local coordinates, let q be the coordinates 
of Q, and (p, q) be coordinates of M. In these coordinates, 

u; = bijdp1 A dq3 + a^dq1 A dq3. 

The closeness of a; implies that d(bij)/dpk = d(bkj)/dpl, which imply that 

u) = dfl Adq1 + dijdq1 A dq3 

for some /*. (Here a^ actually changed due to q derivatives of /*.) Now 
change the coordinates as p1 = /', we get 

u) = dp1 A dq1 + dijdq1 A dq3 

here ay depend only on 9. p so defined, gives us the affine structure on 
every Lagrangian leaf as induced by the connection. The ambiguities on 
determining p are exactly affine transformations depending on q. 

We can further simplify the expression of u by noticing that aijdq1 A dq3 

is closed, so 
dijdq1 A dq? = d(didql) = ddi A dq1 

and a transformation that depends on q: p% —> p* + ai(g), will reduce a; to 
the standard form 

u; =.dp* A dg1 

Without loss of generality, we may fix the coordinate 5, then the ambiguities 
of the coordinate p are translations of following type 
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Here f(q) is a function that only depends on q. 
Now, we recall the construction by Kontsevich. Given a Kahler mani- 

fold (M,a;), where CJ is real analytic. Denote by M the same manifold M 
endowed with the complex structure conjugate to the original one. The di- 
agonal submanifold Mdtag of M x M is totally real. Hence the differential 
form u on Mdia9 has the analytic continuation to the holomorphic form UJ

C 

in a neighborhood U of Mdia9. Thus U is a complex symplectic manifold. 
It is easy to see that the submanifolds M x {x} fl [/, where x € M, are La- 
grangian. It means that we have a Lagrangian foliation of U. By our above 
discussion, leaves of such a foliation carry a natural flat affine structure. 
Hence this gives the construction of holomorphic affine structures on open 
subsets of M depending antiholomorphically on points of M. 

Let (z, w) be local coordinates of M x M, then i : M —► Mdia9 «--> M x M 
can be written as: i(z) = (2,2). Assume 

UJ = gij(z, z)dzl A dz3 

then 
u;    = <7ij(z, w)dzl A dvP 

For any x € M, let C/a; = i~1(M x {x} fl C7), and ^ : 170; —► Cn is a flat 
coordinate with respect to x, as defined above, such that (j>x{x) = 0 and 
tangent map at a; is an isometry with respect to standard metric on Cn. 

Remark 2.1. Maps <j>x are actually parameterized by elements on the total 
space of the canonical principle U{n) bundle on M with respect to the Kahler 
metric. 

If we take the coordinates z = <j)x, since z is already flat coordinate, we 
have gij(z, 0) = 5ij, i.e. in the Taylor expansion of gij, all the (0, Z), (Z,0) 
terms vanish. This is equivalent to saying that in each Ux we can get 
a canonical Kahler potential Kx , which depend on x, such that all the 
(0, Z), (1, Z), (/, 1), (Z, 0) terms in the Taylor expansion of Kx(z) vanish ex- 
cept for (1,1) term which equals to |^|2. Locally 

Kx{z) = \z\2 + R^JzhH1 + 0(|z|5). 

Interestingly, these are the only coordinates which satisfy above vanishing 
conditions. 

Proposition 2.2. For any x £ M there is unique holomorphic coordinate 
map z = (l)x up to affine transformation, for which there exist a Kahler 
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potential Kx(z) on M such that all the (0,1), (1,/), (J, 1), (^0) terms in 
the Taylor expansion of Kx(z) vanish except for (1,1) term which equal to 
\z\2. These are exactly the K-coordinates. 

Remark 2.2. It was in this form that K-coordinate first appeared in math- 
ematics literature [B] and recently rediscovered in physics literature. 

In above arguments, we did not worry about convergence of various 
power series, which in principle could cause problems. Now we would like 
to make some comments to address these problems. 

Firstly, if the Kahler metric is actually real analytic or weakly real ana- 
lytic (as defined later), which is usually true for many Kahler metrics that 
come up naturally, then those power series will converge in a neighborhood. 
In general, at least in principle, those power series may not converge. But 
in most cases, we only need an approximate version of the canonical coordi- 
nates, namely coordinates that is "canonical" up to certain order, for which 
convergence is not a problem. Let the order goes to infinity, we will get a 
sequence of more and more accurate approximate "canonical" coordinates. 
These sequences of coordinates usually can do the same job as the canonical 
coordinates. For instance, this will be the case, when we later deal with the 
C00 convergence of the Bergmann metrics. 

Definition 2.1. Let f(x) be a smooth function defined in a neighborhood 
of zero, if Taylor series of f(x) at x = 0 converge in a neighborhood of 0, 
then f(x) is called weakly real analytic around 0. f(x) is called weakly real 
analytic function, if it is weakly real analytic at every point. 

Clearly, real analytic functions are weakly real analytic, Following example 
is weakly real analytic at 0, but not real analytic. 

Example. 

f{x) = e""^7    at  x = 0 

Of course, it is an interesting question to see what kind of smooth func- 
tions are weakly real analytic. In the following, we will construct a smooth 
function, which is not weakly real analytic. 

Example. 
oo 1 
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where 
n-l 

6n>Max   2j](6m)n-m+1,(2n)! 
m=0 

With this assumption for 6n, we have 

/(")(*) = J2(ibm)n-m+1eibmX 

\fin)(x) < 

< 

Y,(ibmr 

m=0 

■m+ljibmX 

m=0 
n 

^0 ^n+rn+l)™ 

'n+m+lX 

5^(<fcm) n-m+lgibmX 

ra=0 

+ 2 

Therefore f(x) is smooth. On the other hand 

|/(n)(z) >&»- 

n-1 

E(i6-)n —m+lAbmX 

m=0 
n-1 

00               1 
V  - eib 

m=0 (i&n+m+l) 

'n+m+ia: 

>6n-E(6-)n"m+1-    E 
m=0 m=n+l 

((2m)!) hm—n—1 

>nnn! 

Hence 

Since 

/(n)(z) 
n! 

>nT1 

n=0 

is not convergent any where except at x = 0, /(x) is not weakly real analytic 
at any point, but it is smooth on the whole real line. 

