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0. Introduction.

The notion of quantum cohomology was first proposed by the physi-
cist Vafa [V] and its mathematical foundation was established by Ruan and
Tian [RT] for semi-positive symplectic manifolds. However computing the
quantum cohomology is a difficult task in general since it does not have
the functorial property of behaving well under pull-back. If X and Y are
two semi-positive symplectic manifolds, and f : X — Y is a continuous
map, then there is a ring homomorphism f* : H*(Y;Q) — H*(X;Q) for
ordinary cohomology. However for quantum cohomology, there does not
exist such homomorphism preserving quantum multiplication. The quan-
tum cohomology of projective spaces is known for quite some time. The
quantum cohomology of Grassmannians was computed by Witten [W] and
by Seibert and Tian [ST]. The notion of equivariant quantum cohomology
was first proposed by Givental and Kim in a heuristic way [GK], and they
conjectured several properties of equivariant quantum cohomology, namely
direct product, restriction and induction. Assuming these properties, they
computed the quantum cohomology of complete flag manifolds rigorously.
Later, another account was given by Astashkevish and Sadov [AS]. They
also introduced the notion of fiberwise quantum cohomology heuristically
(called vertical quantum cohomology in [AS]), and computed the quantum
cohomology of partial flag manifolds again assuming the conjectured proper-
ties. Kim did a similar thing for partial flag manifolds [K1]. The advantage
of fiberwise quantum cohomology and equivariant quantum cohomology is
that the functorial pull-back property of ordinary cohomology is partially
restored for them, i.e. restriction property. It is exactly this property and
several other functorial properties that enables Givental et al. to complete
the computation. Ciocan-Fontanine computed the Gromov-Witten invari-
ants of complete flag manifolds using the canonical complex structure, so
he could give a presentation of the quantum cohomology of complete flag
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manifolds rigorously [CF]. Other examples of quantum cohomology were
worked out by Batyrev for toric manifolds [B].

In this work we will give a mathematical rigorous definition of fiber-
wise quantum cohomology and equivariant quantum cohomology in strong
semi-positive symplectic case(see definition below). Assume that X — Y
is a smooth fiber bundle, Y is a closed smooth manifold and the fiber are
closed manifolds. Further we assume that X’ admits a differential two form w
whose restriction to each fiber V, is a strong semi-positive symplectic form.
The main results of this paper are: 1) We will define fiberwise Gromov-
Witten mixed invariants (called fiberwise mixed invariants below) of arbi-
trary genus for X — Y using perturbed pseudo-holomorphic curves, then we
prove several properties of fiberwise mixed invariants such as direct product,
restriction, induction and the so-called composition law; 2) Using fiberwise
mixed invariants, we will define fiberwise quantum cohomology and equiv-
ariant quantum cohomology. The properties alluded to above namely direct
product, restriction, induction and associativity of fiberwise quantum co-
homology and equivariant quantum cohomology will then follow from the
corresponding properties of the fiberwise mixed invariants. So we put the
computation in [GK], [AS] and [K1] on a solid foundation; 3) As examples,
we will compute the fiberwise quantum cohomology of several fiber bundles
with fiber a flag manifold. In this paper, we basically will follow the ap-
proach of Ruan and Tian to quantum cohomology [RT]. The main part of
this paper will be devoted to a proof of the composition law of the fiberwise
mixed invariants. In the proof, most analytic results are adopted from [RT].

This paper is organized as following: Section 1 contains a compactness
theorem and several transversality result for the moduli space we used to
define the fiberwise mixed invariants. The definition of the fiberwise mixed
invariants and some simple properties are given in section 2. Section 3 is
devoted to establish the composition law of the fiberwise mixed invariants.
Section 4 contains the definitions of fiberwise quantum cohomology and
equivariant quantum cohomology, their properties are proved. In section 5,
fiberwise quantum cohomologies of several fiber bundles with fiber being a
flag manifold are computed.

During the preparation of this paper, the author learned B. Kim’s paper
“On equivariant quantum cohomology” [K2], in which he defined equivari-
ant quantum cohomology for flag manifolds only. His approach was different
from ours; he used Kontsevich’s moduli space of stable maps to define equiv-
ariant Gromov-Witten classes.
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1. A Compactness Theorem and
Several Transversality Results.

1.1. A Compactness Theorem.

Definition 1.1. (i) An almost complex structure J on a symplectic
manifold (V,w) is said to be w-tamed if w(¢,JE) > 0, for any
&€ # 0 € TV, and if further w(J¢,Jn) = w(&,n), for all £,n € TV,
we call J w-compatible.

(ii) A symplectic manifold (V,w) is called strong semi-positive if for any
w-compatible almost complex structure J on V, every J-holomorphic
curve u : CP' — V has non-negative first Chern number, i.e.
J pru*ei(TV) > 0. If this inequality is always strictly positive, we
call (V,w) positive symplectic manifold.

Remark 1.1. The concept of semi-positive symplectic manifolds was orig-
inally defined by D. McDuff in [M3]. That definition requires that there is no
spherical second homology class A such that w(A) > 0,0 > ¢;(4) > 3 —n.
We will need above definition when we show the dimension of boundaries of
the moduli space is codimension 2 in section 2. Note both monotone sym-
plectic manifolds and Calabi-Yau manifolds are strong semi-positive. The
author thanks the referee for pointing out this difference.

The following is the basic setup we will work with in this section.

Assumption (x). Let X £ Y be a smooth fiber bundle over a closed
smooth manifold Y whose fiber are closed manifolds diffeomorphic to V
of dimension 2n. Assume that X admits a differential two form w with
bounded H“9 Sobolev norm (I > 10,q > 1), whose restriction to each fiber
V, is a symplectic form. Here V; is the fiber over a point z € Y, i.e. wis a
fiberwise symplectic form on X. Assume further that (V;,w|y,) is a strong
semi-positive symplectic manifold for each z in Y.
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To define the fiberwise quantum cohomology for X — Y, we first need
to define the fiberwise mixed invariants. Suppose that X is a stable curve
of genus g with m irreducible components ¥; and k£ marked points. Assume
that A; € Ho(V;Z) are m homology classes. The fiberwise mixed invariant
can be considered as a multilinear map

k l
O, . anwzp) | LH (X,Q) x [[H*(X,Q) — H*(Y,Q).
1 1

To evaluate the image of this map on the element v € H,.(Y,Q), a key
observation is that we should use the pull-back pseudo-manifold fiber bundle
Xz — Z where F : Z — Y is a pseudo-manifold representative of v and
the pseudo-manifold Xz is the fiber product Z x g X. The advantage of this
definition is that it enables us to prove the restriction property easily. Its
price is that Z is only a pseudo-manifold, so that we need to carefully treat
the moduli space of each stratum of Z.

A compact pseudo-manifold in Y is a stratified space Z together with a
continuous map F' : Z — Y satisfying: each stratum is a smooth manifold
without boundary, each lower stratum is at least codimension 2, and F'
is smooth on each stratum. Note that any rational homology class in Y
can be represented by a finite dimensional compact pseudo-manifold, and
any two such pseudo-manifolds representing the same homology class form
the boundary of a compact pseudo-manifold (and so are cobordant in the
usual sense) (see [C]). Fix a finite dimensional compact pseudo-manifold
F :Z — Y, and denote by Xz the fiber product Z xgp X. Then Xz — Z
is a pseudo-manifold fibration with fiber V. w induces a two form on Xz

by the natural map Xz Ex , which is still denoted by w. It is a fiberwise
symplectic form on Xz. Note that w is continuous and is smooth on each
stratum. (Xz,w, Z,V) is the basic object we will study below.

Remark 1.2. We can define a trivialization of Xz as follows. For any
Zeo € Z, choose a neighborhood W of F(24) in Y, such that X| X W x V.
Choose a neighborhood U of z, in Z such that F(U) C W, then Xz|y has
an induced trivialization Xz|y 2 U x V, where U may not be smooth. Note
that for any two different trivializations of Xz over U; and Uy, the transition
function fi2 : UyNU; — Diff (V) factors through as Uy NU; £, WiNnW, Iz,
Diff(V'), where h;2 is smooth transition function between two trivializations
of X over Wy and W,. This property is important for defining various
convergences below. This trivialization of Xz is crucial when we study the
structure of moduli space. We fix a such trivialization for Xz from now on.
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Define a vector bundle E = Xz whose fiber E, is T, V; for each z €
Xz,z = p(z). A complex structure J on E is called a fiberwise almost
complex structure on X'z. A complex structure J on F is said to be tamed
by w if w(&,JE) > 0, for any &€ # 0 € E. If further w(J¢, Jn) = w(€,n), for
any &,m € E, we call the complex structure J on E w-compatible. We now
show that there is a fiberwise almost complex structure on X'z compatible
with w.

Lemma 1.1. Under Assumption(x), the vector bundle E admits a contin-
uous complexr structure which has bounded H"? norm on each stratum, and
is compatible with w. Furthermore for any zo € Z, J satisfies

Condition 1. ||J|;,xv — Jlzewxvllcavy — 0 as zr = 20,2, € U. Here
we use the trivialization in Remark 1.2 and view J|. as a section of
Hom(TV,TV).

Proof. Since the vector bundle E is a pseudo-manifold smooth in fiber di-
rections, we can find a continuous Riemannian metric g on E, such that g
is smooth on each stratum and g satisfies || 9|z, xv — glzooxv lct(v)— 0 as
Zr = Zoo, 2r € U. Here we use the trivialization in Remark 1.2 and view g,
as a section of Hom(T'V x TV,R). Then there is an unique automorphism
A of E such that w(é,n) = g(A4&,n), for any &, € E;,z € Xz. Since w
is skew symmetric, —A? is positive definite with respect to g. It is easy to
check that J = (-—A2)'%A is the required complex structure on E. a

Note that since the deformation of compatible complex structures on the
bundle F is un-obstructed, the tangent space at J consists of all sections s
of the bundle End(FE) satisfying so J + J o s = 0 and g(s&,n) = g(§,sn)
for all {,m € E. Let lf’q(Xz,w) be the space of w-compatible continuous
complex structures on E with bounded H%? norm on each stratum satisfying
Condition 1. Here and in the following ¢ v’ means fiberwise. Although J is
not smooth, Ji% (Xz,w) is a smooth Banach manifold.

Next we will define the so-called fiberwise perturbed J-holomorphic map.
Recall that a k-point genus g stable curve C = (X;z1,- -+ , ) is a reduced
connected curve ¥ whose singularities are only double points (it may have
no singularities at all), plus &k distinct smooth points z1,- -,z in X, such
that every smooth rational component of ¥ contains at least three points
from z1,--- ,zy or double points of ¥, and every elliptic curve component
contains at least one such points. Such a ¥ is called an admissible curve.
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Assume that ¥ has m irreducible components ¥, -- ,%,, (where &;
may have double points). Let J be a fiberwise almost complex structure on
Xz, and 7; be the projection from ¥; X Xz to its j-th factor (j = 1,2). A
fiberwise inhomogeneous term v over X X Xz is a set of sections vy, -+ , Vp,,
where each v; is a section of Hom(n{TX;, 3 E), satisfying

(i) v; is continuous everywhere and differentiable on each stratum;

(ii) Condition 2. Use the notation of Remark 1.2, for any 2z, € Z,
"Vilzixzr‘xv - Vi|2ixz°°xv|lc4(2ixv)—*0, as 2r — 2o, 2r €U,

(iii) The J-anti-linear condition: v;(jx;(v;)) = —J(¥i(vs)), where jx, is the
complex structure on ¥;, v; is any vector in T%;.

Definition 1.2. Let ¥ be an admissible curve, J a fiberwise almost com-
plex structure on Xz, and v a fiberwise inhomogeneous term on ¥ x Xz. A
fiberwise (J, v)-perturbed holomorphic map from ¥ into Xz is a continuous
map f : ¥ — Xz which is differentiable at the smooth points of X, such
that f(X) C V, for some z € Z, and f satisfies the inhomogeneous Cauchy-
Riemann equation on each component ¥;(i = 1,---,m). Let fi = flx,.
Then

(a’fi) (x) = l/i(SU, ft(:c))7 for any r € Zi \ Smg(E,), 1= 1’ s ,Mm,

where 9; denotes the differential operator d + J o d o js,. We denote the
space of all fiberwise (J,v) holomorphic map f from ¥ into Xz satisfying
[fix(%5)] = Aiyi=1,--- ,m by MI()AL"‘ ,Am)(E’XZa J, v). Here Ay,--+ ,Apm
are m homology classes in Ha(V,Z).

We will use M‘(’ AL Am)(E, Xz, J,v) to define the fiberwise mixed invari-
ants later. This moduli space is similar to the moduli space used to prove
that the Gromov-Witten mixed invariants are independent of the choice of
the almost complex structure (see [RT]). In fact that moduli space is the
same as our moduli space for the case where the bundle is V' x [0, 1] — [0, 1].
The further generality lies in that the bundle Xz — Z may be nontrivial and
that Z is only a pseudo-manifold. Now we begin establishing a compactness
theorem about the structure of M?Aw-, Am)(E, Xz,J,v) which is required
for the definition of the fiberwise mixed invariants.

Recall that a degeneration of admissible curves is a holomorphic fibration
#:8 — A C C satisfying: (1) S is a ! + 1-dimensional complex variety
with normal crossings; (2) All fibers of 7 are admissible. Denote by jg the
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complex structure on S, J a w-tamed fiberwise almost complex structure
on Xz. Let 7; and 7 be the projection maps from S x Xz to S and Xz
respectively. An inhomogeneous term 7 on S x Xz is defined to be a section
of Hom(#{T'S, 73 E) — S x Xz satisfying

(i) ¥ is continuous and differentiable on each stratum;

(ii) Condition 2'. Using the notation of Remark 1.2, for any 2o € Z,
||17|sz,xv - D'szooxV"cfi(sXv) — 0, as 2, = 2x0, 2 €U,

(iii) The anti-J-linear condition: Jo ¥ = —¥ o jg.

The setting for the compactness theorem is: fix a degeneration of ad-
missible curves # : S — A, assume that @ is the induced fiberwise con-
tinuous symplectic form on Xz x A — Z x A with bounded H*? norm
on each stratum, J is a w-tamed fiberwise almost complex structure, and
D1, , Um are families of fiberwise inhomogeneous terms on S. Let {¢.} be a
sequence in A converging to the origin as r — 00, set w") = &|x,xs,, J©) =
J |2z xt,s o) = 7~ 1(t,). Further assume that each (") consists of m com-
ponents (Zgr), ‘.- ,E%)), and for any fixed 1, Egr) are diffeomorphic to each

()

other for any r. Set (") = (VY), e ,1/7(,?), where v; V(") is

== ljilz(.'l‘)xxzy
the inhomogeneous term on X("), Note that Zgr) converges to the i -th
component 5{° of an admissible curve £(=) = #-1(0), and v{") con-

i
verges to the i-th component V§°°)

= 17,-|2§°°)x Xy of inhomogeneous term
p(®) = (u§°°), e 1/7(n°o)) on 2(%) x Xz in C%-topology in the following sense:
there are continuous maps T,i(r) : z:?’ — 2$°°) and compact set Ki(r) in Egm)
satisfying : (1) Ki(r) C Ki(r-"l),UKi(r) = 2£°°) \ {double points}; (2) T,i(r)
restricts to a diffeomorphism from (Ti(r))—1(Ki(r)) onto Ki(r); (3) For each
index 4, index s, and each stratum Z, C Z, both

Hj g ° dr{" —dr{" o I

(=)~ (k)

and
(o)

vy

0 dr?) - 9

i 1

CA((r) 1K) x Xz

converge to zero as r — 00.
Given f(") e Miy, .. Am)(E("), Xz, J0), 1)), we say that ) converges

to f(°) : n(0) — xy if || fi(°°) o 'ri(r) - fz.(r) ||C.,30c —0asr — 0. Here we
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need the trivialization of Remark 1.2 to define C?oc-norm, and we also need

a trivialization of V to define f( ®), T(r) fi(r) .

Proposition 1.1 (Compactness Theorem). Let () be in
Mgy oty (500, 22, 70,00)

Then there is an admissible curve &, which is the union of the smooth res-
olution £(%) of £(%) and finitely many smooth rational curves such that
a subsequence of { M} converges to a (J(®),v)-perturbed holomorphic
map f on 3, where the fiberwise inhomogeneous term v coincide with v(®
on §(°°) and vanishes on those rational curves, and moreover we have
[f«(D)] = A1+ + A and f(£) C V,, for some z € Z.

Proof. Without loss of generality we may assume that () is smooth, since
otherwise we can consider the {Egr)}‘f family or its resolution for each fixed
i. In the rest part of proof, we will use A instead of A;,---, Ap. We also
make a reduction to eliminate the fiberwise inhomogeneous term »("). Let
W = § x Xz. W has a fiber bundle structure W & Z, j(s,z) = p(z),
and we introduce a fiberwise almost complex structure Jl(,(,) on W as follows.
Given the vector bundle Ey, — W whose fiber is Ewl(s,z) =TS x Ey, if
(u,v) is a vector in Ew|(s z), define

I3 (w,0) = (ds(), JO @) + v (is(w)))

It is easy to check that this is a fiberwise almost complex structure on W
tamed for sufficiently small »(™) by the fiberwise symplectic form wyy which
is the sum of the pull back of wg and w to W. Moreover if we take the graph
of f), F() : £ W, FO)(z) = (z, ) (x)) where z € (), then F() is a
J)(,f,)-holomorphic map. So, it suffices to show that a subsequence of { F(")}$°
converges to a holomorphic map F : £ — W with [F.(Z)] = [F,Sr)(E(T))],
where ¥ is given in Proposition 1.1. Thus we have reduced the perturbed
case to the non-perturbed case v(™ = 0. From now on we assume that
each f( is J)-holomorphic. Now we fix a J(°)-compatible metric k on E,
which satisfies

(i) h is continuous, and smooth on each smooth stratum Xz;
(ii) Condition 3. Using the notation of Remark 1.2, for any 2 € U,

1Alzexv = Alzwxvllcaq) — 0, a8 zr — 200, 2+ € UL



A rigorous definition of fiberwise quantum cohomology 519

Because J) depends continuously on ¢, there is a positive constant c such
that w™ (£, J)E) > c-h(E, ), for all z and sufficiently large 7, where £ € E,.

Lemma 1.2. There is a uniformly constant C4 which depends only on A
and c, such that for any f7) € MY(Z\), Xz, J,0), we have

/ l df™
Z(r)

where the volume form dy, is defined using any conformal metric p, on X,

2

dll"r < CA
Hr ;h

Proof. Fixing & = 20, f = f) w =), J = JO) p = p., f(Z) C V;, we

then have
[ Foh= [ ol = [
by () A

Since wly, is a continuous function of ") and z, the above integral is bounded
by some constant independent of ¢") and z.

At each point x € V,, choose a local unitary frame ey,--- ,e, € 1O,
with respect to a metric h, and denote by {e}}} the dual basis of {e;}}. The
symplectic form can now be written as

(2,0)

i (try 2)€ Nej + wﬁ(}d) (b, 2)eX A e‘;f 4 w2

wlv, =w i (tr2)ef A

Let 21, % be a local orthonormal basis of (X, 1), such that
(9 _ 0 (O0\_ 0
J 6u1 - a’lm’ J 3UQ - 3’(&1’
then the Cauchy-Riemann equation
(df + Jodf oj) 9 =0
J Bul -
can be written locally as

where

0 i i o i ic
df (5'171) = fiei + fié; and df (a—u;) = faei + faéi.
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From these equations we deduce that
froly, = v °’<tr, F* (e nef) +wi Vb 2)f (e A 63)
w§P(tr, 2)f* (61 1 63)
=—-v-1 W '(tr, 2) (f1f1 + f2f2) duy A dug

The fact that J|y, is a w|y,-tamed almost complex structure implies that
(see the choice of metric h above)

(&) (@) 0(2) 0 (2)
('df( ) tf(au>) = cldf;.

