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0. Introduction. 

The notion of quantum cohomology was first proposed by the physi- 
cist Vafa [V] and its mathematical foundation was established by Ruan and 
Tian [RT] for semi-positive symplectic manifolds. However computing the 
quantum cohomology is a difficult task in general since it does not have 
the functorial property of behaving well under pull-back. If X and Y are 
two semi-positive symplectic manifolds, and / : X —> Y is a continuous 
map, then there is a ring homomorphism /* : H*(Y;Q) —► H*(X;Q) for 
ordinary cohomology. However for quantum cohomology, there does not 
exist such homomorphism preserving quantum multiplication. The quan- 
tum cohomology of projective spaces is known for quite some time. The 
quantum cohomology of Grassmannians was computed by Witten [W] and 
by Seibert and Tian [ST]. The notion of equivariant quantum cohomology 
was first proposed by Givental and Kim in a heuristic way [GK], and they 
conjectured several properties of equivariant quantum cohomology, namely 
direct product, restriction and induction. Assuming these properties, they 
computed the quantum cohomology of complete flag manifolds rigorously. 
Later, another account was given by Astashkevish and Sadov [AS]. They 
also introduced the notion of fiberwise quantum cohomology heuristically 
(called vertical quantum cohomology in [AS]), and computed the quantum 
cohomology of partial flag manifolds again assuming the conjectured proper- 
ties. Kim did a similar thing for partial flag manifolds [Kl]. The advantage 
of fiberwise quantum cohomology and equivariant quantum cohomology is 
that the functorial pull-back property of ordinary cohomology is partially 
restored for them, i.e. restriction property. It is exactly this property and 
several other functorial properties that enables Givental et al. to complete 
the computation. Ciocan-Fontanine computed the Gromov-Witten invari- 
ants of complete flag manifolds using the canonical complex structure, so 
he could give a presentation of the quantum cohomology of complete flag 
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manifolds rigorously [CF].   Other examples of quantum cohomology were 
worked out by Batyrev for toric manifolds [B]. 

In this work we will give a mathematical rigorous definition of fiber- 
wise quantum cohomology and equivariant quantum cohomology in strong 
semi-positive symplectic case(see definition below). Assume that X —► Y 
is a smooth fiber bundle, Y is a closed smooth manifold and the fiber are 
closed manifolds. Further we assume that X admits a differential two form u 
whose restriction to each fiber Vz is a strong semi-positive symplectic form. 
The main results of this paper are: 1) We will define fiberwise Gromov- 
Witten mixed invariants (called fiberwise mixed invariants below) of arbi- 
trary genus for X -» Y using perturbed pseudo-holomorphic curves, then we 
prove several properties of fiberwise mixed invariants such as direct product, 
restriction, induction and the so-called composition law; 2) Using fiberwise 
mixed invariants, we will define fiberwise quantum cohomology and equiv- 
ariant quantum cohomology. The properties alluded to above namely direct 
product, restriction, induction and associativity of fiberwise quantum co- 
homology and equivariant quantum cohomology will then follow from the 
corresponding properties of the fiberwise mixed invariants. So we put the 
computation in [GK], [AS] and [Kl] on a solid foundation; 3) As examples, 
we will compute the fiberwise quantum cohomology of several fiber bundles 
with fiber a flag manifold. In this paper, we basically will follow the ap- 
proach of Ruan and Tian to quantum cohomology [RT]. The main part of 
this paper will be devoted to a proof of the composition law of the fiberwise 
mixed invariants. In the proof, most analytic results are adopted from [RT], 

This paper is organized as following: Section 1 contains a compactness 
theorem and several transversality result for the moduli space we used to 
define the fiberwise mixed invariants. The definition of the fiberwise mixed 
invariants and some simple properties are given in section 2. Section 3 is 
devoted to establish the composition law of the fiberwise mixed invariants. 
Section 4 contains the definitions of fiberwise quantum cohomology and 
equivariant quantum cohomology, their properties are proved. In section 5, 
fiberwise quantum cohomologies of several fiber bundles with fiber being a 
flag manifold are computed. 

During the preparation of this paper, the author learned B. Kim's paper 
"On equivariant quantum cohomology" [K2], in which he defined equivari- 
ant quantum cohomology for flag manifolds only. His approach was different 
from ours; he used Kontsevich's moduli space of stable maps to define equiv- 
ariant Gromov-Witten classes. 
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1. A Compactness Theorem and 
Several Transversality Results. 

1.1. A Compactness Theorem. 

Definition 1.1. (i) An almost complex structure J on a symplectic 
manifold (V^OJ) is said to be untamed if u;(£, J£) > 0, for any 
£ jt 0 e TV, and if further ^(J^Jrj) = ^(£,77), for all £,7? G TV, 
we call J ^-compatible. 

(ii) A symplectic manifold (V, a;) is called strong semi-positive if for any 
(^-compatible almost complex structure J on V, every J-holomorphic 
curve u : CP1 —> V has non-negative first Chern number, i.e. 
/ pi i^ciXTV) > 0. If this inequality is always strictly positive, we 
call (V,u;) positive symplectic manifold. 

Remark 1.1. The concept of semi-positive symplectic manifolds was orig- 
inally defined by D. McDuff in [M3]. That definition requires that there is no 
spherical second homology class A such that w(A) > 0, 0 > c\(A) > 3 — n. 
We will need above definition when we show the dimension of boundaries of 
the moduli space is codimension 2 in section 2. Note both monotone sym- 
plectic manifolds and Calabi-Yau manifolds are strong semi-positive. The 
author thanks the referee for pointing out this difference. 

The following is the basic setup we will work with in this section. 

Assumption (*). Let X -£* Y be a smooth fiber bundle over a closed 
smooth manifold Y whose fiber are closed manifolds diffeomorphic to V 
of dimension 2n. Assume that X admits a differential two form UJ with 
bounded JH"^ Sobolev norm {I > 10, q > 1), whose restriction to each fiber 
Vz is a symplectic form. Here Vz is the fiber over a point z G Y, i.e. <j is a 
fiberwise symplectic form on X. Assume further that (VZIUJ\VZ) is a strong 
semi-positive symplectic manifold for each z in Y. 



514 Peng Lu 

To define the fiberwise quantum cohomology for X —> F, we first need 
to define the fiberwise mixed invariants. Suppose that S is a stable curve 
of genus g with m irreducible components Ej and k marked points. Assume 
that Ai € H2(V;li) are m homology classes. The fiberwise mixed invariant 
can be considered as a multilinear map 

k l 

•(A,-A.^AP) : !!**(*'<» x Il^^'Q) ^ H*(Y,q). 
1 1 

To evaluate the image of this map on the element 7 E i7*(y,Q), a key- 
observation is that we should use the pull-back pseudo-manifold fiber bundle 
Xz -* Z where F : Z —* Y is a pseudo-manifold representative of 7 and 
the pseudo-manifold Xz is the fiber product Z Xp X. The advantage of this 
definition is that it enables us to prove the restriction property easily. Its 
price is that Z is only a pseudo-manifold, so that we need to carefully treat 
the moduli space of each stratum of Z. 

A compact pseudo-manifold in Y is a stratified space Z together with a 
continuous map F : Z —> Y satisfying: each stratum is a smooth manifold 
without boundary, each lower stratum is at least codimension 2, and F 
is smooth on each stratum. Note that any rational homology class in Y 
can be represented by a finite dimensional compact pseudo-manifold, and 
any two such pseudo-manifolds representing the same homology class form 
the boundary of a compact pseudo-manifold (and so are cobordant in the 
usual sense) (see [C]). Fix a finite dimensional compact pseudo-manifold 
F : Z —► y, and denote by Xz the fiber product Z Xp X. Then Xz -> Z 
is a pseudo-manifold fibration with fiber V.  u> induces a two form on Xz 

P* 
by the natural map Xz —► X, which is still denoted by u. It is a fiberwise 
symplectic form on Xz* Note that u is continuous and is smooth on each 
stratum. (A^,a;, Z, V) is the basic object we will study below. 

Remark 1.2. We can define a trivialization of Xz as follows. For any 
z^ € Z, choose a neighborhood W of i^oo) in Y, such that X\w = W x V. 
Choose a neighborhood U of ZQQ in Z such that F(U) C PF, then Xz\u has 
an induced trivialization Xz\u — U x V, where U may not be smooth. Note 
that for any two different trivializations of Xz over Ui and I/2? the transition 

function fa lUinfy-* Diff(V) factors through as UiHfy -^ Win W-* -^ 
Diff(Vr), where hn is smooth transition function between two trivializations 
of X over Wi and W2. This property is important for defining various 
convergences below. This trivialization of Xz is crucial when we study the 
structure of moduli space. We fix a such trivialization for Xz from now on. 



A rigorous definition of fiberwise quantum cohomology 515 

Define a vector bundle E A Xz whose fiber Ex is TXVZ for each x G 
Xziz = p(x)- A complex structure J on E is called a fiberwise almost 
complex structure on Xz- A complex structure J on E is said to be tamed 
by (j if u;(£, J£) > 0, for any £ ^ 0 G E. If further uj(J^Jri) = u;(£,77), for 
any £, r] G E, we call the complex structure J on E ^-compatible. We now 
show that there is a fiberwise almost complex structure on Xz compatible 
with oj. 

Lemma 1.1. Under Assumptionfo), the vector bundle E admits a contin- 
uous complex structure which has bounded Hl'q norm on each stratum, and 
is compatible with w. Furthermore for any ZQQ G Z, J satisfies 

Condition 1. ||JUrxy - ^Uooxvllc4^) -* 0 as zr -» Zoo^Zr G U. Here 
we use the trivialization in Remark 1.2 and view J|* as a section of 
Hom{TV,TV). 

Proof. Since the vector bundle E is a pseudo-manifold smooth in fiber di- 
rections, we can find a continuous Riemannian metric g on JS, such that g 
is smooth on each stratum and g satisfies || g\zrxv — flUooxV Hc^OO""* 0 ^ 
zr —* 2oo> zr G U. Here we use the trivialization in Remark 1.2 and view g\* 
as a section of Hom(TV x TV,R). Then there is an unique automorphism 
A of E such that u>(£,77) = 5(^,77), for any £,77 G Ex,x G Xz- Since u) 
is skew symmetric, —A2 is positive definite with respect to g. It is easy to 
check that J = (—-A2)~2 A is the required complex structure on E. □ 

Note that since the deformation of compatible complex structures on the 
bundle E is un-obstructed, the tangent space at J consists of all sections s 
of the bundle End(E) satisfying 5oJ+Jo5 = 0 and g(s£, rj) = #(£, 577) 
for all €,r] £ E. Let J^iXz^oj) be the space of ^-compatible continuous 
complex structures on E with bounded Hl,q norm on each stratum satisfying 
Condition 1. Here and in the following ' v' means fiberwise. Although J is 
not smooth, JiAXz,w) is a smooth Banach manifold. 

Next we will define the so-called fiberwise perturbed J-holomorphic map. 
Recall that a fc-point genus g stable curve C = (S; #1, • • • , £&) is a reduced 
connected curve E whose singularities are only double points (it may have 
no singularities at all), plus k distinct smooth points xi, - • • , x^ in E, such 
that every smooth rational component of E contains at least three points 
from xi, • • • ,Xk or double points of E, and every elliptic curve component 
contains at least one such points. Such a E is called an admissible curve. 
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Assume that E has m irreducible components Si,--- ,Em (where E^ 
may have double points). Let J be a fiberwise almost complex structure on 
Xz, and TTJ be the projection from E* x Xz to its j-th factor (j = 1,2). A 
fiberwise inhomogeneous term u over E x Xz is a set of sections 1/1, • • • , ^m, 
where each i/i is a section of Hom^lTHi, TT^), satisfying 

(i) vi is continuous everywhere and differentiable on each stratum; 

(ii) Condition 2. Use the notation of Remark 1.2, for any ZOQEZ, 

IWilXiXZrXV — ^tlEiXZooXvllc^EiXV)"-^' as 2T—>ZOO> ZreU] 

(hi) The J-anti-linear condition: ^i(iSi(^)) = —J{vi(vij), where j^ is the 
complex structure on E*, vi is any vector in TE*. 

Definition 1.2. Let E be an admissible curve, J a fiberwise almost com- 
plex structure on A^, and v a fiberwise inhomogeneous term on E x Xz* A 
fiberwise (J, z/)-perturbed holomorphic map from E into Xz is a continuous 
map / : E —► Xz which is differentiable at the smooth points of E, such 
that /(E) C Vz for some z € Z, and / satisfies the inhomogeneous Cauchy- 
Riemann equation on each component Ej(i = I,-*- ,ra). Let /* = /|iv 
Then 

(djfo) {x) = Vi{x, fi(x)), for any x € E* \ Sing(Zi),        i = 1, • • • , m, 

where Bj denotes the differential operator d + J o do j^.. We denote the 
space of all fiberwise (J, u) holomorphic map / from E into Xz satisfying 
[/**(£*)] = Ai,i= I,--- ,mby ^^...^^(E,^, J, i/). Here Ai,--- ,^m 

are m homology classes in H2(V,Z). 

We will use MyA ... >im)(S, Xz, J, ^) to define the fiberwise mixed invari- 
ants later. This moduli space is similar to the moduli space used to prove 
that the Gromov-Witten mixed invariants are independent of the choice of 
the almost complex structure (see [RT]). In fact that moduli space is the 
same as our moduli space for the case where the bundle is V x [0,1] —> [0,1]. 
The further generality lies in that the bundle Xz —» Z may be nontrivial and 
that Z is only a pseudo-manifold. Now we begin establishing a compactness 
theorem about the structure of MyAl ^ JS, Xz, J, v) which is required 
for the definition of the fiberwise mixed invariants. 

Recall that a degeneration of admissible curves is a holomorphic fibration 
TT : S —► A C C' satisfying: (1) S is a I + 1-dimensional complex variety 
with normal crossings; (2) All fibers of TT are admissible. Denote by js the 
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complex structure on 5, J a u;-tamed fiberwise almost complex structure 
on Xz- Let TTI and 7^2 be the projection maps from S x Xz to 5 and Xz 
respectively. An inhomogeneous term v on S x Xz is defined to be a section 
of Hom^lTS, n^E) -+ S x Xz satisfying 

(i) /> is continuous and differentiable on each stratum; 

(ii) Condition 2'. Using the notation of Remark 1.2, for any z^ G Z, 

||£|sxzrxV ~ ^\sxzooXv\\c^(SxV) ""* 0'   aS Zr "^ zoo,'Zr € C/"; 

(iii) The anti- J-linear condition: J o v — —i> o jg. 

The setting for the compactness theorem is: fix a degeneration of ad- 
missible curves TT : S —> A, assume that u) is the induced fiberwise con- 
tinuous symplectic form on Xz x A —> Z x A with bounded iJ*^ norm 
on each stratum, J is a u;-tamed fiberwise almost complex structure, and 

. £1 > • •" ? Vm are families of fiberwise inhomogeneous terms on S. Let {tr} be a 
sequence in A converging to the origin as r —► 00, set a;^ = oj\xzxtri J^. =: 

«^|A^xtr5^r^ ::::: 7r~1(ir)- Further assume that each £(r) consists of m com- 
ponents (S^ , • • • , Ern ), and for any fixed i, S^r^ are diffeomorphic to each 

other for any r. Set u^ = (^J   , •*• j^m )? where u^ = ^i|s(r)xAr , ^r^ is 

the inhomogeneous term on E^. Note that E^ converges to the i -th 

component E^00' of an admissible curve E^00) = TT
-1
^), and ^r^ con- 

verges to the i-th component v}00' = ^iL(oo)   v   of inhomogeneous term 
* llji      X<Kz 

v{oo) =: (^J00^ ... ^ »)£?') on E^00) x A^ in C4-topology in the following sense: 

there are continuous maps r^' : E^ —> S^00 and compact set if >r' in E^ 

satisfying : (1) K\r) C i^r+1),UifJr) = E^ \ {double points}; (2) r/r) 

restricts to a diffeomorphism from fo ^(JQ ) onto iiQ ; (3) For each 
index i, index s, and each stratum Za C Z, both 

^  (»•)■      J  (r)      • 

^((r^)-1^)) 

and 

i i C4((rf))-i(iv:<a))x-VzJ 

converge to zero as r —► <x). 
Given /(r) e^f^ ....>i4m)(S

(r),^r, J(r),i/(r)), we say that /W converges 

to /C*).: E^00) -> ^z if ||/^oo) o rf) - /f ^    -» 0 as r -> 0.   Here we 
^loc 
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need the trivialization of Remark 1.2 to define C^c-norm, and we also need 

a trivialization of V to define jf/00* o r^ - f\r\ 

Proposition 1.1 (Compactness Theorem). Let f^ be in 

^1)-,^)(s(r).^^(r).^))- 

Then there is an admissible curve E, which is the union of the smooth res- 
olution E^00) of E^00) and finitely many smooth rational curves such that 
a subsequence of {f^}™ converges to a (J^,!/)-perturbed holomorphic 
map f on E, where the fiberwise inhomogeneous term u coincide with v^ 
on E^00) and vanishes on those rational curves, and moreover we have 
[/•(E)] = Ai + • • - + Am and /(E) C Vz, for some zeZ. 

Proof Without loss of generality we may assume that E^ is smooth, since 
otherwise we can consider the {E^r J-f0 family or its resolution for each fixed 
i. In the rest part of proof, we will use A instead of Ai, • • • , Am. We also 
make a reduction to eliminate the fiberwise inhomogeneous term u^r\ Let 

W = S x Xz- W has a fiber bundle structure W -^ Z, p(s,x) = p(x), 

and we introduce a fiberwise almost complex structure J^y on W as follows. 
Given the vector bundle J^vv —* W whose fiber is Sw|(s,a;) — TSS x Ex, if 
(u,v) is a vector in .Eyv|(s,x)5 define 

4>M = (js(u), J{r)(v) + v{r)tis(u))) . 

It is easy to check that this is a fiberwise almost complex structure on W 
tamed for sufficiently small u^ by the fiberwise symplectic form u;w which 
is the sum of the pull back of a;s and w to W. Moreover if we take the graph 
of f(r)9 F{r) . S(r) _ yy^ ^(r)^) = fa f(r)fa) where x € E^, then FW is a 

J^)-holomorphic map. So, it suffices to show that a subsequence of {F^}™ 
converges to a holomorphic map F : E -> W with [F*(E)] = [Fir)(E(r))], 
where E is given in Proposition 1.1. Thus we have reduced the perturbed 
case to the non-perturbed case u^ = 0. Prom now on we assume that 
each /(r) is J^-holomorphic. Now we fix a J^-compatible metric h on E, 
which satisfies 

(i) h is continuous, and smooth on each smooth stratum A^; 

(ii) Condition 3. Using the notation of Remark 1.2, for any z^ G U, 

\\h\zrxv - ^|2OOXK||C
4
00 ~~* 0>   as zr -> Zoo, Zr € U. 
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Because J^ depends continuously on tr, there is a positive constant c such 
that ci/r)(£, J^^) > c-/i(^, ^), for all z and sufficiently large r, where £ 6 Ez. 

Lemma 1.2.  There is a uniformly constant CA which depends only on A 
and c, such that for any f^ e JM^(S^, A^, j(r\0), we have 

[      U/M2      dflrKCA 

w/iere ifee volume form dnr is defined using any conformal metric [ir on T,^. 

Proof Fixing E = E^, / = /W,a; = a;(r), J = jW,// = /in /(E) C T^, we 
then have 

/ A>k= /    ^k= / ^k- 
JE .//(E) JA 

Since a;|yz is a continuous function of t^ and ^, the above integral is bounded 
by some constant independent of t^ and z. 