Now we assume that OJ is an integer class, then there is an ample Her- 
mitian line bundle (L, h) over (M, a;) such that 

UJ = —ddlogh 

There exists a unique section ex(z) of L\ux up to circle action such that 
1^(0) 1^ = 1 and 

h{ex(z), ex{z)) = exp(-Kx) 



596 Wei-Dong Ruan 

It is very interesting to look at the Kahler-Einstein metrics. When g is 
Kahler-Einstein , 

RiCg = —ddlog(detg) = Xg 

Since (/, 0), (0, /) terms of g vanish, (Z, 1), (1, /) terms oidetg vanish, although, 
presumably only (Z,0), (0,/) terms of g vanish. Therefore, the natural local 
holomorphic section of canonical bundle of M induced by determinant of 
the natural flat coordinate is exactly the unique section we discussed above 
for canonical bundle of M. The vanishing of (Z, 1), (1,1) terms of detg merely 
reflect the fact that any trace with respect to g of any (Z, 2), (2, Z) terms of 
Kx is zero. 

Remark 2.3. One thing we should keep in mind is that no positive defi- 
niteness of u; is required, so we may get affine coordinates with respect to 
any closed non-degenerate real analytic (1,1) form, which is usually called 
pseudo-Kahler metric. 

Remark 2.4. Clearly all the (Z, k) components for Z, k > 2 of Kx are in- 
dependent, they describe the local freedoms of Kahler manifolds. While for 
(1,1) forms in Cn the local freedom are characterized by (Z,/u) components 
for Z, k > 2. 

3. Tian's peak sections and Bergmann metrics. 

The appearance of K-coordinate reminded me of an old paper of Tian's 
on Bergmann metric. In that paper, for a projective algebraic Kahler mani- 
fold (M, g) with the associated ample Hermitian line bundle (L, h) on (M, 5), 
he considered Lm embedding ipm : M —► CPNm, which is induced by an 
orthonormal basis {Sft1, • • • , S%m} of the space #0(M, Lm) of all holomor- 
phic global sections of Lm. Here the inner product on H0(M,Lm) is the 
natural one induced by the Kahler metric g and the Hermitian metric hm 

on Lm, i.e., (5^,5^) = !Mhm{S™,S%)dVg.   Let gFs be the standard 

Fubini-Study metric on CPNm, i.e., u)gFS = ^00MEiS5M2)- The 

pullback of the —-multiple of gps on CPNm, gm = ^m9FS on M, is in 
the same Kahler class as g. It is called the Bergmann metric with respect 
toLm. 

It is important to notice that the Bergmann metric gm does not depend 
on the special choice of the orthonormal basis {S™, • • • , S^} }. The main 
result in that paper is: 
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Theorem 3.1 (Tian). 

i.e. induced Bergmann metrics are C2 convergent to the original metric. 

The main point is to construct a sequence of peak sections of Lm around 
a point using Hormander L2-estimate of 5-operator. Tian used a coordinate 
which is a lower order approximation of K-coordinate. The idea is in the 
local K-coordinate the canonical section ex(z) of L has norm 

1 

||e-(^)||=exp(~m(H2 + 0(k|4))) 

|M*)|| = exp(-M2 + ^M*VW+ 0(\zf)) 

which is roughly the rapidly degenerating Gaussian function. When m is 
large, it is very easy to smooth out and use Hormander L2—estimate of 
9—operator to create a global holomorphic section that roughly looks like 
e™(z), which have the property that it is like a peak at m and almost zero 
away from ra. 

One can actually create a sequence of sections with similar nature, such 
that for P = (pi,P2, '"Pn) 

ep~z?zl^--zP?e™ 

Tian then went on using this sections to show his theorem. Due to the 
complexities that arise when order get higher, he only showed convergence 
for C2, although he believed higher order estimate should be possible with 
a more neat method. 

We will analyze the situation more closely and explore the C00 conver- 
gence. First, let's fix some notations and summarize some known results. 

For the notations, we will use the following convention, here letter "P" 
is just for illustration. We will also use other letters with similar convention. 

For P = (pi,p2, • • * ,Pn) € Zn
+, let 

n n 

p = 2>i, ^ = 11^ 
j=l i=l 
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Forz^iz1^2,--- ,zn)eCa, let 

dz = dz1 Adz2 A--- A dzn,   dz = dz1 A dz2 A • • • A dzn, 
n 

dz A dz = /\ dz* A dz\    zp = (z1^H^F2 •' • {zn)Vn, 
i=l 

The construction of peak section in Tian's paper is well done, we really have 
no more to say on this. We simply state it as follows. 

Lemma 3.1 (Tian). For an n-tuple of integers P = (pi,P2j * • • iPn) € Z^ 
and an integer pf > p = pi + p2 + • • • + Pn> there exists an mo > 0 such 
that for m > mo, there is a holomorphic global section Sp in H0(M,Lm), 
satisfying 

/ 
JM 

\\SP\&mdVg = i, 

/ . \\Sp\?hmdVg = O (-L\ , 
lM\{fi(z)<^} 

and locally at XQ, 

SP(Z) = XP (zp + O (N2"')) e? (l + O (^)) , 

where || • [|^m is the norm on Lm given by hm, and 0(l/m2p ) denotes a 
quantity dominated by C/ra2p with the constant C depending only on p' 
and the geometry of M, moreover 

A?2 = /      I      \z
p\2a™dV9, 

where dVg = det(gij)(y/:::l/(27r))ndz A dz is the volume form. 

For the estimates of the inner products between peak sections, we need 
the following straightforward generalization of Tian's. 

Lemma 3.2. Let Sp(z) =   (l + O (j^r)) (^ + O (k|2p')) e^ be the 
section constructed as above. T be another section of Lm. 
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(i) // zp is not in T 's Taylor expansion, then 

(Sp,T)hm = o(^j\\SP\\hm\\T\\hm. 

(ii) IfT contains no terms z®, such that q <p + d (d>l) then 

(Sp,T)hm = O (^2)  ||5p|Um||r||fcm. 