On the other hand, direct computation shows that

o () o0 () v (0 () -0 (2)

= \/_1(4) (tr,Z) (flfl +f2f2) dU1/\d’LL2,

and so the lemma follows.

Lemma 1.3. There are g > 0 and C > 0 which depend only on A, J, and
@, such that for any J-holomorphic map f™) € MY (M, Xz, JM,0), @ .
o) - V., for some z, € Z, and any conformal metric p, on E(’") with
curvature bounded by 1, if [, Ban(z) |df ™2 1 @r < €0 and the injectivity radius

at T is not less than 2R, where z € £, R > 0, we have

sup |df (T)

< c
Bpr(z) R?

where Br(z) is the geodesic ball centered at x and with radius R. Conse-
quently || f (T)||C4( Br(z)) < Ca for some constant Cy independent of zr.

Proof. This is essentially Theorem 2.3 in [PW]. Here we briefly elaborate on
the establishment of the Bochner type formula. Fix a connection on bundle
E which is compatible with the metric h and the complex structure J (00),
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Suppose that in local trivialization in V,, f™ = (f; (r) . é,;)) and Bopg(z)
has coordinates u1, up. By direct computation, we have following formula

A (df(’)) = V'V (de)

f(")
= polynomials of

up to degree 3
827" of
1

+ linear combinations of Bua 0wz . B ,

where the coefficients of the polynomial involve J, the metric k, the connec-
tion V, and their derivatives in the direction of V..

Then
s (] ) =257 (). ) -2 (4) 5 )
=G |df<"> +Cy |df(’) o <v (df(”) v (#0))

2f(7‘) af(r) af(r)
Oug Ous  Ou, Ous

”1‘1

+ linear combinations of

< |df(’) +Cy |df(’)
Brih Bk

e (o () % (@)

+ 0@ |ar[ (v (@) v (@?)),

where we use the Cauchy-Schwartz inequality with € < 1 in the last step.
Note that since J™,w(™, h, V, and their derivatives in the V., directions all
depend continuously on the parameters ¢, and z,, we can choose constants
C4, C2,C(€) to be independent of t,, 2. So we have

(|df(’")

and the lemma, is proved.

Using the trivialization in Remark 1.2 to identify V,, with V, and seeing
that the image of f() lies in V;, the rest of the proof of Proposition 1.1
becomes similar to the proof of Proposition 3.1 in [RT], and so we omit it.
Observe that the image of the limit f is contained in V. O

ﬂr,h ’

) <G ldf(’)
prsh

+Cs ldf(’)

I“Ty
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The above proposition tell us that the limit map in the compactification
of the fiberwise moduli space are still those that could possibly appear in
non-fiberwise case (the so-called Gromov-Uhlenbeck compactification). So
if we could establish a transversality theorem in the fiberwise case, counting
the dimension of boundary will go through as in non-fiberwise case. It is
this transversality theorem we now turn to.

1.2. Several Transversality Results.

Definition 1.3. Let X, J, and v be as in Definition 1.2. A fiberwise -
cusp (J,v)-perturbed map f is a continuous map from ¥’ to V, for some
z € Z, where the domain ¥’ of f is obtained by joining a chain of S2’s
at some double points of ¥ to separate the two components at the double
points, and then attaching some trees of S%’s. The restriction of f to &
is a (J,v)-perturbed holomorphic map and its restriction to the S2’s is J-
holomorphic. We call components of ¥ principal components and the others
bubble components. A fiberwise X-cusp curve is an equivalence class of cusp
maps modulo the parameterization groups of bubbles.

Figure 1: Domain of a cusp curve

By Proposition 1.1, we can compactify My, ,Am)(Z, Xz,J,v) by
adding all possible fiberwise X-cusp curves with total homology class A =
A1+ -+ Ap. We divide the set of fiberwise cusp curves by some equivalence
relations:
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(i) Some of the bubble components may be multiple covering maps, in
this case we simply forget the multiplicity and take the reduced map
onto its image;

(ii) Adjacent or consecutive bubbles have the same image, and we collapse
them into one bubble. Note that the resulting curves are still fiberwise
cusp curves with possibly different total homology class.

Let _M?Ah,,, ,Anm)(Z, Xz, J,v) be the quotient of the fiberwise cusp curve com-
pactification of Mg, Am)(Z}, Xz, J,v) by above equivalence relation. Fix
k>4,9>p2>212>k+1. Let Pe1p(Xz,w) = T (Xz,w) be a vector
bundle, the fiber over J € J}’, (Xz,w) is the space of all inhomogeneous term
defined by J. Pj_1p(Xz,w) is a smooth Banach manifold.

Proposition 1.2. Under Assumption (%), given any compact finite dimen-
sional pseudo-submanifold Z of Y, for a generic (J,v) € Pr—1p(Xz,w),

ME}AI,"' ,Am)(z’ XZ, J, V)

is an oriented pseudo-manifold of real dimension 2C1(V)-A+2n(1—g(X))+
dim Z, and WAI’,,, An) (25 Xz, J,v) \M’(’Ah_"’Am)(Z,XZ, J,v) consists of
finite many pieces (called strata) and each stratum is branchedly covered by
a smooth manifold of codimension at least 2. Here A= A; +---+ Ap, and
9(X) is the genus of the stable curve. More precisely, we have

(1)
M?Al,... JAm) (Ea Xz, J, V)

consists of smooth stratum M?Al,---, Am)(Z,XZa,J, v) of dimension

2C1(V)-A+2n(1-g(X))+dim Z< where Z* run through all smooth
stratum of Z;

(i)
M(Al, Am)(2 Xz, J, V) \M(Al Am)(zi Xz, J, V)

consists of all

M(A1, Am)(zvxza’J,V)\M(Ah ,Am)(Z XZ& JI/)

(iii) Each W Am)(E Xza,J, v \M (2, Xza, J,v) consists of
finite many pieces, each of which zs bmnc;wd covered by a smooth
manifold of codimension at least 2 in MUy, Am)(E, Xza, J,v),
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where Wﬁz,"-, Am) (B, Xz, J,v) stands for the partial compactification of
ME’A . Am)(E,Xza, J,v). By partial compactification, we mean that we do
not include limits of family of curves () in MY, .. 4, (B Xza, J,v) with
tmage in V., where the limit point 2z is in not in Z°.

Proof. By Proposition 1.1, all we need to show is: for a generic (J,v), for
eac}} stratum Z¢ of Z,

My, . oay (B Xza, J,v)
is a smooth manifold of dimension
2C(V)-A+2n(1 —g(X)) +dim Z%,

and
—.A_/(E)fl,... ’Am) (Z’ XZ&, J, V) \ M?Aly“‘ ’Am)(z, XZO:, J, l/)

consists of finite many pieces, each piece branch-covered by a smooth man-
ifold of codimension at least 2 in M1()A1,m Am)(E, Xze, J,v). We divide the
proof into three steps.

Step 1. The stratum decomposition. A stratum in
—,
MEE o Ay (B Xz, )\ MYy, 4 (5, Xza, )

is a set of fiberwise cusp curves satisfying : (1) They have domain of the same
homeomorphic type; (2) Each connected component has a fixed homology
class; (3) The components which have the same image are the same for
each curve even though these components may not be adjacent to each
other. We denote by D a set of triples, each triple consists of these three
datas: a homeomorphic type of the domain of the fiberwise cusp curves with
intersection points, a homology class associated to each component, and a
specification of components with the same image.

Definition 1.4. Let D be given as above, Xj,---, %, be the principal
components of X, and Bj,---, By be the bubble components of D. D
is called A-admissible if there are positive integers b;,---,br such that
A = S TIR] + X7 b;[B;], where [P1],--- ,[Pnl], [Bi],--- ,[Bx] denote the
homology classes associated with X1, -+ , %, By, , By. We say that D is
(J, v)-effective if every principal component can be represented by a (J,v)-
map and every bubble component can be represented by a J-holomorphic
map.
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Denote by Dj”% the set of all A-admissible, (J,v)-effective D’s. It

is proved in [RT] that Dj’"’z is a finite set. For each D € D;I,’"'E, let
MY(E, Xza, J,v) be the stratum in

A—Aﬂ()fl,--- VAm) (E’ XZ"‘, J, V) \ M?Al’... JAm) (29 XZ“) Ja V)

specified by D.We perform one more reduction by identifying the domains
of those components which have the same image, and change the homology
class accordingly. Suppose that the resulting new domain and homology
class of each component are specified by D. Denote by MY (2, Xza, J,v)
the space of cusp (J, v)-maps whose domain and the homology class of each
components are specified by D. Then for each f € M%(E, Xze, J,v), differ-
ent bubble components have different image and each bubble map is some-
where injective. However the image of a principal component may be only
one point. We identify M} (Z, Xza, J, v) with M%(Z, Xza, J,v) below.

Figure 2: Creating a cycle in the domain

Again let Xy, - - , X, be the principal components, 1, , Em be their
smooth resolution(X; may have double points), and By, - - - , Bx be the bub-
ble components. Now we begin to construct a smooth branched covering of
ME(E, Xza, J,v). Let £ be the domain of the maps in M}, (Z, Xza, J,v),
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and consider

MY(Z, Xga, J,v) =
{f : p — Xze|f is a continuous fiberwise map,
fIEi € M'f)&](zi,XZa, J7 Vi)v lei € ~F§;] (527 Xza, J, 0) ’

Im(fs,) # Im(fs,), 3 # '}

where Mfé:] (8%, Xza,J,0) C M?Bj](52,Xza,J, 0) is the subspace of non-
multiple covering maps. The action of the reparametrization group on each
bubble component induces a G¥ action on M} (E, Xza, J,v), G = PSLy, so
M}(Z, Xza, J,v) = ﬂ%(E, Xza,J,v)/GF. We first construct a covering of
M%(E, Xza, J,v). Let zi,--- ,x;',i € ¥; be p; double points or marked points
which are bubbling points. Let h; be the number of intersection points on

¥; and k7 be the number of intersection points on the bubble component
B;. Consider the evaluation map

€p !H (M'f)}",] (ii,Xza’J, Vi) x (ii)hi_pi> y
i
11 (~E’§}] (82, Xze,4,0) x (57)") —
J
T 2k < I x4
i j

where ep is defined as follows:
For each %;, we define

~

-~ hi—p; .
ep; : M?Pi] (2,‘, Xza, J, Vi> X (21) —_— Xg;
ePi(f’ :il’ T 7§:hi—pi) = (f(wzl)7 Tt ’f(wi,;)7 f(:il)y Tty f(ihi—pi))‘

For each Bj, we define

es, : Ml (82 Xze, 1,0) x (52" — xp
ij(fayla'" 7th) = (f(yl)’ 7f(yhj))'

Then ep = [[;ep, x [[;ep;- Recall that if M, N are submanifolds of a
manifold X, then M NN can be interpreted as (M x N)NA, where A is the
diagonal of X x X. So we can realize the intersection pattern specified by
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D by constructing a “diagonal” in the product. Let z;,--- » 2t be all the
intersection points. For each zg, let

I, = {21'1,"' ,f;iq,le,... ,Bjr}

be the set of components which intersect at z;. Now we construct a fiberwise
product XZQ of Xz« such that its diagonal describes the intersection at
zg. This is done as follows: We allocate one or two factors from each of
X 3:,1, . ,X 7o » according to whether or not zs is a self-intersection point
of the corresponding principal component. We also allocate one factor from
each of the ng,",k =1,.--,r. Here Xg" and X} are the images of ep, and
ep;, respectively. Then we take the fiberwise product of these factors over
Z%, denote it by X Za 50 and denote its diagonal by AY « s Then
AYep=DYay X - X Ayay C XEHTEY

is the “diagonal” realizing the intersection pattern between components of
D. Let 7 be the natural projection from

1 (s 5t 2) = (51

xH( b (8% Xze,7,0) x (8)")

onto

HM[P] (Ez,XZa J V,) X H [B] 32 Xza J 0)

Then M2, 52, Xze,J,v) C m(e "I(A o D)) But they might not be equal
because we require that bubble components have different images. Define
D(E Xze,J,v) to be

(A%a D) 71'—1 (M%(E, XZ"’ J’ V)) ’
and N3 (X, Xza, J,v) to be
NS, Xge, J,v) / GEW

Then
7 : Nj(E, Xza, J,v) = Mp(Z, Xz, J,v)
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is the required branched covering.

Step 2. We will show that for generic (J,v), for each stratum Z* in Z,
M;’Al,"_ , Am)(E, Xze, J,v) is a smooth oriented manifold of real dimension

2C1(V) - A+ 2n(1 — g(%)) + dim Z%, and N} (2, Xze,J,v) is a smooth
manifold of real dimension

> (2C1(V) - [P] +2n(1 - g:)) + > _(2C1(V) - [B;] + 2n - 6)
+2hp — 2uy, — 2sp — 2n(hp — tp) +dim Z%,
where g; is the genus of ¥;, uy is twice of the number of double points of
%, sp is the number of marked points which are bubbling points, {5 is the
number of intersection points of D and hp = Y. h; + 3 h%. By bubbling
points we mean there is a bubble attaching to that point.

The basic idea of the proof is due to D. McDuff [M1]. Let
Pr_1p(Xz,w) — Z?q(Xz,w) be the vector bundle defined at the beginning
of this subsection. Define

Map},, (2i>XZ"’ [Pi]) = {fi : i — Xza| f; is a fiber map

with bounded H*? norm, [ fi (iz)] = [H]} ,

Mapy , (52,qu, [Bj]) = {fj : 82 = Xza|f? is a fiber map

with bounded H*Pnorm, [f7 (S?)] = [Bj]} .

(Here we require all the maps from S? to Xz« to be somewhere injective).
Let

Tho1, (Ti,-, €5, (El g0 )) and Ty_1, (TS2, %, (E|Xza))

be vector bundles over

HMapz,p (ii, Xz, [Pd) X HMa.p;é,p (52,Xza, [Bj]) X Pk—l,p(XZ,w),
i J

whose fibers over a point (fi, f7,J,v) are sections of Q%’:( fF(E)) and

Qg,’zl (fi*(E)), respectively, with bounded H*¥~1? norm. Then we obtain an
infinite dimensional bundle with a section S which is a partial differential
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operator,
[ITe15 (TS5 ep,(B)) x [T Tosp (752 5, (B)) —
i J
] Mani, (): Xz, [Pi]) x [] Map},, (S Xza, [Bj]) X Pr1,p(Xz,w),
i j

S(fivfjﬂ]a V) = (éin - Vi’2i75ij) .

Lemma 1.4. The zero section of the above bundle is regular for the section

S. i.e.,

Mpyim7) (Xza) = {(fis f1,J,0) | S (fir 2, T,v) = 0}

is a Banach submanifold of

[T Mant, (£, Xge, [P]) x ] Map}, (5 Xz, [By]) X Picr p(¥z, ).
i Jj

Proof. For any point z € Z¢, choose a neighborhood U of z in Z%, such that
if we fix a trivialization Xz« |y =.p—1(U) 2UxVand Tp Y (U)X TUXTV,
then the tangent space at (f;, f7, J,v) is

Ty, Mapt,, (S5, Xze, [P]) = Thp (55 ,.*TV,,) x T,Z°,

Tys Mapy, (S%, Xza, [B7]) = Ty (8% f*TV;) x T, 2°,

T1J4(Xz,w) =T q(End(E, J)),

where mo f; = z, mo fJ = z and End(E, J) is the set of all the endmorphism
of E. Those endmorphism anti-commutes with J and is self-adjoint with
respect to the metric w(-, J-). So

T(s) Pr—1,p(Xz,w) = T g(End(E, J)) x [[Tk-1, (,,r;Tgi,W; E) ’
1
(4,00 k-1 (Tf:i, e}‘»,.(E))
=Tk (50 fITV) X T,2% x Q%4

(iivk—lyp) (fz*
Tisi 0 k-1p (TSZ,e’z‘a,-(E))
=Thp (8% F*TV:) X T2 X Uy, (F°TV:)

TV.),
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Note: the fiber directions of the above two tangent spaces are
Q(E.,k 1,p) (fz*TV:z) and Q(5’2 k—1p) (f_']*TVz) ’

respectively. Let us compute the projection of the linearization of S to the
fiber direction at (fi, f7, J,v) satisfying S(fi, 7, J,v) = 0.

[Ires (5, 17V % Hrk,,, (S2, f1*TV,) x T, 2% x

DS(f;,f3,J,
Ty o(End(E, J)) xHI‘k lp(wsz,, .S )__(ff—”)>

]___[Pk,p (Ei,fi TVz) X Hrk,p S2,f’*TVz) x T,Z* x
i 0
.* P
Q(2,,1: _1p) (FiTV2) X HQ 52 5_1p) (FTTV:) —

HQ(E k—1,p) (fiTVz) x l_.[Q(S2 k—1,p) (fj*TV"‘)'

We fix a Hermitian metric h on E which is compatible with J, also fix a
connection V on E which is compatible with this metric and the fiberwise
almost complex structure. Further suppose that for any z € Z, V|y, has
torsion %N Jly,» Where Ny, is the Nijenhuis torsion tensor of (V;, J|v,). The
construction of such a connection is the same as the construction of such
a connection in the non-fiberwise case. V defines a parallel translations
P;; and PJ along path {fi:}™, and { ft }1_1, respectively, on the bundle E,
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which will be used to define DS. We now can write down Pr o DS

Pro DS(fivfj» J’V)(£’77777w16)
= ProDS(¢,0,0,0,0) + Pr o DS(0,7,0,0,0)
+ ProDS(0,0,7,0,0) + Pr o DS(0,0,0,w,0)
+ ProDS(0,0,0,0,5),
Pro DS(£,0,0,0,0)
m
= ((V& + Jlv, 0 V&0 js; + %Nlez (3J|v,(fi),5i)) X ,0) )

Pr o DS(0,7,0,0,0)

) ) 1 o \*
= (07 (v7f7 + Jle o V"T’ °jS2 + ZNlez(alez(fJ)vn])) ] ) ’

J=1
ProDS(0,0,0,w,0)

= lw(fi)°dfi°jz:.- " , 'l‘w(fj)OdijJ'sz k )
(oo (o))

i=1 j=1

where
€=(£1,"' 7§m)7 7’=(7’1) ﬂlk) and 6= (519“' ,5m)

The computation of these formulas is exactly the same as in the non-
fiberwise case since we may choose the families of maps varying in the di-
rections of £ or 7 to lie in the same fiber V,(see [M1]).