At each point x € Vz, choose a local unitary frame ei, • • • , en € Tx* Vz 

with respect to a metric /i, and denote by {e*}y the dual basis of {ei}i. The 
symplectic form can now be written as 

"\vz =.wg,0)(tr, «)e? A e} + wg'^Ctr, «)ej A e) + 4f2)(tr, z)c? A e) 

^e* 3u"' 3w" ^)e a ^oca^ orthonormal basis of (E,^), such that 

• (JL\ = A      • f JL\ = _ A 
3\dui)      dm'        3\du2J ftii' 

then the Cauchy-Riemann equation 

W + J.#.i)(^)-o 

can be written locally as 

where 

df (^r)=fiei+& and df (^)=^+fli 
12^1' 
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Prom these equations we deduce that 

fMvz = oj%0\tr, z)/* (e? A e)) + u™ (tr, z)/* (e? A e)) 

+ 40'2)(<r,z)r(eiAe)) 

= -V^l ulfa, z) (fifl + /!/!) dm A du2 

The fact that J\yz is a c<;|y2-tamed almost complex structure implies that 
(see the choice of metric h above) 

>c «m2Ml) = c\df\l 

On the other hand, direct computation shows that 

= -V^ ^(tr, Z) [fifl + fifl) dm A &42, 

and so the lemma follows. 

Lemma 1.3. There are eo > 0 and C > 0 which depend only on A, J, and 
a), such that for any J-holomorphic map f^ G M\(^r\ Xz, J^,0), /^ : 
2(r) —» V^r /or 5ome ^r £ Z, and any conformal metric /ir on S(r^ OT^/I 

curvature bounded by 1, if fB / v |d/^r^rd/ir ^ ^o ^^d the injectivity radius 

at x is not less than 2R, where x G E^, R > 0, we have 

sup 
BR(X) 

UM2 < c 
I \fir B? 

where BJI{X) is the geodesic ball centered at x and with radius R.   Conse- 
quently ||/^||c4(JBji(a:)) <* C4 for some constant C4 independent of zr. 

Proof This is essentially Theorem 2.3 in [PW]. Here we briefly elaborate on 
the establishment of the Bochner type formula. Fix a connection on bundle 
E which is compatible with the metric h and the complex structure JK

00
). 
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Suppose that in local trivialization in Vz, /W = (f^r\ • • • , f}£) and B2R(X) 

has coordinates ^1,^2   By direct computation, we have following formula 

A (d/M) = V*V (d/(r)) 

= polynomials of dfl (r) 

9lAa 
up to degree 3 

+ linear combinations of *7i(r)   g/j0 

where the coefBcients of the polynomial involve J, the metric h, the connec- 
tion V, and their derivatives in the direction of VZr. 

Then 

V (KIlJ = 2 (V*V (4f(r)) ,4f(r)) - 2 (v (d/W) , V (4fW)) 
= Cx \dfV |2    + c2 |d/(r) |4    - (V (d/(r)) , V (4f W) } 

+ linear combinations of 
9wa dup    du^     dus 

<Ci|d/W|2     +C,2|d/(r)|4 

(v(cy«),v(^W)) 

C(e) l^l^, - (V (d/(r)) , V (4f<r>)), 

+ e 

+ 

where we use the Cauchy-Schwaxtz inequality with e < 1 in the last step. 
Note that since jW,a;(r\ /i, V, and their derivatives in the VZr directions all 
depend continuously on the parameters tr and zr, we can choose constants 
Ci, C2, C(e) to be independent of tr, zr. So we have 

AMr (|d/« 
flrih 

<Ci dfW 
Hr,h 

+ C2 d/(r) 

UrA 

and the lemma is proved. 
Using the trivialization in Remark 1.2 to identify VZr with Vz and seeing 

that the image of f^ lies in Vz, the rest of the proof of Proposition 1.1 
becomes similar to the proof of Proposition 3.1 in [RT], and so we omit it. 
Observe that the image of the limit / is contained in Vz. □ 
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The above proposition tell us that the limit map in the compactification 
of the fiberwise moduli space are still those that could possibly appear in 
non-fiberwise case (the so-called Gromov-Uhlenbeck compactification). So 
if we could establish a transversality theorem in the fiberwise case, counting 
the dimension of boundary will go through as in non-fiberwise case. It is 
this transversality theorem we now turn to. 

1.2. Several Transversality Results. 

Definition 1.3. Let E, J, and v be as in Definition 1.2. A fiberwise S- 
cusp (J, i/)-perturbed map / is a continuous map from E7 to Vz for some 
z € Z, where the domain E' of / is obtained by joining a chain of 52's 
at some double points of E to separate the two components at the double 
points, and then attaching some trees of S2's. The restriction of / to E 
is a (J, j/)-perturbed holomorphic map and its restriction to the S2's is J- 
holomorphic. We call components of E principal components and the others 
bubble components. A fiberwise E-cusp curve is an equivalence class of cusp 
maps modulo the parameterization groups of bubbles. 

Figure 1: Domain of a cusp curve 

By Proposition 1.1,  we can compactify MV,A _A s(E,#z,J, v) by 
adding all possible fiberwise E-cusp curves with total homology class A = 
Ai-\r VAm. We divide the set of fiberwise cusp curves by some equivalence 
relations: 
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(i) Some of the bubble components may be multiple covering maps, in 
this case we simply forget the multiplicity and take the reduced map 
onto its image; 

(ii) Adjacent or consecutive bubbles have the same image, and we collapse 
them into one bubble. Note that the resulting curves are still fiberwise 
cusp curves with possibly different total homology class. 

Let M(Ali... }i4m) (E, Xz, J, v) be the quotient of the fiberwise cusp curve com- 
pactification of MyA „ ^ JE,^, J, u) by above equivalence relation. Fix 

k>4,q>p>2,l>k + l. Let Vk-ij>(Xz,w) -> J^q(Xz^) be a vector 
bundle, the fiber over J G J\AXziU) is the space of all inhomogeneous term 
defined by J. Vk-ipiXziW) is a smooth Banach manifold. 

Proposition 1.2.  Under Assumption (*), given any compact finite dimen- 
sional pseudo-submanifold Z ofY, for a generic (J, u) € Vk-iffiiXziW), 

is an oriented pseudo-manifold of real dimension 2Ci(V)'A+2n(l— g(E)) + 
dim Z, and7AlAlt...tAm)faXz,J.,v) \Mv

iAw..iAm)(Z,XzyJ,v) consists of 
finite many pieces (called strata) and each stratum is branchedly covered by 
a smooth manifold of codimension at least 2. Here A = Ai H h Am and 
g(E) is the genus of the stable curve. More precisely, we have 

(i) 
MW-,Am)V,XZ,J,v) 

consists of smooth stratum M,^ ... A x(E, A^a, J, v) of dimension 
2Ci(V) • A + 2n{l-5'(E))+dim Z" where Za run through all smooth 
stratum of Z; 

(") 
H*!,- ,Am)& Xz> J'") \ •^(41,.. ,Am) (E, Xz> J, v) 

consists of all 

^(l,...,Am)&,Xza,J,v)\MlAu...tAm){Y,,Xza,J,v)- 

(iii) Each JWjX,- ,Am) (s> Xz*,J,v)\ M^... ji4m)(E, Xz°>, J, v) consists of 
finite many pieces, each of which is branched covered by a smooth 
manifold of codimension at least 2 in MyAi... /1im)(E, Xza,J, v), 
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where M^^... ^^(E, Xza> J, v) stands for the partial compactification of 
<MyA ^ x(E,A^o, J, v). By partial compactification, we mean that we do 

not include limits of family of curves f^ in M^ Am(E, A^a, J, z/) with 
image in VZr, where the limit point ZQQ is in not in ZOL. 

Proof. By Proposition 1.1, all we need to show is: for a generic (J,i/), for 
each stratum ZOL of Z, 

is a smooth manifold of dimension 

2Ci(Vr)-i4 + 2n(l-0(E)) + dim  Za, 

and 
^,A1,..,^)(2) Xz*,J,") \ Mv

lAlt...iAm)(S, XZa,J, v) 

consists of finite many pieces, each piece branch-covered by a smooth man- 
ifold of codimension at least 2 in M0^ ... i4m)(^' ^a' ^ ^ ^e divide the 
proof into three steps. 

Step 1.   The stratum decomposition. A stratum in 

^(i,.. An)(S> X*-^ ") \ ^W- Am)^, XZ°,J, ») 

is a set of fiberwise cusp curves satisfying : (1) They have domain of the same 
homeomorphic type; (2) Each connected component has a fixed homology 
class; (3) The components which have the same image are the same for 
each curve even though these components may not be adjacent to each 
other. We denote by D a set of triples, each triple consists of these three 
datas: a homeomorphic type of the domain of the fiberwise cusp curves with 
intersection points, a homology class associated to each component, and a 
specification of components with the same image. 

Definition 1.4. Let D be given as above, Ei,--- jE™ be the principal 
components of E, and Bi,«-- , B^ be the bubble components of D. D 
is called A-admissible if there are positive integers 61,-•• ,&& such that 
A = E?[Pi\ + E? bjlBj], where [P^ • • • , [PTO], [BJ, • • • , [Bk] denote the 
homology classes associated with Ei, • • • , Em, I?i, • •-• , Bk- We say that D is 
(J, j/)-effective if every principal component can be represented by a (J, 1/)- 
map and every bubble component can be represented by a J-holomorphic 
map. 
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Denote by ^'2 the set of all .A-admissible, (J, i/)-effective D's. It 

is proved in [RT] that VJJ^ is a finite set. For each D € P^, let 
MV

D{T,, Xza, J,") be the stratum in 

^(J,-,Am)V, XZa, J, v) \ MX^...ij4ro)(S, XZa,J, v) 

specified by D.We perform one more reduction by identifying the domains 
of those components which have the same image, and change the homology 
class accordingly. Suppose that the resulting new domain and homology 
class of each component are specified by D. Denote by .M*k(£, #£<*, J, v) 
the space of cusp (J, i/)-maps whose domain and the homology class of each 
components are specified by D. Then for each / £ .M^(£, #£«, J, ^), differ- 
ent bubble components have different image and each bubble map is some- 
where injective. However the image of a principal component may be only 
one point. We identify .Mj^E, A^a, J, v) with .M^(E, A^a, J, v) below. 

Figure 2: Creating a cycle in the domain 

Again let Ei, • • • , Em be the principal components, Ei, • • • , Em be their 
smooth resolution(£i may have double points), and JBI, • • • , B^ be the bub- 
ble components. Now we begin to construct a smooth branched covering of 
A1^(E, A^a, J, v). Let Ep be the domain of the maps in .M^E, A^a, J, z/), 
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and consider 

-M2>(ElA'z«JJ,i/) = 

{/ : E^ —■> Xza\f is a continuous fiberwise map, 

/b € Mf/y(Ei, Afe«, J, ^i), /Ift 6 ^fjgj (S2, A'z-, J,0) , 

where jMj^i^jA^a, J,0) C MfL.](52, Ai^a, J,0) is the subspace of non- 
multiple covering maps. The action of the reparametrization group on each 
bubble component induces a Gk action on .M^E, Af^a, J, z/), G = PSL2, so 

JM^(E, XZ<*,JI V) = A^^(E, Afca, J, v)/Gk. We first construct a covering of 

^^(E, A'za, J, z/). Let x^, • • • , x%
Vi G Ej be ^ double points or marked points 

which are bubbling points. Let hi be the number of intersection points on 
E* and h? be the number of intersection points on the bubble component 
Bj. Consider the evaluation map 

3 

\\xz
%

ci x Yyxzcc 
*        3 

where e^ is defined as follows: 

For each Ei, we define 

ePi : M[Pi] (^i, -*z«, ^ ^i) x (Si)"* ^ —^ Af& 

For each J3j, we define 

eBj : Afjg, (52
5^? J,0) x (S'f —. ^1 

eBjiftVir- ,yhj) = (f(yi)r-- ,/(»w))- 

Then e^ = Hi eiDi x Hj e^i • Recall that ^ -W? ^ are submanifolds of a 
manifold X, then MDN can be interpreted as (M x AT) n A, where A is the 
diagonal of X x X. So we can realize the intersection pattern specified by 
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D by constructing a "diagonal" in the product. Let zi, • • • ,ZtD be all the 
intersection points. For each zs, let 

Is = |£ii»' * • > ^iq> «Bji J ' • • > -Bjr j 

be the set of components which intersect at zs. Now we construct a fiberwise 
product Xjga s of Xz<* such that its diagonal describes the intersection at 
zs. This is done as follows: We allocate one or two factors from each of 

^Z" J " * * »^c?» according to whether or not Zs is a self-intersection point 
of the corresponding principal component. We also allocate one factor from 
each of the X^a > k = 1, • • • , r. Here Xg* and X^ are the images of epi and 
CBi 5 respectively. Then we take the fiberwise product of these factors over 
Za, denote it by Xga s, and denote its diagonal by A^a s. Then 

A v        — Av       y ... v Av r X^ hi+^ h3 

is the "diagonal" realizing the intersection pattern between components of 
D. Let TT be the natural projection from 

11 (Mh] (xuXz^J,*) x (si)'1'^) 

xn(^Ki('sa.';^'jr'o)x('sa)v) 

onto 
n^i (si.^a, J,^) x n^Ki (52,^tt) J,O) 

Then 7W^(S, AfZa, J,i/) C ^(e^^A^ fl)). But they might not be equal 
because we require that bubble components have different images. Define 
^(Ej^z-.J,!/) to be 

and NfiCE, Xz<*, J, v) to be 

Then 
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is the required branched covering. 

Step 2. We will show that for generic (J, */), for each stratum Za in Z, 
MviAi.„A\(^,Xzot<>J>>v) is a smooth oriented manifold of real dimension 
2C,i(Vr) • A + 2n(l - p(S)) + dim Za, and A/^(S,Xz«,J, v) is a smooth 
manifold of real dimension 

J](2C1(y) • [P,] + 2n(l - Qi)) + 2(2C7i(V) - [^] + 2n - 6) 

+ 2/^ - 2us - 2s£> - 2n(/ij5 - t^) + dim   Za, 

where gi is the genus of Si, tis is twice of the number of double points of 
S, SQ is the number of marked points which are bubbling points, tp is the 
number of intersection points of D and h^ = ^^i + X)^7- By bubbling 
points we mean there is a bubble attaching to that point. 

The basic idea of the proof is due to D. McDuff [Ml]. Let 
'Pk-i,p(Xziv) -■* JfiqiXziv) be the vector bundle defined at the beginning 
of this subsection. Define 

Maplp (E^Xzcc, [Pi\\ = Ifi : S* -> A^a| fo is a fiber map 

with bounded Hk* norm,  [/* (s*)] = [P*]} , 

Mopj;jP (5
2, A^c, [Bj]) = {/^ : 52 -» ^a|/J is a fiber map 

with bounded Jf^norm,  [/J' (S2)] = [J^-]} . 

(Here we require all the maps from S2 to Xz<* to be somewhere injective). 
Let 

rfc_ljP (iti, e*Pi (E\Xza))     and   r^i^ (TS
2
, e*Bj (E\xza)) 

be vector bundles over 

J{Maplv{tuXz^ [Pi]) x JlMop^ {S2,Xz^ [Bj]) x 7V1)P(*z,u;), 
* i 

whose fibers over a point (/i,/J, J, i/) are sections of fi^. (f*(E)) and 

ft^J(./J'*(jB)), respectively, with bounded Hk~l* norm. Then we obtain an 
infinite dimensional bundle with a section 5 which is a partial differential 
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operator, 

HTk^p (Tti^iE)) x nrfc-i,P (TS2,e*B.(E)y^ 

» 3 

S {fi, fj, J, u) = {Bjfi - Vil^djf*). 

Lemma 1.4.  The zero section of the above bundle is regular for the section 
S. i.e., 

MmmA**) = {(/«• ^'J'v) Is (/*• ^>J' ^ =0} 
is a Banach submanifold of 

l[Maplp (t^Xza, [Pi]) x JlMop^ {S2,Xza, [Bj]) x Pk-^Xz,*)- 
i j 

Proof. For any point z € Z0, choose a neighborhood U of z in Za, such that 
ifwefkatrivialization^sHc/ =P~1(U) = UxV andTp"1^).S TUxTV, 
then the tangent space at (fi, ft, J,v) is 

ThMaplp (ti, Xz*, [Pi]) = rfc,p (Si, ftTVz) x TzZ
a, 

TfiMaplp (5
2, Xz*, m) = rfc,p (S

2, f*TVz) x TzZ
a, 

Tjfi^XzM = Vltq(Evd(E, J)), 

where TT o /; = z, TT o /•? = z and End(E, J) is the set of all the endmorphism 
of E. Those endmorphism anti-commutes with J and is self-adjoint with 
respect to the metric a;(-, J-). So 

T{jiU)Vk-liP(Xz,u) = rliq(End(E,J)) x JJlW* (^rS^Tr^) , 
i 

T(/i,o)rfc-i,p (TSi, ep.(£)J 

= rfc,p (Ei,/*r^) x r2z- x n^ffc.liP)(/;rv;), 

= rfc,p {&,PTVZ) x rzz- x n^ ^lrt (/iTvi). 
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Note: the fiber directions of the above two tangent spaces are 

d&*-i*)(frrV,)        and        ^_lip) (p* TVZ), 

respectively. Let us compute the projection of the linearization of 5 to the 
fiber direction at (/i, /?, J, u) satisfying 5(/i, /^ J, u) = 0. 

* j 

rliq(End(E,J)) x nr^i,P (<Ttu^E)  DS^fJ^\ 
i 

nrfc,p fo, ftTvz) x JIrfcjP (5
2
) /^ryz) x Tzz

a x 
i j 

We fix a Hermitian metric h on E which is compatible with J, also fix a 
connection V on E which is compatible with this metric and the fiberwise 
almost complex structure. Further suppose that for any z € Z, V\vz has 
torsion \Nj\v , where Nj\v is the Nijenhuis torsion tensor of (yz, J|y2). The 
construction of such a connection is the same as the construction of such 
a connection in the non-fiberwise case. V defines a parallel translations 
Pit and P/ along path {/i*}™ i and {//}^=1, respectively, on the bundle £7, 
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which will be used to define DS. We now can write down Pr o DS: 

ProDSUuf^Jrt&wwJ) 
= Pr o DS{£„ 0,0,0,0) + Pr o I>5(0,77,0,0,0) 

+ Pr o 1)5(0,0,7,0,0) + Pr o DS(0,0,0, w, 0) 
+ ProDS(0,0,0,0,5), 

Pro DS(t,0,0,0,0) 

= ( (v6 + Jlv, o vb o fa + 1NJ1VZ (djWz (fi), 6)) "_ , 0), 

= (0, (V773' + Jlv, o Vi^ o j52 + \NjWz(djWz(P),rtf)     ) , 

ProDS{0,0,0,10,0) 

= ( ( gw^ ° tfi 0 tii )      » f g™^) 0 dfj 0JsA      ), 

where 

f = (^i.--- i£m)i »7 = (»71i"- ^fc)    and   5 = («5i,• • • ,Sm). 

The computation of these formulas is exactly the same as in the non- 
fiberwise case since we may choose the families of maps varying in the di- 
rections of £ or 77 to lie in the same fiber V^(see [Ml]). 