Proof. We will only show (ii), (i) is simpler. 
Assume that 

pm(|*|2-KM "detg = 2_\CLSfZ z . 
5,T 

Then 

(Sp,T)hm = J zpfT{z)e^\Y,-sQ^)dzdz + 0 (^ 

= f zph(z)e-m\z\2( V aSQZSzQ)dzdz 

+ I zpfr(z) (O (m\z\d+4 + \z\d+2)) hm(z)dVg 

f |zp|2(m2|^|2d+8 + \z\2d+4)hm(z)dVg 

= of-^)||5p||fc-||r||fc-. 
\m 2  / 

imi*. 

Now we will compute inner products of 5p. Here we make a modification, 
replacing Tian's factor (1 — \z\2)m by e-771'2' which seems more natural and 
easier to compute. 

Lemma 3.3. 

^r^^-^-Grs+o^) **»** 
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Proof. It is easy to see that it will not make a difference, if we extend domain 
of integration to Cn. Then the integral is of separated variables and result 
is a corollary of the fact: 

poo 

/ 5 r
2pe-mr\dr = \^- 

o 2mP 

Now recall that 

ern{\A*-K{zrz))detg = Y,asfZSZT. 
S,T 

Then we have the following lemma. 

Lemma 3.4. 

^B-^rE'-^l2 

tyiift i/ie leading term 

(-)n—. 

Notice: 

V^T - 1 
^-MEISTI

2
) 

Tib 27r       m 
i=0 

Ug = ——^iiT 
*        27r 

here 

D 

For us it is important to notice that u)m converge to Ug in C00 is equivalent 

to that the Kahler potentials Km = ^/ppCSi^o I^F1!2) converge to if in 
C00. This is what we will try to show. 

First put index P in an order.   Let |P| denote its order, then we can 
compare different indices according to this order.   The idea is if we care 
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about the zp term, we want to take a D 3> P and also m ^> d, p/ 3> d such 
that, we can just use 5p, P < D to do the computation and be able to 
ignore terms > D. This need a very careful arrangement. 

First construct a filtration of #0(M, Lm), let 

Vp = {S € #0(M, L™) : aQS|m = 0 for Q < P} 

If Q > P is "smallest", then dtm^g/Vp) < 1. 
We can then associate an orthonormal basis of if0(M, Lm) with re- 

spect to this filtration, denote by {S™, ••• ,5}^ }. We replace this by 
{To,Tei, • • -TJD, S[j*|+1, - • • ,fifj^} where TP = SpJ\\Sp\\hm. 

We intend to make them orthogonal again, but in a special way. We 
first modify Tp for P < D to make them orthogonal to S™ for i > \D\. By 
which we get 

Nm 

fp=Tp+ ]r ppjs? 
j=\D\+l 

Use lemma 3.2 for Sp and S^fj^i^ PPJS™, we get 

i=|D|+i 

Now we try to rectify {Tp}. Our aim is to rule out the influence of 
{S™}f™\E)\+v We will find out, after all, if we care zp term, the influ- 
ence of {S™} only reflect on the coefficients of /?QH, Q,R < P. Since all 
the other terms vanish at XQ. NOW we try to trace the influence of {S™} on 

PQR. Rectifying {Tp} requires operations similar to 

\TP\\TQ\   
Q 

where Q > P. The major terms coming from {SJ1} is 

/ Nm \      I Nm \ 

-{TP,   E   /3QjS^)-(TQ,   E   fipjS?) 
\     J=|JD|+I /      \     j=|r»|+i / 

+UTP,TQ}/TQ,  £ fkusr) 
\        j=\D\+l I 
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which is of order O (m 2 --(3+c0 j. A careful analysis will show that other 

terms are of lower order and can be ignored. 
Assume that after rectification, we get 

Nm 

fp = TP+   £   (3PQTQ+   £   fas? 
P<Q<D i=|<D|+i 

For simplicity, here we still use the same notation for /Jpj, although it have 
been changed. It is easy to see its order is unchanged. Then we have 

PPQ = 1PQ + O (nfr-M) 

Here 7PQ comes from pure interaction of {Tp}. 
We are interested in 

^f£m*)-^[ E Jf+ E w? 
\i=0 /        m \0<Q<D H^OIUTO       i=\D\+l 

When we worry about zp term, only |2Q|
2
/II^?II^ terms for Q < P are 

involved. A careful analysis will reveal that ||TQ|||m terms have error terms 
controlled by 0(rap"~(4+d)), and the ITQI

2
 terms have error terms controlled 

by 0(rap~(3,5+d)). They are all negligible, since d » p. 
Above argument ensure that we only need to work with the subspace 

of Ho(M^Lm) generated by {Sp}p<d. Another very crucial observation is 
that although orthonormal basis is good for abstract arguments, it is not 
suitable for computation. We will use the more natural but non-orthogonal 
basis {Sp} to do the computation. 

Let {IJ11} be a not necessarily orthonormal basis of HQ{M,Lm), and 
{S™} be the original orthonormal basis. Then 

Nm   
|5m|2 + j5m|2 + . . . \gnj2 =  £ G^T^T^ 

Here G*Gk3 = ^, GQ = (^^)/im. 
So we only need to compute 

%(XX<?SP5Q 

\P,Q 
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Here GP
QGRQ = 6pR, GpQ = (Sp, SQ)hm. 

Let Kahler potential be 

P,Q 

What we expect is that all mr terms for ^log^p^Q GP(
^SPSQ) of r > 0 

vanish and the terms that do not involve m should equal to K(z, z). 

Notice that {cpq} are independent, so we may trace them independently. 
Now we have reduced our problem into a purely combinatoric one. In princi- 
ple, the problem is already solved, if one is optimistic. But it turns out the 
corresponding combinatoric problem is extremely complicated. Although 
we are able to sort out almost all combinatorics, the complete solution of 
the problem needs to go back to some geometrical arguments. 

4. Combinatorics Involved. 

In this section we will demonstrate the combinatorics involved, and try 
to solve it to a great extent in next section. 