To compute Pr o DS(0,0,7,0,0), we choose families of maps,
fi,t = fi)fg = f]7 Jt = J,zh
satisfying
dz =«, and Yy =v.

dt |y

Here we suppose Im(f;) C V,, so
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ProDS(0,0,7,0,0)

m

d .
= ( (EZP“ (dfig + Jlv,, o dfig 0 s, — vil&)) )

i=1
d k
( =P} (dff + Tlv,, o dff 0152))' )

j=1

= (Vo (d: + Jlv., 0 dfi 0 gm, — wils,)) 2, »
(Vo (4 + Tlv, 0 dF 0 sz)) L)

= ((% (dfi + Jlv,, o dfi o js, — vilx,)
+T%, (dfi + Jlv,, o dfi 0 js, — vils,)), s

d .. . . O\
(;ﬁ (df? + Jlv,, 0 df? 0 js2) + T, (df + Jlv, o df’ °Js2)) )

j=1
aJ |V . dl/i
= (( 7 L odf;o Im T

, % odf’ o gsz) .
t=0)i=1 ( dt j=1

Note that in the last step we used df; + J|v,, o df; o jx, — v; = 0, dfi +
Jlv,, © IfJ 0 jg2 = 0 when ¢ = 0 and that T'%, denote the Christoffel symbol
of the connection V. Finally to compute Pr o DS(0,0,0,0,6), we choose
fiamlhes of maps fiz = fi, f{ = f7,Jy = J, 2t = z, and vy = (vi1)T satisfying

u, : It—O = 51,

Pro Ds(0,0,0,0,;)

m

d
— ((§Puar+ Modiogs ~ o),

1
d k 1
—P] (df? + Jly, o df? o jg2)
dt v i
= (6170)

To show the section S is transversal to the zero section, we need to show
that DS is surjective in the fiber direction, i.e. Pro DS is a surjective map.
According to Lemma 4.9 in [RT], ProDS is surjective for each fixed z € Z¢,
where we specifically need the assumption that f7 is somewhere injective.
The only difference is that we need to show that the perturbation of J}y,
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and v|y, on V;, used in the proof of Lemma 4.9 in [RT] can be extended to
perturbations of J and v on E. This can clearly be done, so Pr o DS is
surjective, and the lemma is proved.

To prove the proposition, all that is left is to show that

—~ “h;—p; hi T hi+Z b
ep : Miipy ) (¥z=) x JTEF 7 < T (87)" — 2™
; ;
is transversal to A7, b Let (v1,---,vs;) be a point in A}
{iin"' ,Eip,le’ : )BJr}’ and

(fi,fj,‘L VyZ1, s 5y Ty Y1, 000 ,yk) € e;)l(’ul"" ,Utb)'

So fiy(zi) = -+ = fi,(zi,) = f*(yp) = -+ = f(y;,) = vs. By the
Hartman-Winter Lemma [JS, Lemma 2.6.1], there are only finitely many
accumulation points of ImfJ N Imf#', since we require that ImfJ # Imf7’
for j # j'. Therefore, for each f7s, we can choose a small disc Dj, around y;,
such that there is a smaller disc D’;, satisfying that the annulus D;, — D'},
does not intersect other bubble components. By the work of D. McDuff
[M1], given any tangent vector X € Ty;, (vj,) V2> Where f(X) C V;, for some
z € Z°, there is a perturbation of almost complex structure J|y, to com-
patible almost complex structures (J|v,); on V; in a small neighborhood
of Imfs| D;,-D';,» and also a perturbation f;* of fIs on Dj, such that f;"*
is (J|v,): holomorphic, fo.s = fJs, and g{g’?(yj,)lt=0 = X. We can patch
ftjs with fJs| sz_p,, to get ft.s defined on whole S2 such that ft.sl D;,~D';,
does not intersect other bubble components either. Note that (J|v,): can be

extended to a family of complex structure J; on E, i.e. we can choose per-
turbation (J|v,): which comes from Py_; ,(Xz,w). Note that other bubbles

ZuD) Is =

are also J;-holomorphic and %‘;(yj,)|t=0 = X.

For a principal component f;,, the argument is easier since we can per-
turb the inhomogeneous term. We can just choose an arbitrary perturba-
tion f;, + on a small disc D;, around z;, such that %L’(a:,,)h -0 = X, and
then simply perturb |y, to (vi|v,): while keeping (v;,|v,): = 07 f;,+ on the
graph of f;, ¢. Then f;, ; satisfies an inhomogeneous Cauchy-Riemann equa-
tion with inhomogeneous term (v;,]v,):. Note that (v;,|v,): can be extended
to a family of elements in P}_, ,(Xz,w). Applying this argument to each
point vg and every point in e"l(A” o D), we have shown that the map ep is

transversal to Ay, 5. Therefore e -I(A o D) is a smooth Banach manifold.
Moreover we have the following Fredholm map

5 (A% p) T Pioip(¥z,w).



534 Peng Lu

By the Sard-Smale Theorem, for a generic element (J, ) of 'P}c’_l,p(z'l’ 7, W), its
preimage 7 ~1(J, v) is a smooth manifold (it is crucial here that Pi—1,p(Xz,w)
has smooth structure). This implies that M’(’Al,___, Am)(E,Xza,J, v) is a
smooth manifold when we choose D with no bubbles f7, and in gen-
eral N%(E,Xza,J, v) is smooth manifold. Since G= " acts freely on

ﬁf)(z, Xze, J’ V)’ Ni‘))(z’ Xze, J, V) = N%(E, Xza, J, V)/GZ L is smooth.
Note that G= " acts freely on eL'—)1 (A%, ), so we can define a smooth man-
ifold B (A%, 5) = €5 (A%, 5)/GT ¥, a space that will be used below.

Step 3. A routine counting dimension argument gives the dimension
formula (see [RT]). We can see that the codimension of the boundary of
the moduli space is at least two in the following way. Notice that for most
fibers of the fibration Mg, ., A, (8, Xze, J,v) — Z%, the boundary part of
a fiber is of codimension two in the fiber as we know from the non-fiberwise
case. Since -./\73{?’,,, Am(Z, Xz, J,v) has the required smooth structure, its
boundary has codimension at least two. a

Remark 1.3. Since the moduli space has a canonically defined orientation
in the non-fiberwise case, this orientation and the orientation of Z* give
a natural orientation of the moduli space ME’AI’,_. , Am)(Z,Xza, J,v) in the
fiberwise case.

Proposition 1.3. For a generic (J,v) € Py_; ,(Xz,w), and D € ’Dﬁ’é,
dim N (E, Xze, J,v) < 2C1(V) - A+ 2n(1 - g(X)) — 2kp — 2sp + dim Z*

where kp is the number of bubble components of D (not D), and sp is the
number of marked points which are also bubbling points.

Proof. Similar to Proposition 4.14 in [RT]. We omit it. a

We want to prove another transversality result which will be used in
defining the fiberwise mixed invariants later. Let {U;}{_;, {Wj}?=1 be
two (possibly non-compact) families of smooth manifolds, and L; : U; —
Xz,M; : W; — Xz be smooth maps. We require that the images all lie
in one stratum, say Xza. For each data D, we know that N}—’)(E, Xza,J,V)
is a smooth manifold for generic (J,v). Consider the intersections of the
components of Imf and Im(Mj), where f € N, E(Z,qu,J, v) consists of
principal components (f;)™,; and bubble components (f7 );?=1. Without loss
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of generality, we may assume that Im(2;),- - ,Im(M,) intersect the princi-
pal components Imf;, of f, 1 < s <p, and ImMp;,--- ,ImM; intersect the
bubble components ImfJs of f,p+1 < s < d, we call this an intersection
pattern, and denote it by T'. If M; intersect more than one component, we
simply choose one of them. Let C = (¥;z1,- -, z.) be a stable curve, and
X = (z1,- - ,z) be the set of marked points. We consider evaluation map

P
ex X Lx M : NB(S, Xza, J,v) x [[ £i, x (5P x U x W —
s=1
Xetd x xghd
ex.r (fir 1591, » Yps Yp+1s -+ »Ya)
= (f(xl)’ e vf(mc);fil (y1)7 ttty fip(yp);fjp+l(yp+1)1 e )fjd(yd)) )
where U = [[ Ui, W =[[; W}, L=1[[; Li, M =[[; Mj, G = PGLy, A% C
X;‘L’dx Xéﬂ;d is the diagonal corresponding to the intersection pattern T, and
% is defined similar to A, 5. Note that (f;---) isin (ex,rx Lx M)~} (A%)
if and only if f(z;) € Im(L;), Imf;,N Im(M;) # 0,1 < s < p, and Imf7*N
Im(M) #0,p+1<s<d.

Proposition 1.4. For a generic (J,v) € Pr_1,(Xz,w), any D € ’Di’,’;::,

(ex,r X L x M)~Y(A%) is a smooth manifold of dimension

dim N3 (X, Xze, J,v) + 2d — codim L — codim M
<2C1(V):-A+2n(1—-g(X)) + dim Z2¢
—2kp — 2sp + 2d — codim L — codim M,
where sp, kp are defined as in Proposition 1.3, codim L; = dim Xz« —dim U;,
codimC = }; codim C;, codim Mj = dim Xz« — dim W}, and codim M =
Zj codim M;. When the proposition is true, we say that Nj(Z, Xza, J,v)
is transversal to L x M for (X,T), and such (J,v) is good.

Proof. We use the notation EBI (A%, ) as defined at the end of proof of
Proposition 1.2. All we need to show is that

P
exrp)XLxM : Eg' ( %a,b) x [T £ x (S PxUxW — Xgtdxxgte
s=1
is transversal to A%, where map e x r,p) is defined similarly to ex . Since
EBI(A%,, 5) = Pk-1p(Xz,w) is a Fredholm map, according to the Sard-
Smale Theorem, for a generic (J,v), ex,r is transversal to A%.
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To prove e(x,7p) X L X M is transversal to A%, assume that

(For £2, Iy vy yiy wiyw;5) € (expy X L x M)™Y(AF),

f(z) = Li(w), fi,(ys) = Ms(ws), 1 < 5 < p, fo(ys) = Ms(ws),
p+1 < s < d, we need to prove that for any X; € Ty(y,)Xze,Ys €
Tfi_.,(ys)XZ""l < s < p and Y; € Tij(y,,)XZ",p‘l' 1 £ s £ d, we

can find a family of curves (fi¢, f1, Ji, v, Yst) € E[?)I(A‘éaz 5) xIh=1 %,

X ga-»(82)%P such that M| -0 = X, M| =0 = Y1 < s < p,
and M’—‘—l t=0 = Y;,p+1 < s < d. We achieve this by perturbing

(fi, 7, J,v,ys) several times, each time we make one of the requirements
satisfied without affecting other parts. The perturbation goes like the fol-
lows: suppose we want make wh—o =Y;. If Y] is a fiber direction in
Tfi1 (11)Xz=, we then only need to perturb the curve within the fiber V,, the
perturbation being similar to the one in the proof of Proposition 1.2. The
only new feature is that if y; is a double or cusp point of the domain of f,
the pertubation has to keep the intersection pattern of the cusp curve, since
otherwise the perturbed family will not be in E5 LAY PR D) This can be done

as follows: choose a curve ¢ in V, with ¢ = f,l(yl) and %It.;o =Y7. For
any principal component intersecting at fi, (y1), say fi, by perturbing the
fiberwise inhomgeneous term, we can find f;; which is a local perturbation
of f; around y1, such that f;+(y1) = ct. For any bubble component inter-
secting at f;, (v1), say f7, by the work of D. McDuff [M2], we can actually
perturb J and v in the same way as in Proposition 1.2, with fJ (y1) = ct.
Now the differnt components of map f; intersect at point ¢;. Once again we
can extend the perturbed (J|v,)t, (¥|v, )t to (Ji, ) € Pr—1,p(Xz,w).

If Y7 is not a fiber direction, we choose a trivialization of Xz« around z €
Z“ (see Remark 1.2). We only study the case that Y is a horizontal vector
under the trivialization, since this is sufficient for proving the surjectivity.
Choose a curve z in Z° with 25 = 2, %'t:o =Y}, we perturb J and v in the
following way: Jilv,, & J|v,, nlv,, = v|v,, so take f; = f but view that Im f;
lies in the fiber V;,. Now f;, +(y1,t) = (2, fiber part), the horizontal part
of Whﬂ is Y7 and this perturbation keeps the intersection pattern of
the cusp curve. So e x7,p) X L X M is transversal to Af.

Dimension counting being routine, the inequality follows from Proposi-
tion 1.3, and the proposition is proved. O

Remark 1.4. (i) If Z is a submanifold of Z%, assume that (Jo, %) is
good for N}(Z, Xz, Jo, v0), and consider the subspace Pg-1,p(Xz,w) C



A rigorous definition of fiberwise quantum cohomology 537

Py—1,p(Xz,w) which consists of (J,v)’s whose restriction to X'; equals
(Jo,v0). Then using this space instead of Pg_1,p(Xz,w) in the proofs
of Proposition 1.2 and 1.3, one can show that for a generic (J,v) of
Pr-1,p(Xz,w), Nj(Z, Xza, J,v) is smooth and transversal to L x M,
since we may perturb (J,v) only outside of X’;.

(ii) If j; is a smooth family of complex structure on I, t € [0,1], de-
note by ¥; ¥ equipped with j;, then one can consider the space
UtNB(Zt, Xza, J,v). For a generic (J,v) € Pr-1p(Xz,w), this space
is smooth and transversal to L X M. The reason is: in the proof of
Proposition 1.2 and 1.3, replacing those Map and EBI (A%a, p) Spaces
by their union over ¢, ¢ € [0, 1], the remaining argument is the same.

The following proposition about the transversality of components of
fiberwise cusp curves is important for the gluing argument in section 3.
Adopting the notation of Proposition 1.2, consider the moduli space

M’E)Aly"' ,Am)(27 XZ"‘, J) V).

It consists of fiberwise (J,v) perturbed holomorphic maps which have no
bubbles and whose components intersect each other at double points. We
would like to show that the subset where at least two components intersect
non-transversally is of codimension 2. Without loss of generality, we can
assume that ¥ has only two components ¥; and ¥9. Let y1 and ys be
the distinguished points on ¥; and X3 corresponding to the intersection.
We allow a self-intersection by setting ¥; = ¥ and using their smooth
resolution below. We then define

€y1,y2 ¢ M?AI,AZ)(E, Xza, J,v) —
Hom (Tylzl, E|xza) ® Hom (Tyzzz, Elxza)
ey 2 (F) = (df1(y1), df2(y2)),

where f; € My, (21, Xza, J,11), fo € Ma,(22, Xza,J,10). A generic ele-
ment in Hom(Ty, X1, Elx,) ©® Hom(Ty,L9, E|x,.) is a smooth fibration
over Xz« of dimension 10n + dim Z% and maximal rank 4. If f; and f3 do
not intersect transversally, then f’s image will have lower rank. The set of
homomorphisms of lower ranks is a union of manifolds R; consisting of homo-
morphisms of rank ¢ (i=0,1,2,3). dim Ry = 2n+dim Z%,dim R; = 2(i+1)n+
dim Z®+4—1, i=1,2,3. Thus their codimensions are 8n,6n—3,4n—2,2n—1.

Proposition 1.5. For a generic (J,v), ey, 4, is transversal to R;. Hence
61711,y2 (R;) has codimension at least 2n — 1 in M’(’Al’ A2) (%, Xze, J, v),
i = 0,1,2,3.
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Proof. Use the notation EBI(A%(, p) as defined at the end of the proof of

Proposition 1.2. Now choose data D with no bubble components and denote
EBI(A a D) by My, Az)(E,Xza,'P). Consider the map

By, y, ¢ M(Al,Az)(Ea Xz, P) = Hom (T}, 21, E|x,0 ) ® Hom (Ty, 2, E|x,.)
By 0o (£5 4 v) = (df1(01), df2(y2)),

we can show that E, ,, is transversal to R;, i = 0, 1,2, 3. The proof, similar
to the proof of proposition 1.2, is omitted(see [RT], Theorem 5.10). O

2. Fiberwise Gromov-Witten Mixed Invariants.

We now begin the definition of fiberwise mixed invariants, our aim
being to use it to define the fiberwise quantum cohomology. Let C =
(%;21,-++ ,x¢) be a stable curve of genus g, & = (Z1,-:*,Zm), X =
(z1,+-+ ,zc), and Aj,--- , Ay be homology classes in Ha2(V;Z), A = A; +
-+ + Apn. Without loss of generality, assume that zj,---,z;, lie in X,
Ziy 41, ,Tip lie in Bg, -+, and z;,_, 41, ,Zi,, lie in ¥,,. Denote this
position pattern by P;. Take a bundle X 2 Y satisfying Assumption (x).
Let {a;}$, {B;}¢ be rational cohomology classes of X, and -y be the rational
homology class of Y satisfying

c d
(2.1) Zdeg a; + Z(degﬂj —2)=2C1(V) - A+2n(1 — g) + deg().
1 1

Here we work with rational coefficients for homology and cohomology, but
we could use real or complex coefficients. In section 5 we will actually use
complex coefficients. Integer coefficients can not be used because an integral
homology class may have no pseudo-manifold representative.

Let F : Z — Y be a pseudo-manifold representative of a homology
class 7. Using the notation after Assumption (x), F*(e;) and F*(8;) are
then cohomology classes in the pseudo-manifold Xz. Denote their Poincare
duals by PD(F*(a;)) and PD(F*(B;)) respectively. We can represent
PD(F*(;)) and PD(F*(B;)) by pseudo-manifolds U; and Wj in Xz in the
following way: there are continuous maps

L;:U; — Xz, M; :W; — Xz
such that on each stratum, say U] or Wt both L; and M; are smooth and

each image L;(U}) or M; (Wt) lies entlrely in some stratum of Xz, say Xz,
or X,s;,. Furthermore they satisfy the following general position condition.
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General position condition:

dim Xzo:, — dim U} > dim Xz — dim Uj,
dim X,p;, — dim W} > dim Xz — dim W;.

Note that if Z is smooth, then this definition coincides with the ordinary
definition of the pseudo-manifold representative of a rational homology class.

Denote L = [[; Li, M = [[; Mj, LxM : T],; Ui xI]; Wj — X5**. Denote
by Im the image of a map, fix an intersection pattern T: Imf;; intersects
ImWj, j =1,---,d. Then define the evaluation map

d
€(%,P,J,v) :M,gAl,"',Am)(E’ Xz,J,v) % H Ls; — X§+d
j=1

Fsvnr e 19a) — (@), F@e); for@1): -+ » Foaluia))-

Note that e(s, p ) is a smooth map. It follows from our assumption on the
degree of a; and B; that the image of ez, p 7, and L x M have complemen-

tary dimensions in X §+d' Moreover, we have

Proposition 2.1. Under assumption (2.1), for a generic fiberwise almost
complez structure J and a generic inhomogeneous term v in Py_1 p(Xz,w),
we have

(i) There are no sequences {fy}° in M‘(’Ahm , Am)(Z, Xz,J,v) such that
fr(z:) converges to a point in L;i(U;) asr — 00, frs;(Es;)NM;(W;) #
0 and at least one of the following is true:
(a) for some i, f.(z;) converges to a point in L;(U; \ UP),
(5) for some j, fre;(Se;) 0 M;(W; \ WP) £ 0.
Here U and WJQ denote the top strata in U; and W; respectively.

(if) There are no sequences {fr}{° in M’(’ A, Am)(E, Xz, J,v) with fr(z;)
converges to a point in L;(U;) as r — 00, frs;(Xs;) N M;(W5) # 0 and
the limit f in not in M{, . 4 | (%, Xgo, J,v). Here Z° denotes the
top stratum in Z.