To compute Pr o DS(0,0,7,0,0), we choose families of maps, 

/*,* = /»> ft = /*• Jt = J, zt, 

satisfying 

= 7,    and   ut — v. 
dzt 
dt t=o 

Here we suppose Im(/t) C VZt, so 
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Pro DS(0,0,7,0,0) 

jtPi,t (dfi,t + J\vH o dfiyt o fa - uiIEJ J      , 

(jtPi(dfi + J\vztodfioJs2fjk   ) 

= ((V7 (dfi + J\Vzt o dfi o fa - i/ita))^ , 

{^{df + J\VHodfojs2))
k.^) 

= ( ( di ^ + J\Vzt 0 d^ 0 i* ~ "^ 

+r^ (dfi + J\vzt o dfi o fa - i/ik))^, 

(1 (^ + J|^0 d/'0 J52)+ r- (dfi + Jlv*t0 dfi 0 •7'52))._ 
((dJ\vH .        dvi 

)"■( ^=0/ i=l     \ 

dJ|yz ^ k 

—rLodPojS2 

Note that in the last step we used dfi + J\vH 
0 dfi o j^. — ^ = 0, d/-7 + 

J\v2t 
0 dp o jS2 = 0 when t = 0 and that F*^ denote the Christoffel symbol 

of the connection V. Finally to compute Pr o 08(0,0,0,0,5), we choose 
families of maps fat = /*, // = /*', Jt = J, ^ = z, and z/i = (i/i,*)f satisfying 

St \t=o = Oi, so 

ProZ?s(0,0,0,0,^) 

^Pi,t (d/i + ^Iv, o dfi O Js. - Uitt)J        , 

(J^Piidf + JlvyOdfoJs^) 

To show the section S is transversal to the zero section, we need to show 
that DS is surjective in the fiber direction, i.e. Pr o DS is a surjective map. 
According to Lemma 4.9 in [RT], ProDS is surjective for each fixed z € Za, 
where we specifically need the assumption that f* is somewhere injective. 
The only difference is that we need to show that the perturbation of J\vz 
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and u\vz on Vz used in the proof of Lemma 4.9 in [RT] can be extended to 
perturbations of J and u on E. This can clearly be done, so Pr o DS is 
surjective, and the lemma is proved. 

To prove the proposition, all that is left is to show that 

^ ■■ jfrwABwixz.) x n ^-pi x n (s2f—4°hi+E hi 

i 3 

is transversal to A^a£. Let (^i,--- ,1^) be a point in A^a ^, Is = 

{S^, • • • , Sip, Bj!, • • • , Z?jr}, and 

So faixii) = ••;= fiplPip) = /^(Vii) = ••• = /ir(yjr) = Vs. By the 
Hartman-Winter Lemma [JS, Lemma 2.6.1], there are only finitely many 
accumulation points of Ira/7 fl Imp , since we require that Ira/-7 ^ Imfi 
for j ^ f. Therefore, for each Z*75, we can choose a small disc Djs around yjs 

such that there is a smaller disc Dfjs satisfying that the annulus Djs — Dfjs 

does not intersect other bubble components. By the work of D. McDuff 
[Ml], given any tangent vector X G Tpa^y. jV^, where /(£) C Vz, for some 
z € Za, there is a perturbation of almost complex structure J\vz to com- 
patible almost complex structures (J\vz)t on Vz in a small neighborhood 
of l7nP8\£)js-Dfjs, and also a perturbation //s of Ps on £)j3 such that f$s 

is (J|yz)t holomorphic, /Q
3
 = /j5, and -^-(yJ3)|t=o = X. We can patch 

fl* with Ps\s2-D' to get /ts defined on whole S2 such that fi8\Djs-D,
J3 

does not intersect other bubble components either. Note that (J\vz)t can be 
extended to a family of complex structure Jt on E, i.e. we can choose per- 
turbation (J\vz)t which comes from V%_iiP(XziV)* Note that other bubbles 

are also Jj-holomorphic and   d[-(yja)\t=o ^ X. 
For a principal component fis, the argument is easier since we can per- 

turb the inhomogenepus term. We can just choose an arbitrary perturba- 
tion fi t on a small disc Dis around Xis such that -£jf-(xis)\t==o = X, and 
then simply perturb Vi\vz to (^|yz)t while keeping (^i5|\/Jt = djfiSit on the 
graph of fiSrt- Then fiSit satisfies an inhomogeneous Cauchy-Riemann equa- 
tion with inhomogeneous term (vis\vz)t- Note that (^is\vz)t can be extended 
to a family of elements in V%_lp(Xz>w). Applying this argument to each 

point vs and every point in e^L(A^a £>), we have shown that the map e^ is 

transversal to Av
Za p. Therefore e^1(A^a ^) is a smooth Banach manifold. 

Moreover we have the following Predholm map 

ei1fe.tD)±n_1,{Xz,u>). 
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By the Sard-Smale Theorem, for a generic element (J, u) o£Vl_lv(Xz, ^0, its 
preimage 7f~1( J, v) is a smooth manifold (it is crucial here that V'^_l p(Xz, ^) 
has smooth structure). This implies that MyA ... A N(S, Xza, X v) is a 

smooth manifold when we choose D with no bubbles /J, and in gen- 
eral A/^(S, A^a, J, u) is smooth manifold.    Since G^ ^  acts freely on 

^(E,Afe«,J,i/), AfyfaXz^J,!,) = SJl(Z,Xz°,J,i')/Gj:hf is smooth. 

Note that G^1 ^ acts freely on eJ1(A^a ^J, so we can define a smooth man- 

ifold E^iA^z) = eg(Av
z  ^/G11 hJ, a space that will be used below. 

Step 3. A routine counting dimension argument gives the dimension 
formula (see [RT]). We can see that the codimension of the boundary of 
the moduli space is at least two in the following way. Notice that for most 
fibers of the fibration MV,A ... A x (£, Xz* ,J,i')—>Za, the boundary part of 
a fiber is of codimension two in the fiber as we know from the non-fiberwise 
case. Since M^ ^(E, A^a, J, u) has the required smooth structure, its 
boundary has codimension at least two. □ 

Remark 1.3. Since the moduli space has a canonically defined orientation 
in the non-fiberwise case, this orientation and the orientation of Za give 
a natural orientation of the moduli space .M^ ... A JYi,Xz<*,J,v) in the 
fiberwise case. 

Proposition 1.3. For a generic (J, u) € V^^^Xz^), and D € VA £, 

dimA/£(E, Xz«, J, v) < 2Ci{V) - A + 2n(l - p(E)) - 2kD - 2sD + dimZa 

where kp is the number of bubble components of D (not D), and SQ is the 
number of marked points which are also bubbling points. 

Proof Similar to Proposition 4.14 in [RT]. We omit it. □ 

We want to prove another transversality result which will be used in 
defining the fiberwise mixed invariants later. Let {Ui}i=v {WJ}JLI be 
two (possibly non-compact) families of smooth manifolds, and Li : Ui -> 
Xz,Mj : Wj —* Xz be smooth maps. We require that the images all lie 
in one stratum, say Xz*. For each data Z), we know that A/^(E, Xz*, J, u) 
is a smooth manifold for generic (J, v). Consider the intersections of the 
components of Im/ and Im(Mj), where / € A/^(E, A^a, J, u) consists of 
principal components (/i)™! and bubble components (/J')jLi- Without loss 
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of generality, we may assume that Im(Mi), • • • ,Im(Mp) intersect the princi- 
pal components Imfis of /, 1 < s < p, and ImMp+i, • • • , ImM^ intersect the 
bubble components Im/^5 of /, p + 1 < s < d, we call this an intersection 
pattern, and denote it by T. If Mi intersect more than one component, we 
simply choose one of them. Let C = (S; xi, • • • , xc) be a stable curve, and 
X = (xi, • • • , xc) be the set of marked points. We consider evaluation map 

p 

ex,T xLxM: A/"£(E,;tz«, J,i/) x Jjsis x (S2)d~~p xUxW—> 
s=l 

ysc+d v,   -yc+d 

ex,T (fu P\ Vir -' , Vp] J/p+i, • • •, Vd) 

= (/On),--- ,/(^);/u(yi),-- ,/iP(2/p);/Jp+1(yP+i)r-- ,/J'd(yd)), 

where J7 = UiUu W = FIj W,, L = Hi^i. M = UjMj, G = PGL2, A<* C 
X^idx X^id is the diagonal corresponding to the intersection pattern T, and 
A£ is defined similar to Av

Zoc D. Note that (/; • • •) is in (ex,TxLxM)'"1(Af.) 

if and only if ffa) G Im(Li), Im/isn Im(Ms) ^ 0,1 < s < p, and Im/^fl 
Im(M5)^0, p+l<s<d. 

Proposition 1.4. For a generic (J, u) G ^-1^(^,0;), any £) € 2^4s> 
(ex,T x L x M)"'1(Aj.) is a smooth manifold of dimension 

dim A/^ (S, Xz<*, J, 1/) + 2d — codim L - codim M 

< 2Ci(V) • A + 2n(l - 5(E)) + dim Za 

— 2fcp — 25£) + 2d — codim L — codim M, 

where sp, kp are defined as in Proposition 1.3, codim Li = dim Xz<*— dimf/j, 
codim C = ^ codim Ci, codim Mj = dim Xz* — dim W}, and codim M = 
£\- codim Mj. When the proposition is true, we say that A/^E, Xzoc) J, u) 
is transversal to L x M for (X,T), and such (J^u) is good. 

Proof. We use the notation Efil(Av
Zoi ^) as defined at the end of proof of 

Proposition 1.2. AH we need to show is that 

v 
e{x,TiV)xLxM : Ej? (A£0|/>) X JI^X(S2)d-pxUxW —* Xc

zt
dxXc

zt
d 

8=1 

is transversal to Aj., where map e^xyTj>) is defined similarly to ex,T- Since 
E^{Av

Zoi p) —► Vk-i^Xziw) is a Predholm map, according to the Sard- 
Smale Theorem, for a generic (J, 1/), ex,T is transversal to Aj.. 
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To prove e^x,T,V) x L x M is transversal to A£, assume that 

{fiJj,J,v,yk,Ui,Wj) € (e(x,T,7>) x L x M)-l(b%)t 

f(xi) = Li(ui), fia(ys) = Ms(ws), 1 < a < p, fjs(ys) = Ms(ws), 
p + 1 < s < d, we need to prove that for any Xj € Tf(Xi)Xza,Ys € 

TfiAys)*201'1 - s - P> and Ys € TP°(ys)XZa>P + 1 < s < d, we 
can find a family of curves {fi,t,ft,Jt,vt,ys,t) € .E^A^^) x HLi si. 

xGa-P(5
2)d-P such that ^|t=o = ^i/^'^l^o = ^,1 < s < P, 

and ^ ^J IfcsO ■=. l^,p + 1 < 5 < d. We achieve this by perturbing 
UuPi J^'iVk) several times, each time we make one of the requirements 
satisfied without affecting other parts. The perturbation goes like the fol- 

lows: suppose we want make * ^t lt=o = Yi. If Yi is a fiber direction in 
Tfo (y^Xz**, we then only need to perturb the curve within the fiber Vz, the 
perturbation being similar to the one in the proof of Proposition 1.2. The 
only new feature is that if yi is a double or cusp point of the domain of /, 
the pertubation has to keep the intersection pattern of the cusp curve, since 
otherwise the perturbed family will not be in £,^1(A^a p). This can be done 

as follows: choose a curve c* in Vz with CQ = fhivi) and ^|*=o = Yi. For 
any principal component intersecting at /^(yi), say /i, by perturbing the 
fiberwise inhomgeneous term, we can find f^t which is a local perturbation 
of fi around yi, such that /i,t(yi) = c*. For any bubble component inter- 
secting at /^(yi), say /^, by the work of D. McDuff [M2], we can actually 
perturb J and u in the same way as in Proposition 1.2, with //(yi) = ct. 
Now the differnt components of map ft intersect at point c*. Once again we 
can extend the perturbed (J\vz)u (v\vz)t to (Ju^t) £ Vk-i^i^z^)- 

If Yi is not a fiber direction, we choose a trivialization of Xz* around z € 
Za (see Remark 1.2). We only study the case that Yi is a horizontal vector 
under the trivialization, since this is sufficient for proving the surjectivity. 
Choose a curve zt in Za with ZQ = z, ^It^o = Yi, we perturb J and v in the 
following way: Jt\vZt — J\vz^t\vzt — v\vz> so take ft = / but view that Imft 
lies in the fiber VZt. Now fiut(yiit) = {zu fiber part), the horizontal part 

0£ ntt 
1»* j^=o js y^ an(j ^^jg perturbation keeps the intersection pattern of 

the cusp curve. So e^x,Tj>) x L x M is transversal to A^. 
Dimension counting being routine, the inequality follows from Proposi- 

tion 1.3, and the proposition is proved. □ 

Remark 1.4.     (i) If Z is a submanifold of Za, assume that (Jo^o) is 

good for .A/^(S, Ajr, Jo, ^o)? and consider the subspace Pfc-l,p(^Z) ^) C 
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Vk-i,p{Xzi ^) which consists of (J, i/J's whose restriction to Xg equals 
(^o? ^o)- Then using this space instead ofPk-i,p(XziU) in the proofs 
of Proposition 1.2 and 1.3, one can show that for a generic (J, u) of 
'Pk-i1p(XziV)i «A/^(E,Xz<*,Ji v) is smooth and transversal to L x M, 
since we may perturb (J, u) only outside of Xg. 

(ii) If jt is a smooth family of complex structure on E, t E [0,1], de- 
note by Et E equipped with jt, then one can consider the space 
UtA/g(Et,/tka, J, J/). For a generic (J,i/) € Vk-i^Xz-tU), this space 
is smooth and transversal to L x M. The reason is: in the proof of 
Proposition 1.2 and 1.3, replacing those Map and JS^1(A^a ^) spaces 
by their union over t, t € [0,1], the remaining argument is the same. 

The following proposition about the transversality of components of 
fiberwise cusp curves is important for the gluing argument in section 3. 
Adopting the notation of Proposition 1.2, consider the moduli space 

It consists of fiberwise (J, v) perturbed holomorphic maps which have no 
bubbles and whose components intersect each other at double points. We 
would like to show that the subset where at least two components intersect 
non-transversally is of codimension 2. Without loss of generality, we can 
assume that E has only two components Ei and E2. Let yi and 2/2 be 
the distinguished points on Ei and E2 corresponding to the intersection. 
We allow a self-intersection by setting Ei = E2 and using their smooth 
resolution below. We then define 

Horn(T^Ei, E\Xza) 0 Horn {Ty2^E\Xza) 

%,!&(/) = (#i(yi)> #2(1/2)), 

where /1 G MA^UXZ<*I J,VI)I /2 € Af>i2(E2, A^«, J,^)- A generic ele- 
ment in i?om(r2/1Ei, E\xZa) © Hom(Ty2E2)E\Xza) is a smooth fibration 
over Xz<* of dimension lOn + dim Za and maximal rank 4. If fi and /2 do 
not intersect transversally, then /'s image will have lower rank. The set of 
homomorphisms of lower ranks is a union of manifolds Ri consisting of homo- 
morphisms of rank i (i=0,l,2,3). dimffo = 2n+dimZa,dimjRi = 2(i+l)n+ 
dimZa+4--i, i=l,2,3. Thus their codimensions are 8n, 6n—3,4n—2,2n—1. 

Proposition 1.5. For a generic (J,v), eyim is transversal to Ri. Hence 
eyi,y2 (•^) has- codimension at least 2n — 1 in MyA A \ (E, A^a, J, 1/), 
* = 0,1,2,3. 
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Proof. Use the notation jB^1(A^a p) as defined at the end of the proof of 

Proposition 1.2. Now choose data D with no bubble components and denote 
E

B
1
^

V
Z«,D) 

by MIA,A2)^
X
^^ Consider the map 

^to-MXAlM)&,Xz*,V) ^Hcm{T^uE\x^)®Hcm{T^2,E\XBa) 

EyitoifiJiv) = (#1(2/1), #2(2/2)), 

we can show that EyllV2 is transversal to i^, i = 0,1,2,3. The proof, similar 
to the proof of proposition 1.2, is omitted(see [RT], Theorem 5.10). □ 

2. Fiberwise Gromov-Witten Mixed Invariants. 

We now begin the definition of fiberwise mixed invariants, our aim 
being to use it to define the fiberwise quantum cohomology. Let C = 
(E;a;i,--- ,a;c) be a stable curve of genus 5, S = (Si,--- ,Sm), X = 
(asi, - • • , :rc), and Ai, • • • , Am be homology classes in H2(V; Z), A = Ai + 
• • • + Am. Without loss of generality, assume that xi, • • • ^x^ lie in Ei, 
x^+i, • • • , Xi2 lie in E2, • • •, and Xirn_1^i, • • • , Xim lie in Em. Denote this 

position pattern by Pi. Take a bundle X -£> Y satisfying Assumption (*). 
Let {ai}i, {i%}i be rational cohomology classes of #, and 7 be the rational 
homology class of Y satisfying 

c d 

(2.1)     JTdego* + 5>eg& - 2) = 2(71(10 • A + 2n(l - 5) + deg(7). 
1 1 

Here we work with rational coefficients for homology and cohomology, but 
we could use real or complex coefficients. In section 5 we will actually use 
complex coefficients. Integer coefficients can not be used because an integral 
homology class may have no pseudo-manifold representative. 

Let F : Z -* Y be a pseudo-manifold representative of a homology 
class 7. Using the notation after Assumption.(*), F*(ai) and F*(f3j) are 
then cohomology classes in the pseudo-manifold Xz- Denote their Poincare 
duals by PD(F*(ai)) and PD(F*(/3j)) respectively. We can represent 
PD(F*{ai)) and PD(F*(fij)) by pseudo-manifolds Ui and Wj in Xz in the 
following way: there are continuous maps 

LnUi-* Xz,        Mj : Wj -> Xz 

such that on each stratum, say U* or Wj , both Li and Mj are smooth and 
each image Li(Uf) or Mj(Wj) lies entirely in some stratum of Xz, say Xz^s 
or Xzfijtt. Furthermore they satisfy the following general position condition. 
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General position condition: 

dim Xz<*ita — dim U* > dim Xz — dim C/j, 

dim Xz0jtt - dim Wj > dim Xz - dim Wj. 

Note that if Z is smooth, then this definition coincides with the ordinary 
definition of the pseudo-manifold representative of a rational homology class. 

Denote L = Hi LUM = flj Mj.LxM : Hi Uix^ Wj .-+ X^d. Denote 
by Im the image of a map, fix an intersection pattern T: Im/5j. intersects 
ImWj, j = 1, • • • , d. Then define the evaluation map 

d 

e(E,P,j,,) : MlAu... ,Am)(S, Xz, J^)xJ{ ZSj -* X?d 

3=1 

(fww- vVd).—> (/(a?i)»'-- 5/(^c);/5l(yi)r-- ,f8d(vd))- 

Note that ejs.jp,J,I/) is a smooth map. It follows from our assumption on the 
degree of cti and J3j that the image of e(s,p,j,i/) and L x M have complemen- 
tary dimensions in Xg. Moreover, we have 

Proposition 2.1. Under assumption (2.1), for a generic fiberwise almost 
complex structure J and a generic inhomogeneous term v in Vk-i,p(XziW), 
we have 

(i) There are no sequences {/r}?0 in MyA ... i4m)(S, Xz, J, ^) such that 
fr(xi) converges to a point in Li(Ui) as r —>. oo , /rjSj.(ESj)nMj(Wj) ^ 
0 and at least one of the following is true: 

(a) for some i, fr(xi) converges to a point in Li(Ui \ U®), 

(b) for some j, /riS,(Ss,) n M^Wj \ Wf) ? 0. 

Here Uf and Wj denote the top strata in Ui and Wj respectively. 

(ii) There are no sequences {/r}?0 in MyA Arn)(E, Xz, J, v) with fr{xi) 
converges to a point in Li(Ui) as r —» oo, friSj(TiSj) HMj(Wj) ^ 0 and 
the limit f in not in <MyA ... A \ (S, A^o, J, v). Here Z0 denotes the 
top stratum in Z. 