As we mentioned before that {cpg} are independent, so without loss 
of generality, we only need to consider finitely many terms. Let Kahler 
potential be 

K(z,z) = \z\2 + ^CpiqiZ**^ 
i=l 

then 

9ij = hj + ^l%&pkQkZpk-ei&lk-ei 
fc=i 
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and 

detfo) = 1 + Y.Y.PWP^'^^^ + ' 

+     E 
/=(ti,t2)C(l,2f...>r) 

detCPSJdetfQy 

cpn gn cp*2 Q*2 * z 

E 
^=(jij2)C(l,2,...,n) 

^J ^Jr + 

=     E     [UcrvS*)     E 
/C(l,2,-,r)  Vi6/ /   Jc(l,2,-,n) 

det(PS) det(<ft) 

Recall 

e"1(W2-^^))rfei5 = ^55f^ sT 

5,T 

Here we use aSf instead of aSf which was used. Let 

, 1_£+£ _ _£±£ bpQ = -CpQm     2 ,   apq = apQm    2 

Then 

£ a5?(^)5(^)r = J2 ~a-STZSzT = em^2-K^^ det5 
S,T S,T 

\ i=l i=l 

/ \ 

L=:(h,l2,---lr) i=1 

\TLiii(Pi,Qi) = (P,Q) ) 

(V^z)P(V^z)Q 

1 - i>j«tf EAfliiv^^-'tv^)0*-^ + 
i=l j=l 
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L\ E (y/^zfiVEzf 

I 

/C(l,2,- ,r) \i€/ > 

JC(l,2,.-.,n) 
(y/mz)J (yjrnz)j 

Let 5p = >2:pe2l be the sections we constructed. Then according to lemma 
3.4 we have 

S-|-P=Q-(-T 

We define 

n     _     ^     -     (5 + P)!_    5!    ,      ^ (5 + P)! 

1S'+P=Q+T 

Let 

Then 

m 2     V 54-P=OH-T 

A ^! c A St       m   c 

m3 5! 

GSf — A^-j. + GSf 

To compute inverse of matrix G = (GSf) = A + G', we use the following 
formula. 

G-1 = A""1 - A^G'A-1 + (A-^O^1 + • • • 

Use this equality we get 

iTS _  AST   ■   m  2 

G"=A^ + 
£±1     OO 

5. E(-i)w        E 
u=1       T,%iQ3-p3 = s-T 

TTa      i ifT(g + Et,i(^-Qi) + Qj)» 
II w, I.I 11     (5 + Eii(^-Qi))! u=i 
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Here Qj, Pj e Z^. 

To write in terms of b, we recall, 

^2aSf(y/mz)s(^z)T = ^2aSfZSz1 

S,T S,T 

I \ 

E      nil** 
. L=(»l,l2,-ir) l=1 / 
\Er=i'<(^i.Qi)=(^Q) / 

(V^z)p(V^z)Q 

(V^z)P(y/Ez)Q 1   r 

^-Q   I L=(il,J2,-Ir) ' iz=l I 
\Z:jL1/i(/»',04)=W3) / 

-E    E    (n^) 

E EMTTZ-V (V^z)p-'i(V*izf-<i ■ ■ • 

"£ E      detCP^detCQ^) 
JC(1,2,- .r) JC(1,2,- ,n) 

(-i)m 
(L - ejy. 

(yMz)P-ej(V^z)Q-ej 
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which gives 

aPQ - 

I \ 

VEI=i^i,Qi) = (i3,Q) 
L = {hM,---lr) i=1 

-E E n** 
^ L=(h,h,---lr) Xi=1 

r 1 
EP^TF—* + " 
i=l 

(^-ei)! 

=      E E 
Jc(l,2,..,n) L = (h,l2,---lr) ^ 

T,Uih(P\Qi) = (P + ej,Q + ej) 

/C(l,2,...,r) ^      ei)- 

Then 
s±t     OO 

u=1 L = (h,h, •■•lr) 

EULJ = L 

Y:Uk(Pi-Qi) = T-s 

urn 

i-EEE^- 

n^* 
i=l 

IK-I m 

j=zl i=l fc^l 

n 2 

s,fc + Z)i=l(Pi,fc - 9i,fc) + gj.A; 
+ ■ 

£±£    oo 
m 2 

u=l 

ZUMP'-Q^^T-S 

nu w 
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TJbk   ) (friS + ZUPi-QJ + QiV 

( 

E E detCPjpdet^.)^')^ 

 (-1)1^1 \ 

Here e/ = Eie/ Ci, ^ = (^ ^ ■ • • ^), and />■ = ELi ///", Qi = ELl ^Q*- 
Let 

^ = B-i)-    E        1 
u=l EUL3 = L UU W 

Here L = (Zi, Zi, • • • Zr). Notice that 

£7^ = £(-1) V " D- = «-' = £ ^#2^ 

here T = (*i,.ti, • • • tr), t = (t1 + ti + --- + tr). Therefore 

(4.1) IL = Ec-1)-    E 
U=l ZUL3 = L 

1    = (-1)1 

With this equality in mind, we can write GF3 as 

iTS _ A ST j. m 2 

5! 
Gii=A^ + E 

Eri=ih(Pi-Qi) = T-S 

L\ 

5! 5! 

(s - ELi WO' + § A,i(I" ^ g) (5 " 23-1 kQ* + ejV. + "" * 
Use this expression to compute the Kahler potential, we get 

Cfrs 

*.-^ »+EV 
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1 ^ (-I)*-1 

m 4-"'      k = 1E 
fc=l 

E z z 

k   QTiSi 

2Ly 11   £00 

l^(-l) 
= -■£ 

k-\ 

ib=l 5,r 

2(^z)5(V^,-)T       £ 
lE-i ««• 

(4.2) 

Si!. 

n 

+ g DX,V(L, Pvt Qv) ^ _ E^Q. + ev)l+-- 

=4E       E       IK-W^ 

Si! 

E 
S-T L = (h,l2,---lT) *=! 

1 E    E IK-i (#)! 
oo 

^(v^.)5(v^^)TE (-1) A:-l 

E 
k=u 

,«,)t.wHt)S((a*-a-40*)| + "'), 
To this point, we have transformed the problem to a clear combinatoric 

one. What we need to do is to reduce the above expression via combinatoric 
techniques to K + O (^). We can either tackle the combinatoric problem 
head on, or try to get around it in some way. In the next section, we will see 
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how much we can do with pure combinatoric. Then in the further section, 
we will present a rather simple geometric proof. 

5. Combinatoric Approach. 

To proceed further, we need some more sophisticated combinatoric equal- 
ities. Recall from (4.1), we have 

yv-iy      y       - = -^ 

Use a similar method we can get the following. 