(iil) e,pap)(Mia,... 4B Xz0,J,v)) and L x M (U® x W9 intersect
transversally at finitely many points, i.e., there are finitely many

d
(f;ylv tt ,yd) € M1()A1,~~~,Am)(2’ Xz, J, V) X HESJ" (u,w) € UOXWO,
. j=1
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such that ez p yu)(fiy1, -+ ¥a) = (L(u), M(w)), and at each inter-
section point, the image of the tangent space T(u,w)UO x WO under
L x M is transverse to the image of the tangent space

d
T tiy1,- wa) (M(Al,“‘yAm) (B, Xzo, J,v) x H Zsj)
j=1

under the evaluation map.

Proof.

(i) If this fails, by Proposition 1.1 (here we adopt the notation there),
there is a cusp curve f € NB(X, Xz, J,v) for some D satisfying:
(1) fFE)NIm(M;) # 0, 1 < j < d; (2) for each marked point
zi,i = 1,--+ ¢, either f(z;) € Im(L;) or a bubble occurs at z;. In
the second case, f(z;) may not be in Im(L;), but Im(L;) will intersect
a bubble tree coming out of z;. Note that Im(M;) may intersect a
bubble instead of the principal component of f. Therefore we see that
f could have fewer marked points and the number of homology classes
corresponding to the unmarked part increases. Let X’ C X be the
subset of marked points which are not bubbling points. Suppose that
X' = (z1,-+ ,%p), then there are at least c—p bubbles. c+d—p is the
number of pseudo-manifolds in PD(F*(a;)), PD(F*(ﬁj)) which inter-
sect Im(f). Let f(z;) € L;i(U;) fori = 1,-- -, p, Im(f)NL;(T;) # 0, for
i=p+1,---,¢c and Im(f) N M;(W;) # 0 for j =1,--- ,d. Suppose
that f intersects these pseudo-manifolds in a intersection pattern T,
implying

(exr x L x M)~} (Ag) #0
where Im(f) C Xz« for some a and ex r is defined before Proposition
1.4. Proposition 1.4 says that (exr x L x M)~}(A%) is a smooth
manifold, we have an estimate of its dimension

dim(ex x L x M)~} (A%)
= dim N (Z, Xz, J,v) + 2(c + d — p) — codimU;® — codimW}®
=2C1(V)-A+2n(1—g)—2(c—p)+2(c+d—p)

- codime @ _ codimW;(a) + dim Z%,

where Uf(a) stands for all the stratum in U; whose image lies in X'ze
and W; (@) has a similar meaning. If o = 0, by the assumption we have
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codimU; @ > codimU; + 2 or codimW;(a) > codimW; + 2, so

dim(ex7 x L x M)™! (A})
< 2C1(V) - A+ 2n(1 - g) + 2d — codimU; — codimW; — 2 + dim Z°
= -2.
If o # 0, then the general position condition and dim Z%* < dim Z° -2
imply
dim(ex x L x M)~ (A%)
<2C1(V) - A+ 2n(1 — g) + 2d — codimU; — codimW; + dim AR
= -2.

So in either case, we get a contradiction. (i) is proved.

(ii) The first half is the same as the proof of (i), the only modification is

the dimension counting.

dim(ex x L x M)~! (A%)

= dim N (S, Xze, J,v) +2(c+d —p) — codime(a) - codimW;(a)

<2C1(V)-A+2n(1-g)—2—-2(c—p)+2(c+d—-p)

~ codimU;® — codimW}* + dim 2°

< -2,
where we use that D has a bubble component to get —2 in the second
to last step.

This a contradiction. (ii) is proved.

(iii) Considering the restriction of e p ) to M., Am)(E, Xgo,J,v) X

H?=1 %, and the restriction of L x M to U x W?, (iii) follows from
Proposition 1.4.

O

Remark 2.1. (i) Note that if each of dim Z, dim U;, and dim Wj is one
dimension higher than it is in Proposition 2.1. It is still correct, ex-
cept that we should modify (iii) as follows: their intersection is a one
dimensional smooth manifold in M{,  , (2, Xz0,J,v) x U x WO.
The reason is: in the proof of the above proposition, if the dimensions
of Z,U;, and W; are raised by 1, the result of dimension counting in
(i) and (ii) is -1, which still gives a contradiction.
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(ii) Assume dim Z,dim U;, and dim W are one dimension higher than it is
in Proposition 2.1, and Z,U;, W; have submanifolds Z, U;, W'], respec-
tively. According to Remark 1 4 (i), Proposition 2.1 is still correct
even if we fixed (J,v)’s value on Z, U,,WJ to be good. If Z Uz,W]
are boundaries, the one dimensional manifold in i) has boundary, this
essentially giving a cobordism.

(iii) Suppose that Z satisfies (2.1), if we consider the moduli space ap-
pearing in Remark 1.4 ii), Proposition 2.1 is still correct The image
of the moduli space UMy, .. 4 (%2, Xz0,J,v) X ]'[J ~1 Zs; will only
intersect the image of U° x WO and the intersection will be transverse
giving a smooth one dimensional manifold.

Now we define the fiberwise mixed invariants as follows. Denote
by P := (P,T) the pair: the position pattern P, and intersection
pattern T' and denote exr by ex ps.)- Fix a pair (J,v) such that
e,pay) and Mp, Am)(E, Xz, J,v) satisfy all the properties in Propo-
sition 2.1. Again we will call such (J,v) good. First we associate a
multiplicity m(f) to each f in M%’Ah_“ ,Am)(E, Xz,J,v). We define m(f)
to be zero if either f(z;) is not in L;(U;) for some 4, or fs;(Xs;) does
not intersect with one of the M;(W;) for some j. If f is given as in
Proposition 2.1, there are finitely many (v, - ,y)(1 < t < I) such
that fs;(y;) € M;(WJ). Putting €(f,) to be £1, the sign being de-
termined by the orientation of M, _ . (5, Xz0,J,v) x H‘]Ll Xs; at
(f;¥e1y- -+ »Ysa), the orientation of U® x W0 at (u,w), the orientation of
X;ﬁ;d at (f(z1), -+, f(Ze), fs1(ye1), -+ 5 fs4(Yta)), and the Jacobian of the
maps €(s, p,jy) at L x M. We define

l

m(f) =) _e(f, ).

t=1
Finally we define the fiberwise mixed invariant

(I)?Al,--- yAm,w,Z,P) (al, T aclﬁl, tee ’:Bd)(7) = Z m(f)

For convenience, we define

@?Ah... ,Am,w,E,P)(ah tec 7a0|ﬂ1’ MR ﬂd)(7) = 0’

in case that

c d
> deg(as) + Y _(deg(Bj) — 2) # 2C1(V) - A+ 2n(1 — g) + deg(7)-
1 1
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This defines a map
s, Amws,p)  [TH(XQ) x [ H (%,Q) - H'(Y; Q).

Note that when Y is a point, X = V, the fiberwise mixed invariants
coincide with the mixed invariants defined by Ruan and Tian in [RT].
The following proposition assures that

‘DI(IAI,... Am w,E,P) (a1, ,ac|Br, -+, Ba)(7)

is indeed a symplectic invariant.

Proposition 2.2. DT, ,Am,w,E,P)(a1,~-~ ,ec|Br,- -+, Ba)(y) is indepen-
dent of the choice of (J,v); the marked points 1, - ,z. of the same po-
sition pattern P) in X; the conformal structure on L; the choice of pseudo-
manifolds (L;, U;), (Mj, W;), (F, Z) representing i, B,y (i = 1,---,¢j =
1,---,d). Furthermore, the invariant depends only on the semi-positive de-
formation class of w.

Proof. In the proof we adopt the notation used in proposition 2.1, and divide
the proof into several parts.

(i) We show that 9, . 4,5 p)01, ,@e|B1,+++ ,Ba)(7y) is indepen-
dent of the choice of good (J,v). Suppose (Jo, ), (J1,71) are two
choices,denote Z = Z x [0,1], define X; — Z to be a fiber bundle
with fiber V induced from X7z, the ﬁberwxse symplectic form @ on
X being also the induced one. Note that X; — Z satisfies Assump-
tion (). Define Py_; ,(X3,@) similarly to k_lp(XZ,w), but with
a boundary condition: for any (J,7) € P}_ lp(X ,@), (J, V)lexo =
(Jo,l/o), (J V)iXle = (J1,I/1) Then choose L = L X ’Ld M =
M; x id, U; = U; x [0,1], WJ W; x [0,1]. From Remark 2.1 (ii), it
follows that for a generic (J, 7), (ew.pip ¥ L x M)~ (AY.) will give a
one dimensional cobordism between (e(s, p,jo.10) X L X M)~}(AY) and
(es,Paim) X L x M)~1(AY) in the space Mpse a0y (Bs Ko, J, o) x
H?=1 Ts; X U° x WP. This cobordism tell us that @‘(’Al’,_- ,Am,w,E,P)(al’

e |B1,- -+, Ba)(7) is independent of the choice (J,v).

(ii) We show that By, ,AmeP)(al’ -+ ,ac|B1,- -+, Ba)(y) is indepen-
dent of the choice of the conformal structure jon . Let jo and j; be
two conformal structure on ¥. We can connect them by a family of
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(i)

(iv)
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conformal structures j, ¢ € [0, 1]. From Remark 2.1 (iii), for a generic
(J,v), the image of the moduli space UtM’(’Ah”_ ,Am)(zt’XZOa J,v) x

?=1 Ys; will only intersect the image of U% x W9, the intersec-

tion will be transverse and give a smooth one dimensional mani-
fold. But this one dimensional manifold is the cobordism between
(6((2’]'0)’13"]’,,) X L x M)—I(Ag'v) and (e((z’jl),P,_],,,) x L x M)—I(Agw) This
cobordism tells us that 4, ,Am,w,E,P)(al’ ooy @e|Bry e, Ba)(y) is
independent of the choice of the conformal structure j on X.

We show that 0y . 4 5 pylo1, - aclB, - ,B4)(7) is indepen-
dent of the choice of the marked point set X within the same posi-
tion pattern P; (see the definition at the beginning of this section).
If X’ is another set of marked points, we choose a continuous map
¢ : ¥ — X isotropic to identity, such that it maps X to X', and it
is a diffeomorphic on each component %;,i = 1,--- ,m. Let X’ to
be ¥ equipped with the pullback conformal structure ¢*j, then ob-
viously Q‘EJAI,"' ,Am,w,Z,P)(al’ s+ 0| B1,++,Ba)(7) defined using the
stable curve C' = (X, X’) is the same as the one defined using the
stable curve C = (X,X). Combining this with part ii) above, the
independence of the choice X is proved.

We show that Q’E’Al,“' ,Am,w,z,P)(al" -+, ae|B1, -+, Ba)(7y) is indepen-
dent of the choice of pseudo-manifold representatives (F, Z), (L;, U;),
(Mj,VVj). Suppose that (Fy, Zo), (Lio, Uio), (Mjo, Ww) and (F1, Z1),
(Li1, Uir), (Mj1,Wj1) are two choices, both of them satisfying the
general position condition. First we can find a cobordism of pseudo-
manifolds F : Z — Y with 0F = Fy U F1,8Z = Zo U Z;, and also
construct a fiber bundle p : X; — Z with fiber V satisfying the As-
sumption (x). Secondly we can find a cobordism of pseudo-manifolds
Li : Uy — XZ,MJ- : WJ — X, satisfying the pseudo-manifold rep-
resentative condition listed at the beginning of this section (in par-
ticular the general position condition), and B(Zi,Ui) = (Lio, Uip) U
(Lil, Uil), a"(]\lj, W?) = (Mio, Wjo) U (Mj1, VVJ1) Apply the Remark
2.1 ii) to (F, Z), (Li, Us), (M;, Wj), we get a smooth one dimensional
manifold which is a cobordism between (e(s, p,o,u0) X Lo X Mo) ™1 (A%, )
and (e(s,p,j; ) X L1 X Ml)‘l(A%u) in the space A’;. This cobordism
tells us that (I)?Al,---,Am,w,E,P) (01, ,aclBr, -+ , Ba) (7) is independent
of the choice of (F, Z), (Li, Us), (Mj, Wj).
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(v) Assume that two symplectic form wg and w; are connected to by a
family of symplectic forms w;,t € [0,1]. Then an argument similar to
(i) will prove that QQ(JAI’... Am w,E,P) (a1, ,00|B1,- - ,Ba) () depends
only on the strong semi-positive deformation class of w, using fiber
bundle X x [0,1] — Y x [0, 1] with fiberwise symplectic form {w; : t €

[0,1]}.
O

Remark 2.2. To define

q)q()Al,"- ,Am,w,E,P)(ala caelBr, 00, Bg) € HY(Y,Q),

we only need to choose a basis 71, ,7, of H*(Y,Q), and evaluate

‘bl()Al,--- ’ Am,w,z:,P)(al" -+ ,@c|B1, -+ ,B4)(7vi). Note that for some appropri-
ate choice of 71, ,7,, we can represent all 4; by submanifolds Z; in Y.

This means that we can choose Z to be a manifold from the very begin-
ning, and assume its cobordism to be smooth too. Had we proceeded in this
way, our arguments could be much simplified. Actually in the definition
of fiberwise quantum cohomology and equivariant quantum cohomology, Z
is always smooth. But there is a problem with this approach. When the
homology groups with integer coefficient have torsion, we will have trouble
in showing that (fiberwise) Gromov-Witten invariants is independent of dif-
ferent smooth manifold representations of some homology class, since these
two smooth representation may not be cobordant to each other in smooth
sense (see [C]). This is why we use pseudo-manifolds.

Next we collect a few simple properties of the fiberwise mixed invariants,
leaving the composition law for the next section.

Proposition 2.3. The fiberwise mized invariant

q)?Al’... \Am,w,Z,P) (ah ttty ac|161’ 0 ﬂd) (7)
is multilinear in o;,08; and y. Furthermore, we have
(i) The fiberwise mized invariant
‘I)Q(IAI,... JAmw,5,P) (al, ce ’ac|.31, tee 1ﬂd)(7)
is zero if the “virtual” dimension 2C1(V)-A+2n(1—g) +degvy < 0.

(ii) q)?Al,... ,Am,w,z,p)(alf *+,0e|B1, -+, Ba) is zero if one of the B; is of
degree greater than 2n — 2.
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(i) If c+2g > 4 and a is the fundamental class X, then

?Al,"' JAmw,Z,P) (ala T ’O‘CIIBIa Tt ’:Bd) (7)

equals
(I)?Al,.--,Am,w,E,P)(ah ey @e-1]B1, 00, Ba)(7)-

(iv) (I)?Al"... \Am,w,Z,P) (a1, aclB, -+, Ba)(7v) equals

D. ‘I)?Al’... JAm w,Z,P) (al, tee aaclﬁh tee ,:Bd—l)(7)a

if Bq is of degree 2 and D = A - By is the intersection number, where
we regard By as the induced class on V.

(v) In case A =0, Q?Aly“’ ’Am’w,E,P)(alp -y 0e|B1,- -+, Ba) equals zero if
d > 0 and equals the intersection number [, 1 N---Na. if d=0.

(vi) Let 6 be a class in H*(Y,Q). Then p*é is a class in H*(X,Q), and

(I)?Alr" JAmw,T,P) (@*6, 01, , 0c|By, -+ , Ba)
=6A q’?Al,... JAmw,Z,P) (alv Ty a8I1317 T ,ﬁd)-

Proof. For (i), (ii), (iii), (iv), the proof, similar to the proof of Proposition
2.5 in [RT], is omitted. ’

(v) (2.1) implies ¢ deg o + 3 4(deg 8; — 2) = 2n(1 — g) + deg(7). Fix
a pseudo-manifold representative F' : Z — Y, then the moduli space is Xz
if we choose the fiberwise inhomogeneous term to be zero. If we choose
representatives (L;, U;), (Mj, W) of s, B; intersecting transversally in Xz,
by definition <I>’(’ Agye ) A 0,5, P) (a1, yac| B1,- -+, Ba) (7) is the intersection
number of Li(U1) N--- N L(Us) N My(Wh) N -+ - Mg(Wy). If d > 0, this
intersection is empty because of the degree requirement. If d = 0, this
intersection number is the same as

Q

F* 1/\-°°/\F*ac(Xz)
Frai A A F*ay(2)

(03] A "ac(F*Z)

I
ST~

aypA-- 'ac(7)a
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where F : Xz — X is the natural map induced from F : Z - Y. So (v) is
proved.

(vi) Suppose that F : Z — Y is a pseudo-manifold representative of a
class v € H*(Y,Q), then we have the diagram

XZL»X

Al |

Z—F->Y

Note that since F*p*§ = piF*6, if the Poincare dual of F*§ is represented
by a pseudo-manifold K, then we can represent F*p*§ by the pseudo-
manifold (Lo, p; (K)). So the intersection of Mgy am) (B Xz, J,0)
with (Lo, p7 (K)), (L, Us), (M;, W;) in Xg}'{dﬂ is the same as the inter-
section of MP, 1 (%, Xk, J,v) with (L;,U3), (Mj, W) in Xhd. This
exactly means that <I>’(’A1,m Amw.S,P) (p*6, 01y, ac | B1,--+,Ba) (67) =
g/\ (I)l(’Al,---,Am,w,E,P) (a1, , el B1,- -+, Ba) (7). The proposition is proved.

Proposition 2.4 (Direct Product). Let X; — Y;,X; — Y5 be two fiber
bundles with fibers V1, Va and fiberwise symplectic forms w1, ws, respectively,
and assume both satisfy the Assumption (x). Then X = X1 x Xo = Y1 x Y3
is a fiber bundle with fiber V1 x Vo and fiberwise symplectic form w = w; ®wa,
also satisfying the Assumption (x), and

(2.2)
X / / / ! /
D (A1, A e (A AL 0,5, P) (@1 @ 01, 1, e @ c|B1 ® By, -+, B ® Ba) (Y ® )
A1,
= q)(/i:"',/lm,whE,Pl)(al’ ey aelBr, Ba)(v)
X,
: q)(j’:--',Ain,wz,E,Pz) (0‘,1, T 7a/c|:6£, Tt 7:821)(7,%

where ®XV, X1 gnd dX2Y denote the fiberwise mized invariants on X, Xy,
and Xy respectively.

Proof. This follows directly from the definition of the fiberwise mixed invari-
ants. a

Proposition 2.5 (Restriction). Let X — Y be a fiber bundle with fiber
V satisfying Assumption (%), and h : Y1 — Y be a smooth map. Denote by
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Xy, = X x5 Y to be the induced fiber bundle with fiber V and the induced
fiberwise symplectic form w. Then Xy; — Y1 satisfies Assumption (x) and
we have a natural map H : Xy, — X. Furthermore

Xy, v

(23) D s Amws,p) (H o1y o Hr o |H By, -+, H*Bg)
= h*q)f‘;l), ,Am,w,E,P)(al’ T acwl’ Tt vﬂd)‘

Proof. We only need to show that for any v € H*(Y1,Q),

Xy, - .
Bt Amom,pyH 0ty H 0o H* By, -, HBa) ()
= B0 . Az @1 vaC|:31a"' B (he)

Choose a pseudo-manifold representative (F,Z) of v in Yj, and represen-
tatives (L;, U;), (M;, W) in Xz of H*a;, H*Bj. Then the pseudo-manifold
representative of h.vy is (ho F, Z), and the pseudo-manifold representatives
of @; and B; in Xz can be chosen to be (L;, U;) and (M;, W), respectively.
With these choices, both sides of the above equality amount to counting the
number of intersections of Mgy, Am)(Z‘, Xgo,J,v) with U? x W0 in X ctd,
Clearly they are the same. The proposition is proved. O

Proposition 2.6 (Induction). Suppose that the fiber bundle Y — B has
fiber Vo with fiberwise symplectic form wq satisfying Assumption (). Sup-
pose also that the fiber bundle X — Y has fiber V1 with fiberwise symplectic
form w satisfying Assumption (x). Further assume that w is also a fiber-
wise symplectic form satisfying Assumption (x) for the induced fiber bundle
X — B with fiber V. Let Ay,--- ,Am be in Hy(V1,Z). Then

(24) LT 4w py (@l el Ba)

XY,
/ (I)(Al,t') ,Am,w,E,P)(ah tee 7ac|:317 te :,Bd)

where ®XBY and XYV are the fiberwise mized invariants for the fiber
bundle X — B and X — Y respectively, and the map sz : H*(Y,Q) —
H*~dimVz2(B Q) is the Gysin map which can be defined by integration along
the fiber direction.