(iii) e^pjjU)(MyAu_ Arn)(Il, Xzo, J,v)) and L x M(U0 x W0) intersect 
transversally at finitely many points, i.e., there are finitely many 

d 

(/; Vi, • • • , Vd) e Mv
{Ali... ^.(E, Af^, J, u) x J] SSi, (u, ti;) G C70 x W0, 
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such that e(E}p,j,!/)(/;yi," • ,yd) = (L(u)^M(w)), and at each inter- 
section point, the image of the tangent space T^W)U0 x W0 under 
L x M is transverse to the image of the tangent space 

TUm," to) I M(Au~ Am) (^ xz°, J, v) x 11 Esi 

under the evaluation map. 

Proof 

(i) If this fails, by Proposition 1.1 (here we adopt the notation there), 
there is a cusp curve / G A/^(E, Xz,«/, ^) for some D satisfying: 
(1) /(S) n MM,) ^ 0, 1 < j < d] (2) for each marked point 
Xi,i = l,--- ,c, either f(xi) G Im(Lj) or a bubble occurs at Xi. In 
the second case, f(xi) may not be in Im(L;), but Im(Li) will intersect 
a bubble tree coming out of Xf. Note that lm(Mj) may intersect a 
bubble instead of the principal component of /. Therefore we see that 
/ could have fewer marked points and the number of homology classes 
corresponding to the unmarked part increases. Let Xf C X be the 
subset of marked points which are not bubbling points. Suppose that 
Xf = (#1, • • • , Xp), then there are at least c—p bubbles, c+d—pis the 
number of pseudo-manifolds in PD(F*{ai)), PD{F*(f3j)) which inter- 
sect Im(/). Let f{xi) 6 Li(Ui) for t = 1, • • • ,p, Im(/)nL*(I/i) ^ 0, for 
z" = p + 1,. •. , c, and Im(/) fl Mj(Wj) ^ 0 for j = 1, • • • , d. Suppose 
that / intersects these pseudo-manifolds in a intersection pattern T, 
implying 

(eXtT x L x M)-1 (A?) ^ 0 

where Im(/) C A^a for some a and ex? is defined before Proposition 
1.4. Proposition 1.4 says that (ex,T x L x M)~1(A^) is a smooth 
manifold, we have an estimate of its dimension 

dxm(ex,T * L x M)-1 (A%) 

= dim^(S, Xz^ J, i/) + 2(c + d - p) - codimC//(a) - codimW^(a) 

= 2C1{V)'A + 2n(l-g)-2(c-p) + 2(c + d-p) 

- codim[//(a) - codimWJ(a) + dim Za, 

where U* stands for all the stratum in Ui whose image lies in Xz* 

and Wj     has a similar meaning. If a = 0, by the assumption we have 
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codimUi      > codimC/j + 2 or codimWL-     > codimW,- + 2, so 

dim(ex,r x L x M)-1 (A^) 

< 2Ci(V) •A + 2n(l-g)+2d- codimUi - codimW,- - 2 + dim Z0 

= -2. 

If a 7^ 0, then the general position condition and dim Za < dim Z0 — 2 
imply 

dim(ex,T x L x M)_1 (Af.) 

< 2Ci (V) • A + 2n(l - g) + 2d - codimt/j - codimW,- + dim Z0 - 2 

= -2. 

So in either case, we get a contradiction, (i) is proved. 

(ii) The first half is the same as the proof of (i), the only modification is 
the dimension counting. 

dim(ex,T x L x M)-1 (A£) 

= dimA/^(S,Xz°, J,u) + 2(c + d-p)- codimU°{a) - codimW*(a) 

< 2Ci(V) • A + 2n(l - g) - 2 - 2(c - p) + 2(c + d - p) 

- codimC//(a) - codimW*(a) + dim Za 

<-2, 

where we use that D has a bubble component to get —2 in the second 
to last step. 

This a contradiction, (ii) is proved. 

(iii) Considering the restriction of e^p,^) to MyA ... A )(S,/t^o, J, u) x 

rijLi ^SJ and the restriction of L x M to U0 x W0, (iii) follows from 
Proposition 1.4. 

Remark 2.1. (i) Note that if each of dimZjdimJ/i, and dim Wj is one 
dimension higher than it is in Proposition 2.1. It is still correct, ex- 
cept that we should modify (iii) as follows: their intersection is a one 
dimensional smooth manifold in MyAi... y^jCS, Xzo, J, u) x U0 x W0. 
The reason is: in the proof of the above proposition, if the dimensions 
of ZjUi7 and Wj are raised by 1, the result of dimension counting in 
(i) and (ii) is -1, which still gives a contradiction. 
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(ii) Assume dim Z, dim t/j, and dim Wj are one dimension higher than it is 
in Proposition 2.1, and Z, Ui, Wj have submanifolds Z, U^ Wj, respec- 
tively. According to Remark 1.4 (i), Proposition 2.1 is still correct 
even if we fixed (J, ^)'s value on Z, £/*, Wj to be good. If Z, Ui, Wj 
are boundaries, the one dimensional manifold in i) has boundary, this 
essentially giving a cobordism. 

(hi) Suppose that Z satisfies (2.1), if we consider the moduli space ap- 
pearing in Remark 1.4 ii), Proposition 2.1 is still correct. The image 
of the moduli space UtMyAi... ^ )(E*, A^o, J, u) x rijLi ^j w^ only 
intersect the image of U0 x W0, and the intersection will be transverse 
giving a smooth one dimensional manifold. 

Now we define the fiberwise mixed invariants as follows. Denote 
by P := (PijT) the pair: the position pattern Pi and intersection 
pattern T and denote ex,T by e^p^y. Fix a pair (J, u) such that 
e(i;,/v,i/) and MJA ... A N(S, XZI J, V) satisfy all the properties in Propo- 
sition 2.1. Again we will call such (J, v) good. First we associate a 
multiplicity m{f) to each / in Mv,Ai... AAY>,Xz,J,v). We define m{f) 
to be zero if either f{xi) is not in Li(Ui) for some i, or fSj(ESj) does 
not intersect with one of the Mj(Wj) for some j. If / is given as in 
Proposition 2.1, there are finitely many (ytw " jy*d)(l < * < 0 such 
that fsjiytj) € Mj(Wf). Putting e(/,t) to be ±1, the sign being de- 

termined by the orientation of MyA ... AJYl,Xzo,J,u) x 11^=1^ at 

(fiVtW" iVtd), the orientation of U0 x W0 at (u,w), the orientation of 
^|od at (/(xi),--- JixcjJsAyti),-' Jsd(ytd)), and the Jacobian of the 
maps CJE.P,j,!/) at L x M. We define 

z 

Finally we define the fiberwise mixed invariant 

For convenience, we define 
$(,A1,..,ATn,a;,S,P)(«l5 * ' * ^c|A,'' • ,/?d)(7) = 0, 

in case that 
c d 

Y, deg^) + ^(deg^) - 2) ^ 2Ci(y) • A+ 2n(l - 5) + deg(7). 
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This defines a map 

Note that when Y is a point, A* = F, the fiberwise mixed invariants 
coincide with the mixed invariants defined by Ruan and Tian in [RT]. 

The following proposition assures that 

is indeed a symplectic invariant. 

Proposition 2.2. *(Alj.„ ,Am,a;,s,P)(ai' '^ ac\^u • • •■, /3d)(7) & indepen- 
dent of the choice of (J, z/); t/ie marked points xi, • • • , a;c 0/ i/ie same po- 
sition pattern Pi in S; the conformal structure on E; the choice of pseudo- 
manifolds (Li,Ui)j(Mj,Wj).v(FtZ} representing ai,/?j,7 (i = 1, ••• ,c;j = 
1, • • • jd). Furthermore, the invariant depends only on the semi-positive de- 
formation class of' u). 

Proof. In the proof we adopt the notation used in proposition 2.1, and divide 
the proof into several parts. 

(i) We show that ^^..^^^.^p)^!,--- ,ac|/?i,--. ,Ai)(7) is indepen- 
dent of the choice of good (J, v). Suppose (JOJ^O)? (^ij^i) are two 
choices,denote Z = Z x [0,1], define Xg —> Z to be a, fiber bundle 
with fiber V induced from A^, the fiberwise symplectic form & on 
Xg being also the induced one. Note that Xg —► Z satisfies Assump- 
tion (*). Define Vt-iJ^z^ simikirly to Vk-i^iXzjv), but with 

a boundary condition: for any {J,i>) € ^k-i.pi^z^)^ (J>v)\xZxQ — 

(^0)^))? (^^)|A^XI — C^ir^i)- Then choose Li = Li x id, iQj = 
Afj x id, C/i = i7i x [0,1], Wj = W} x [0,1]. From Remark 2.1 (ii), it 
follows that for a generic (J, z/), {^r^PJ v) x ^ x M)""1(A^) will give a 
one dimensional cobordism between {e^pj^uo) x L x M)""1(Aj.) and 

(ctE.p.j!,^) x ^ x MY1^) in the space M0^,,, ^m)(S, ^0, J, i?) x 

II^i s5j x ^0 x W0- This cobordism tell us that §lAu... ,Am,a;,s,P)(ai' 
" • 5 ^c IAL, • • • »fiddil) is independent of the choice (J, 1/). 

(ii) We show that ^.....Am.wAP)^1'"" *ac|Ar-' >Ai)(7) is indepen- 
dent of the choice of the conformal structure j on S. Let jo and ji be 
two conformal structure on S. We can connect them by a family of 
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conformal structures ju t G [0,1]. Prom Remark 2.1 (iii), for a generic 
(J, v), the image of the moduli space ^tMJA ... A ^(St, Xzo, J, u) x 

Ylj=i ^SJ will only intersect the image of U0 x W0, the intersec- 
tion will be transverse and give a smooth one dimensional mani- 
fold. But this one dimensional manifold is the cobordism between 
(^(Ejo^j^xLxM)-1^) and (e((SJl)jp)jjl/)xLxM)-1(A^). This 

cobordism tells us that ^(i41,...,Am,u;,E,p)(ai'" * iac\/3ir- >Pd){i) is 
independent of the choice of the conformal structure j on E. 

(iii) We show that *(i41>...|i4roia;lB,F)(aii"" i<Xc\Pi>-~ ,Pd){l) is indepen- 
dent of the choice of the marked point set X within the same posi- 
tion pattern Pi (see the definition at the beginning of this section). 
If X1 is another set of marked points, we choose a continuous map 
(j) : S —► E isotropic to identity, such that it maps X to X7, and it 
is a diffeomorphic on each component Ej,i = 1, ••• ,ra. Let E' to 
be E equipped with the pullback conformal structure (jfj, then ob- 

viously ^(,
i41)...5i4m,a;,s,P)(al'**, »acl Ai" •" >A0(7) defined using the 

stable curve C" = (Y/^X*) is the same as the one defined using the 
stable curve C = (E,X). Combining this with part ii) above, the 
independence of the choice X is proved. 

(iv) We show that $(,A1,...,Am}a;,s,P)(ai' *' * iac\Pu~- iPd){i) is indepen- 
dent of the choice of pseudo-manifold representatives (F, Z), (Li, 17$), 
(Mj, Wy-). Suppose that (JFb,Zo), (£io,*7io), (Mfo, W^o) and (Fi,Zi), 
(Lii,C/ii), (MjijW^i) are two choices, both of them satisfying the 
general position condition. First we can find a cobordism of pseudo- 
manifolds F : Z -+ Y with dF = FQ U FI, dZ = ZQ U ZI, and also 
construct a fiber bundle p : X% —> Z with fiber V satisfying the As- 
sumption (•). Secondly we can find a cobordism of pseudo-manifolds 
Li : Ui —» Xz^Mj : W^- —> X^ satisfying the pseudo-manifold rep- 
resentative condition listed at the beginning of this section (in par- 
ticular the general position condition), and d(Li,Ui) = (Lio,Uio) U 
(Uu Un), d{Mj,Wj) = (Afp, T^-o) U (M^i, T^i). Apply the Remark 
2.1 ii) to (JP, Z), (Li, t/i), (Mj, W^)i we Set a smooth one dimensional 
manifold which is a cobordism between (e(s>p)j0)l/0) x LQ 

x ■Wo)""1(Ay 0) 
and (e(E)p,j1,Iy1) x Li x Mi)""1(A^1) in the space A"^. This cobordism 
tells us that $(,

Al)... ,Am,a;Js,P)(ai'" " > ^clAi "• iPd) (7) is independent 
of the choice of (V, zT '& ^Oi (M^ wj)- 
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(v) Assume that two symplectic form UQ and ui are connected to by a 
family of symplectic forms uJt,t € [0,1]. Then an argument similar to 

(i) will prove that $v
{Au... ,Am,a/,E,P)(ai> *" • »ac|A,'"' > Pd) (7) depends 

only on the strong semi-positive deformation class of CJ, using fiber 
bundle A" x [0,1] —> Y x [0,1] with fiberwise symplectic form {u;* : t G 

[0,1]}. 

D 

Remark 2.2. To define 

*('A1,..,4mia,,s,Jp)(«i>--- .«c|/3i,--- ,&) e fr(y,Q), 

we only need to choose a basis 7i,--- ,7^ of if*(Y,Q),  and evaluate 

^Ai^.^mM^F)^1'"' ,ttc|A,-" ,Ai)(7i)- Note that for some appropri- 
ate choice of 71, • • • ,79, we can represent all 7$ by submanifolds Zi in Y. 
This means that we can choose Z to be a manifold from the very begin- 
ning, and assume its cobordism to be smooth too. Had we proceeded in this 
way, our arguments could be much simplified. Actually in the definition 
of fiberwise quantum cohomology and equivariant quantum cohomology, Z 
is always smooth. But there is a problem with this approach. When the 
homology groups with integer coefficient have torsion, we will have trouble 
in showing that (fiberwise) Gromov-Witten invariants is independent of dif- 
ferent smooth manifold representations of some homology class, since these 
two smooth representation may not be cobordant to each other in smooth 
sense (see [C]). This is why we use pseudo-manifolds. 

Next we collect a few simple properties of the fiberwise mixed invariants, 
leaving the composition law for the next section. 

Proposition 2.3.  The fiberwise mixed invariant 

*V(Ai,~ ,Am,u,,S,P)(ai>" •' > <Xc\Pi, - • , ftf)(7) 

is multilinear in ai,(3j and 7. Furthermore, we have 

(i)  The fiberwise mixed invariant 

*Uw'-,AmMV,P)(ai>mm- >ac\fo>-m- >&)(7) 

is zero if the "virtual" dimension 2 Ci(V) • A + 2n(l — g) + deg7 < 0. 

(ii) ^1>...)Am)Ci;jS)p)(«!,•••. ,ac|j8i,--- ,13d) is zero if one of the fy is of 

degree greater than 2n — 2. 
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(iii) // c + 2g > 4 and ac is the fundamental class X, then 

*04i,.»,AmMS,P)(ai» • •" ^ac\Pu '' • , Ai)(7) 

equals 

(iv) *CAi,.",>im,w,E,P)(ai'"' 'ac|A,--- ,Ai)(7) egua/5 

*/ ^ w 0/ degree 2 and D = A- fy is the intersection number, where 
we regard (3d as the induced class on V. 

(v) In case A = 0, ^^...^^^(ai,--- ,ac|A, • •':Pd) equals zero if 
d > 0 and equals the intersection number Jv ai fl • • • fl ac if d = 0. 

(vi) Let 8 be a class in jEf*(Y',Q).' Thenp*S is a class in H*(X,Q), and 

*Ui,-' lAmv&pfo*6* air ' -i aclA, •••,&) 

Proof For (i), (ii), (iii), (iv), the proof, similar to the proof of Proposition 
2.5 in [RT], is omitted. 

(v) (2.1) implies £1 dega* + Ei(<*<*# - 2) = 2n(l - g) + degfr). Fix 
a pseudo-manifold representative F : Z —> y, then the moduli space is Xz 
if we choose the fiberwise inhomogeneous term to be zero. If we choose 
representatives (Lj, C/j), (Mj, W^-) of af,^- intersecting transversally in Xz, 
by definition ^VA ^ A ^ s px (ai, • • • , ac| /?i, • • • , fid) (7) is the intersection 
number of L^ul) n "• H LC(C/C) D Mi(Wi) n • -Md(Wd). If d > 0, this 
intersection is empty because of the degree requirement. If d = 0, this 
intersection number is the same as 

F*ai A ... A F*ac(Xz) 

= / F*ai A ... A F*ac(Z) 

= / ai A • • • ac(F*Z) 

= / ai A-..0:0(7), 



A rigorous definition of fiberwise quantum cohomology 547 

where F : Xz —> X is the natural map induced from F : Z —>Y. So (v) is 
proved. 

(vi) Suppose that F : Z —* Y is a pseudo-manifold representative of a 
class 7 6 iJ*(Y,Q), then we have the diagram 

Xz —£-> Af 

pi i 
z —£-> y 

Note that since F*p*6 = p|F*5, if the Poincare dual of F*5 is represented 
by a pseudo-manifold K, then we can represent F*p*6 by the pseudo- 
manifold (LoiP^iK)).    So the intersection of M.% ... ^ \(S, Af^, J,u) 

with (LOJP^
1
^)),^,^)^]^-,^) in X^od+l is the same as the inter- 

section oiMv
{Au„.iArn) (E, ##, J,i/) with (L^C/iJ^M^W^) in A!^. This 

exactly means that $\Ali... iArniU;^p) (;p*<$,a!i, • • • , o^d Pw" ,Pd) {^i) = 
8 A $(Ai... Am w s P) (ai> • *" »ac| Ar • • , ^d) (7)- The proposition is proved. 
D 

Proposition 2.4 (Direct Product). Let Xi —> Yi-, A^ —> Y2 be two fiber 
bundles with fibers Vi, V2 and fiberwise symplectic forms uiyu)2, respectively, 
and assume both satisfy the Assumption (*). Then X = A4 x X2 —+ Yi x Y2 
is a fiber bundle with fiber Vi x V2 and fiberwise symplectic form ou = ui ©a;2, 
abo satisfying the Assumption (*), and 

(2.2) 
$ 

■(^i.-j-Am^i.E,/^) 

$ (iC--^^2,s,p2)(
ai^-- ^cKr- ,^)(y), 

?x;/iere <I>Ar'v, $^1^^ and $^2^ denote the fiberwise mixed invariants on X, Xi, 
and X2 respectively. 

Proof. This follows directly from the definition of the fiberwise mixed invari- 
ants. □ 

Proposition 2.5 (Restriction). Let X '—> Y be a fiber bundle with fiber 
V satisfying Assumption (*), and h : Yi —> Y be a smooth map. Denote by 
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XY1 = X x f Yi to be the induced fiber bundle with fiber V and the induced 
fiberwise symplectic form w. Then XYI —* Yi satisfies Assumption (*) and 
we have a natural map H : XY1 -*.X. Furthermore 

(2-3) <^,Am,.>S,F)(^«i.--- ,H*ac|fl*A,- ,H*f3d) 
=^5r,-,Aro,t,l2,p)(«i.---.«ciA,---,/3d). 