Lemma 5.1. For L € Z£ we have 

y (-ir1       v i       _f o,  i>i 
^   u       ^    n! i (JW')!   I i. i -1 

Proof. Let 

u=l 

Notice that 

EUL3 = L 

E^L = EL4-(et-1)U=t 
L w=l 

The equation in the lemma then follow. □ 

With the above two equalities in mind, we will show some generaliza- 
tions of them. The method is similar, but need more care. The following 
elementary equality is used in the proofs. 
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Lemma 5.2. For L, Ai, ^2, • • • Ar E Z" and A = XX=i ^ tye ^al;e 

/ \ 

OO j L^M 
E 11 (^ _ ^J 

y fc = l,2,--T 

0, L<A 

Proof. Let 

Then 

wum 

Ys^zlk    1)'U E Tju      (Li)j 

\ 

E   n ^ _ ^)! 
A; = 1,2, • • • r 

oo . r    /      \ 

w v ^   i=0  x       ^^    L 
oo • r*      •       \ 

ix v y'       i=0   x       / 

oo i 

= tAetr Y(-l)u,   U' .>,(e« - l)u-r 

It v / 

= c-iyvie-V 

Compare the coefficients, we get the lemma. 

Lemma 5.3. For L, Ai, A2, • • • Ar € Z" and A = X)i=i -^ ti;e ^ai;e 

/ 

a 
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(i) when r > 0 

»   (_l)u-l 

/ 

E E 

\ 

V 
JA: = 1 K~V 

k- l,2,---r 
/ 

/ (-irHr-l)!,      L = A 
I 0, L^ 

(ii) tu/ien r = 0 

(-1) 
u-l 

u=l 

z = l 

Proo/. Case (ii) is simple, we will prove case (i), so assume r > 0. 

1 E 
00 c  1^M-l 

Z^4, Z^     u ^^       rr«   (£i)| 
L        u=r v->u      rj _ r 1 ■lJ=-1 v     ' 

/ \ 

L^'*! E II^-^)! 
J* = 1 

^ fc = l,2>..T 

-S^^^tO^-A-O 
-E 

00 '_-nti-i    „! (-1)* 

00 

U       (u 
^jTE(l)E'Vi-A,»-i) 

^ i=0  v       /    L 

=E (-1) "-1  7/.! 

u      (u hf&C)"-** 
=JV'f;(-ir'^(e'-ir- 
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= (r - l)!tV f;(-ir+r-i(" + r-l)!(ef _ 1)U 

u 

= (-l)r"V - l)\tAetr(\)r 

u\{r-l)\ 

= (~l)r-1(r-l)!tA 

Compare the coefficients, we get the lemma. □ 

In our proof, we will also need the following type of equality. The idea is 
to express polynomials of s in term of polynomials like: ; _f^t for m G Z+. 

Lemma 5.4. 

_( > + P)1    = y^ ( P \ ( Q \      ilsl 

Proof. It is easy to show by induction. D 

We have the following multivariable version of this lemma, notice that 
the multi-index / € Z^.. 

Lemma 5.5. 

{S + P-Q)\     ^\I )\ I ){S-Q + I)\ 

Proof. This is a corollary of previous lemma, if one notice that the left hand 
side of the equation in this lemma is a product with each factor being of the 
shape of the left hand side of the equation of the previous lemma, and the 
right hand side is expanded form of a product. □ 

We are actually interested in 

yriS + EUPi-Qd + Qjy- 

M    (s + TLift-QM 

It turns out that we can handle this too. 



614 Wei-Dong Ruan 

Lemma 5.6. 

-EBi(L>p>Q){s_ii:UQj)+I)l 

Here 

Bjd, P,Q)= £ (n (5) (E;"=j'(Qm
J~
Im)+Ij) ^' 

Proof. It is straightforward by suitable induction using previous lemma.  □ 

Add in the influence of det #, we get 

/ 

frCg + Eti^-QO + Qi)! n       E 
^   J^cCl^.-.-.r) 

^       li:ic(l>2>...,n) 

drt(Fj. ) det(Q^)(^)%-       ^^T" H—i 

E     (n det(pjy det(QX )(^)e/i (-i)1^1 

JiC(l,2>...|r)    V^1 

i^C(l,2,---,n) 
1 < j < u 

vi=i (5 + ELi(i'i-Qi))! 

E 11 ^(^P det(Q^.)(^)^ (-1)^1 
/^(l.^-.-.r)    W 

1 < J < « 
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(£BAUP, - KAfr,{Qj - ^}J=i)(5_(E«=i^) + K + A)!J 

i-.,C(l,2,--.,r) 

1 < j < u 

lldet(P^)det(Q%.)(Lri^-l)]K^ 

= T/BA(L,P,Q){S_ ■Qj) + A)l 

Therefore 

(5.1) 

BA(L, P,Q)= Yl BA-KW - Kj}^, {Qj - Kj}J=l) 
IjC(l,2,---,r) 
KjC{l,2,---,n) 

1 < j < u 

H detCP^.) det(Qi.)(^)%-(-1)1^1 

The relation of 5/(1/, P, Q) and £>/(!/, P, Q) is as following 

(5.2) 
oo 1 

D^L, P, Q) = (-l)lL\ J2(-i)u       E        n-   (Ti)ML> P> Q) 
u=l <yu    jj __ L^

1
^

1
 ^    '' 
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Notice that the first few terms of right hand side can be written as 

fJi   {s + TLift-QM 
S\ r     u     / u \ £, 

Here Bij(L, P, Q) is the same as Bej(L, P, Q). Prom this one can conclude 
that 

Proposition 5.1. 

degL(DA(L,P,Q)) = 2a 

Proof. Since 

BA(L, P,Q)= Y, (n (jj!) (j:Um-j{Qm
I~
Im)+Ij) I A 

Also 
u 

degiiPj) = degL(Y^{Qm - Im) + /j) = 1 
m=3 

and 
de5L ( ^ ) = de5i ( SU^Wm " ^m) + li ^J = j^, 

We have 
deflfL(BA(^P,Q)) = 2o 

Formula (5.1) gives also 

degL(BA(LJP,Q)) = 2a 

Then by the expression: 

oo . 