Proof. For any v € H.(B,Q), choose its pseudo-manifold representative
F:Z — B. Denote Y xr Z by Z. Then F :Z > Y is a pseudo-manifold
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representing a homology class 4 € H,(Y,Q). All we need to show is that

q’af’v vAm,w,,P) (a17 Tt aclﬂly T ’ﬂd)(’)’)
= @f‘{i’v ,Am,w,E,P)(al, el Ba)(7)-

But Xz — Z is a bundle with fiber V, and &3 — Z is a bundle with
fiber V1. Obviously there is a natural isomorphism Xz = X3, so we can
choose the pseudo-manifolds representing «;,8; in Xz and X; to be the
same. To prove above identity, we need to find a good (J,v) for Xz and a
good (J,7) for X such that M4, ... 4,.)(Z, Xz, J,v) is naturally identified
with M4, ... 4 (E; Xz, J,7) and they define the same evaluation map.

We achieve this goal in two steps. In step 1, we will show that there are a
family of (J,v) for Xz — Z such that any fiberwise (J, ) holomorphic map
actually lies in the fiber V] of the fiber bundle V — V4, i.e., it is actually a
fiberwise (j ,7) holomorphic map for X;. So we have an isomorphism be-
tween My, ..., 4,,) (8, Xz, J,v) and M4, ... 4,.)(Z, X5, J, 7). In step 2, we
will show that there are good (J,v) and (J,7) among the above mentioned
family.

Step 1. Let E, E1, and E3 be vector bundle over X'z, X5, and Z respec-
tively as defined after Remark 1.2. Note that Ej is a subbundle of E. Fix a
splitting E = E; ® Ef, then we have diagram with . being an isomorphism
on the fiber.

E¢ " E,

Lo

X; 2 Z

We define a family of (J,v) on E as follows. They are of the form (J,7)|g, ®
(J2,0)|ge, where (J,9) e Pr—1p(Er,w) and J is the pull-back of fiberwise
almost complex structure Jo € Pr—1,p(E2,w2) by m1.. Note that J is tamed
by w+ enjws for small e. We show now that for such (J, v), if f is a fiberwise
(J,v) holomorphic curve whose image is in fiber V, then m; o f = constant
where V =5 Vj is a bundle map, i.e., it is in M‘(’Al’m,Am)(E,XZ, J,p). By
definition, df 4+ J odf o j5, = (#,0). Projecting it to Es, we get m1.df + m1.J 0
df ojy, = m14(9,0). Since m1.J = Jomy4, we get d(m10f)+Jpod(m10f)ojx =0,
i.e., m; o f is a Jo holomorphic map in V5. But since A € Hy(V4,Z),

0=/7r{w2=/ ﬂ‘w2=/f*7r‘{w2=/(7r10f)*w2,
A f(®) p>) b))
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on the other hand [;,(m o f)*ws > 0 if mj o f is not a constant.

Step 2. The existence of a good (J, ) can be proved in the following way.
We can choose a subspace of Map(4,.... 4,,)(X,X) consisting of maps with
F(£) € V1 xpt, and choose a subspace of Pi_1,p(X,w) consisting of all (J,v)
described above. Now the argument of Proposition 1.4 works within these
two subspaces.

The proposition is proved. O

Remark 2.3. Assume that (X,w) itself is a symplectic manifold, and
w is also a fiberwise symplectic form for a bundle X — Y. Note that
@?:‘{f ff_’, A w.5,P) (o, e ,ac|B1, -+ ,Ba) is equal to the non-fiberwise mixed
invariant Q?Al,---,Am,w,E,P)(al’ T 7a61131’ te ,ﬂd) if Al, et ,Am € HZ(Vs Z)
Choosing B = pt in the above proposition, the non-fiberwise mixed invariant
and the fiberwise mixed invariant are related by

(25) /l; q)‘(;\:&:?v ’Am’w,z;’p)(ala R aclﬁl, Tt ’,Bd)
= (I)?Al,--- ,Am,w,E,P)(al’ ooy og|Bry e, Ba)-

In this circumstance, using the above identity, all the properties including
the composition law of <I>( Ar" Am .S, P)(al, ey @elB, -+, Ba) follow from
the corresponding properties of the non-fiberwise mixed invariants. This
fact was already observed by Astashkevich and Sadov in [AS].

3. Composition Law of Fiberwise Gromov-Witten
Mixed Invariants.

3.1. Gluing of J-Holomorphic Maps.

In this subsection, we will apply the implicit function theorem to the
study of deformation theory of perturbed J-holomorphic maps from a sin-
gular curve.

Recall that a degeneration of stable curves is a holomorphic fibration
7w : S — A C Cwith sections o1, - - - , 0. satisfying : (1) Foreacht € A,¢ # 0,
the fiber ©; = 7~1(¢t) is smooth; (2) For each t, C; = (Z4;01(2), -+ ,0¢(t))
is a c-point stable curve.

Adopting the notation of section 1, suppose that X’ 2, Y is a fiber
bundle with fiber V satisfying Assumption (x), F : Z — Y is a pseudo-
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manifold, and Z? is a stratum in Z. For any point 2y € Z%, we can find a
neighborhood W, C Z% of zp such that there is a trivialization Xz|we =
W x V. Denoting Xz|we by Xwe, we equip W* with Euclidean metric ds?
and trivial connection V;. Let hg be a Hermitian metric on bundle E, V
be the connection on F compatible with hg and J, with torsion %N 7; Ny is
again the Nijenhuis tensor. Therefore h, = dsg+ hg is a metric on W2 x V.

Let v be an inhomogeneous term on S x Xz, and v; be the restriction
of v to ¥; X Xz. Consider the moduli space of fiberwise (J, 14)-perturbed
holomorphic maps in Xza,

qu(zt’XZ"‘v']’Vt)
= {f:3¢ = Xga|df + Jodf 0§y = vy, [f(X4)] = A, po f(:) = pt € Z°},

where j; is the complex structure on ¥;(t # 0), A is a fixed homology class
in H2 (V, Z)

Assume that ¥y has m-components ¥q;, -+ , Xom, and suppose that the
position pattern of 1(0),--- ,0.(0) in ¥¢ is P;. Fix a partition of

A=A+ Am, A; € Hy(V;Z),

which is effective, i.e., M}gi(EOi, Xza, J, vy;) is not empty for each i. From
Proposition 1.2, the moduli space MEJAI,“‘, Am)(Eo, Xze, J, 1p) is a smooth
manifold and for generic t # 0, MY(%¢, Xza, J, 1) is also smooth manifold
with dimension

dim MY (2, Xze, J, 1) =2C1(V) - A+ 2n(1 — g) + dim Z%,
where 2n is the real dimension of V' and g is the genus of ;.

Theorem 3.1. Let fo be any map in M'(’Al,"_ ,Am)(zo,-’(za,J, Vo) which
intersects transversally at each double point. Assume fo(Zo) C V.
Then there is a continuous family of injective maps Ti from W into
MY (B¢, Xza, J, 1), where t is small and W is a neighborhood of fo in
My, ... Ay (B0, Xwe, J,v0) such that:

(1) for any f in W, ast goes to zero, Ti(f) converges to f in C°-topology
on o and in C3-topology outside the singular set of Lo;

(2) there are €,6 > 0 satisfying: if f' is in MY(Zs, Xwe, 1) and
Bty (F/(2), foy) < € uhenever & € T, y € To, ds(z,y) < 6, where
dxy. and dg are the distance functions of metric hy on Xwe and a Kdihler
metric p on S, respectively, then f' is in Tt(W) Moreover, for generic t,
T; is an orientation preserving smooth map from W into smooth manifold
M?A(zt, XZ"‘a J, Vt)'
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Proof. First, we make a reduction to the case with zero fiberwise inhomo-
geneous term as we did in subsection 1.1. Adopting the notation there, for
any deformation of fy, f; : ¥y — Xze, its graph map F; : ¥; — S X Xze is
a deformation of the graph map of fo. Fp: X9 — S X Xza. Let m; be the
projection map from S X Xz« onto the i-th factor (i=1,2), then m o F; = id.
Conversely if F, is a small deformation of Fp, then m; o F} is indeed a bi-
holomorphism of ¥, and f; = mg 0 Fy o (m1 0 F})~! is a (J, ;)-perturbed
holomorphic map, a deformation of fy. This shows that to study the de-
formation of fy is equivalent to study the deformation of Fy. So we may
assume v = 0. Note that although S x Xz« may not be compact, the object
under study lies in a compact region.

In the following proof, we will use C' to denote a constant independent
of t and any f near fy. The actual value of C may vary in different places.

Let f € W, f(Xo) C V;, and z € W® We will first construct an
approximate J-holomorphic map from ¥; into V, for each t. Let p be any
double point of ¥, and U, be a small neighborhood in S containing p. Uy
has coordinate (21, 2p2) such that

UpNE: = {(2p1,2p2)| 21 - 22 = 1, |2p1| < 1, |2p2| <1}

Choose a coordinate system u1,--- ,Us; Y1, ,Y2n Oof Xwe near f(p)
(7 = dim W), such that the coordinate of f(p) is zero and

0 ) 0
J| 57— ) =5+ O0(y| + [u]),
( 55) = g (lyl + Jul)

0 0
J = ——— 4+ O(ly| + |u]),
(52 ) = =55 + vl + 1

where i = 1,--- ,m, |yl = /227, |vil?, and |u| = \/Z?=1 |ui|2. Note that

there are two connected components in U, N o,

Upt = {(2p1,0)| |zp1| <1} and Upz = {(0, 2p2)| |2p2| < 1}.
Let fp = flu,:» i = 1,2. Then we have the following expansions:
Fpi(2pi) = fpi(2pi) + terms of degree greater than 1,

where fpi are homogeneous polynomials in zp; of degree 1. We identify a
neighborhood of f(p) in Xe with open set in W x C" by putting w; =
Yi++v—1yn+i, ¢ = 1,- -+ ,n. By assumption, at each double point, fo|v,; and
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Jolu,, intersect transversally. If we choose W small enough, we may assume

that for any f € W f lv,, and f|Up2 also intersect transversally. Then by
choosing y1, - - , y2n properly, we have

fpl((Zpl,O)) = (zpl) 0,--- 70) +0 (Izpllz) e0x Cn,
Fo2((0, 2p2)) = (0, 22, ++ ,0) + O (|z2|*) €0 x C™

By changing local coordinates y1, - - - , yon, We may further assume that
(3'1) fpl ((zplv O)) = (zpl’ 0,--- ,0),
(3:2) Fp2((0, 21)) = (0, 2p2, - -+ , 0).

Now we begin to construct an approximate J-holomorphic map f;* :
3; — V, for each small t. Let ¢, be a smooth family of diffeomorphism from
¥ into X, where Xj is the nonsingular part of Xg, such that ¢9 = id, and

(3.3) l¢¢ — ddllcs(zo\v7) < Cur - 8,

for any small neighborhood U’ of the singular set Sing(Xp) in Xy. Here Cyr
is a constant depending only on U’, and the norm is taken with respect to
metric g on S by viewing both ¢; and id as maps into S. Then for any p in
Sing(Xo), we have

CO i S <c-1,
EeUp CH(ZeN{(2p1,2p2)| 3<I2pil S15i=1 or 2})

where f is the map: (2p1, 2p2) € Up = (2p1,2p2,0,--+,0) € 0 x C*. Note

that

3.5 fl = fl = foo

( ) f Upt fpl, f Ups fp2

By (3.4),(3.5), there is a homotopy F; on Iy N (Upesing(so){(2p15 2p2) | %
|2pi| < 1, i =1 or 2}) satisfying, for any p € Sing(Zo)

(3.6)

17 = £ 0 67l oamaniept e | L<hpistiztor 2y < C It
(3.7)

F,=fon 2tn{(z;pl,zpz) | = < lzpi| < 12,z=10r 2},
(3.8)

- 9 :
=fo¢tlon2tﬂ{(zp1,zp2) | 1—0S|2p1|$1,2=10r2}.



554 Peng Lu

We define
ftapp(x) =fo ¢;1($)a forz e I;\ UpESing(Eo)Upy
(3.9)
1
ftapp(zpl’zpfl) = Fi(2p1, 2p2), if 3 <leil £1,i=1or2,

FiP (2p1, 2p2) = (2p1,2p2,0, -+ - , 0), if |2p| < -;—, i =1 and 2.

Let p be a Kahler metric on S which equals dzp; ® dZp1 + dzpe ® dZye on
U, for each p € Sing(Xp). Let p be a smooth function on S\ Sing(Xo)
satisfying 0 < p < 3 and

(310)  plu,(2p1: 2p2) = \/|2p1[* + |2p2|?,  for each p € Sing(o).

Define a new metric . on S, g = p~2u. Note that

|dzpil”
Itclztnvp = Tzﬁz—’
T

i.e., for ¢ small, p¢|s,nv, is a cylinderlike metric. The following lemma can
be easily proved from the definition of f{¥?, u, and . by local computation.

Lemma 31 Let V be the connection defined at the beginning of this sec-
tion. Denote by D the covariant derivative induced from p and V, and D,
the covariant derivative induced from u. and V. Then for 1 <k <5,

¢l
whs () < Ck (1 + ;(:::)T"“l) ,

e @ % (14555

where | |y ng and | |u.ny denote the norm defined by p,hg and pc, hg re-
spectively.

(3.11) |D’c fom

(3.12) D; fi"®

Let Jy be the standard complex structure on C". By definition, for each
p in Sing(Xo),

1
dfPP + JoodffP 0§y =0  on ;N {(zpl,zpz) | |2i| < 5, i=1and 2}
where j; = jg,. Put

(3.13) ve(z) = (dfyPF + J o dfy™P o jit) ().
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Then
ve(x) = (J = Jo) o df{™® o ji(x),

on

1
N {(zpl,zpz) | 2pi| < 3 i1 =1 and 2} .

Since f is J-holomorphic on Lo N {(2p1, zp2) | |2pi| < 4,4 = 1 and 2}, we
have

0 0

J(zplio"" vO) (f*azpl) = JO(zplvoa"' aO) (f*azpl) y
0 0

J(O’ 2p2y° ’0) (f*azpz) = JO(OazP27"' 70) (f*az 2> .
P:

Then we can derive from last lemma,

Lemma 3.2. For 1< k<4, then
k < . L
(3.14) 'D vtlu,ha () < C @)

(z) < Ci-It.

HesRE

(3.15)

We want to perturb f;¥? into a J-holomorphic map from ¥; into Xpye.
Fixing the trivialization Xy« & W* X V as before, we can represent f,7* as
(2, ft7P). Identifying W* with an open subset of R?, z with 0 and W* with
a neighborhood with T,W?, we can define a modified exponential map

exp* T,W* x T (T4, fiPP*T(2 x V)) = W x V,
(ut1, ue2) — (Utl, expiers (ut1, utz)) )
as follows. Suppose v* is coordinate of W2, 3/ is coordinate around f;77(z)

inV, z € & Then ezpjapm,, (ue1, ue2(f;7P(z))) is defined to be y(1), where
y(s) is the solution of

d247 .
Tsyg— + Fiz(sutl, Y)
y(0) = fii" ()

d
B|,_, = wa(fil" (2))

dydy' _
ds ds
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Here I‘il(sutl,y) is the Christoffel symbol of connection V on E. By def-
inition the image of map exp* lies in the fiber uy; X V. We do not use
exponential map defined by metric hy, because its image does not lie in a
fiber. Note that when we choose us; = 0, exp* is exponential map on z x V,
defined by metric hg|,xv. So by the implicit function theorem and the
property that solution of ordinary differential equation depends smoothly
on parameters, we get that for small uy, ewp}fpp(m) is a diffeomorphism on
a small ball in f;PP ’*Tft“”(m) (2 x V). Let f; be a map from X; into W* x V,
we can Tepresent it as (2t, fu1). If f; is sufficiently close to f;7* = (z, fiFF),
then we can write

(zta ftl(x)) = (utla ewpzapp(m) (utl) Ut2 (fﬁpp(x)))) 3

where u; is a vector in T,W* and uys is a vector field of f;** *T(2x V) on

Y:. We need to find (us1,us2) such that f; is J-holomorphic.

For any (us1,ue) in T,W* x fiPP*T(z x V), we denote by my(us1, us; z)
the parallel transport from T,(z)(2¢ X V) to Tyerr(4) (2 X V) with respect to
V along the path (sutl,emp}:pp(m) (sua1, su(fiF¥(z))))1<s<1- Since V is

J-compatible, we have
(3.16) Iz 0 (g1, te2; T) = me(uer, we2; T) © J,.

Let AL (ffPP*T(2xV)) be the vector bundle over ; of all anti-(J;, ji)-linear
homomorphism from TE; to ffPP*T(zx V). Denote by QO (fPP*T(2x V))
and Q(fPP*T(z x V)) the space of sections of A%!(f;”P*T(z x V)) and
PP T (2 x V) respectively.
Define
(3.17)
B, T,W® x Q (fPP*T (2 x V)) = Q0L (fPP*T(2 x V),
(ut1, uez) — me(uer, wea; ) o (dfy + Jz, 0 dfy 0 ).
Because of (3.16), this map is well-defined. Let
(3.18) LY%P(0) = D&,(0)s,  t€A.

Lemma 3.3. For any o = (01,02) € T,W® x Q(f{"P*T(2 x V)) and any
e € TY:, we have

(3.19)
1
LY (01,09)(e) = Veoa + J; 0 Vjeoo + ZNj’ (81,1, 02)
daJ. ;
+ T;"- odft"ppogte+I‘(al,vt),

5=0
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where z; = sop a path in W%, T'(-,-) is the Christoffel symbol of V, and
ve is defined in (3.18), t # 0. Here we identify D(f77*T(z x V)) with
T(fPP(%:),T(z x V), so we may view V as a covariant derivative on
L(F2P*T(z x V)).

Proof. The computation, which is the same as we did in section 1.2, is
omitted. O

Let LPP* : QOI(fPP*T(2 x V)) — T,We x Q(f{P*T(2 x V)) be the
adjoint of Ly"®PP with respect to the metric ds2, hg and the metric y. on
Y;. Let (e, j:e) be any local unitary basis of T'X; with respect to ., t # 0.