Proof. We only need to show that for any 7 € iI*(Yi, Q), 

**Z~,Am^P){H*^--- ttrajirfk,... ,H*/3dM 

Choose a pseudo-manifold representative (JP, Z) of 7 in Yi, and represen- 
tatives (Li,Ui)>(Mj,Wj) in Xz of H*ai,H*l3j. Then the pseudo-manifold 
representative of /i*7 is (h o F, Z), and the pseudo-manifold representatives 
of ai and j3j in A^ can be chosen to be (L^, Ui) and (Mj, Wj-), respectively. 
With these choices, both sides of the above equality amount to counting the 
number of intersections of MYAi... y^xQE, ^z0> ^ ^) witJl ^0 x W^0 in ^lo*^- 
Clearly they are the same. The proposition is proved. □ 

Proposition 2.6 (Induction). Suppose that the fiber bundle Y —> B has 
fiber V2 with fiberwise symplectic form 002 satisfying Assumption (*). Sup- 
pose also that the fiber bundle X —► Y has fiber Vi with fiberwise symplectic 
form UJ satisfying Assumption (*). Further assume that cu is also a fiber- 
wise symplectic form satisfying Assumption (*) for the induced fiber bundle 
X -> B with fiber V. Let Ai, • • • , Am be in #2(^1, Z). Then 

(2-4) $f^:!iAm)W)S)P)(ai,...)ac|A,---)^) 

X^^W^"-'0^'"-'^ 
where $x>B>v and $X>Y>V are the fiberwise mixed invariants for the fiber 
bundle X —► B and X —> Y respectively, and the map fv : H*(YjQ) —> 

H*~dimV2(B,Q) is the Gysin map which can be defined by integration along 
the fiber direction. 

Proof. For any 7 G i?*(S,Q), choose its pseudo-manifold representative 
F : Z -> B. Denote Y xF Z by Z. Then F : Z -> Y is a pseudo-manifold 
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representing a homology class 7 € H*(Y, Q). All we need to show is that 

$ ,X,B,v 
(^..lAmiW,E>P)(al>'-- >a»l01»--' '^)(7) 

But Xz -+ Z is a, bundle with fiber V, and Xg —> Z is a, bundle with 
fiber Vi. Obviously there is a natural isomorphism Xz — Xfr so we can 
choose the pseudo-manifolds representing oiufij in Xz and A^r *0 ^e ^^ 
same. To prove above identity, we need to find a good (J, v) for Xz and a 
good (J, v) for Af-g such that .M^,... ^mjC^? ^z? ^z/) is naturally identified 
with ^W(>i1)...^m)(S, A^, J, i>) and they define the same evaluation map. 

We achieve this goal in two steps. In step 1, we will show that there are a 
family of (J, v) for Xz —> Z such that any fiberwise (J, v) holomorphic map 
actually lies in the fiber Vi of the fiber bundle V —► V2> i-e., it is actually a 
fiberwise (J, v) holomorphic map for X^. So we have an isomorphism be- 

tween M{Au...,Am)&>Xz,J,v) and M^A^^^^X^J.U). In step 2, we 
will show that there are good (J, v) and (J, v) among the above mentioned 
family. 

Step 1. Let E,Ei, and E2 be vector bundle over Xz^Xfr and Z respec- 
tively as defined after Remark 1.2. Note that Ei is a subbundle of JB. Fix a 
splitting E = Ei®Ef, then we have diagram with TTI* being an isomorphism 
on the fiber. 

1    1 
Xz -S->  Z 

We define a family of (J, u) on JB as follows. They are of the form (J, V)\EI © 
(J2,0)|£c, where (J, £) £ Vk-\,v{Ei,uj) and J2 is the pull-back of fiberwise 

almost complex structure J2 € Vk-i1p(E2^2) by 71*1*. Note that J is tamed 
by u; + e7r|a;2 for small e. We show now that for such (J, v), if / is a fiberwise 
(J, u) holomorphic curve whose image is in fiber V, then TTI O ■/.= constant 
where V -^ V2 is a bundle map, i.e., it is in MyA ... AWIN(E, A^, J, i>). By 
definition, df + Jodfoj^ = (£,0). Projecting it to E2, we get 7ri*d/ + 7ri*Jo 
d/0JE = 7ri*(i>, 0). Since TTI* J = J27ri*, we get d(7riof)+J2od(7riof)oj^ = 0, 
i.e., TTI o / is a J2 holomorphic map in V^- But since A G H2{Vi,!i), 

0 = / 7ria;2 = /      TTJO^ = / /*7ri^2 = / (^1 0 /)*^2, 
»/>4 J/(E) ^S JX 



550 Peng Lu 

on the other hand /s(7ri o f)*U2 > 0 if TTI o / is not a constant. 

Step 2, The existence of a good (J, u) can be proved in the following way. 
We can choose a subspace of Map(i41)...)^m)(E, X) consisting of maps with 
/(E) C Vi xpt, and choose a subspace of Vk^ipiX, OJ) consisting of all (J, u) 
described above. Now the argument of Proposition 1.4 works within these 
two subspaces. 

The proposition is proved. □ 

Remark 2.3. Assume that (X,(JU) itself is a symplectic manifold, and 
u is also a fiberwise symplectic form for a bundle X —> Y. Note that 

®(Ai.,» Am OJ s p)(Q:i'" " »ac\Pii • • • > Pd) is equal to the non-fiberwise mixed 
invariant ^^^^^^(ai,--- ,ac|/?i,--- ,/?d) if J4I,-.- ,AmG^2(^;Z). 
Choosing 5 = pi in the above proposition, the non-fiberwise mixed invariant 
and the fiberwise mixed invariant are related by 

In this circumstance, using the above identity, all the properties including 
the composition law of $/^ '^ A ^ s pJai, • • • , Q;c|^i, • • • , /5d) follow from 
the corresponding properties of the non-fiberwise mixed invariants. This 
fact was already observed by Astashkevich and Sadov in [AS]. 

3. Composition Law of Fiberwise Gromov-Witten 
Mixed Invariants. 

3.1. Gluing of J-Holomorphic Maps. 

In this subsection, we will apply the implicit function theorem to the 
study of deformation theory of perturbed J-holomorphic maps from a sin- 
gular curve. 

Recall that a degeneration of stable curves is a holomorphic fibration 
TT : S —> A C C with sections <7i, • • • , ac satisfying : (1) For each t G A, t ^ 0, 
the fiber E* = ^l{t) is smooth; (2) For each *, C* = (Et;ai;(t), • • • ,<7c(t)) 
is a c-point stable curve. 

Adopting the notation of section 1, suppose that X —> Y is a fiber 
bundle with fiber V satisfying Assumption (*), F : Z -> Y is a pseudo- 
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manifold, and ZOL is a stratum in Z. For any point ZQ G Za, we can find a 
neighborhood Wa C Z* of ZQ such that there is a trivialization Xz\wa ~ 
Wa x V. Denoting Xz\wa by ^w«, we equip Wa with Euclidean metric ds^ 
and trivial connection Vi. Let hs be a Hermitian metric on bundle E, V 
be the connection on E compatible with hs and J, with torsion jiVj; iVj is 
again the Nijenhuis tensor. Therefore ha = C/SQ + AE is a metric on Wa x V. 

Let 1/ be an inhomogeneous term on S x'Xz'i and vt be the restriction 
of u to St x A^. Consider the moduli space of fiberwise (J, ^-perturbed 
holomorphic maps in A^o, 

= {/ : Et -> Xz«\df + Jodfojt = ^, [/(Et)] = A, Pof(Xt)=pt G Za}, 

where j* is the complex structure on Et(t ^ 0), A is a fixed homology class 
inf^CViZ). 

Assume that EQ has m-components EQI, • • • , Eom, and suppose that the 
position pattern of cri(0), • • • , 0"c(O) in EQ is Pi. Fix a partition of 

which is effective, i.e., -M^.(Eoi, A^a, J, UQI) is not empty for each i. Prom 
Proposition 1.2, the moduli space MV^ ... ^ x(Eo, Af^a, J, I/Q) is a smooth 
manifold and for generic t ^ 0, M^E*,#£«, J, i/^) is also smooth manifold 
with dimension 

dim A^E*, A^a, J, i/t) = 2Ci(y) • A + 2n(l - 3) + dim  Za, 

where 2n is the real dimension of V and g is the genus of E*. 

Theorem 3.1. Let fo be any map in MyA ... A JEQ, Af^a, J,Z/Q) which 
intersects transversally at each double point Assume /o(So) C VZo. 
Then there is a continuous family of injective maps Tt from W into 
M^T.uXzcc^J^ut), where t is small and W is a neighborhood of fo in 
M?A ...A JO^OJ XW<*IJ,VQ) such that: 

(1) for any f in W, as t goes to zero, Tt(f) converges to f in C0-topology 
on EQ and in C3-topology outside the singular set O/EQ; 

(2) there are 6,6 > 0 satisfying: if f is in MA^uXw^^J^t) o.nd 
dxWa(ff{x)Jo(y)) < t whenever x G E*, y e EQ, ds(x,y) < 6, where 
dxWa and ds are the distance functions of metric ha on Xw* and a Kdhler 
metric fj, on S, respectively, then f is in Tt(W). Moreover, for generic t, 
Tt is an orientation preserving smooth map from W into smooth manifold 
Mv

A(Zt,XZa,J,vt). 
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Proof. First, we make a reduction to the case with zero fiberwise inhomo- 
geneous term as we did in subsection 1.1. Adopting the notation there, for 
any deformation of /o, ft : St —> Xz*, its graph map Ft : E* -* S x Xz<* is 
a deformation of the graph map of /Q. FQ : So —» S x A^a. Let Tr^ be the 
projection map from S x AJgr* onto the i-th factor (i=l,2), then TTI OF* = id. 
Conversely if Ft is a small deformation of FQ, then TTI O Ft is indeed a bi- 
holomorphism of Sj, and ft = 1*2 0 Ft o (TTI O Ft)"1 is a (J, j/tj-perturbed 
holomorphic map, a deformation of /Q. This shows that to study the de- 
formation of /o is equivalent to study the deformation of FQ. SO we may 
assume u = 0. Note that although S x A^a may not be compact, the object 
under study lies in a compact region. 

In the following proof, we will use C to denote a constant independent 
of t and any / near /Q. The actual value of C may vary in different places. 

Let feW, /(So) C Vz, and z G Wa. We will first construct an 
approximate J-holomorphic map from S^ into Vz for each t. Let p be any 
double point of So, and Up be a small neighborhood in S containing p. Up 
has coordinate (^1,^2) such that 

UpHYit   =    {(ZphZp2)\Zpl-Zp2 = t, \Zpi\<l>\Zp2\<l}. 

Choose a coordinate system ui, - • • , ua; yi, • • • , y2n of Xwa near /(p) 
(n = dim W), such that the coordinate of f(p) is zero and 

9   +o(l»l + M), -)- dyij     dyn+i 

■,(s^)-|;+0(M+M)' 

where t = 1, • • • ,n, \y\ = ^=1 |yi|2i and |u| = ^Eti l^l2-  Note that 
there are two connected components in UpD SQ, 

Upi = {(zpU0)\ \zp1\<l}    and   Up2 = {(O,^)! M < !}• 

Let /pj = /If/ ^ i = 1,2. Then we have the following expansions: 

fpi{zpi) = fpi(zpi) + terms of degree greater than 1, 

where fe are homogeneous polynomials in Zpi of degree 1. We identify a 
neighborhood of f(p) in A^a with open set in Wa x Cn by putting ^ = 
yi + V—lyn+ii i = 1, • • • , n. By assumption, at each double point, /o|c/pi and 
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fo\uP2 intersect transversally. If we choose W small enough, we may assume 

that for any / £ W f\upi and f\up2 also intersect transversally. Then by 
choosing yi, • • • , y2n properly, we have 

fpi((zpuO)) = (zpi,0, • • • ,0) + O {\zpl\
2)     e 0 x Cn, 

/p2((05 zp2)) = (0, zP2, • • • ,0) + O (M2)     € 0 x Cn. 

By changing local coordinates yi, • • • ,y2n5 we may further assume that 

(3.1) /pi((^i,0)) = (vA---,0), 

(3.2) /p2((0,v)) = (0^p2,--,0). 

Now we begin to construct an approximate J-holomorphic map /t
app : 

2* -+ Vz for each small t. Let <^ be a smooth family of diffeomorphism from 
SQ into St, where SQ is the nonsingular part of So, such that <f)Q = id, and 

(3.3) ||0t - ^llcscsoXc/') ^ C^' * *> 

for any small neighborhood Uf of the singular set Sing^Zo) in SQ. Here Cc// 
is a constant depending only on C//, and the norm is taken with respect to 
metric fi on S by viewing both fa and id as maps into S. Then for any p in 
5mflf(Eo), we have 

(3.4) / Stnt/, -f
0<t>i -i 

C4(Stn{(zpi)2p2)| l^lvl^1-^1 or 2}) 
<C-|i|, 

where / is the map: (zpi,zP2) G Up —► (^,1,^2)0, ••• ,0) G 0 x Cn.  Note 
that 

(3.5) / 
Upi 

= /pb 
^P2 

= fp2' 

By (3.4),(3.5), there is a homotopy Ft on E* n (VpeSing(Xo){(zpU zp2) 
\zpi\ < 1, i = 1 or 2}) satisfying, for any p G SingCEo) 

2 — 

(3.6) 

(3.7) 

(3.8) 

H** " / 0 tt 1|lc*(Btn{(«pi1apa) I §<|api|<l,f=lor 2})   ^   C ' 1*1' 

;n|( Ft = / on Et n { (zpuzja) | ^ < |zpi| < ^, i = 1 or 2 j , 

Ft = / o 4>t 
1 on St n I (zpi, zP2)\ — <\zpi\<l,i = lor2\. 
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We define 

f?PP{x) = f O (fc^x), for xeZt\ UpeSing(Zo)UP' 

(3.9) 

ft    (ZP1>
Z

P2) = -Fi(2pi,2p2),        if o - 1^1 < !> i = 1 or 2, 

/t    (^Pb *&) = (V, ^2,0, • • • , 0),        if \zPi\ < -, i = 1 and 2. 

Let fi be a Kahler metric on 5 which equals ctepi <g) <i5pi + ^2^2 ® dzp2 on 
C/p for each p G 5in5f(Eo). Let /? be a smooth function on 5 \ Sing^Zo) 
satisfying 0 < p < 3 and 

(3.10)        p\up(zpu Zp2) = y\zpi\2 + \zp2\2,        for each p e Sing(Eo). 

Define a new metric //e on S, fie = P~2M- Note that 

\r]z   I2 

ppil 

i.e., for t small, ^c|stnc/p is a cylinderlike metric. The following lemma can 
be easily proved from the definition of /t

app, ^, and ^c by local computation. 

Lemma 3.1. Let V be the connection defined at the beginning of this sec- 
tion. Denote by D the covariant derivative induced from /i and V, and Dc 

the covariant derivative induced from //c and V. Then for 1 < k < 5, 

(3.11) 

(3.12) 

£>fe/t
app 

DtfT 

(x)  < Ck[l+  -. ..   . (1+^)fc+0' 
Mc,/l£7 

wsc'(1+l))' 
where \ \^hE and I IIICAE denote the norm defined by p,, hs and /ic, HE re- 
spectively. 

Let Jo be the standard complex structure on Cn. By definition, for each 
p in Sing(EQ), 

df?pp + Joodf?ppojt = 0       onEtn j(2pi,^2) I |^|<i,i = land2| 

where jt = jst. Put 

(3.13) vt(x) = {fVT + J 0 dfr°Jt) (x). 
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Then 

on 

vt(x) = (J-Jo)odfrojt(x), 

St n < (zpi, zP2)    \zpi\ < -, i = 1 and 2 > . 

Since / is J-holomorphic on EQ PI {(^1,^2) I |spi|- < 5? i = 1 and 2}, we 
have 

J(,P1)0,.. ,0) (/^) = Jofca.O,... ,0) (/^) , 

J(0,,P2,- ,0) (/^) = JoCO,zp2)- ,0) (/^) . 

Then we can derive from last lemma, 

Lemma 3.2. For 1 < k < 4, then 

Dkvt (3.14) 

(3.15) 

1*1 
n,hB p{x)k+1 

Dk
cvt 

VohE 
(*) < c* • 1*1. 

We want to perturb f^ into a J-holomorphic map from St into Xwa. 
Fixing the trivialization Xw<* — Wa x V as before, we can represent f^pp as 
(z, fti9). Identifying W* with an open subset of Rn, z with 0 and W" with 
a neighborhood with TjW", we can define a modified exponential map 

exp* :TzW
a x Y (?:tJ?m*T(z x V)) ~> Wa x V, 

(^1,^2) -♦ \V>tl,exp*fapp(utl,Ut2)) , 

as follows. Suppose v% is coordinate of Wa, yi is coordinate around /^(x) 
in V, x G St. Then exp*fapp(x\ (^ti? ut2(ftPP(x))) ^s defined to be y(l), where 
y(s) is the solution of 

fdV + rL(auti,y) 
fc,/-,/ dy % 

< y(0) = /r (x) 
= 0 

ds s=0 
=«t2(/(r («)) 
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Here r3
kl(suti^y) is the Christoffel symbol of connection V on E. By def- 

inition the image of map exp* lies in the fiber un x V. We do not use 
exponential map defined by metric /ia, because its image does not lie in a 
fiber. Note that when we choose un = 0, exp* is exponential map on z x F, 
defined by metric hE\zxV- So by the implicit function theorem and the 
property that solution of ordinary differential equation depends smoothly 
on parameters, we get that for small i^i, exp^app,^ is a diffeomorphism on 

a small ball in f?m*Tfapp{x)(z x V). Let ft be a map from E* into Wa x V, 
we can represent it as (zt, fti)- If ft is sufficiently close to /t

app = (2, /^pp), 
then we can write 

(zu fti(x)) = (un,exp*fapp{x) (uti,ut2 (fnP(x)))) , 

where un is a vector in TzW
a and 1^2 is a vector field of f^PPi*T(z x V) on 

Et. We need to find (^41,^2) such that ft is J-holomorphic. 
For any (un,^2) in TzW

a x f^pp'*T(z x V), we denote by ^(uti,Ut2\x) 
the parallel transport from Tft^(zt x V) to Tfapp^(z x V) with respect to 

V along the path {sut^expypp,^ (sun, sut2{ftiP{x))))i<s<i- Since V is 
J-compatible, we have 

(3.16) Jz0n(utuut2]x) = itttniiUt^x) o JZt. 

Let A0'1 (f?pp>*T(z xV)) be the vector bundle over E* of all anti-( JZ1 jt)-linear 
homomorphism from TEt to f?m*T(z x V). Denote by n0^(f^*T(z x V)) 
and n(f^m*T(z x F)) the space of sections of k^l(f^T{z x F)) and 
f^m*T(z x F) respectively. 

Define 

(3.17) 
$t :TzW

a x tt (/t
opp'*r(z x F)) -» fi0'1 {f^'*T{z x V)), 

(«n,«t2) -^ ittiutu un\ •)0 (^/t + Jzt 0 4ft03t)- 

Because of (3.16), this map is well-defined. Let 

(3.18) Lv
t'
avp{a) = D$t{Q)cT,        t € A. 

Lemma 3.3. For any a = (cri,^) € I^W™ x Sl{ftm*T{z x V)) and any 
e € TSt, we /iawe 

(3.19) 

^•aPP(^i> ^)(e) = Vea2 + Jz o Vjte<T2 + jNjz (djjt
app, a2) 

dJz, +       ' 
ds 

odfiWojte + r^vt), 
3=0 
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where zs = scri a path in Wa, r(-,-) is the Christoffel symbol of V, and 
vt is defined in (3.13), t ^ 0. Here we identify r(f?pp'*T{z x V)) with 
r(/t

app(£t),T(2 x V)), so we may view V as a covariant derivative on 
r(f?pp>*T(z x V)). 

Proof The computation, which is the same as we did in section 1.2, is 
omitted. □ 

Let Lv
t>
app* : Q0^(f^m*T(z x V)) -+ TzW

a x n{f^T{z x V)) be the 
adjoint of L^app with respect to the metric C/SQ, /I^ and the metric IIC on 
S^. Let (e^jte) be any local unitary basis of TSj with respect to /xc, t ^ 0. 