DA(L,P,Q) = (-iyL!^(~ir        £ BA{L,P,Q) 
u=i YU_ u = L 
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and lemma 5.2, we get 

degL(DA(L,P,Q)) = 2a 

a 

Put above into the expression of Km as in the last equation of formula 
(4.2) and use lemma 5.3 for variable S, we get 

.. r oo 

^ = ^E E IIH^E 
S-T        L=(h,l2,-~lr)¥>0        i=l U=:1 

Er
i=MPi-Qi) = T-s 

E    wrm^™ 

+^E(^)5(^)sEi::T-    E 
fc==1 EtxSi = s 

m k       . ^      n^ nf-iw 

=^E       E       ro-^o^ 
S-T      L = (li,h,-~lr)-tO.      i=l 

E E TT«     (X<)! 

m 
b-'i' 

oo 

\U-1     « 

^— ff 1E ^'(^ p' Q)( v^^)E !:=i ^"-'(V^zfr^ 'i«fc-/ 

+I(»I,I») 

i 2 E n(-6P,(5,(VS2)'"(v^2)«')" 
S-T      L = (k,l2,---lr)?0      ^ 

EUih(Pi-Qi) = T-S 

Er,,i'=i 
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H iTDjiL^P^iV^zr'iV^z)-1) +\zf 

m 

oo 

E 

E 

L^O 2=1 

(-i) u-1 

U E IK,! (^)i 

\ 

= N2 + ^E(^2)"/(^f)"/ 

{y/mzY'iyfiiiz)-1 + |2|2 

E^E (-i) u-1 

Ifc E nr=i w! jrrJB/(LJP,Q) 

Where X = (a;1,^2, • • •xr), xl = —bpiQ^(y/mz)p\^/mz)Q\ and 

(5.3) 

Recall again that what we want to show is that all the mr terms with r > 0 
in the expansion of Km(z, z) vanish and the terms that do not involve m 
should equal to K{z, z). It is not hard to see with the help of lemma 5.3 (ii) 
and from the fact Eo(L,P,Q) = 1 that the terms related to / = 0 in Km 

give exactly the expansion of K(z, z). Then what we expect clearly is that 
the / > 0 terms only involve negative m-power. More precisely we have 

Km = Km + K'm 

(5.4) 

= (M2^E^E^        E        J^W.Q) 

+^ E^v^^)-^^^)"7 
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Proposition 5.2. 

m   L u=l        U       yu_  Li = L
11i=l^''- 

Proof. Cleaxly 

Eo{L,P,Q) = DQ{L,P,Q) 
oo 1 

= (-iyL!2(-ir    E    nu ( <V^(L,P,Q) 

By the obvious fact Bo(L,P,Q) = Bo{L,P,Q) — 1 and formula (4.1), we 
have 

£o(L,.P,Q) = l 

This together with lemma 5.3(ii) give us 

L w=l V^w      Ti — T llt-1 v     ^ 

771   . 
1=1 

= 1^+2^^^ = ^ 
i=l 

D 

It is instructive to analyze the weight of m in various terms. Prom the 
definition, one can easily see that xl all have weight 1, also notice that 
(y/mz)"1(y/mz)"1 has weight —i, we should expect 
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(5.5) 
00   f—iv*-1 1 

L u=l       U       yu^ £1^2;     *" 

being a polynomial of degree less than or equal to i. It is easy to 
deduce from (5.1) that degL(.E/(£,P,Q)) = 2i, which guarantee that 
degA-(F/(X,P,Q)) = 2i with the help of lemma 5.3. But this falls short 
to satisfy our need, which requires vanishing of all coefficients of degree 
larger than i. We do not know a coherent way to show the vanishing to all 
order. But apparently, there is an algorithm to check the vanishing. For any 
finite order, there only involve finite steps of checking. Although it could 
be tedious, in principle, it works for checking convergence up to any finite 
order. Before proceed further, we would like to examine first that what im- 
plication we would have if we have already proved deg^(irj(X, P,Q)) < j 
for j < i. 

Proposition 5.3. Assume that &egx(Fj(X,P,Q)) < j for j < i.   Then 
we have 

or more precisely 

HflVn — g\\ca>b — O \ — I     for a < i + 1 or& < i + 1 
\mj 

Proof. Recall from formula (5.4) and Proposition 5.2 that 

Km = K+- vtv^r'^sr'iM*, p, Q) 

Since in term of m, X has weight one. In order for a term involving XL in 
Fj(X, P, Q) to have non-negative m-power contribution, / has to be bigger 
than i. Its z degree will be (P • L — j, Q • L — j). Our assumptions clearly 
imply that Fj(X, P, Q) will not contribute non-negative m power if j < i. 
Only terms of Fj(X1 P,Q) involving XL for I > j > i will matter. Recall 
also that for CpQ we always have (p, q) > (2,2) (with the first term being 
the curvature). So the corresponding z degree for those terms are 

(P.L-j,Q.L-j)>(2/-i,2Z~j)>(i + 3,i + 3) 
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These imply the C0,6 convergence of Kahler potential for a < i+2 or b < i+2, 
which in turn imply our proposition. □ 

Especially, for the case i = 0, namely without any checking, we already 
have 

Corollary 5.1. 

\\9m-g\\c3 = o( —) 

i.e. induced Bergmann metrics are C3 convergent to the original metric. 

Remark 5.1. Our previous combinatoric arguments were quite compli- 
cated, because we were aiming at the C00 convergence. If we only care 
about C3 convergence, then use our idea, it is not hard to write a simple 
direct proof of the above result. The key point is that we do not need to 
check any combinatoric identities that will have to be checked for higher 
order convergence. 

As an exercise, we will check the case i = 1. 
Recall that 

^(^QHE^EH—    E    fF-a^(L'p'Q) 
L u=l       U       yu_  Li = L l«=l^- 

U 

Ee.(L,P,Q) = J2Dei(Lk'P>Q) 
fc=i 

oo 

De.(L,p,Q) = {-lyuYX-ir    E    niriz*v^(L*p,g) 

u u 

Bei (L, P, Q) = E Pkd E Q^j 

= EE«EETO 
fc=lii=l m=ki2=l 

r (A     u 

ii,i2=l \    h^m 
(Lfc-CiJI^-ei,)! 
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T U ,);.| 

+ 2^i   ,}Q>3 IL, (Lk -e-V 
i=l        *=1 ^    el)- 

Bej (L, P, Q) = Bei (L, P, Q) + J] E PjQ'A-1) 
k=l i=l 

r /l     u 

ii,i2=l \    k^m 
(^-^(Zm-e^)! 