Lemma 3.4. Assume that (-,-) is the induced metric on fi***T(zx V) by
hg. For any section & € QU (fPP*T (2 x V), we then have

(3.20)
LY (€) = (2(6(e), (dT, ) o dFPP(jee) + T m))",

- Zvef(e) - 2Vjtef(jt€) + %(5(6), NJz (an fpp, )(6))*)

Here (£(e), (dJ,-) o dff?P(jie) + T(,ve))* is defined by the relation that
its inner product with oy € T,W® is fzt(f(e),%r’-lmo o df{PP(jie) +
['(o1,v:)(e))dpe, and (£(e), Ny (81, fi7,-) (e))* is defined by the relation that
its inner product with o9 € f;7P*T(z x V) is (£(e), Ns(8s, £, 02)(e)).

Proof. Let e; = e, ea = jie, then the dual basis (e}, e3) satisfies e = —jze}.
Set

¢ =tiel + &5, &€ fPPT(2 x V), i=1,2.

Since ¢ is anti-(J3, jt)-linear, we have €3 = —J,€1. So for any anti-(J,, ji)-
linear vector X € QO(ffPP*T(zx V)), we have (£, X) = 2(¢1, X (e1)). Using
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this, then
-/Et <L¥’app*£, 0.>l$cth dﬂc
- / (&, Ly (01, 02))dpe
3t
=2 [ (6, L0 (on,00)e0)dne
t

‘ 1
=2 5 (fl) ve10'2 + Jz o ve20'2>dﬂc + EA (611 NJz(an tapp, 0'2)(61)>d/1'c
t t

+2 /2 <€1’.,an, odf;””’(ez)+r(al,vt)(e1)>dyc

ds s=0

1
=2 [ (Veyts + Verbaoudue + 5 [ (60 N0, (0057, 00) 1)
t t

+ 2/}3 <€1, 0| df{" (e2) + (o1, vt)(€1)> dpte.

ds s=0

The lemma follows. O

Lemma 3.5. Let £ € QY(fPP*T(2x V)), and r(p) be a positive function
in p. For any 0 < € < 1, there is a C¢ such that

(3.21)
/E r(@2LVP R dpe > (2—¢) /E r(0)?|VEL, . dpe
t t

— Ce ’ L (r(p)z‘df:ppllztc,hz ' ‘diztc,h}z'i-' r'(p) |2 : |§|12tcth) d'u'c’
t

where C¢ depends only on the curvature tensor of hg, uc and the fiberwise
almost complezx structure, t # 0.

Proof. Observe that
(5(6)? (d’]’ ) o dftaw(]te) + P('7Ut)>*

and
((€), N, (87, £, -)(e)*

are zero order operators of £. The computation, which is similar to the
computation in the remark after Lemma 6.4 in [RT], is omitted. O
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We will apply the implicit function theorem to construct the map 73 in

Theorem 3.1. First we need to establish the lower bound of the spectrum of
V9P = LVOPP o [V9PP*,

Lemma 3.6. Let D be a disk in C and p. be the cylindrical metric on

D\ {0}, i.e., pe = Hd;zg. Suppose that fp : D — 2z x V, where z € W?, is a
J-holomorphic map, LY}, is the linearization of Cauchy-Riemann equation at
fp and & is a C%-smooth section of Q¥ (fHT (2% V)) over D\ {0} satisfying
Ly€é = 0 on D\ {0}, where LY is the adjoint of LY, with respect to pe.
Furthermore ‘

/D\{O} (IVElehs 121 €l ng) dte < oo

Then limit limy—0&(w) ezists and is a vector in T, (0)(2 X V). Such a limit
is called the residue of £ at z = 0.

Proof. From Lemma 3.4, we know that LYy¢ = (L%3€, Ly¢) € T,W* x
QO(fHT(2xV)). Observe that LY, is exactly the operator L§ in [RT]. Then
the lemma follows from Lemma 6.5 in [RT]. O

Let L§ and LY be the linearization of the Cauchy-Riemann equation
at fo and f respectively, and let L§* and L¥* be the adjoints of L§ and
LY on X \ Sing(Xo). We denote by KerL§* the set of those sections £ of
QOL(f3T (20 x V)) over Tp \ Sing(Zo) satisfying L§*¢ = 0 outside Sing(Zo),

[ 96 ps gt < oo,
0
and for every node p in Sing(Xo)

limz—-»O,zeUpl &+ limz—vo,zeUpzfz = 0.

Here U, is any small neighborhood of p with two irreducible components
Up1, Up2. We define KerL"* similarly.

Proposition 3.1. For a generic (J,v), KerLg* is trivial, and for any f €
W, kerL¥* is trivial also.

Proof. Fact 1. Write Lg§* = (Lg}, Lgs), and KerLg* C KerLg;. According to
Lemma 6.1 in [RT], KerLg; = 0, so KerL§* is trivial.
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Fact 2.Again Xy; are components of £g. Let £9; = Zg;\ Sing(Zo) and denote
by L§*|ze and L¥*|xo the restriction of L§* and L* to QOY(ZY., fET (20 x
V)) and Q%}(Z3,, f*T (2 x V)) respectively. Since for elliptic operators,
dim KerL”*]Egi is upper semi-continuous function of f, dim KerL”*]Egi <

dim KerLg*]z;gi. Here we probably need to shrink W a little bit.
Fact 3. Consider

m
Ry : HKer( S*IZ‘.&) — H Tfo(p)(z() x V) x Tfo(p)(z() x V),
i=1 pESing(So)

Ry(§) = H (limz_,pgzgi,limz_,p€ggi,) )

p€ESing(Xo)
Ao = H {(u, —u) I u € Tfo(p)(zo X V) } ,
pESing(To)

m
R: HKer (L”*]Egi) - H Tipy(z X V) X Ty (2 X V),

i=1 p€ESing(To)
R(f) = H (limz_.pfggi, limz-—ypgzgu) 3

p€ESing(To) ,
A= H {(u, —w) | uw€ Typ(zxV)}.
peSing(Lo)

On each component XJ;, f converges to fo in C*-topology, and KerL”*|Egi
converges to KerL§*|go in C2-topology, i.e., map R is C?-close to Ry. From
the proof of Proposition 6.1 in [RT], map Ry is transversal to Ay for generic
J, R map is transversal to A. KerL" = 0 follows from above three facts
and a simple dimension counting. O

Lemma 3.7. There is a constant C > 0, independent of t, such that for t
sufficiently small, the first eigenvalue A1 (00}"°PP) of O;"PF is bounded from
below by 5.

0W %Y Tioglth

Proof. Write LyPP = L};P + Li3™P, where

LY T,We — QOL(Sy, fiPP*T (2 x V)

and

L2, : T, fPPT (2 X V) — QO (S, AT (2 x V)).
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Then L’U ,app* — (L’U ,app* L’U app*), and D;},app L’U ,app o L‘U .app* L‘U ,app o
Ly"P* . Note that Ly app L" 2%PP* is exactly the operator Lt oL} = Elt in
[RT]. Lemma 6.6 in [RT] then 1mphes that the first eigenvalue Ay (L;0 L}) >
WCI'tI)’Z Note in the proof of Lemma 6.6 [RT], we need the second half

of Proposition 3.1. Since operator Ly;""? o Li;*P* is non—negatlve and the
spectrum of L3P o L*PP* are all elgenvalues, M (O7P) > —ogl'tl_)f follows
from functional analysis.

Let ®; : T,W® x Q(ffPP*T(z x V))) — QO (f}PP*T(2 x V)) be the map
defined in (3.17), define

(3.22) W(6) = BeoLy " : QUL (fIPPAT(2xV)) — QO (FIPPUT(2x V).

To find a J-holomorphic f;, it suffices to show that ¥;(¢) has a zero
solution &.

Lemma 3.8. U(&) has the following expansion,

(3.23) :(0) = v,
(3:24) Uy(€) = ve + L™ o L PP°E + Hy(8),

where v; is defined in (3.13). Furthermore, Hy(§) satisfies

(3.25)

[1H:(&1) — He(€)llor < Cllléallg, + l€2llz1) - 161 — &alla 1,
(3.26) ’

||Ht(§)||o,% <C- ”5“1,% : ||§“2,%

where we denote by | - ||, 1 the C*3 -Hslder norm defined by the metric hq,
on W% x V and the metric pe on X;.

Proof. Consider the expansion of ®;(o1, 02),
q)t(0'1, 0‘2) = v + Lv appal + Lv appaz + G(O’l, 0‘2),

where G(o1,02) is the nonlinear part.
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Claim:

G(o1,02)(e)
= Li(01,02) 0 Veoa + La(01,02) © Vj,e02
+ Q1(01,02) 0 dfi?P(e) + Q2(01, 02) 0 df;™ (jse),

IZi(os,02)lloy < €+ (loaho+ loall3) s i=1,2,

1Qie1,02)ly < - (lonld +llal?,), =12
|G(o1,002) — G (‘7'1"73)”0,%

<C- (ll(01702)lll,% + ”(0'1,05)“1,%) (o1, 02) - (01,05)”1,% ,
1G(o1,02)llg,2 < C - ll(e1,02)llg, 1 - lI(o1, 02) Iy, 1,

where e is a vector in TY;, L1 and Lo are linear first order differential
operator in (o1,032), Q1(01,02) and Q2(01,02) are quadratic operators in
(01,02, Vo).

To prove the claim, view W% x V as a symplectic manifold with standard
symplectic form on W* c R”* (if W is odd dimension, we replace it by
W? x R). Then ®;(01,02) is operator d at f{PP for symplectic manifold
We x V. The claim follows from the calculation done by A. Floer [F1,
section 3]. Note although the constant C' depends on f;*?, since ||f;"||5 1

is bounded, we may assume constant C does not depend on f;*" at all.

By choosing o1 = Ly;*PP*¢, 09 = Lp™P*¢ in the claim, note |oi]jo <
C-l€l1,0, "‘72”1,% <C- ||§||2,_;_, all the estimates of the lemma then follow
from the claim. a

Define
rhF (A FPPT(z x V) = {€ € QO (FPP*T(z x V) | [elly < o0}
Then
Ty : 27 (A% fIPP*T(2 x V)) — T3 (A% f7PP*T(2 x V),
PP . T23 (AL fPP*T(2 x V) — T% (A% f{PP* T (2 x V).

Lemma 3.9. Assume £ € T23 (A% fPP*T(z x V), ¢ = OVP¢ on 5.
Then

(3.27) Ellp,y < C- (<loglt)? lIClo 3.
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Proof. Note that
Vol(%s, pe) < C - (—loglt]),

/E \¢3due < C - €13 - (~logl]),
/2 |Ly7P¢|? dpse = [2 (&, 00PP¢) dp, = [2 (€,¢)dpe

< C - llello (~loglt)? - ( /2 |<|3duc)2 .

Lemma 3.7 implies that

/2 (&, 0 PPe)dpe > M (O P) - /2 € [adpe.
t t

Then
. 1efbdue < C- I3 - (~loglel”
t

Then (3.27) follows from above inequality and the standard elliptic esti-
mates. O

Proposition 3.2. There is a tg > 0 such that for any 0 < |t| < |to|, there
is an unique & € T23(AO fPPP*T(z x V)) satisfying l€lla,z < VIt and
U (&) =0 on %y, de., fr = ewp;gpp(Lf’app *¢) is a J-holomorphic map from
¥, into ZxV for some Z € W?. Denote this solution by fi° in the following.

Proof. Let B_/5(0) be the ball in 23 (AL f2PP*T(z x V)) with radius 1/[¢]

and the center at origin. Then solving equation ¥;(¢) = 0 for some & €
B \/m(O) is equivalent to solving equation

€ = () (—u + Hy(€)),
where (O;"%P)~! is the inverse of 00;"*"P. Note that

(@)™ (=ve + Hi()) T3 (A 7P T (2  V)) —
23 (A% fEPP*T(z x V).
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First we show (O0P)~1(—uv; + Hy(+)) : B\/W(O) — B\/H(O). By lemma
3.8,
(@ PP) ~H (—ve + Ht(ﬁ))“g%
< C - (~loglt)? - lluello 3 +C - (~loglt)? - 1H(€)llo 3
5 5
< C - (—loglt])? - [t + C - (—loglt])2 - [I€ll 1 - 1€lla,2

<C-(~loglthi - V-V <V

when [¢| is small enough.
Secondly we show (0;**PP)~}(—v; + Hy(-)) is a contracting map.

1000~ (—vn + He(0)) = (@)™ (—ve + HelE2)) |1
< C- (~loglt))F - [|Hu(€r) — Hu(2)llo,2

< C- (~loglt)? - (leallzy + IEallg,z) - 61 — &2l s

< O+ (~loglt))? - VI - léx — Ealy, 1

When |t| is small enough, it is a contraction map. So by the Banach con-
tracting mapping theorem, ((J}"**P) ~!(—v;+ H;(-)) has an unique fixed point.
The proposition is proved. O

Assume that fy € M’(’ Ar e, Am)(Eo,Xwa, J,0). By the transversality re-
sult in section 1.2, the tangent space of M, Am)(Eo,Xwa, J,0) at fo is
naturally identified with the kernel KerL§, where L§ is the linearization of
the Cauchy-Riemann equation at fy, i.e., a tangent vector at fp is a contin-
uous section u = (u1,uz) € Tz W* x Q(Zo, f3T (20 X V) satisfying L§u = 0
on Xy \ Sing(Xo). This implies that there is a local diffeomorphism from
a neighborhood of 0 in KerLj into M, Am)(Zo, Xwe, J,0). We assume
that W is contained in the image of such a neighborhood, we may assume
that for any f, and fp in W,

Il fa = Follcase) < C - l1fa = follco(so)-

Given any f in W, there is a unique section u? = (ufp,ufp) in
T W x Q(Zo, for"*T(z0 x V) such that

17 (2) = explamy (WEP (FP7(@),  wET,
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where f3¥?(z) is the approximate solution constructed from fo. A straight-
forward computation shows

V| @ <Cpla)

and for any f,, fp in W

app _ ,,app
ufat ufbt

ohEy L C - |fa— folloozo)-
We define T; : W — MY (X, Awe, J,0) by assigning ts"l in Proposition
3.2 to each f in W. Clearly, Ti(f) converges to f as t goes to zero. It is
easy to see that T; is smooth. We want to examine the invertibility of the
differential of T; at any point f in W. For simplicity, we do it at fy.

Lemma 3.10. Let wt(u‘}fp ,x) be the parallel transport along the path
{ewp;gfp(m) (suy (foi T (%)) Yo<s<i. Then there is a uniform constant C > 0
such that

(3.28) ”vm — (u’}fp,x) v

oS C- VIt - If - folleogzo)»

where vor = dfgr? + Jz 0 dfgt? 0 Gy

Proof. Choose a diffeomorphism ¢ from a neighborhood of f37*(Z;) onto a
neighborhood of f;/77(3;) satisfying (1) |l¢ — id|lca < ||fo — fllcs; (2) for
each node p in Sing(Xo), let Up, zp1 and zp2 be as in the begining of this
subsection, then

fgfp(zp17zp2) = ¢-1 o ffpp(zpl,zp’.’) = (zOvzpl,zp270, e ,0) € 29 X V'a

for all (zp1, 2p2) in Up.
When z € ¢ \ {UpesingsoUp}, then by the definition of fg* and f;7?,
we have

FoPP(z) = fo o ¢7 (), PP(z) = f o d; (),

where ¢; ! is the diffemorphism used in the construction of approximated
solution. Since both f and fy are J-holomorphic, we have

vot(x) = dfgF? + J o df§FP o jy = Joo 0 dfg o (¢7 0 Gt — Jo © ¢7t)
vi(x) = J; o df o (¢3! 0 e — Joo ¢i) -
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It follows that

|vor(z) — 5 ui(z))|
= | (e 0 dfo — #7 0 J; 0 df) - (d7) 0 4 — Go 0 $321)| ()
SC-|If = foller - Itl-

When z is in Uj, where p is a double point of £y. Then ¢~ o fPP(zp1, 2p2) =
Fol? (2p1, 2p2) = (20, 2p1, 2p2, 0, - -+ ,0) implies that

¢y ui(z) = (471 0 Jz 0 ¢u — Jo) 0 dgp ™! 0 £ o i,

where Jj is the standard complex structure on C™.
Since ¢~ o f is ¢;1 o J o ¢,-holomorphic, we have

-1 _ — 41
¢y oJ; °¢*|f(zp1,0) =Jo=¢,"0J; o¢*|f(0,2p2) '

In C*, we view ¢, 1 0 J, o ¢,| f(2p1,0) @S an almost complex structure at
f(2p1, 2p2). We may assume that |zp1| > |2p2| at z. It follows that

¢ () = (¢:1 °oJz0 ¢*|f(zp1,zp2) — ¢ todzo ¢*|f(zp1,0)) o dfof” o jt.
Similarly we also have

vot(z) = (Jzolfo(zp1,2p2) - Jzolfo(zpl,o)) ° df(l)ltpp o jt.
By the mean value theorem we deduce on U,
|voe(z) — ¢;lvt(m)|“c

= SUPp<e<1 |V (J - ¢:1 oJo ¢*)|f(zp1,zp2) ' |zp1| : |dfgf”| (z)
< C|If = folloggy) - VE-

It follows from the definition of approximate solution that

(3:29) lvor(z) — ve(z)| < C - |If = follcoz) - VIEI-
The lemma follows from combining this inequality, |vi|co < C - |¢|, and
Il (uPs ) 0 671 —ddllcz < C - |If = folloo- O

Let &1, & be the sections in Proposition 3.2, such that Ti(fo) =
emp;gfp(Lgfm’*fl), and Ty(f) = ewp;:,,(L:"“pp*{z). Using the fact that
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Ti(fo), T:(f) are J-holomorphic, we have

(3.30)
0 = ot + Lo PP o L ™P*(€1) + Ho(61),

(3.31)
0=, (“?tm’ ) (ve + L™ o L "* (&) + Hut(£2))
”51“1,% < \/ﬁ_v ||§2||1,§ < \/|t—|

Note that

(3.32)

a; v,a v,app* v,a v,app* a
“(m (uf’t’p,«) o L o L»™PP* — L™ o Ly™* o my (uf’t’p,-)) &9

< C- VIt If = folleo,
(3.33)

I|7rt (u‘}’t’p, ) Hy(&2) — Hog(m: (U‘}fp, ) &2)

1
0,3

o1 SCVHIIf = follco.
'2

Substracting (3.30) from (3.31), we obtain
(3.34)
Tt (u;‘t’p , ) Vs — Vgt |
=0 (& — m (uffP,") &) + Houl6r) — Hor (e (uP,") &) + B.
(3.32) and (3.33) imply
(335) IBllo,3 < C - VIdl- IIf = follco,

Applying Lemma 3.9 to (3.34), and using Lemma 3.10 and (3.35), we get

"fl - (u';fp, ) &

o1 SO VI (Sloglt? - 11f = folloo-
12

Therefore the map T; is injective near fo. Moreover, if Dy, T; denotes
the derivative of T} at fo, then for any u in KerL§, we have

1 1
(336)  (1-C-t) llulo < IDRT(w)llp < (1+C- ) lulo.

v,s0l

Denote by Ly, the linearization of the Cauchy-Riemann equation at fsot.
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Lemma 3.11. Let KerLgf"l be the set of all solutions for Lg;‘”lu = 0.
Then KerL2** converges uniformly to KerLY ast goes to zero. In particular,

the dimension of KerLy*® stays as a constant for t small enough.