Lemma 3.4. Assume that (•, •) i5 t/ie induced metric on f^pp'*T(z x V) by 
hE- For any section £ € ^{f^Tiz x V)), we then have 

(3.20) 
Lr^iO = (2«(c)> (dJ, 0 o dfr(Jte) + r^vt)); 

ifere (^(e), (dJ, •) o df^^te) + r(-,^))* i5 defined by the relation that 

its inner product with ai € TzW
a is J^t(^(e)i^"\s=o 0 df^^te) + 

r(o"i, vt)(e)}dijLc, and (^(e), Nj(djzftPP, •) (e))* is defined by the relation that 
its inner product with o<i € f^T{z x V) is (^(e), NJ^JJ"™>2)(e)>. 

Proo/. Let ei = e, 62 = jte, then the dual basis (e^e^) satisfies e^ = —jtej. 
Set 

i = fie? + foe",    6 € /t
am*r(^ x y),        t = 1,2. 

Since £ is anti-(J^,^)-liiiear, we have £2 = — Jz£i- So for any anti-(J2,^)- 
linear vector X e fi^H/T^^^x^))* we have (£,X) = 2(£i,X(ei)>. Using 
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this, then 

= 2 / (ti,Lv
t'

app(<Ti,<r2)(ei))dnc 

= 2 / {ZuVex<T2 + JzoVe2<j2)dv.c+\[ {^Njz(djzfr^2)(ei))dfic 
•/St «/St 

+ 2i)   ^'^    _   0^apP(e2)+r(^'^)(el))^ 

= -2 / (Veiei + Ve26^2)^c+i / (^,Njz(djjr^2)(ei))dfic 

+ 2 JL^ 
dJ; ̂

3 

ds s=0 
od/^e^ + r^x^OCe!))^ 

The lemma follows. □ 

Lemma 3.5. Let £ £ O05l(/i
app'*T(^ x V)), and r(/9) 6e a positive function 

in p. For any 0 < 6 < 1, there is a Ce such that 

(3.21) 

/ ripflLr^Sll^c  >  (2-6)/ rO^IV^^c 
«/£t ^St 

where Ce depends only on the curvature tensor of hE, He and the fiberwise 
almost complex structure, tj^O. 

Proof Observe that 

and 

{m,(dJ,-)odfr(Jte)+n.,vt)) 

m,Njz(djjr,-)(e)y 
are zero order operators of £.   The computation, which is similar to the 
computation in the remark after Lemma 6.4 in [RT], is omitted. □ 
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We will apply the implicit function theorem to construct the map Tt in 
Theorem 3.1. First we need to establish the lower bound of the spectrum of 
QV,app __ j-v.app o £V,app*^ 

Lemma 3.6. Let D be a disk in C and fjbc be the cylindrical metric on 

D \ {0}, i.e., /jbc = yjr. Suppose that fo '- D —> z x V, where z € Wa, is a 
J-holomorphic map, LV

D is the linearization of Cauchy-Riemann equation at 
fo and £ is a C2-smooth section ofQ0il(ff)T(z x V)) over D\{0} satisfying 
LrtZ = 0 on D \ {0}, where Ufi is the adjoint of LV

D with respect to /ic. 
Furthermore 

L D\{0} 

Then limit limw^^{w) exists and is a vector in TfD^(z x V). Such a limit 
is called the residue of £ at z = 0. 

Proof Prom Lemma 3.4, we know that ££*£ = (Lgi&^Saf) € TzW
a x 

n0(f^T(z x V)). Observe that L^ is exactly the operator Lj$ in [RT]. Then 
the lemma follows from Lemma 6.5 in [RT]. □ 

Let LQ and Lv be the linearization of the Cauchy-Riemann equation 
at fo and / respectively, and let LQ* and Lv* be the adjoints of LQ and 
Lv on SQ \ SingCEo). We denote by KerLg* the set of those sections £ of 
fi0,1(/oT(^o x V)) over Eo\5m^(Eo) satisfying Ll*£ = 0 outside Sing{Y,o), 

L So 

and for every node p in Sing^o) 

limz->oiZeupi€z + li™>z->o,z€UP2€z = 0. 

Here Up is any small neighborhood of p with two irreducible components 
Upi, Up2. We define KerLv* similarly. 

Proposition 3.1. For a generic (Jyv)j KerLl^   is trivial, and for any f £ 
W, kerLv* is trivial also. 

Proof Fact 1. Write Lg* = (L^,L^), and KerLg* C KerL^. According to 
Lemma 6.1 in [RT], KerLo2 = 0? so KerLg* is trivial. 
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Fact 2.Again Eoi are components of EQ. Let E^ = Iloi\Sing(T,o) and denote 
by LVQ*yoi 

and LV*yoi 
the restriction of LV

Q* and Lv* to Sl0*1^ foT(zo x 
V)) and il0'1(EQi,/*r(z x F)) respectively. Since for elliptic operators, 
dimKerL^*!^. is upper semi-continuous function of /, dimKerL^*)^   < 

dimKerLo*|so.. Here we probably need to shrink W a little bit. 
Fact 3. Consider 

m 

i?o : nKer (LVo*yo%) -      11      TMP)(ZO XV)X Tfo(p)(zo x V), 
i=l peSing(Eo) 

peSing(Eo) 

Ao = n i^' -«) iu e'r/ow^x v)}. 
p65m^(Eo) 

m 

fliJIltar^HEg,) -      H     Tm(zxV)xTf(p)(zxV), 
*=1 p6S'm5(Eo) 

pG5in^(Eo) 

A=   H   U^-^) her/(p)(^xn}. 
p€5mp(Eo) 

On each component E^, / converges to /o in (74-topology, and KerLv*|so 

converges to KerL^ls0. m ^-topology, i.e., map R is C2-close to RQ. From 
the proof of Proposition 6.1 in [RT], map RQ is transversal to AQ for generic 
J, R map is transversal to A.  KerZ^* = 0 follows from above three facts 
and a simple dimension counting. □ 

Lemma 3.7.  There is a constant C > 0, independent oft, such that for t 
sufficiently small, the first eigenvalue Ai(n^'app) of0^app is bounded from 

Proof Write Lv
t^ = Lv

t^ + L^™, where 

Lv{app . TzWa _, o0,l(St> f«VP,*T(z x y)) 

and 

mw ■■ n(E., fT^n* x v)) - fi0,1(St, /^n* x V)). 
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Then Lv^ = (L^*,^^*), and Uv™ = V3™ o Lv
tl
app* + L^ o 

L^opp*. Note that L^app o L^app* is exactly the operator U o L* = □* in 
[RT]. Lemma 6.6 in [RT] then implies that the first eigenvalue Xi(LtoL^) > 
n0

C\t\)$' Note in the proof of Lemma 6.6 [RT], we need the second half 

of Proposition 3.1. Since operator L^app o L^PP* JS non-negative, and the 
spectrum of L^^ 0 tfz*9* are all eigenvalues, Ai(n^app) > ^ SL^ follows 
from functional analysis. □ 

Let *t : TZW« x Sl{f?m*T{z x V)) -+ ^\^*T{z x V)) be the map 
defined in (3.17), define 

(3.22) *t(0 = QtoLY***: ^l{f^T(zxV)) -+ ^\fim*T(zxV)). 

To find a J-holomorphic /t, it suffices to show that *t(0 has a zero 
solution £. 

Lemma 3.8. **(£) /^as t/ie following expansion, 

(3.23) *t(0) = t;t, 

(3.24) %(0 = vt + Lv
t'

app o LV™*Z + Ht{i), 

where Vt is defined in (3.13). Furthermore, Ht(£) satisfies 

(3.25) 
Pfcfci) " ^(6)|lo,i  <  Cm\\2th + ||6||2,i) • ||ft - k||2,i, 

(3.26) 

11^(0110,1 < c-M^-Mhi 

where we denote by \\ - \\k i the Ck^ -Holder norm defined by the metric 'ha 

on Wa x-V and the metric //c on St. 

Proof. Consider the expansion of ^(^i?0^)? 

*t(<ri, a2) = vt + L^ar + LV™CT2 + G{au c2), 

where G(<Ti,cr2) is the nonlinear part. 
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Claim: 

G{(Ti,cr2)(e) 

= Li(ai, cr2) o VeO-2 + £2(0-1, (T2) o Vj^ 

+ QI(<TI,a2) o df^ie) + Q2(<7i,<72) o d/rUte), 

||£i(<7i,cr2)||0)i<C- (.||ai||o + Ikall^),        t = l,2, 

IIQ^.^IIo.J^C (1101112 + Mil).        < = 1,2I 

]|G(^i,«a) " G (oi,4) ||0)| 

< c- (ll(«l,^)lli(i + || W.^HLJ) •11(^1^2) - (^,^)||1)§, 

mauaJW^ < C.. IKcn.oaJllo.i • ll(*i,«*)llif$, 

where e is a vector in TT,^ Li and L2 are linear first order differential 
operator in (<7i,<72), Qi(cri,cr2) and Q2(0i, 02) are quadratic operators in 
(0-i,0-2,V<72). 

To prove the claim, view Wa x V as a symplectic manifold with standard 
symplectic form on W" C Rn (if W01 is odd dimension, we replace it by 
Wa x R). Then ^(^i?^) is operator 5 at /^ for symplectic manifold 
Wa x V. The claim follows from the calculation done by A. Floer [Fl, 
section 3]. Note although the constant C depends on /t

opp, since H/^Hs 1 

is bounded, we may assume constant C does not depend on f^ at all. 
By choosing ai = Z^app*£, 02 = L^^*^ ^n ^e c^m^ Ii0^e IWiWo ^ 

C*ll^lli,05 11^2Hi ± < C- ||^||2 I, all the estimates of the lemma then follow 
from the claim. □ 

Define 

rfc'l (A0'lfr'*T(z x V)) = {£ 6 Q0'1 (fr'*T(z x.V)) I Mk,* < °°} ■ 

Then 

*t: r
2'2 {KQ'lftm*T{z x V)) -♦ r0'2 {k^xf^*T{z x V)) , 

Dv,app . r2,i (Ao,ifim*T(z x y)) _ rCi (A^f^Tiz x V)) . 

Lemma 3.9. Assume £ € r^A0-1/?*'*r(z x y)), C = nv
t>
apPZ on St. 

Then 

(3-27) lieil2i<C-HO5|t|)2||C||0i 
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Proof. Note that 

yoZ(E(,/ic)<C-Ho<M), 

/  IflgdMc < C • ||e||g • Ho»|t|), 

l   |LW^|2d)Uc=  I   {^0vt,app0dfic      =  I  {U)dllc 
•/St «/St «/2t 

<C-||^||o(-M*l)"-(£lClodMc)2. 

Lemma 3.7 implies that 

/ <£,nrpp0^c>A1(nr
pp)- / \i\ldnc. 

J-Zt JSt 

Then 

/  \S\ld»c<C-\\(\\l-(-log\t\)5. 
JUt 

Then (3.27) follows from above inequality and the standard elliptic esti- 
mates. □ 

Proposition 3.2. There is a to > 0 such that for any 0 < |t| < \to\, there 

is an unique £ 6 T2^(A^lf^T{z x V)) satisfying ||f||2|i < y/\F\ and 

*t(0 = 0 on Et, i.e., ft = e2;p*app(Lj',app*£) is a J-holomorphic map from 

£* into 5 x V for some z € Wa. Denote this solution by ffo1 in the following. 

Proof Let 5/^(0) be the ball in r2'^0'1/^'*!^ x F)) with radius v1*l 

and the center at origin.   Then solving equation ^t(0 = 0 for some £ G 
£ /^(O) is equivalent to solving equation 

^(D^yH-vt + HtiO), 

where (nv
t'
app)-1 is the inverse of Dv

t'
app. Note that 

(□^.«»P)-i(_^ + Ht(.)) :r
2.| (A0'1^'*^ x V)) -» 

r2,| (Ao,iyj»P.*r(z x v))'. 
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First we show (D^)-^-** + Ht(-)) : B^(0) -> 5^(0). By lemma 
3.8, 

||(lTW)-1(-«t + tft(0)||aii 

< C ■ (-log\t\)l ■ ||^||0)i + C ■ (-log\t\)i • ||i?t(Oilo,i 

< C • (-Zo5|<|)f • |t| + C ■ (-log\t\)l ■ ||fl|lti • ||^||2)§ 

<c.H^|*|)f.v^l-v1*f      <>/!*[• 
when |i| is small enough. 

Secondly we show (□J;'app)~1(—vt + #*(•)) is a contracting map. 

Winm-H-vt+H«(ft)) - (□rRpriH*+^(6))||2)I 

<C.(-Zo5|i|)l- ||fft(6) -^(&)|lo,i 

< c • (-M*l)* • (liftIki + llfelkj) • lift - ftll2,i 

<C-(-log\t\)§.V¥\-Ui-t2h±- 

When |t| is small enough, it is a contraction map. So by the Banach con- 
tracting mapping theorem, (□£,app)~1(—vt+Ht(-)) has an unique fixed point. 
The proposition is proved. □ 

Assume that /o G MyA ... A JEo? <*wa, J,0). By the transversality re- 
sult in section 1.2, the tangent space of MyA ... ^ x(Eo, A^a, J,0) at /o is 
naturally identified with the kernel KerLg, where LQ is the linearization of 
the Cauchy-Riemann equation at /o, i.e., a tangent vector at /o is a contin- 
uous section u = (^1,1x2) € TZoW

ot x £"2(£o, foT(zo x V) satisfying Lgu = 0 
on So \ ^^^(So). This implies that there is a local diffeomorphism from 
a neighborhood of 0 in KerLg into MJ^ ... AJT,Q, Xwai J, 0). We assume 

that W is contained in the image of such a neighborhood, we may assume 
that for any fa and ft in W', 

ll/a - /6||c4(So) ^ C ' ll/o - /&llc0(Eo)- 

Given any / in W, there is a unique section uj^ = (u^f^u^) in 

r^W* x n(So,/oT'*r(^o x F)) such that 

#**(*) = exp^, (uy (/T(*))) »        ^ e St, 
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where /ofP(^) is the approximate solution constructed from /Q. A straight- 
forward computation shows 

v«^ 
/Xc/lE 

and for any /a, fo in W 

ufat     ufbt C*(St) 

(x)<C-p{x), 

<C.||/a-/6||co(Eo). 

We define T* : W ~> A4^(Et, ArWa, J,0) by assigning /f^ in Proposition 
3.2 to each / in W. Clearly, Tt(f) converges to / as t goes to zero. It is 
easy to see that Tt is smooth. We want to examine the invertibility of the 
differential of Tt at any point / in W. For simplicity, we do it at /Q. 

Lemma 3.10. Let ^{u^^x) be the parallel transport along the path 
{exp*apprxs(suTf)(fQfp(x))) }o<s<i- Then there is a uniform constant C > 0 
such that 

(3.28) \\vot - n (tff,x) vt\\cQ < C • y/\F\. ||/ - foWcow, 

app 
where vot = d/ot   + Jzo 0 dfot   0 Ou 

Proof. Choose a diffeomorphism <^ from a neighborhood of /^(St) onto a 
neighborhood of /t

app(St) satisfying (1) U - trf||C4 < ||/o - f\\c^ (2) for 
each node p in SingCEo), let C/p, ^pi and ^p2 be as in the begining of this 
subsection, then 

fot(Zpl> ZP2) =0      0 ft^iZpU ZP2) = (^0, Zpu ZV2, 0, • • • , 0)      ■€ ^0 X V, 

for all (zpi,zP2) in C/p. 
When a: G St \ {UpG5inps0C/p}, then by the definition of f^ and /t

app, 
we have 

where (f)^1 is the diffemorphism used in the construction of approximated 
solution. Since both / and /o are J-holomorphic, we have 

vot(x) = df^f + J o df^" o jt = JZ0 o dfo o ((j,-1 o jt - jo o 0-1) , 

vt(x) = Jzodfo ty-1 o jt - j0 o (j)-1). 



566 Peng Lu 

It follows that 

\vot{x) - fcivtix)] 

= | {Jzo 0 dfo - (t>~1 oJzo df)- {fc^ o jt - j0 o fa1) | (a:) 

<C-||/-/o||cH*l- 

When x is in Up where p is a double point of EQ. Then (j)"10/^(^1, ^2) = 
fSTfoii zp2) ^ (^OJ ^pi5 ^2,0, • • • , 0) implies that 

f^vtiz) = (^1 ojzoc/)*- Jo) o rf^"1 o /^ o j^, 

where Jo is the standard complex structure on Cn. 
Since (j)*1 o f is (j>~1 o J o ^*-holomorphic, we have 

fc1 oJzo </>*\nZpu0) = Jo = ^1 o J^ o 0*|/(o^2) . 

In Cn, we view ^~l o Jz o ^*|/(2pl,o) ^ an almost complex structure at 
f(zpiiZp2)' We may assume that \zpi\ > \zp2\ at x. It follows that 

t^vtix) = (fc1 o Jz°<f>*\fiZpUZp2) - fc1 o J, o ^\f{Zplfl)) o df^ojt. 

Similarly we also have 

VQt(x) = {Jzo\fo(zpi,zP2) - Jzo\MzPi,o)) 0 dfoFoJf 

By the mean value theorem we deduce on Up 

\votix) - ^vtix)^ 

= ^0<e<l |V {J-^oJo <f>*)\f{ZpUZp2) -M- |4foH (x) 

< c ■ 11/ - foW^o) ■ St. 

It follows from the definition of approximate solution that 

(3.29) Ms) - t*(aOI < C • ||/ - /ollco(Eo) • Vl*f• 

The lemma follows from combining this inequality, Ivtlco < C • |t|, and 
IK~1(«/fJ-)o^1-^||C2<C-||/-/0||c0. □ 

Let ^1, ^2 be the sections in Proposition 3.2, such that 3t(/o)   = 
ea;p*aPP(LotapP*£i)» and Tt{f) = exp*rP{Lv

t>
app*£,2)-   Using the fact that 
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Tt(fo), Tt(f) axe J-holomorphic, we have 

(3.30) 

(3.31) 

0 = not + Ig" o iST-Ki) + flbttti), 

0 = n (uj*. •) (vt + Lv
t'
app o ir^ib) + Ifote.)) , 

IKilli,! < A/W. Ilfelli,! < >/i*[. 

Note that 

(3.32) 

| (IT, (uj* ) o L-** o IJ«» - Itf» o ^app* o n („« •)) eaj 

<C-x/jt[.||/-/o||co, 
(3.33) 

I* (uj* •) ft(6) - Hotfa (uy, •) ^)||0i| < C • v1*[ • 11/ - foWco- 

Substracting (3.30) from (3.31), we obtain 

(3.34) 

n \u}f,• J IH - vot 

= n? (a - * («Jf, •) 6) + JSMfc) - Hot (»«(«Jf, •) 6) + 5. 

(3.32) and (3.33) imply 

(3-35) P||o,i<C-^-||/-/o||co, 

Applying Lemma 3.9 to (3.34), and using Lemma 3.10 and (3.35), we get 

|ki - ir* (tij* ■) fell  . < C • v1*f • (-^l*!)1 • 11/ - /ollco. 
II \ /       ''2,2 

Therefore the map Tt is injective near /Q.  Moreover, if Df0Tt denotes 
the derivative of Tt at /o, then for any u in KerLg? we have 

(3.36) (l - C ■ |*|i) ||u||o <  P/Ort(n)||0 < (l + C ■ |t|l) ||tt||o. 