A Lk\ 

i=l /b=l v lJ'       k=li=l 

Lk\ Lm\ 
(L^e^liLm-e^l 

r flu 

ii,i2=l \    fc^m 

+ t1(Lk-eh-ei2)lj 
With the help of lemma 5.2, we get 

DejL,p,Q)= v pytMl^-i)1——— 
*li*2=l 

+(-iy-i ^ ^ ^ 1;   (L-eii-ei2)!; 

+ EW-i)'^ - E^M-D' (T^ = 0 
i=l v / i=l 

Which is clearly degree one on L. So i = 1 case checking is confirmed. This 
checking together with Proposition 5.3 give us 

Corollary 5.2. 

\\9m-g\\c* = o( —) 

i.e. induced Bergmann metrics are C5 convergent to the original metric. 
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We also checked the i = 2 case, which will imply C7 convergence. It is not 
impossible to check a few steps further. But complicity will increase and one 
has to stop at some point with this method. The geometric proof presented 
in the next section will imply all the necessary vanishing in this section. 

6. Geometric Approach, 

In this section, we will give a very simple and complete geometric proof 
of the C00 convergence of Bergmann metrics, which is qualified of being 
completely different from the combinatoric one presented in the previous 
section. Therefore, a by-product is that this result imply those unsolved 
combinatoric problems at the end of the previous section, which still look 
sort of mysterious. 

Recall that what we want to show is that all the mr terms with r > 0 in 
the expansion of Km(z, z) vanish and the terms that do not involve m should 
equal to K{z, z). Prom the expression of K^z, z) in formula (4.2), we can 
get the following observation, which turns out to be enough to initiate our 
geometric proof. Consider the expansion of Km(z, z) as in formula (4.2) 
with respect to 2, let ygf be the coefficients of zszT term omitting the part 
that involve negative powers of m. Then ySf = fsf{mi CPQ) ^

S
 
a function 

of m and some CpQ. 

Proposition 6.1. y^f = fst^^pQ) ^s a polynomial of m and CpQ for 
p + q< s + t with degree of each variable bounded from above with respect to 
S, T. 

Proof. It is clear, if one observe that zszT is accompanied by the factor m 2 7 

and all bpg contain a negative m-power of m1" 2 . So degm fSf < ^r and 
degb _ large terms will have negative m-power and will be omitted. □ 

PQ 

Let {/m}m=i ke a sequence of real functions, such that limm-^oo fm = /o- 
The idea of our geometric prove can be best illustrated in the following 
lemma. 

Lemma 6.1. For r < 0, assume that 

and 

lim /m = /o, 

lim mrf'rn = g, 
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(i) ifr < 0, then g = 0, 

(ii) ifr = 0, theng = f0 

Proof. Take a test function </?, then limm_00 mr fm = g implies: 

/ g<p = lim   / rar/^ =  lim -mr / /m^ 

=  lim (-rar) lim   / ^y?7 = ( lim -mr) / /o^7 

m—>oo m—>oo y m—►oo J 

■{ 
0, r <0 

//oV,     r = 0 

Therefore 
r-<0 

/o      r = 0 
g={fo 

a 

For a point mo € M, we would like to discuss the convergence on 
the canonical coordinate chart: w = ^mo : Umo —► Cn. Recall that for 
(l>Tno(w) € Cmoj we can choose a smooth family of canonical coordinates 

z = <f)w:Uw —► Cn 

with the convention that 0o = <f>moi which amounts to pick a smooth section 
of the principle bundle of orthonormal frames over Umo passing through the 
canonical frame at mo- 

To prove the convergence of {<7m} to #, we will use the induction on 
the order of convergence. Assume that {gm} converge to g up to C1"1, we 
need to show that for any L with respect to / (L = (P, Q), p + q = Z), 
^Lffm converge to dzg* Under coordinate w, let g(w) = gijdwldw^:, and 
gm(w) = gm^jdwldw^ written in local coordinate, we need to show that 
dLgmjj converge to digij. Notice that 

M   OW 

dzM 

M   ^ 

Here deg M = (p +1,9 +1), and —L+ie^e) indicate a sum of fractions with 
nominators being permutation of factors, which are exactly the factors one 
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get for the highest degree derivatives after using chain rule. Notice that at 
w := 0? L+ie^e) — ^L+(e- e-)" ^L an(^ ^m'L indicate the parts that contain 
derivatives of lower order, by our inductive assumption, {/im,£,} converge 
to /IL- We only need to deal with the highest order terms. According to 
Proposition 6.1, the part of <?L5m,ij(w) that do not involve negative powers 
of m (denote by #i,(w, m, CPQ(W))) is a polynomial on m and some CPQ(W) 

of bounded degree. Let degm(gL) = dx,, then 

dL 

gL{w,rn,CpQ{w)) = ^5L,i(w)™1 

we can conclude that 

lim rrrdLdL9m,i3{w)z=z  lim mmdLgL{w,m,CpQ{w)) = 9L4L(
W

) 

According to lemma 6.1, we have 

^lim^ m~dL digm^j (w) = gL^L (w) = 0 

unless di, = 0. Therefore degm(flf£/) = 0 and use induction assumption and 
lemma 6.1 again, we get 

lim #L577Mj(w) = digijiw) 
m—*oo 

Now by the induction, we have therefore proved the C00 convergence of the 
Bergmann metrics, as stated in the following theorem, modulo the starting 
point of the induction, the C0 convergence of the Bergmann metrics, which 
we can refer to corollary 5.1 in previous chapter or Tian's proof, although 
it is not hard to give it a direct proof. 

Theorem 6.1. ForanyleZt+ 

Il0m-S||c«=0i(—) Tfl 

i.e. induced Bergmann metrics are C00 convergent to the original metric. 

The subindex I in the right hand side indicate its dependence on I. 
A straight forward corollary of this theorem is those combinatoric van- 

ishing problems in the end of the previous section, which we was not able 
to solve directly. 
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Corollary 6.1. 

degx(F/(X,P,Q)) = i 

Here Fj(XJPyQ) is defined in the previous section. 

