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Let M be a compact complex manifold and p : MQ —► M be a 
regular covering over M with a free abelian transformation group 
G. We prove under some constraints on G that the space VI(MG) 
of holomorphic functions on MQ of /-polynomial growth is finite 
dimensional and is linearly imbedded into the corresponding space 
Vi(CN) of holomorphic polynomials on C^ with N := ^ rank(G). 

1. Introduction. 

The classical Liouville theorem asserts that every holomorphic function 
on Cn of polynomial growth I is a holomorphic polynomial of degree at most 
I. The result has many deep generalizations related to solutions of a linear 
or non-linear elliptic differential equation on a covering over a Riemannian 
or complex manifold (see, in particular, [CM], [Gu], [LS], [K], [L], [Li], [AL], 
[MS]). In this paper we discuss the problem of the description of the space 
of holomorphic functions of polynomial growth on a regular covering over a 
compact complex manifold. To its formulation we henceforth denote by M 
a compact complex manifold and by MQ a regular covering p : MQ —> M 
over M with a finitely generated transformation group G. Fix a minimal 
set of generators ei,..., e^ of G and introduce the distance p on G by 

p(g, h) := min I ^ | a* |; gh'1 = JJ ef 'I . 

Let V C MQ be a fundamental compact with respect to the action of G, 
i.e., MG = (J gV. 
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Definition 1.1. A holomorphic function / on MQ is said to be of Z-growth 
if there exists a constant C such that 

sup\f(gz)\<Cp(g,l)1. 
zev 

The linear space of these functions will be denoted by Vi(Ma). 

In the similar way one can introduce the space HI{MG) of harmonic 
functions of /-polynomial growth on a regular covering over a compact Rie- 
mannian manifold M with transformation group G. Recall that a function 
/ on MQ is harmonic if it is a solution of the equation A/ = 0, where A is 
the pullback of the Laplacian on M. 

The main question is to find out the conditions on G under which the 
spaces VI(MG) ( or HI(MG)) are finite dimensional. In harmonic case the 
problem is closely related to a conjecture of Yau [Y] on finite-dimensionality 
of the space of harmonic functions of polynomial growth defined on a com- 
plete Riemannian manifold with non-negative Ricci curvature. 

It was firstly proved by Guivarch ([Gu]) and independently by Lyons and 
Sullivan ([LS]) that in the case of nilpotent G the space HQ{MG) consists 
of constants only. Then Kaimanovich ([K]) proved that a similar result 
holds in the case of a polycyclic group G. Using a different approach V. 
Lin ([L]) established that VO(MG) consists of constants in the case where 
G is a nilpotent group. His method gives also a new proof of the Lyons- 
Sullivan result. Further, Avallaneda and F.-H. Lin showed that in the case 
MG = R71 is a covering over a Riemannian manifold M diffeomorphic to a 
real torus, the space HI(MG) is finite dimensional. They gave also an explicit 
description of the space. A new proof of this result and its generalization to 
the case of nonlinear elliptic operators see in the paper of Moser and Struve 
([MS]). 

A further development in this subject was done at the midst of 1996 
due to Colding and Minicozzi. In a series of papers they studied the space 
of harmonic functions of polynomial growth and eventually proved Yau's 
conjecture (see, e.g. [CM] for references of all their works). Moreover, their 
methods allowed them to prove finite-dimensionality of HI(MG) for any 
nilpotent G and give an effective estimate of the dimension. In fact, Cold- 
ing and Minicozzi proved a more general statement. They considered com- 
plete manifolds satisfying the volume doubling property and the Poincare 
inequality and proved finite-dimensionality of spaces of harmonic functions 
of polynomial growth defined on such manifolds. Finally, P. Li ([Li]) gave 
a deep generalization of the results of Colding and Minicozzy. He estab- 
lished finite-dimensionality of spaces of harmonic functions of polynomial 
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growth with better estimates of their dimensions under rather general as- 
sumptions on a manifold. Namely, he assumed only the fulfilment of a mean 
value inequality for nonnegative subharmonic functions and a weak volume 
comparison condition. 

The results described lead naturally to the following conjecture for holo- 
morphic functions of polynomial growth posed by V.Lin. 

Let G be a nilpotent group and M be a compact complex manifold. Then 
VI(MG) is finite dimensional. Moreover, every / G VI(MG) (resp., HI(MG)) 

is annihilated by any fc-difference Ag1^^gk of a fixed order k = k(l). 
Here 

A9u-,9k ~ A9i 0 - 0 ^9k    (9h .", 9k € G) 

imdA9(f)(x):=f(gx)-f(x). 
In this paper we consider the case of a regular covering MQ over a com- 

pact complex manifold M with a free abelian transformation group G. Our 
approach is based on Algebraic Geometry technique and different from the 
methods of the above mentioned papers. 