Denote by Lgf0 the linearization of the Cauchy-Riemann equation at ffif. 
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Lemma 3.11. Let KerL^f0 be the set of all solutions for Llfolu = 0. 

Then KerL^f0 converges uniformly to KerL^ as t goes to zero. In particular} 

the dimension of KerL^f0 stays as a constant for t small enough. 

Proof. The proof of the first part is similar to the proof of Lemma 6.9 in 
[RT]. Note that KerL^o/ C TW* x n(f$°l*T(z x F)), one can show that 
dimKerLof0 is a upper semi-continuous at t = 0 as in Proposition 3.1. 
Then (3.36) implies it is actually continuous. □ 

Corollary 3.1. The derivative Df0Tt is an isomorphism between KerL^ 

and KerLv^01 satisfying (3.36). 

Remark 3.1. Note that in non-fiberwise case T* is an orientation preserv- 

ing map, and the TzWa direction in KerLoJso has fixed orientation. So in 
fiberwise case Tt is again an orientation preserving map. 

It remains to show part (2) in the Theorem 3.1. Let /' be given as in 
Theorem 3.1. For any / in W', then there is a unique vector field u^oi = 

(uftSoivufsoi2) such that /'(a?) = exp^0^x){ufsoi{flol{x))) and ||n/t.ai||o < e7, 

where e' is small and depends only on W and e in Theorem 3.1. We want 
to show that f coincides with one of f*01. 

Lemma 3.12. Let p be the function in Lemma 3.5, F be either //oZ or f. 
Then there is a uniform constant A < 1 such that 

(3-37) f \dF\lc,hBd»c<4\R. 
J-%'log\t\>-logp>R 

Consequently, for some uniform /?o > 0, 

(3-38) \dF\l<hE(x)<C-p(x)s*>. 

Proof. This is exactly Lemma 6.10 in [RT]. □ 

Lemma 3.13. If e, \t\ are sufficiently small, there isafinW such that 

(3.39) ||tt/||i,o<C.|t|A 

where Po is given in (3.38). 
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Proof. By cutting E* along the loops in {x € St | p(x) = \/2Jt|} and gluing 
disks to the boundary components of the resulting surface, we obtain m 
surfaces S^, i = 1, • • • ,ra. Let E* be the disjoint union of those surfaces. 
We can naturally embed E* \ {x € Ej | p(x) = \/2|*f} into E^ as a subman- 
ifold. Then we can extend the conformal structure jt on E* to be a natural 
conformal structure jt on Ej. 

It follows from Lemma 3.12 that when 2 • yj\t\ < p{x) < 10 • vl^l, 

(3.40) \df'LhE(*)<C-\t\^. 

Therefore we can extend /' to be a map / from Et into z x V satisfying 

||i5|lo,i<C-|t|2/30, 

where v = df + Jz o df o jt. We denote by Lv the linearization of Cauchy- 
Riemann equation at /, by Lv* its adjoint. Then by the same arguement 
as in the proof of Lemma 3.7, one can show that the first eigenvalue of 
Lv o Lv* is no less than C • (—log\t\)~2, where C is independent of /' and t. 
By applying the implicit function theorem in a similar manner to the proof 
of Proposition 3.2, we can find £ G TzW

a x fi0'1(/*r(^ x V)) such that 
fso1 = exp*z(Lv*€) is J-holomorphic. Moreover, if |t| is sufficiently small, we 

have 

So the distance between Im(ff) and Im(fso1) is less than C- \t\2^. The 
map fso1 may not be in Mv,Ai... A \ (EQ, Xza, J, ^o)- However, using (3.40) 
and the fact that MyA ... A \ (EQ, A^", J, ^O) is smooth at /o, one can show 

that fso1 lies in a C '\t\^0 neighborhood of some ft in W, as long as both |t| 
and e are sufficiently small. The lemma is proved. □ 

Without loss of generality, we assume that / = fo in Lemma 3.13. Let 
£ be the unique solution of Lgf0 0 ^of0 *£ = ^01° ufso1 • Multiplying this 
equation by £ and integrating by parts, we obtain 

(3.4i)     / \Lv^z2dpc < Jf i^rs^2^- / KI
2
^- 

By the same argument as in the proof of Lemma 3.9, one can show 

(3.42) /  K|2dMc < C ■ (-log\t\)l • f  kf'*£ ^c 
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Combine with (3.39) and (3.41), we get for t sufficiently small, 

JEt 

Bo. \tfdt*c<C-\t\2 

Since Lv
0l
so1 o L^01*^ = Lv

Qf
olufri = Odlti^HLo), by the standard el- 

liptic estimate we have 

ll*llu<c-|*l*. 
Consequently 

11 f sol 
r VjSol*, 

1'2 

Now we want to find a new fi in W which is very close to / = /o, such 
that ufsoi = Ll?*% for some & e ^P^tJuiW x V)), where L^o/ is 

linearization of 8 operator at fff .  Using equation /' = exp* 0i(ufsoi) = 
ht      Jlt 

exP*fSoi(ufs°i)> we can define a map St from a neighborhood of ffif into 

KerLff at /0f, 

St(fi) = AfoJi) (ufsoi - ^r'^i), 

where L^so Ujsoi = L\f0 oL^f0 *^i, 7r(/o, /i) denotes the isomorphism from 

KerL^S0 at fff to KerLgf at /ot which depends smoothly on /i. Clearly 
St is a smooth map. By the same argument as in the proof of (3.36), one 
can show 

(3.44)       (l - C ■ \tfi) \\u\\o <  \\DfSt(u)\\o <  (l + C ■ \tft) Mo- 

Then by the implicit function theorem, there is a fi such that Stifi) = 0, 
/30 

and H^fao/Hj i < C • |i| s . For simlicity, we may assume that fi coincides 

with /o, then Ursoi = L^f0 *^. Since both f and /o are J-holomorphic, it 
follows from Lemma 3.8 that 

Multiplying this equation by £ and integrating by parts, one can deduce 

(3.45) /       I rV^SOl* 

/       o* 

r VjSOl* 

dfJ>c ^ C • 

iflft 

*€ Ir/K| dfjLc. 

However \\LQI     ?||I < C- |t| s , so for t small enough, (3.45) is impossible 
    rVjSOl*^   unless Ufsoi = Lt'     £ = 0, i.e., Z7 = /o*. Theorem is proved 
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Remark 3.2. Essentially Theorem 3.1 is a corollary of correspond- 
ing gluing theorem in non-fiberwise case. This can be seen as fol- 
lows: view Wa x V as a symplectic manifold, now fiberwise moduli 
space MyA ... A \(So,/twa, J,0) and ^^(Et, A^a, J,0) is a subspace of 

M(Au... ,An)(Eo JPa x V, J, 0) and MA&U Wa x V, J, 0). The key difference 
is that in the non-fiberwise case, the deformation space of J-holomorphic 
map / is parametrized by subspace of tt(f*T(Wa x V)). whose TWa com- 
ponent may not be a constant. Fortunately, by modifying exponential 
map and applying the requirement that TWa-component is a constant 
to non-fiberwise deformation theory, each deformed map is a fiberwise J- 
holomorphic map, which gives exactly fiberwise gluing theorem. 

3.2. Composition Law of Fiberwise Gromov-Witten 
Mixed Invariants. 

Let (Li9Ui)i=i and {Mj,Wj)lj=1 be pseudo-manifolds in Xz satisfying 
the general position condition. Assume 

(3.46) 
k I 

^(2n + dim Z - dim Ui) + ^2(2n + dim Z "" dim Wi "" 2) 

= 2Ci {V) • A + 2n(l - g) + dim Z, 

where g is the genus of a smooth Riemann surface Ej. 
Adopting the notations at the beginning of section 3.1, define the eval- 

uation map for t ^ 0 

(3.47) 

et : Mv
A(Xu Xz, J, vt) x (Et)' -> X™ 

et(f;yir-',tn) = (/(^i(t)),-'-- ,/(^fc(*));/(yi),--- ,/(w)). 

Recall that for a generic (J, i/) and for generic nonzero £, the im- 
age Im(et) intersects the product Y[i=i Ui x 11^=1 Wj transversally. Con- 
sidering an intersection point (fs'yVsir" >?/s0> we can ^sig11 a sign to 
{fs'iVsir- iVsi) by using the orientation of Mv

A(T,t,Xzo,J,Ut), (Xzo)k+l 

and IliLi^ x IlJ^iW?* where z0
? ^and Wj mean the top stratums. 

For t = 0, after fix a position pattern Pi of (c7i(0),--- ,^(0)) in EQ 

and an intersection pattern T, again for generic (J, Z/Q), the map eo inter- 
sects HiLi f? x 11^=1 Wj transversally at finite many points in Xf^1. Let 
(/o; 2/oi) • • • j 2/0*) be one of such intersection points. Theorem 3.1 gives 
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Corollary 3.2. Let (J<>v) be generic and (foWoir " iVoi) be as the above 
which intersects transversally. Then there are e, 6 > 0 such that for t 
sufficiently small, there is a unique (ft\yti, * * * ,ytl) in the space 

Mv
A(ZuXzo,J,vt)x(Xt)

k+l 

satisfying: (1) ds(ytj,yoj) < c, and dxz(fo(x),ft(y)) < e whenever 
ds{x,y) < 8. Moreover the sign associated to (feytW' ,ytl) is the same 
as the sign associated to (/o;2/oi>-" iVoi) for those generic t such that 
MACEH XZ

0
I Ji^t) is a smooth manifold. 

In section 2 we have defined the fiberwise mixed invariants 

denote 

by 

*(AMS*,P)(ai' " " " »a* I A» • ' * > A)(7) 

where P stands for the trivial position pattern and the trivial intersection 
pattern since £$ is smooth. 

Theorem 3.2 (Composition law). Suppose that fiber bundle X —> Y 
satisfies Assumption (*). Then for any rational cohomology classes 

and rational homology class 7 G i7*(y,Q), 

(3.48) 

= Yl S*(-Ai,-",ilmMSo,(ft,T))(ali--- ^k I A,--- ,A)(7)l 

for any fixed position pattern Pi. 

Proof Fix a degeneration TT : S —► A of a fc-point genus p smooth stable 
curves, such that the central fiber is a stable curve C and other fibers are 
smooth genus g Riemann surfaces with A;-marked points, where A C C is an 
unit disc. Suppose that for t ^ 0, (fcytu * • * iVtl) is an intersection point, 
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then ft((Ti(t)) € Im(Li), and /t(Et) fl Im(Mj-) ^ 0. By Proposition 1.1., 
and taking a subsequence if necessary, we may assume that ft converges 
to /o in M.(AU... }i4m)(Eo, A^, J, Z/Q) for some partition Ai, • • • , Am of A and 
some intersection pattern T as t goes to zero. By Proposition 2.1, if (J, UQ) is 
generic, /o is actually in MyA ... A \(2o, /f^o, J, VQ), and by Proposition 1.5, 
we may assume that /o intersects transversally at every double points. Let 
y® be the limit of yy? clearly fo{x^) € Im(Li), fo(yj) G ^(Mj), therefore 
(/o; y?> • • • j 2//°) is an intersection point. Theorem follows from Corollary 3.2. 
□ 

Next we want to show that ^Alr. .Am.w.So.P)^1'' " »afc I i9!'" ' ' A)(7) 
could be explicitly calculated in terms of the nberwise mixed invariant of 
each component of EQ and the contribution from the double points. There 
are two kinds of double points on a stable curve: intersection of two different 
components or self-intersection of one component. In each case we will give 
a formula. 

Case 1. Suppose that EQ has two components E(oi) and E(o2) of genus gi 
and #2 respectively, satisfying: (1) E(01) and E(o2) intersect at a double point 
p; (2) E(oi) contains m marked points xi, • • • , xm and E(o2) contains the rest 
of marked points. This is the position pattern Pi. Let C = (EQ; XI, •• • , Xk). 
Then $yA   A ,, ^ m can be calculated as follows. 

Assume that Z is a pseudo-manifold representative of 7. Let [Hg] be a 
basis of H*(Xzi Q)- Consider the diagonal Az in Xz x Xz- By the Kunneth 
formula, we could write the Poincare dual of Az as PD(Az) = ]Ca./? ^{z.afi)' 

Hg ® if^, where r^z^/s) ^ the intersection matrix of if *(A^, Q). 

Theorem 3.3. Lei ifte intersection pattern T be that the image o/E(oi) in- 
tersects Im(Mj), j = 1, • • • , /' and i/mf i/ie image o/E(02) intersects Im(Mj), 
j = /' + ij... , /. Lei Ai and A2 6e too homology classes in -Hj^V, Z). T/ien 

(3.49) 

*(Ai^aMC,P)(al» *"' > afc I Pi>" * * ' A)(7) 

= 5Z^^ ' ^UIMQI) (ai'""' »am, [Az] I A, • • •, AO (7) 

'^2^,92) (am+U'" ,aib, [if|] I A'+i,— ,/?/) (7), 
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(3.50) 

*iyW)(ai'''''a* I A,--,A)(7) 
I 1 

' *CA2,«,ai) (a™+l> " ' • ' afc, l^ij   I   Ar(j+l)i •' " » Arffl) (7), 

ty/iere 5i and B2 are any two homology classes in H2(V,Z) and a are per- 
mutations. 

Proof. The proof follows from applying the argument of Theorem 7.3 in [RT] 
to moduli space A^^ JEQ, XZ, «/, ^o)- □ 

Case 2.   Suppose that EQ is a genus g — 1 curve with one self-intersection 
point. Let C = (So;a?i, • • • , Xk)- 

Theorem 3.4.  We have 

(3.51) 

*V(AM)(ai>'">ak lft>--->A)(7) 

Proo/. The proof follows from applying the argument of Theorem 7.5 in [RT] 
to moduli space .M^EQ, XZ, J, ^O)- d 

4. Fiberwise Quantum Cohomology and 
Equivariant Quantum Cohomology. 

Suppose that X -^> y is a fiber bundle with fiber V satisfying Assump- 
tion (*). Let -Ai, • • • ,^4m be an integral basis of ^(Vi'Z).  Any homology 
class A € ^(V, Z) can then be written as A = di • Ai H h rfm • Am. For 
simplicity we assume that for any genus zero J-holomorphic map / of V, 
/*(CPi) = di • i4i + • * • + dm • Am with rfj > 0, i = 1, • • • , m. 
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Let 

(4.1) 

=    E   $(^,o)(«i>---)«fcl)(mki1"-«mm   ec[[qi,---,qm}}, 
AsHiiy, ) 

where CCJ   €   H*(X,C),  i   =   l,---,k,  q\,---,qm are parameters,  and 
C[[gi, • • • , 9m]] is the set of all formal power series of <&. 

We define fiberwise quantum multiplication 

(4.2) * : H*{X,C)[[qu • • • , qm)\ X H*(X,C)\[qi, •••,«&„]]-> 

H*(X,C)[[qi,---,qm]} 

by 

(4.3) a*0(B) = $Z(a,l3,PD(B)), 

where a,0 G fr*(Af,C), B € JJ„(A:,C), and PI>(B) is the Poincare dual of 
B. We extend * linearly to all of H*(X,C)[[qi, • • • , qm]]. 

We call H*(X,C)[[qi, ■ ■ ■ ,qm]] with fiberwise quantum multiplication 
* the fiberwise quantum cohomology associated to the fiber bundle X —+ 
y, denoted by QJEf*(A',y,C). Note that when Y is a point, the fiberwise 
quantum cohomology becomes quantum cohomology of V. 

Theorem 4.1. For any fiber bundle X -^ Y with fiber Vi and fiberwise 
symplectic form u satisfying Assumption (*), there is a well defined fiberwise 
quantum cohomology. It has the following properties. 

(i) It is a .ff*(y,C)[[(fi,--' ,9™]] module.   This module structure is the 
same as that of H*{X,C) as a H*(Y,C)-module. 

(ii) It is graded commutative: 

(4.4) a * (3 = (-I)**"-*** . /? * a. 

(iii) (Direct Product) For any two fiber bundles Xi —> Yi and X2 —► Y2 
satisfying Assumption (*). There is an isomorphism 

(4.5) QH*{Xi x X2,Yi x y2,C) S QH*(Xi,Yi,C) x Qif*(A2,y2,C), 

as a ^(Yi x Y2, C)[[gi, • • • ,qmi+m2)]-module. Here qi, • • • , qmi are 
parameters for QH*(Xi,Yi, C) and Qmi+i, • • • ? 9mi+m2 are the panam- 
etersforQH*(X2}Y2,C). 
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(iv) (Restriction) Let Yi be a closed finite dimensional manifold and h : 
Yi —> Y be a smooth map. Set XYI = X x/i ^i; ^e induced fiber 
bundle with fiber V and induced fiberwise symplectic form u. Then 
there are a natural map H : XYI —► X and a ff*(y,C)[[gi, • • • ,gm]]- 
module homomorphism 

(4.6) H*:QH*(XiY,C)-+QH*(XY1,YuC). 

Here we assume that QH*(XY1 , Yi, C) has the inducedi?*(Y, C)[[gi, • • • , qm]]' 
module structure from h* : H*(Y,C) -> JS"*(Yi,C). 

(v) (Induction) Suppose that fiber bundle Y —> B has fiber Vz with fiber- 
wise symplectic form U2 satisfying Assumption (*). Assume that 
there is another fiberwise symplectic form UJ satisfying Assumption 
(*) for the induced fiber bundle X —> B with fiber V. Assume fur- 
ther that H2(V,Z) has an integral basis Si,--- ,I?mi+m2 such that 
jBmi+i,--- ,i?mi+m2 are the integral basis 0/^2(^2?^)- Then there 
is an isomorphism 
(4-7) 

QH*(X,B,C)/{{qmi+u~-,qm1+m2)-H*(X,B,C)}9iQir{X,Y,C), 

as a H*(B,C)[[qi, • • • , qmi]]-module. 

Proof The proof follows directly from the corresponding properties of the 
fiberwise mixed invariants. □ 

Theorem 4.2. For any fiber bundle X —> Y satisfying Assumption (*), 
fiberwise quantum cohomology QH*(X, Y, C) is associative. 

Proof Suppose a^a^as 6 H*(X,C), Ha is a basis of if*(#,C) and (%,&) 
is the intersection matrix, then 

(QJI * 0:2) * 0^3 

= Ti^jn • K (ai, a2, H^) • C (Hb\ as, Ha>) ■ Va2,b2 ■ Hb\ 
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and 

ax * (a2 * as) 

= ai*(%1,61-^(«2,a3,i?ai)-i?61) 

= riaxM • K («i, #61, Ha>) ■ *Z (a2, as, i?ai) • %2)62 • Hb*. 

It follows from Theorem 3.3 that 

Va1to-*Z{*i,OL2,Ha*)'*Z(H*,a3,Ha*) 

=*i(ai,a2,as,ffa3) 

So 
(ai * 0:2) * 0:3 = ai * (#2 * 0:3). 