Proof. The proof of the first part is similar to the proof of Lemma 6.9 in
[RT]. Note that KerL%:™ ¢ TaWe x Q(fS9*T'(z x V)), one can show that
dim KerL3;* is a upper semi-continuous at ¢ = 0 as in Proposition 3.1.
Then (3.36) implies it is actually continuous. O

Corollary 3.1. The derivative Dy, T; is an isomorphism between KerLy
and KerLY™ satisfying (3.36).

Remark 3.1. Note that in non-fiberwise case T} is an orientation preserv-

ing map, and the T;W® direction in KerLy** has fixed orientation. So in

fiberwise case T} is again an orientation preserving map.

It remains to show part (2) in the Theorem 3.1. Let f’ be given as in

Theorem 3.1. For any f in W, then there is a unique vector field u frol =
(uf;“"l’uf;”’Z) SUCh that f’(.’l:) = ewp;fal(:f) ('U/ftsol (ftsal(ﬂ:))) and IIUft.sOl ”0 S GI,

where € is small and depends only on W and € in Theorem 3.1. We want
to show that f’ coincides with one of fts"l.

Lemma 3.12. Let p be the function in Lemma 8.5, F be either f£% or f'.
Then there is a uniform constant A < 1 such that

(3.37) dF |2, pgdue < AN

/—%'loyltlz—loysz
Consequently, for some uniform Gy > 0,

(3.38) |[dF |2, () < C - p(z).

Proof. This is exactly Lemma 6.10 in [RT]. O
Lemma 3.13. Ife, [t| are sufficiently small, there is a f in W such that
(3.39) llugllro < C - [t

where (o is given in (3.38).



A rigorous definition of fiberwise quantum cohomology 569

Proof. By cutting ¥ along the loops in {z € ; | p(z) = 1/2[t|} and gluing
disks to the boundary components of the resulting surface, we obtain m
surfaces T, i = 1,--- ,m. Let &; be the disjoint union of those surfaces.
We can naturally embed %\ {z € 3¢ | p(z) = 1/2|t]} into E; as a subman-
ifold. Then we can extend the conformal structure j; on X; to be a natural
conformal structure ]t on Zt

It follows from Lemma 3.12 that when 2 - \/m <p(x) <£10- \/|T ,

(3.40) |df'|, () < C- ||,
Therefore we can extend f’ to be a map f from ¥; into z x V satisfying

I5lo,3 < C- 62,

where © = df + J, o df 0 j;. We denote by L? the linearization of Cauchy-
Riemann equation at f , by L'* its adjoint. Then by the same arguement
as in the proof of Lemma 3.7, one can show that the first eigenvalue of
L? o L** is no less than C - (—log|t|)~2, where C is independent of f’ and t.
By applying the implicit function theorem in a similar manner to the proof
of Proposition 3.2, we can find £ € T,W* x QOL(f*T'(z x V)) such that
fool = ea:p:‘,-(f,”*ﬁ) is J-holomorphic. Moreover, if |t| is sufficiently small, we
have 2
lell,3 < C- lef3%.

So the distance between I'm(f’) and Imn( £59) is less than C - |t|%ﬁ°. The
map f°°! may not be in Ma,.... Ay (B0, Xz, J, ). However, using (3.40)
and the fact that M'(’ A Am) (20, Xze, J, 1) is smooth at fy, one can show

that £ lies in a C - |t|% neighborhood of some f; in W, as long as both |¢|
and ¢ are sufficiently small. The lemma is proved. O

Without loss of generality, we assume that f = fp in Lemma 3.13. Let
be the unique solution of LY o L%*%*¢ = Ly ,,;. Multiplying this
q ot ot ot Uy
equation by £ and integrating by parts, we obtain

(3.41) / duc < \/ /

By the same argument as in the proof of Lemma 3.9, one can show

(3.42) /2 (€Pdpe < C - (~loglt]) - f2 L

Lv sol*

Lv soluf;ol

2
dpte - / €|2dpsc.
373

2
v,s0l*
€

dpec.
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Combine with (3.39) and (3.41), we get for ¢ sufficiently small,

By
/E ePdpe < C - [ %
Lv sol 'v solx 5 L'v ,sol

Since

Upsol = O(|luw fo! [l1,0), by the standard el-
liptic estlmate we have

€l <C- %

Consequently
)
||uf{?0l - Lgisoz*f 11 S C . |t|30.

2

Now we want to find a new f; in W which is very close to f = fq, such
that wge = L€, for some & € QOL(y, f394(W x V)), where LY sl 4

linearization of & operator at f§?! . Using equation f’' = exp* eot (Ufsol) =
1t
exp fso[(Ufsol), we can define a map S; from a neighborhood of f§' into
t
KerLg at f5o',

Si(h) =n(fo, f1) (upgp = L3"61)

where L7; ol fool = L jsol L”’s"l*gl, 7(fo, f1) denotes the isomorphism from

KerL7; s"l at fio to KerL§? at fo; which depends smoothly on f;. Clearly
St is a smooth map. By the same argument as in the proof of (3.36), one
can show

B B
49 (1-C-1HF)lulo < IDsSi@lo < (1+C-1F) lulo

Then by the implicit function theorem, there is a fi such that S;(f1) =0
By . .
and |ju seotlly, 1 < C - |t|¥. For simlicity, we may assume that fi coincides

with fo, then Ugsol = LY#°™*¢. Since both f’ and fy are J-holomorphic, it
follows from Lemma 3. 8 that

06 = —He(6)-
Multiplying this equation by £ and integrating by parts, one can deduce

(3.45) [2 |

However || Lg; ”l*f L <C- |t|£sQ, so for ¢ small enough, (3.45) is impossible
unless ugsor = L solve — 0, ie., f/ = for. Theorem is proved. O

2
Lo e| dpe < C-

%
Lg | - [ el dpe.
>



A rigorous definition of fiberwise quantum cohomology 571

Remark 3.2. Essentially Theorem 3.1 is a corollary of correspond-
ing gluing theorem in non-fiberwise case. This can be seen as fol-
lows: view W® x V as a symplectic manifold, now fiberwise moduli
space MfA],..., Am)(Eo,Xwa,J, 0) and MY%(Zs, Xwe, J,0) is a subspace of
M4y, Am) (B0, WO XV, J,0) and M4(Z;, W x V, J,0). The key difference
is that in the non-fiberwise case, the deformation space of J-holomorphic
map f is parametrized by subspace of Q(f*T'(W* x V)) whose TW?* com-
ponent may not be a constant. Fortunately, by modifying exponential
map and applying the requirement that TW*-component is a constant
to non-fiberwise deformation theory, each deformed map is a fiberwise J-
holomorphic map, which gives exactly fiberwise gluing theorem.

3.2. Composition Law of Fiberwise Gromov-Witten
Mixed Invariants.

Let (L;,U;)k_; and (M_,~,V[/'j)§-=1 be pseudo-manifolds in Xz satisfying
the general position condition. Assume

(3.46)

k l
> (2n+dimZ — dimU;) + ) (2n + dim Z — dim W; — 2)
i=1 j=1
=2C1 (V) A+2n(1l - g) +dim Z,

where g is the genus of a smooth Riemann surface ¥;.
Adopting the notations at the beginning of section 3.1, define the eval-
uation map for t # 0

(3.47)
et : MY(Se, Xz, T, 1) x (Zy)t — XEH

el(fiyn - m) = (Fo1(®)), -+, Flor(®)); F(wa), -+, F(w))-

Recall that for a generic (J,v) and for generic nonzero ¢, the im-
age Im(e;) intersects the product ]_[i.;l U; x H;-zl W; transversally. Con-
sidering an intersection point (fs;ys1,--:,Yst), We can assign a sign to
(fs;Ys1y-++ ,Yst) by using the orientation of MY (S, Xzo, J,vr), (Xzo)ktt
and Hf=1 Ui0 X H;'=1 W'Jp, where Z9, U,-O, and W2 mean the top stratums.
For t = 0, after fix a position pattern P; of (01(0),:--,0%(0)) in X
and an intersection pattern T, again for generic (J, ), the map ep inter-
sects Hf=1 U2 x H;=1 WJQ transversally at finite many points in X g('," L, Let
(fo;yo1,* -+ ,yoi) be one of such intersection points. Theorem 3.1 gives



572 Peng Lu

Corollary 3.2. Let (J,v) be generic and (fo;yo1,- - ,yo1) be as the above
which intersects transversally. Then there are €, § > 0 such that for t
sufficiently small, there is a unique (ft;ye1,--- ,yu) in the space

M'LA(ZhXZo, J, Vt) X (Zt)k+l

satisfying: (1) ds(yt,y0;) < € and dx,(fo(z), fr(y)) < € whenever
ds(z,y) < 6. Moreover the sign associated to (ft;ye1,- -+ ,yu) is the same
as the sign associated to (fo;yo1,--- ,ym) for those generic t such that
MY (Zt, Xzo, J,14) is a smooth manifold.

In section 2 we have defined the fiberwise mixed invariants

Q})Aly"’ 1A1T19w9201p) (al’ T ’ak I ﬂl’ T ’ﬁl)(’Y)’
denote
q)?A,w,Et,P) (al’ Tty O ' 131’ T 9,61)(7)
by
q)'gA,w,g)(al’ Y 27 | ﬁly T ’ﬂl)(’)')

where P stands for the trivial position pattern and the trivial intersection
pattern since ¥; is smooth.

Theorem 3.2 (Composition law). Suppose that fiber bundle X — Y
satisfies Assumption (x). Then for any rational cohomology classes

(24 PR 7ak;;311"' 7:83 € H*(X’Q)

and rational homology class v € H,(Y,Q),

(3.48)
Q?A,w,g)(ah T, O ] :31’ T aﬁl)(7)
= Z Z ¢?A1,'" 1AM)w,20)(P1)T)) (al, Ty Ok I ﬁl’ et ’IBI)(’Y)?

A=A1+Am T

for any fized position pattern P;.

Proof. Fix a degeneration 7w : S — A of a k-point genus g smooth stable
curves, such that the central fiber is a stable curve C and other fibers are
smooth genus g Riemann surfaces with k-marked points, where A C C is an
unit disc. Suppose that for ¢ # 0, (f¢;yu,: - ,yu) is an intersection point,
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then fi(oi(t)) € Im(L;), and f;(X;) N Im(M;) # 0. By Proposition 1.1,
and taking a subsequence if necessary, we may assume that f; converges
to fo in WAI,--~,Am)(20’XZ, J,1p) for some partition A;,---, A, of A and
some intersection pattern T as t goes to zero. By Proposition 2.1, if (J, 1) is
generic, fo is actually in M’(’ Age, Am)(Eg, Xz0,J,19), and by Proposition 1.5,
we may assume that fo intersects transversally at every double points. Let
Y3 be the limit of ys, clearly fo(z?) € Im(L:), fo(y?) € Im(M;), therefore
(fo; 99, y?) is an intersection point. Theorem follows from Corollary 3.2.
O

Next we want to show that ®(, . 4 = plas, - 0k | B, 6)(7)
could be explicitly calculated in terms of the fiberwise mixed invariant of
each component of ¥y and the contribution from the double points. There
are two kinds of double points on a stable curve: intersection of two different
components or self-intersection of one component. In each case we will give
a formula.

Case 1. Suppose that 3 has two components ¥(g1) and ¥gg) of genus g3
and g, respectively, satisfying: (1) X(o1) and X (og) intersect at a double point
p; (2) Z(o1) contains m marked points 1, -+ , Zp, and X(gg) contains the rest
of marked points. This is the position pattern P;. Let C = (2o;z1,- - ,ZTk)-
Then ‘D’(’ Ay Asw.c p) €21 be calculated as follows.

1,A2,w,C,P)

Assume that Z is a pseudo-manifold representative of . Let [H%] be a
basis of H*(Xz, Q). Consider the diagonal Az in Xz X Xz. By the Kunneth
formula, we could write the Poincare dual of Az as PD(Az) = 3~ 5M(Z,a,8)"

FQH g, where 7z o g) is the intersection matrix of H*(Xz, Q).

Theorem 3.3. Let the intersection pattern T be that the image of X gy in-
tersects Im(M;), j = 1,--- ,1' and that the image of X (gg) intersects Im (M),
j=U+1,.-- 1. Let Ay and Ay be two homology classes in Ho(V,Z). Then

(3.49)
q)t()ALAz,w,C,P)(al’ ok | By, B)()

= ZU(Z,T,6) ’ Q?Al,w,gﬂ (Ofl, Tty Omy [H“’Z'] l ﬁla T 7ﬁl') (7)
7,6

By 0.02) (am+1,j~- ) O [H%] l Bri1,- - ,ﬂz) (1),
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(3.50)
Q?Awg)(al"“ s Ok l ﬁl)"' ,ﬁl)(')')

= Z ZZZJI (l_J)yn(ZT,é)

B1+Bx=Aj=1 o 7,6
(I’?Al,w,gl) (Ofl, tct 5 Qm, [HE] I 160(1)) Tt 7:36(]')) (7)

- Bty 10,02 (am+1,~~ , Ok, [H%] Bo(j+1)* ’ﬁa(l)) (),

where By, and By are any two homology classes in Ha(V,Z) and o are per-
mautations.

Proof. The proof follows from applying the argument of Theorem 7.3 in [RT]
to moduli space M?Al,Az)(EO’ Xz, J, ). O

Case 2. Suppose that ¥ is a genus g — 1 curve with one self-intersection
point. Let C = (Xo; z1,- -+ , Tk).

Theorem 3.4. We have

(3.51)
awg(@r, ok | By, 0)(7)

= ZWZ,T,&) : Q?A,w,g—l)(al? ++e ok, [H), [H%] | By, B)(Y)-

Proof. The proof follows from applying the argument of Theorem 7.5 in [RT]
to moduli space MY (Zo, Xz, J, ). O

4. Fiberwise Quantum Cohomology and
Equivariant Quantum Cohomology.

Suppose that X 2, ¥ is a fiber bundle with fiber V satisfying Assump-
tion (x). Let Ay,---,An be an integral basis of Hy(V,Z). Any homology
class A € Hy(V,Z) can then be written as A=d; - Ay + -+ +dp, - Ap,. For
simplicity we assume that for any genus zero J-holomorphic map f of V,
f*(CPI) =dy-A1+---+dyn - Anp withd; >0,i=1,---,m
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Let

(4.1)

@Y (0a, -, oK)

= 3 el o YD e €Cllg, - gmll,
AeH(V, )

where o; € H*(X,C), ¢ = 1,---,k, q1,-+ ,gm are parameters, and
Cllg1, - - ,gm]] is the set of all formal power series of g;.
We define fiberwise quantum multiplication

(4.2) *: H'(X,Cllqu, -+, gml] X H*(X, C)llg1, -+ » gm]] —
H(X,C)lq1,- -+ , gm]]

by
(4.3) a*B(B) = &}(, 8, PD(B)),
where o, 3 € H*(X,C), B € H,(X,C), and PD(B) is the Poincare dual of

B. We extend # linearly to all of H*(X,C){[g1,:" - , gm]]-
We call H*(X,C)|[[q1, - ,gm]] with fiberwise quantum multiplication

* the fiberwise quantum cohomology associated to the fiber bundle X 2
Y, denoted by QH*(X,Y,C). Note that when Y is a point, the fiberwise
quantum cohomology becomes quantum cohomology of V.

Theorem 4.1. For any fiber bundle X 2, Y with fiber Vi and fiberwise
symplectic form w satisfying Assumption (x), there is a well defined fiberwise
quantum cohomology. It has the following properties.

(i) It is a H*(Y,C)[[g1,:** ,qm]] module. This module structure is the
same as that of H*(X,C) as a H*(Y, C)-module.

(ii) It is graded commutative:
(4.4) axf=(—1)dexdes. gy q

(iii) (Direct Product) For any two fiber bundles X1 — Y7 and Xo — Ys
satisfying Assumption (x). There is an isomorphism
(4.5) QH* (X1 X X2, Y1 X Y3,C) = QH*(X1,Y1,C) X QH*(X2,Y2,C),

as a H*(Y1 x Y2,C)[[q1, - , Gmy+mg)]-module. Here q1,--- ,qm, are
parameters for QH*(X1,Y1,C) and gm,+1,°** , gm;+m, are the param-
eters for QH*(Xa, Yz, C).
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(iv) (Restriction) Let Y7 be a closed finite dimensional manifold and h :
Y1 = Y be a smooth map. Set Xy; = X Xp Y, the induced fiber
bundle with fiber V and induced fiberwise symplectic form w. Then
there are a natural map H : Xy; — X and a H*(Y,C)[[q1, - , gm]]-
module homomorphism

(4.6) H*: QH*(X,Y,C) —» QH*(Xy,, 11,C).

Here we assume that QH*(Xy,, Y1, C) has the induced H*(Y,C)[[q1, - - - , qm]]-

module structure from h* : H*(Y,C) — H*(Y;,C).

(v) (Induction) Suppose that fiber bundle Y — B has fiber Vo with fiber-
wise symplectic form ws satisfying Assumption (x). Assume that
there is another fiberwise symplectic form w satisfying Assumption
(x) for the induced fiber bundle X — B with fiber V. Assume fur-
ther that H2(V,Z) has an integral basis Bi,:-- , Bpm,+m, Such that
Bmi+1,"** » Bmi+mg are the integral basis of Ha(Va,Z). Then there
is an isomorphism

(4.7)
QH*(X,B,C)/{(gmy+1,*** »Gmy+mg) - H*(X, B,C)} = QH*(X,Y, C),

as a H*(B,C)[[q1,"** , gm,]]-module.

Proof. The proof follows directly from the corresponding properties of the
fiberwise mixed invariants. O

Theorem 4.2. For any fiber bundle X 2 Y satisfying Assumption (x),
fiberwise quantum cohomology QH*(X,Y,C) is associative.

Proof. Suppose a1, a2, a3 € H*(X,C), H® is a basis of H*(X,C) and (7,,)
is the intersection matrix, then

(a1 * az) * (3
= (77a1,b1 - OY (auy, 002, H™) - Hbl) * o3
= nal,bl * éz}) (a11a2’ Hal) : &)Z’ (Hblja?nHaz) ) n027b2 ¢ HbZ’
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and
ag * (ag * ag)
= qp * (ﬂal,bl - @Y (g, a3, H™) - Hbl)
= Ny by * ég (al, Hbl,H“Z) . ég (a2, 03, H*) + Nag b, Hb,
It follows from Theorem 3.3 that
Ty by * &’z(al,ag,H‘“) . &)Z(Hb‘,ag,H“z)
=% (01, 02, a3, H®?)
= Nay by - DL (1, H™, H?) - ®Y(az, a3, HM).

So
(0g * ag) * az = a1 * (g * a3).

The theorem is proved. O

Suppose that Lie group G acts on a semi-positive symplectic mani-
fold (V,w), keeping w invariant. Denote by EG — BG the universal G
bundle. Let Y = BG and X = V Xg EG. However we can not ap-
ply the fiberwise quantum multiplication directly to this case because Y
is infinite dimensional. Note that by the definition equivariant cohomol-
ogy H:(V,C) = H*(X,C). To define the equivariant quantum multiplica-
tion a * B8 for a and B € H(V,C), we use finite dimensional approxima-
tion of Y. We choose a N dimensional approximation BGy of BG such
that H*(BGy,C) are isomorphic to H*(BG,C) for i < dega + deg 8 + 1.
Then Xy = V xXg BGpn has same cohomology as X up to degree at least
deg a+deg B+ 1. We define a3 to be (a* )y, defined using Xy — BGy.