Remark 6.1. Anybody, who have ventured through last section, must 
have realized how simple the geometric proof is. Here again, we witness 
the power of analysis. Nevertheless this proof is not as straight forward 
as the combinatoric one. Does not really help to uncover the combinatoric 
mystery in the previous section. For this reason, we still like to present the 
combinatoric approach toward the problem, which seems quite interesting 
in its own. 

7. Application. 

In this section we will discuss an interesting application of the conver- 
gence of Bergmann metric. For (M, a;) a Kahler manifold with the associated 
positive Hermitian line bundle (L, h), where ci(L, h) = a;, in arithmetic ge- 
ometry, one usually need some quantitive result related to the Hermitian 
metric. A typical result is the following: 

Theorem 7.1. For any positive Hermitian line bundle (L,h) and e > 0, 
there exists an no, such that for any p € M and n > no, there is a section 
s e r(L<S)n) such that 

INUM < ene\\4h(p) 

It is then interesting to see if the theorem will still be true with e = 0. 
We will show as an application of our techniques and results that this sharp 
version and some generalization of it is still true. 

Theorem 7.2. There exists an no, which depends only on geometry of the 
positive Hermitian line bundle (L, ft), such that for any p € M and n > no, 
there is a section s € r(L<8)n) such that 

MsupA = \\4h(p) 

Proof For simplicity we will first deal with the case that L is very ample. 
For a point p € M, we will construct a section of Lm, for which \\s\\h achieves 
its maxima at p. (Actually we will show that p is the only maximal point.) 
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Let z = (z1, r2, • • • , 2n) be the local K-coordinate of (M, 5) with respect to 
p. we will prove the following three statements which together will imply 
the theorem. 

(i) For certain big C2 > 0 and \z\ > ^, when m is large enough we have 

Mh(o) > Mh(z) 

(ii) For certain small Ci > 0 and \z\ < ^J-, when m is large enough we 
have 

NMO) > WsMz) 

(in) For any C2 > Ci > 0 and ^ < \z\ < ^, when m is large enough we 
have 

NU(o) > IMI*(*) 

Since we assume that L is very ample, we have an embedding: 

i: M —> CP* 

Where CPZ has coordinate W = [WQ, WI, • • • , Wi], **0(1) = L. Wi can be 
viewed as sections of 0(1), we will also use them to denote pull back sections 
of L. We assume that i(p) = [1,0, • • • ,0]. 

An important observation is that for 0(1) on CP*, it is very easy to find 
"peak" section needed. WQ will work. For O(m), we may take (Wo)m. One 
would hope that (Wb)m will also work for Lm. But g is not the pull back of 
the Fubini-Study metric. We need to modify it a little. The key observation 
here is that the term that spoil the "peak" property is the first order term. 
So we will need to adjust by some first order term. 

Choose W suitably such that for w = (w1, • • • , wn), where w1 = |p£, we 
have 

dw 

Also let ho denotes the Hermitian metric on L = i*0(l) induced from usual 
Hermitian metric on 0(1). For peak section ep of (L, h) at point p G M, we 
have 

||e»«, = e-^,and||e?||,   =1 + E—^ 1/10 Z-J (70,0 
5,T 

?rZ z 

Then for any section s of Lm, we have 
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where 
p-mK 
1  _ p-m(K-Km) 

/(*) = —T= rT.S    r.   „ = e 

1+E5, 
G££^~T 

r G0'0 z^z-1 

By our theorem \K — K^ = 0 (^), so we have 

where fsf ^ 0(1) and 5 +1 > 2. An important fact is 

(7.1) ^""(s) 

Although apriorily we only have G0'6* = 0(1). Recall the formula 

also that 
bPQ = -CpQUl        2 

Notice that Cpg do not depend on m and p,q>2, so all the terms of G0»e* 
will be of order at least O (^) unless L = e/ and p7 = gJ = 2 which is 
impossible to satisfy li(Pl — Q1) = ei. So we have that estimate (7.1) is 
correct. Let 

(/nrO,ei       \ 

? GOfiWi j (^o)"1"1 and s = SQ + si 

Since 

\K -Km\ = 0 (^) and e^^"^) = 0(1) 

We always have that 
Mh < c\\s\\h0 

In case (i) we have 

IMIfc(0) = IkoJk(O) = \\so\\h0(0) = 1 
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also 

IHIfcW<ll«ollfc(*) + ll«illfc(*) 
<C(\\so\\ho(z) + \\Sl\\h0(z)) 

By estimate (7.1) we have 

INk(*) = o(^) 

It is easy to see when C2 is large enough, ||so||/i0(^) can be as small as we 
want. Together we have 

NMo) > WsUz) 

For case (iii), notice 

e-rnK _ e-mKm -_ e-mKm re-m(K-Km) _ ^\ 

Since \z\2 < &, we have 

m|iir-«.|.o(i) 

So in this case we have 

ii'ik - (MIA.=o (i) i|S||h0 

For any z such that ^ < \z\2 < ^, we have 

Mhiz) = \\so\\ho(z) + (IMIfcte) - \\s\\h0(z)) + {Mkoto - ll«olk(*)) 

< ||aolk(*) + O (J^j \\s\\h0(z) + llsilkW 

<(l + o(i))||«olk(*) + ll«i||*oW 

It is easy to show that for z in our range 

\\so\\h0(z) < C3 < 1 
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where C3 depends on Ci. When m is large enough, we have 

\\sUz) < (l + O (1)) Cs + ±\z\ < 1 = ||5||ft(0) 

For case (ii), it is easy to show that 

\\s\\h = 1 - Cm\z\2 + 0(m2\z\4 + m\z\3) 

which clearly achieves its maximum at z = 0 for \z\2 < j± with Ci small 
enough. 

Now all the three cases are proved. 
The case L is only ample is a simple corrollary of the case when L is 

very ample. One way to see this is that we can find two big primes pi, P2, 
such that L®Pl and L®P2 are very ample. Prom elementary number theory, 
we have that there exists an integer TV, such that when n > iV, we have 

n = api + bp2i   for some a, b > TIQ. 

Here the no is the no for the very ample case. Now it is obvious that 
L®n = (£®pi)®a 0 (L(8)P2)<8)6 wili have the sections we need. D 
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