The theorem is proved. □ 

Suppose that Lie group G acts on a semi-positive symplectic mani- 
fold (V,u;), keeping u invariant. Denote by EG —> BG the universal G 
bundle. Let y = J5G and X = V XQ EG. However we can not ap- 
ply the fiberwise quantum multiplication directly to this case because Y 
is infinite dimensional. Note that by the definition equivariant cohomol- 
ogy HQ(VJC) = H*(X,C). To define the equivariant quantum multiplica- 
tion a * (3 for a and (3 G HQ(V,C), we use finite dimensional approxima- 
tion of y. We choose a N dimensional approximation BGN of BG such 
that H^BGN.C) are isomorphic to Hi{BG,C) for % < dega + deg(3 + 1. 
Then XJST = V XQ BGN has same cohomology as X up to degree at least 
dega + deg/3 + 1. We define a*/? to be (a*j9)j\r, defined using XN -^ BGN- 

We need to show this multiplication is well-defined. Suppose N1 is an- 
other such integer. We need to show (a * /3)N(B) = (a *.P)N

,
(B)J for any 

£€#*(#, C). Since 

(a */?)*(*) =      E     *KO)(^APD(B))([BGN])«J1 •••«fr, 
A6/f2(V,  ) 

A€Ha(V, ) 

where $(££$) and ^/^ Q) 
are ^^ fiberwise mixed invariants defined by XN 

and A'jv' respectively. So all we need to show is 

**3gfi)MmB))([BGs}) = *gjJ,)(a>j9,PI?(B))([BGAn). 
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Without loss of generality, assume that N < Nf. Choosing BGN C 
BGW C BG to be submanifold, then XN C XW is also a submani- 
fold. Prom the choice of iV, we can choose pseudo-manifold representa- 
tives (Li,l7i), (L21U2) of a,/? in Xw such that their images, intersecting 
with XN, give the pseudo-manifold representatives of a and /? in X^. Let 
(L3, Us) be the pseudo-manifold representative of B in Xpj. Under the in- 
clusion XN C XW, we view (L3, C/3) as a representative of B in Xw. From 
Remark 1.4 (i), we know that there is a generic (J, z/) which is good for Xw 

and its restriction to Xjv is also good. $,£'(f0Ja,/3,6)(BGNr) is defined 

as counting the number of the intersection of M\(S2^ X^^J^u) x (S2)3 

with (ZrijE/i), (L2, t^)? (-^3? ^3) under evaluation map. The intersections 
happen only inside XN because of the choice of (Z^C/a). Also note that 
M^S2, Xjy, J, z/) is a subspace of A^^^2, AOv, J,i/). So the intersection 
are exactly the same as the intersections of .M^S2, A^v? J, v) x (S2)3 with 
(Li, I7i)7 (L2, C^)? (£3? ^3) under evaluation map. The number of the lat- 
ter intersections is by definition §?££s2Aa, (i, PD{B)) (BGN)- SO well- 
definedness is proved. □ 

When Y is infinite dimensional, for a fiber bundle X —* Y satis- 
fying Assumption (*), we can define the fiberwise quantum cohomology 
QH*(X, y,C) similarly. We will use this definition in section 5.2. 

We call HQ(V,C)[[qi, • • • ,gm]] with equivariant quantum multiplica- 
tion equivariant quantum cohomology, denoted by QHQ(V, C). It is a g- 
deformation of equivariant cohomology. The following two theorems follow 
from Theorem 4.1 and 4.2. 

Theorem 4.3. Suppose that Lie group G acts on a strong semi-positive 
symplectic manifold (VjU)), keepings invariant Then there is a well-defined 
equivariant quantum cohomology QHQ(V, C). It has the following properties. 

(i) QHQ(V,C) is a if*(i?G,C)[[gi, • •• ,qmD-module.   This module struc- 
ture is the same as the H*(BG]C)-module structure of HQ(V;C). 

(ii) QHQ(V,C) is graded commutative: 

a*/?=(-l)dega+de^/3*a. 

(iii) (Direct Product) Suppose that Lie groups Gi act on two strong semi- 
positive symplectic manifolds (VijUJi), keeping Ui invariant, i = 1, 2. 
Then 

QHh^G^Vx x F2,C) s QH*Gl{Vi,C) ® Qfl^O^C), 
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where u/i x UJ2 is the symplectic form onVi x V2 and Gi x G2 acts on 
Vi x V2 by product action. 

(iv) (Restriction) Suppose G C G is a normal Lie subgroup. Then there is 
a homomorphism 

H*:QH*G(V,C)^QH*G(V,C), 

as a H*(BG)[[qi> • • • ,qmJI-module. Here we choose EG = EG which 
induces a map BG —» BG and the H*(BG)[[gi, • • • , q^-module struc- 
ture of QH^lv, C) is induced from h* : #*(BG, C) -^ H*(BG, C). 

(v) (Induction) Let G C G be a normal Lie subgroup with G/G being sim- 
ply connected. Suppose that G/G is a strong semi-positive symplectic 
manifold. Assume that G acts on a strong semi-positive symplectic 
manifold (V,w), keeping u invariant. Let V = V Xg G. Assume 
that u can be extended to a strong semi-positive symplectic form on 
V invariant under G action. Assume further that H2(V, Z) has basis 
Bi, • • • , Bmi+rn2 with i?mi+i, • • • , i3mi-fm2 being basis of G/G. Then 

QH*G(V;C)/{(qmi+1,■■■,qm+m2)QH*G(V,C)}  Si QH*d (y,c) . 

Theorem 4.4. Equivariant quantum cohomology is associative. 

5. Several Examples. 

5.1. Classical cohomology ring. 

Let n be a natural number and fci, • • • , ks be a partition of n, i.e., ki + 
• • • + ks = n (fci, > • • , ks are natural numbers). Recall that a partial flag 
manifold F{kw..M is the set of all flags in Cn, 0 C Ci C • • • C Cs = Cn 

with dim Ci = ki H h fci, i = 1, • • • , s. There are complex vector bundles 
Li of rank ki over i^fa,...,^) whose fiber at above flag is Ci/Ci-i. Here we 
use convention Co = 0. Denote by Cn the trivial bundle of rank n. These 
bundles satisfy the following relation 

(5.1) Li e • • • e LS = cn. 
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Lemma 5.1.  The cohomology ring flr*(F(fclr..^5),C) is isomorphic to 

where Uj are parameters which we assign with a degree 2j, and CTJ is degree 

2i part of the expansion of (l+Ui-\ j^) *# * (l+^f H ^uks)' Under the 
isomorphism Uj is mapped to the j-th Chem class Cj(Li). Furthermore the 

first Chem class ofF(kw..ik8) is ^2jZ\{kj + fcj+i)pj where pj = ^1=) ui+1- 

Proof. This result is well-known. For convenience, we sketch a proof. 
Because of (5.1), there is a natural map which maps Uj to Cj(Li), 

cR,--- ,<;••• ;ui,-" ,<]/{ai,..- ,(7n}^fr*(F(ifeli...i/fea),c). 

First we show that p is surjective by showing that iJ*(F(^lj...>fcs);C) is gen- 
erated by Cj(Li). We argue by induction. When 5 = 2, F^fa is a Grass- 
mannian. The statement is true. Suppose that it is true for s — 1 case. Then 
consider liberation 

with a fiber F(kli...jks_1)(Cn~ks) where TT maps flag 0 C Ci C • • • C C5 to 
C5_i. Note it is easily to see the restriction of Cj(Li) for 1 < i < s — 1 
to each fiber is the Chern class of those "Lfs of the fiber, by assumption 
they generate the cohomology of the fiber. The Chern classes of similarly 
constructed rank ks bundle L2 on G(n — fcs,n) generate the cohomology of 
G{n — A;s,n), and they are mapped to cj under TT*. SO the Leray-Hirsch 
Theorem for fibration applies. fi'*(F(^1?...^s),C) is generated by c^Lij's. 

Secondly, we show that p is an isomorphism. The Poincare series 
Pt{H*{F{klr. ,*,), C)) is the product of Poincare series of H*(F(kli... >A.a-1), C) 
and H*(G(n — ks, n), C), a simple induction gives 

rrn    /-, _ ,2i\ 

(5.2) Pt (if* (Fikl,..M,C)) = -^=4 >— 
ii5-in£i(i-«*) 

which is exactly the Poincare series of 

(see [BT], section 23). So p is an isomorphism. 
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Denote by Wj the vector bundle of rank J^tZj k+i over F(ki,-,ka) with 
fiber at flag 0 C Ci C • • • C Cs to be Cn/Cj. Note that Wj S ©fljLi+i and 

TF(ku...tks) = ^z\Hom(Lj,Wj). 

It follows 

ci (^(fci,.-.*.)) = J2ci(Hom(Lj>wM 
3=1 
s-1 

= I>i(£i®Wi) 

s-1 

s-1 

= ^[-(fcj+i+...+fc>i+fcj(^+i+...+^)] 

= fc2Pl + H fcsPs-1 + fclPi H hfcs-lPs-l 
s-1 

i=i 

Where we use the fact —(u\ H h ^i) = Pj in the second to last step. This 
fact follows from u\ H h ^f = 0. D 

Suppose that E —* X is a complex vector bundle of rank n. The partial 
flag manifold F(fc1)...^5)(J5) over X can be constructed as follows. Let {Ua} 
be a covering of X such that E can be trivialized on each C7a, E\ua — 
C/Q; x Cn, with transition functions (cfraPiAap), where (f>ap : Ua —► Up and 
^o:/? - UaftUp -> GI/(n,C). Then patching together C7a x Jfy^,...,&,) using 
the induced action of A^ on ^(AJX,...,^)? 

W
^ get ^(fci,-,^)^)* N0^e ^a^ 

F^^... ^)(£?) —■> X is a fiber bundle with fiber F^^...^^). Similarly we can 
define vector bundle Li(E) over F^1}...^^(JS). It is not hard to see 

(5.3) 'L1(E)®---La(E)&p*E. 

Lemma 5.2.  The cohomology ring fT^F^...^s)(F),C) is isomorphic to 

ff*(X;C)Kr..)41;..s^,...,uy/{ai~ci(p*F)r..,an-cn(p*F)}, 
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as a H*(X, C)-module. Here parameter u^ is mapped to Cj(Li(E)) and aj is 
defined as in Lemma 5.1. 

Proof. Consider fiberation F^^..^(E) -^> X which is a fiber bundle with 
fiber F(kw.. ^y Note that the restriction of Cj(Li(E)) to each fiber F^... ^ 
gives Cj(Li). The lemma follows from the Leray-Hirsch theorem for fibera- 
tion and (5.3). □ 

Note that the standard action of U(n) on Cn induces an action of U(n) 
on F(ku-,ka) and a fiberwise action on F^u...^(E). So we can make the 
following construction. Suppose G = U(li) x • • • x U(lt) C U(n) is a subgroup 
with the induced action on-FQeu-M an(^ ^(ku-,ka)(^)' Then 

Fikl,..,ks)(E)xGEG^XxBG 

is a fiber bundle with a fiber F^^...^). Here EG —> BG is the universal 
principal G bundle. Construct the Lt(jE, G) bundle over F(kli... iks>)(E)xGEG 

as before. There is a bundle E = E x ^(^ i£G of rank n over X x BG whose 
restriction to each X slice is E and whose restriction to each BG slice is 
EG XQ Cn. Denote by Ci(G) the i-th Chern class of universal G bundle 
EG XQ Cn. Then Ci(E) can be expressed in terms of Cj(E) and Cfc(Cr), 
i,j,fc = 1,• • • ,n, and 

(5.4) Li(£, G) © • • • 0 La(E, G) 9* p*E. 

Lemma 5.3.  The cohomology ring H*(F^ii"',ks)(^) XQEG,C) is isomor- 
phic to 

H*(X,C)xH*(BG,C)[ui- •,<;••• ;<•••,<] 

/ {cri - ci (p*^)-, • • • , an - Cn (p*E) } 

as a H*(X)C) x H*(BG,C)-module. Here parameter Uj is mapped to 
Cj(Li(E, G)), and aj is defined as in Lemma 5.1. 

Proof. The proof , which is similar to the proof of lemma 5.2, is omitted. □ 
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Note that if X is a point and G = U(n) in Lemma 5.3, we get the 
equivariant cohomology of flag manifold 

= C[ttl)--- .u^;--- ;«!,••• ,t4a;ci(tf(n)),--- ,Cn{U{n))] 

/{<TI - CiMn)), ■ • ■ ,on - CnWin))}. 

Two special cases are: 

Case 1. Consider the diagonal embedding U{1) -* U(l) x - • - x U(l) C C/(n), 
t factors U(l). This embedding induces an action of U(l) on Cn; denote 
this action by pi. Then the cohomology ring ^(Ffas-fa) X

PI EU(l)^C) is 
isomorphic to 

where Uj and aj are the same as in Lemma 5.1 and Cj is given by 1 + ci + 

... + cn = [l + c1(U(l)) + --- + cl(Umt- 

Case 2. Consider an embedding J7(l) -» U(l) x • • • x U(l) which send 
e2«V=io to (e2ir>/=Tr1«j... ^ e27rv^Irn^) ^^ r. € ^ This embedding induces 

an action of U(l) on Cn; denote this action by p. Then the cohomology ring 
H*(F(kli...ik8) Xp EU(l),C) is isomorphic to 

C[tii,--- jw^;--- jtif,--- ,45;ci]/{ai-ci,--- .o-n-Cn}, 

where ulj and CTJ are the same as in Lemma 5.1 and Cj is given by 1 + ci + 
• • • Cn = (1 + nci) •••.(! + rnci). 

Note that if 5 = 2 and ki = 1. Under above action we get, after elimi- 
nating one parameter, 

Hh(i)^Pn) = C[x, ci]/{(a: - nci), • • (x - rnci)}. 

5.2. Fiberwise Quantum Cohomology of 
F(*i,~,*.)(£) XGEG->XXBG . 

Suppose Af —> y is a fiber bundle satisfying Assumption (*) and fiber V 
is a positive symplectic manifold. Assume further that the cohomology ring 
of X can be presented by a ring isomorphism 

H*{Y)[Xu---,xt\/{h,---Js}^H*{X,C), 
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where we view the left side as graded commutative polynomial algebra of 
#1, • • • , Xt- p(^i), • • • ,p(xt) are homogeneous generators of H*(X\C), and 
/i> •" ifs are homogeneous polynomials of rci, • • • ,zt. 

Proposition 5.1. If we give an appropriate degree to qj, then there are 
homogeneous polynomials gi(xi, — - , xt] #i, • ■• • , Qm) such that 

9i{xir-- ,^;0,--- ,0) = 0 

and QH*(X,Y,C) can be presented by a ring isomorphism 

H*(Y)[xlr--,xt]q1r--,qm]/{fi-gir--Js-9s}^QH*(X,Y,C). 

Proof. Let / be an ideal in C[[gi, • • • , Qm]] generated by qi, • • • , qm. Since V 
is a positive symplectic manifold, for any a, /3 € -ff*(*:tr;C), we have 

a*/? = aA/? + A(a,/3;gi,• • * ,gm), 

where h is a polynomial in qi, • • • , qm and /i(a, /?; 0, • • • , 0) = 0. So 

QH*(X,Y,C) = span {p(xi),--- ,p(xt)} use * multiplication 

+ I-QH*(X,Y,C)- 

By the Nakayama Lemma, it follows 

(5.5)      QH*(Xjy,C) = span (p(a;i),"- ,£>(#*)) use * multiplication. 

If fifai? • • • , ^*) = 53 a5i,- jt •s? •••#?*> we denote product p(a;i) * • • • * 
p(xi) (j factors) by p(xi)*i. Then consider 

E0ii,- Jt ■' P(xi)*jl * ""' * P^*)** 

= Eaii.-«j.-p(a?i)ilA---Ap(aj*)il 

+ E 6ii,- A(ftt'" • i ?m) • Pfxi^1 A ... A p(a*)* 

with 6*^    jt(0,. • • , 0) = 0. By (5.5), we may assume 

p(si)* A ... A p(^'- = ^ 41;.:;J • pfxi)**1 * ... * p(xt) 

We get 

*it 

*it 
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Let gt = E^,.. jt(qu'- ,<7m) • 41^'t * xi"tXt' We see that /< - 9i 
is mapped to zero under map p. p is a ring homomorphism. Since p is 
an isomorphism, p is an isomorphism modulo ideal /. The fact that p is an 
isomorphism follows from the Nakayama Lemma. The proposition is proved. 
□ 

Since we have mathematically defined the equivariant quantum cohomol- 
ogy and established the properties of restriction and induction, the following 
results from [AS] and [GK] are theorems (see proof in [AS] and [GK]). Some 
simple matrix manipulation will reduce the matrix in [AS] to the following 
simpler form. 

Theorem 5.1 (Astashkevich-Sadov).  The equivariant quantum coho- 
mology of the flag manifold QH^JF^^.. ^s^C) can be presented as 

C[u\,-~ ,i41;----;tAf,--- ,u8
kaiqw' ,ft-i;ci,--- ,Cn] 

where q is the i-th universal Chem class Ci(U(n)), the degree of qi is ki + 
fci+i, the degree of u^ is 2j, and ori(q) is defined to be the degree 2i part of 
the expansion ofdet(A). The matrix A is defined to be 

\ 

+ ••• + < ■91 

l + ti?+ 

0    .. • 0 0 

-i + ... + UI 92    •• 0 0 

1 + tt?- 
. 

0 0 0    .. '     +... + «C\ 
qs-i 

0 0 0    .. . -i 

As a special case, when s = n, ki = • • • = kn = 1, we have 

Theorem 5.2 (Givental-Kim).  The equivariant quantum cohomology of 
the complete flag manifold QH^^ (JP(I,... ,1), C) can be presented as 

C[ui,--- jUniqi,--- ,qn_i;ci,-" ,Cn]/{^l(q) -Cij-..- ,<7n(<?) -Cn}, 
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where Q is the i-th universal Chem class, the degree of qi is 2, the degree 
of Uj is 2j, and cri{q) is defined to be the degree 2i part of the expansion of 
det(A). The matrix A is defined to be 

/l + ui       91       0    ...     0 0 0    \ 
-1      1 + U2   q2   ...     0 0 0 

0 0 0     ...    -1    l + i*n-i      ?n-l 
\    0 0        0    ...     0 -1        l + unJ 

These result can be generalized to 

Proposition 5.2. Let G = U(li) x • • • x U(lt), the fiberwise quantum co- 
homology QH*(F(kli...iks) (E) XQEG, X x BG,C) can be presented as 

ff*(X,C)®^*(BG,C)[^,...,<;..s^r--,<;?i,--,^i] 

/ {Mq) - Ci (p*^) , • • • , <7n(«) - Cn (p*E^ } , 

where cri(q) is defined as in Theorem 5.1. 

Proof. By the Proposition 5.1, we only need to show that relations 
^(<Z) -«(p*£) = 0,t = V-n, hold in QH*(Fiku...M (E) xGEG, 
X x BG, C). Choose an N large enough such that H^BG) £ H^iBG)^ for 
i = 1, • • • , 2n + 2. Consider the classifying map h : X x (BG)^ —> B(U(n)) 
of bundle i£. ft pulls back the universal flag manifold over B(U(ri)) to 
F(kli...iks)(E) XQ (EG)N. Prom Theorem 5.1 and the restriction prop- 
erty of the fiberwise quantum cohomology, we conclude that the relation 
o-i(q) - Ci(p*E) = 0 hold for i = 1, • • • , n. D 

Two special cases are: 

Case 1.   The fiberwise quantum cohomology 

QH*(F{ku...MxPlEU(l),BU(l)X) 

can be presented as 

C[w[,-" ,ukl]--' ;ui,--- ,^a;ci,"- ,c/;gi,--- ,gs-i] 
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where cri(q) is defined as in Theorem 5.1 and Q is defined as in Case 1 in 
section 5.1. 

Case 2.   The fiberwise quantum cohomology 

QH*(F{ku...MxtEU(l),BU(l),C) 

can be presented as 

C|Wjy i^lv'" juf,--- ,ti^;ci;gi,--- ,gs-.i] 
/{<Ti{q)-cir-- ,^(9)-^}, 

where <Ti(q) is defined as in Theorem 5.1 and Ci and p are defined as in Case 
2 in section 5.1. 

When s = 2, fci = 1, and ^ is the action of 1/(1) on Cn, we have 

Qfl&(1) (CP^1; C) a C[a;, d, ^/{(x - nd) • • • (a: - rnCl) - ^}. 

where the degree of q is 2. 
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