We need to show this multiplication is well-defined. Suppose N’ is an-
other such integer. We need to show (a * B)n(B) = (a * 8)n(B), for any
B e H.(X,C). Since

(@xB)N(B)= Y. & (a8, PD(B))([BGN))a" - - g

AeH(V, )
XNty m
(axB)w(B)= Y, @B, PD(B)(BGN ] -+ g,
A€H(V, )
@XN"U XNI,’U

where (A.,0) and ¢ (Aw,0) 3T€ the fiberwise mixed invariants defined by Xy
and Xy respectively. So all we need to show is

oYy (@, B, PD(B))(IBGN]) = @ (@, B, PD(B))([BGN')).
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Without loss of generality, assume that N < N’. Choosing BGy C
BGxn+ € BG to be submanifold, then Xy C Xpy+ is also a submani-
fold. From the choice of N, we can choose pseudo-manifold representa-
tives (L1,U1), (Lo, Us) of o, B in X+ such that their images, intersecting
with X, give the pseudo-manifold representatives of @ and 8 in Xy. Let
(L3, Us) be the pseudo-manifold representative of B in X. Under the in-
clusion Xy C Xy, we view (L3, Us) as a representative of B in Xns. From
Remark 1.4 (i), we know that there is a generic (J,v) which is good for X
and its restriction to Xy is also good. @&"‘;g) (a, B,6)(BGpr) is defined
as counting the number of the intersection of M¥%(S?, Xnr,J,v) x (52)3
with (L, U1), (L2, Uz), (L3, Us) under evaluation map. The intersections
happen only inside Xy because of the choice of (L3,Us). Also note that

v (52, Xy, J,v) is a subspace of MY(S2, Xn+,J,v). So the intersection
are exactly the same as the intersections of MY (S2, Xy, J,v) x (S?)3 with
(L1,U1), (L2, Uz), (L3, Us) under evaluation map. The number of the lat-
ter intersections is by definition (I)?Zc:: s2)(°" B,PD(B)) (BGn). So well-
definedness is proved. a

When Y is infinite dimensional, for a fiber bundle X — Y satis-
fying Assumption (%), we can define the fiberwise quantum cohomology
QH*(X,Y,C) similarly. We will use this definition in section 5.2.

We call H5(V,C)[lg1, - ,gm]] with equivariant quantum multiplica-
tion equivariant quantum cohomology, denoted by QHg(V,C). It is a g-
deformation of equivariant cohomology. The following two theorems follow
from Theorem 4.1 and 4.2.

Theorem 4.3. Suppose that Lie group G acts on a strong semi-positive
symplectic manifold (V,w), keeping w invariant. Then there is a well-defined
equivariant quantum cohomology QHE(V,C). It has the following properties.

(i) QHE(V,C) is a H*(BG,C)[[q1, "+ ,qm]]-module. This module struc-
ture is the same as the H*(BG; C)-module structure of H5(V; C).

(i) QHE(V,C) is graded commutative:
% ﬁ — (_l)dega+degﬂﬂ* a.
(iii) (Direct Product) Suppose that Lie groups G; act on two strong semi-

positive symplectic manifolds (V;,w;), keeping w; invariant, i = 1, 2.
Then

QHE, xa,(V1 x V2,C) = QHE, (V1,C) ® QHg, (V2,0),
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where wy X wy is the symplectic form on Vi X Vo and G1 X Gy acts on
Vi x V by product action.

(iv) (Restriction) Suppose G C G is a normal Lie subgroup. Then there is
a homomorphism

H* : QHE(V,C) — QHL(V,C),

as o H*(BG)|[q1,"* ,qm]]-module. Here we choose EG = EG which
induces a map BG — BG and the H*(BG)[[q1, - , gm]]-module struc-
ture of QHZ(V,C) is induced from h* : H*(BG,C) — H*(BG,C).

(v) (Induction) Let G C G be a normal Lie subgroup with G/G being sim-
ply connected. Suppose that G/ Gisa strong semi-positive symplectic
manifold. Assume that G acts on a strong semi-positive symplectic
manifold (V,&), keeping & invariant. Let V = V Xas G. Assume
that @ can be extended to a strong semi-positive symplectic form on
V invariant under G action. Assume further that Ha(V,Z) has basis
Bi,--+ , Bmyamy With Bmys1,- -+ , Bmy+m, being basis of G/@. Then

QHE(V;O)/{(amys1, -+, my4ma) QHE(V, )} # QHE (V,C).

Theorem 4.4. Equivariant quantum cohomology is associative.

5. Several Examples.

5.1. Classical cohomology ring.

Let n be a natural number and k;,--- , ks be a partition of n, i.e., k; +
-+ + ks = n(ky,: - ,ks are natural numbers). Recall that a partial flag
manifold Fig, ... r,) is the set of all flagsin C", 0 C C; C --- C Cs = C"
withdimC; =ky +---+k;, i =1,---,s. There are complex vector bundles
L; of rank k; over Fy, .. x,) whose fiber at above flag is C; /Ci—1. Here we
use convention Cp = 0. Denote by C" the trivial bundle of rank n. These
bundles satisfy the following relation

(5.1) Li®---&L,=C"
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Lemma 5.1. The cohomology ring H*(Fi,.... x,),C) 45 isomorphic to

c[u{,... ,Uzlcl;"' suf, - ,ulscs] /{01,... ,on},

where u; are parameters which we assign with a degree 2j, and o; is degree
2i part of the expansion of (1+ul+--- ,u,lcl) o (I4+ui+---+ui ). Under the
isomorphism u; is mapped to the j-th Chern class cj(L;). Furthermore the
first Chern class of F, ... i) 15 E‘f;i(kj + kj+1)p; where pj = ZZ;} ub L,

Proof. This result is well-known. For convenience, we sketch a proof.
Because of (5.1), there is a natural map which maps u; to ¢;j(Ls),

C [u%, ,u,lcl;-u sug, - ,uis] /{ol,u- ,On} LN (F(kl,--~,k,),c)~

First we show that p is surjective by showing that H*(F{y,,... k,); C) is gen-
erated by cj(L;). We argue by induction. When s = 2, Fy, %, is a Grass-
mannian. The statement is true. Suppose that it is true for s —1 case. Then
consider fiberation

Figy e k) 5 G(n — kg, n),

with a fiber Fiy, .. k,_,)(C* %) where 7 maps flag 0 C C; C --- C Cs to
Cs—1. Note it is easily to see the restriction of ¢;(L;) for 1 < i < s—1
to each fiber is the Chern class of those “L;”s of the fiber, by assumption
they generate the cohomology of the fiber. The Chern classes of similarly
constructed rank ks bundle Ly on G(n — ks, n) generate the cohomology of
G(n — ks,n), and they are mapped to cj under 7*. So the Leray-Hirsch
Theorem for fibration applies. H*(F{y,,... k,)»C) is generated by c;(L;)’s.

Secondly, we show that p is an isomorphism. The Poincare series
Py(H*(F(g,,. k,)»C)) is the product of Poincare series of H*(F(x,,... k,_,), C)
and H*(G(n — ks, n),C), a simple induction gives

(5.2) P, (H* (F 0)) = L=t L
. t (k1, ks)) ;=1 Hf’il (1 _ t2i)’

which is exactly the Poincare series of
1 1. vn,S s
C[u1’¢.¢’ukl’...,ul,o--’uks] /{0’1,--. ,o‘n}

(see [BT], section 23). So p is an isomorphism.
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Denote by Wj the vector bundle of rank Ef;; ki1 over Fy, .. x,) with
fiber at flag 0 C Cy C -+ C C; to be C*/C;. Note that W; = ® - L1 and

i=j
TFgy,. k) = @j;iHom(Lj, W;).

It follows

s—1
c1 (Flky, e k) = O c1(Hom(Lj, Wy))

i=1
-

=) ca(l;®W;)
j=1
s—1

= [~ (kjs1 + - + ko)er (Lg) + kjer (W)]
j=1

s—1

= z [—(k:j+1 + -+ ko)ul + K (ujl-"l +-- +u§)]
i=1

=kopy + -+ + ksps—1 + kip1 + - - - + ks—1ps—1

s—1
= (kj + kj41)p;-
i=1

Where we use the fact —(u} +---+ u{) = p; in the second to last step. This
fact follows from ui + --+ +u§ = 0. ]

Suppose that E — X is a complex vector bundle of rank n. The partial
flag manifold Fiy, ... r,)(E) over X can be constructed as follows. Let {Ua}
be a covering of X such that E can be trivialized on each U,, E|y, =
Uy x C*, with transition functions (¢ag, Aag), Where ¢op : Uy — Ug and
Ay : Ua NUg — GL(n,C). Then patching together Uy X Fi, ... x,) using
the induced action of Ayg on Fi, ... x,), We get Fg, ... k,)(E). Note that
Fliy e k) (B) 2, X is a fiber bundle with fiber Fig, ... k,)- Similarly we can
define vector bundle L;(E) over Fi, ... x,)(E)- It is not hard to see

(5.3) Li(E)® - - Ly(E) = p*E.
Lemma 5.2. The cohomology ring H*(F,.... x,)(E),C) is isomorphic to

H*(X;C) [u%"" ’ullc13"' Uf,y e ’uis] /{al_cl(p*E)’”' y0n — cn(p*E)},
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as a H*(X,C)-module. Here parameter 'u,; is mapped to c;j(L;(E)) and o; is
defined as in Lemma 5.1.

Proof. Consider fiberation Fig, ... r,)(E) 2, X which is a fiber bundle with
fiber Fiy, ... k,)- Note that the restriction of ¢;(L;i(E)) to each fiber Fiy, ... )
gives ¢j(L;). The lemma follows from the Leray-Hirsch theorem for fibera-
tion and (5.3). O

Note that the standard action of U(n) on C" induces an action of U(n)
on F, .. x,) and a fiberwise action on F(g, ... x,)(E). So we can make the
following construction. Suppose G = U(l;)x---xU(l;) C U(n) is a subgroup
with the induced action on Fiy, ... x,) and Fg, ... r,)(E). Then

Fley, ko) (E) xg EG £ X x BG

is a fiber bundle with a fiber Fiy, ... ,)- Here EG — BG is the universal
principal G bundle. Construct the L;(E, G) bundle over F{y, ... ,)(E)XcEG

as before. There is a bundle £ = E X y(n) EG of rank n over X x BG whose
restriction to each X slice is £ and whose restriction to each BG slice is
EG xg C". Denote by c;(G) the i-th Chern class of universal G bundle
EG xg C". Then ¢;(E) can be expressed in terms of ¢;(E) and cx(G),
i,5,k=1,---,n, and

(5.4) Li(E,G)®---® Ly(E,G) = p*E.

Lemma 5.3. The cohomology ring H*(F, ... x,)(E) X EG, C) is isomor-
phic to

H*(X,C) x H*(BG,C) [ul, -+ ,ujy;- - 5ui, -+, uf,]
/{01 - (P*E') y°* " 30n —Cp (P*E')}

as a H*(X,C) x H*(BG,C)-module. Here parameter u; is mapped to
¢j(Li(E,G)), and o; is defined as in Lemma 5.1.

Proof. The proof , which is similar to the proof of lemma 5.2, is omitted. [
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Note that if X is a point and G = U(n) in Lemma 5.3, we get the
equivariant cohomology of flag manifold

Hy (y (Fla, ,k,),‘C)
=C[’U,i, . ,ukl'... ’ul?“' 7uk3 Cl(U(TL)), . ,%(U(n))]
/o1 =ca(Un)), - 00 — ca(U(n))}.

Two special cases are:

Case 1. Consider the diagonal embedding U(l) — U(l)x---xU(l) c U(n),
t factors U(l). This embedding induces an action of U(l) on C"; denote
this action by p;. Then the cohomology ring H*(Fy,,... x,) Xp EU(1),C) is
isomorphic to

C [u%’ )uk1"'° 7u1"'° )uk acl(U(l)) ’CI(U(l))]
[{o1—¢&,- ,on— G}

where u; and o; are the same as in Lemma 5.1 and ¢;j is given by 1+ ¢; +
=[+a@®)+:-+aO]-

Case 2. Consider an embedding U(1) — U(1) x --- x U(1) which send
e2mV=10 ¢4 (627"/:1_"10, e, 62"‘/"—1""9) with r; € Z. This embedding induces
an action of U(1) on C"; denote this action by . Then the cohomology ring
H*(F,,... k,) X5 EU(1),C) is isomorphic to

C [u%’ : ’ukl"” )uia aui,;cl] /{01 _517"" yOn _é'n,}r

where u; and o; are the same as in Lemma 5.1 and ¢; is given by 1+ ¢; +
e = (1+mec1)--- (1+mpc).
Note that if s = 2 and k; = 1. Under above action we get, after elimi-
nating one parameter,

Hp ) (CP™) 2 Clz, c1] /{(z — ric1) - - (2 — rac1)}.

5.2. Fiberwise Quantum Cohomology of
Fli,, k) (E) X EG — X x BG .

Suppose X — Y is a fiber bundle satisfying Assumption (x) and fiber V
is a positive symplectic manifold. Assume further that the cohomology ring
of X can be presented by a ring isomorphism

H*(Y)[a"l)"' )xt]/{fl,"' )fs} —p')H*(X7C)’
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where we view the left side as graded commutative polynomial algebra of
Z1, -+, Tt p(Z1), -+ ,p(z:) are homogeneous generators of H*(X;C), and
f1,+++, fs are homogeneous polynomials of zy,--- , z;.

Proposition 5.1. If we give an appropriate degree to g;, then there are
homogeneous polynomials g;(z1,- -+ ,Tt;q1,+ - ,qm) such that

gi(z1,-++,240,---,0) =0
and QH*(X,Y,C) can be presented by a ring isomorphism

H*(Y)[mlv'” y Tt g1, 7‘Im]/{f1 — 01, 7fs—gs} —p.')QH*(X,},,C)

Proof. Let I be an ideal in C[[g1, - - , gm]] generated by g1, , gm. Since V
is a positive symplectic manifold, for any a, 8 € H*(X;C), we have

a*ﬂ=a/\ﬂ+h(aaﬂ;ql,°" ,qm)a
where h is a polynomial in g1, - , ¢y and h(e, 5;0,--+,0) = 0. So

QH*(X,Y,C) = span {p(z1), - ,p(z:)} use * multiplication
+1-QH*(X,Y,C).

By the Nakayama Lemma, it follows
(5.5) QH*(X,Y,C)= span (p(a:l), -++ ,p(z¢)) use * multiplication.

If fi(z1,---,2) =) at @y o :c" we denote product p(z;) * -
p(z;) (j factors) by p(z;)*. Then consxder

D dk, g P@) ke x p(ae)
=Y al ., p@) A Ap(ae)
Z i1y e (@10 5 Gm) (1) A A p(ae)
with b;l,,,, 72(0,-++,0) = 0. By (5.5), we may assume
plon) A=+ Ap(e* = 3 clild - plan)™ x - x plad)™.
We get

Z e e - D@t p(me)
v e @1 2 qm) - S (@) wp(2) .
'7’ »J 1,y
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Let gi = Y b5 . 5, (qu, -+ ,qm) - 03 - ot oo g, We see that f; — g;
is mapped to zero under map p. p is a ring homomorphism. Since p is
an isomorphism, p is an isomorphism modulo ideal I. The fact that p is an

isomorphism follows from the Nakayama Lemma. The proposition is proved.
O

Since we have mathematically defined the equivariant quantum cohomol-
ogy and established the properties of restriction and induction, the following
results from [AS] and [GK] are theorems(see proof in [AS] and [GK]). Some
simple matrix manipulation will reduce the matrix in [AS] to the following
simpler form.

Theorem 5.1 (Astashkevich-Sadov). The equivariant quantum coho-
mology of the flag manifold QHy (Flky, ks)» ©) can be presented as

Clul, -+ Uk 5udy e ug, 01, 1 @s=13C1,7* , Cn)
/{0’1(‘]) —C1y° ,O'n(Q) - Cn},
where c; is the i-th universal Chern class c;(U(n)), the degree of q; is ki +

ki+1, the degree of u; is 2§, and oi(q) is defined to be the degree 2i part of
the expansion of det(A). The matriz A is defined to be

1+ul+ \
( ey Q 0 0 0
+...+uk1
14w+
—1 1 2 2 0 0
+.. tug,
1+ud 4
0 0 0 st gs-1
: ks—l
1+uf+
0 0 0 -1 L
+... .ty
S
As a special case, when s =n, ky = --- =k, = 1, we have

Theorem 5.2 (Givental-Kim). The equivariant quantum cohomology of
the complete flag manifold QHp (Fa,--,1)» C) can be presented as

(C[U1,°" yUn3q1,°** ,qn—-15C1," " 7cn]/{0-1(Q) —C1y 7Un(q) _cn},
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where c; is the i-th universal Chern class, the degree of q; is 2, the degree
of uj is 2j, and 0;(q) is defined to be the degree 2i part of the expansion of
det(A). The matriz A is defined to be

14+ qn 0o ... 0 0 0
-1 14u g ... 0 0 0
0 0 0 -1 1+4+up1 gqna
0 0 0 0 -1 14+ uy,

These result can be generalized to

Proposition 5.2. Let G = U(l;) x --- x U(ly), the fiberwise quantum co-
homology QH*(Fy,.... k,) (E) XgEG, X X BG,C) can be presented as

H*(X,C)® H*(BG,C) [u%’ ’ullcl;"‘ ;@i"" ’uis;‘h,"‘ ,Q.s—l]
/{01(Q) - (p*E) v 0n(q) = Cn (p*E)},

where o;(q) is defined as in Theorem 5.1.

Proof. By the Proposition 5.1, we only need to show that relations
oi(q) — ci(p*E) = 0,i = 1,---n, hold in QH*(F(kl,---,k,) (E) xqEG,
X xBG,C). Choose an N large enough such that H*(BG) = H*((BG)n) for
i=1,--+,2n+2. Consider the classifying map h : X x (BG)y — B(U(n))
of bundle E. h pulls back the universal flag manifold over B(U(n)) to
Fiky,.. ks)(E) XG (EG)n. From Theorem 5.1 and the restriction prop-
erty of the fiberwise quantum cohomology, we conclude that the relation
0i(q) — c;i(p*E) =0hold fori =1,--- ,n. O

Two special cases are:

Case 1. The fiberwise quantum cohomology
QH* (F(kl " 7k8) Xpl EU(Z)’ BU(l)’ C)
can be presented as

Clul,--yub s sul, - ufsen, 0 0501 5 gemt]
/{UI(Q) _51"" ’Un(Q) "'an},
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where 0;(g) is defined as in Theorem 5.1 and ¢; is defined as in Case 1 in
section 5.1.

Case 2. The fiberwise quantum cohomology

QH* (F(k1,--- ks) Xp EU(].), BU(].), (C)

can be presented as

Clul, - ,ug;esud, Ul enqn ) gs-1)
[{o1(q) — &, ,on(q) — E},

where 0;(q) is defined as in Theorem 5.1 and & and f are defined as in Case
2 in section 5.1.
When s =2, k; =1, and p is the action of U(1) on C"*, we have

QHy) (CP™;C) 2 Clz, c1,q]/{(z — r1c1) - - (z — rnc1) — ¢"}.

where the degree of g is 2.
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