To present our results introduce 

Definition 1.2. A regular covering p : MQ —► M over a compact complex 
manifold M with a free abelian transformation group G is said to be of the 
class VF if all VI(MG) are finite dimensional. 

The following result describes the structure of the space VI(MG) in the 
case MQ € VJ7. To its formulation we need a few notions. 

Let fi^(M) be the space of d-closed holomorphic 1-forms on M. Define 
the subspace fi^(M; G) C fiJ(M) as the set of all 1-forms UJ such that p*u 
determines the trivial element of the cohomology class H

1
(MG, C). Let 

{(jOi}si=zl be a basis in this subspace. Consider the family 

\ JZQ ) 2=1 

of holomorphic functions on MG and denote by Vi(fi,...,fs) the subspace 
of the space C[/i,..., /s] consists of polynomials of degree at most I. 

Theorem 1.1. Let MG € VJ7.    Then the space VI(MG) coincides with 
^M/i? •••> fs)- Moreover, VI(MG) is annihilated by any (I + 1)-difference. 

To state the result in a sense converse to the previous one assumes that 
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M admits a holomorphic mapping A in a complex torus CTr 

such that the induced homomorphism A* : i?i(M, Z) —> 
.ffi(CTr,Z) is surjective. 

Consider now the regular covering MQ over M with the transformation 
group G = Hi(M, Z)/Ker A* (= Z2r). According to the covering homotopy 
theorem there exists the covering to A holomorphic mapping A' : MQ —► 
Cr. 

Theorem 1.2. Under the previous assumption MQ £ VF and for every 
f € VI(MG) there exists a holomorphic polynomial p on Cr of degree at 
most I such that f == (A')*(p). 

Corollary 1.3. Let M be a compact Kdhler manifold and MQ be a regular 
covering over M with a free abelian group G. Then MQ £ VF and VI{MG) 

is linearly isomorphic to a subspace of the space Vi{CN) of holomorphic 
polynomials on CN of degree at most I, where N = ^ dime Hi(M, C). 

To formulate the second corollary denote by r(M) the transcendency degree 
of title field of meromorphic functions on M. 

Corollary 1.4. Let M be a compact complex manifold with r(M) > 
dime M — 1 and G be a free abelian group. Then MQ € Vf. 

Corollary 1.5. Let M be a compact complex manifold of dimension 1 and 
genus g and MQ be a regular covering over M with a free abelian group G. 
Then the space HI(MG) is finite dimensional and linearly isomorphic to the 
subspace of harmonic polynomials on C9 of degree at most I that are sums 
of holomorphic and antiholomorphic ones. 

The author is indebted to Professor V.Lin who raised the question dis- 
cussed in this paper. 

2. Proof of Theorem 1.3 . 

Let r be the canonical action of G on the space O(MG) of holomorphic 
functions on MQ induced by the action of G on MQ. By definition VI(MG) 

is invariant with respect to r. 

Lemma 2.1. r is a unipotent representation, i.e., all eigenvalues of T(g) 
equal 1 for every g G G. 
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Proof. Assume, to the contrary, that there exist a nonzero g € G and / G 
VI(MG), and A ^ 1 such that 

T(9)f = \f. 

Firstly prove that | A |= 1. Otherwise we can assume without loss of gener- 
ality that | A |> 1. In the case of a free abelian group the word metric p is 
clearly satisfies p(gn) =\n\ pig)- Therefore 

I A»/(*) 1=1 (T(5n)/)(z) l< C{np{g))1 

and, hence, 

l/WI^M-M^v). 
Since the fundamental compact V has a nonempty interior, / = 0 on MQ- 

This contradiction implies that | A |= 1. Now we prove that there exists a 
nonzero function w € VI(MG) such that 

(i) T(h)(w) = X(h)w  for every h € G; 

(ii) r(g)(w) = \w. 

Really, let W be the minimal subspace of VI(MG) containing the / and in- 
variant with respect to the action r. Since W is the linear span of r(G)/, 
every w € W is an eigenvector for r(g) with eigenvalue A. As every finite 
dimensional representation of a free abelian group of finite rank, r \w has 
logarithm (see, e.g., [G], ch. 8). Therefore it can be extended to a represen- 
tation of the abelian Lie group G 0 R into GL(W). Indeed, let {ei}^ be 
a basis of G and {fa := iop(r(ei))}f::=1. Then the required extension is given 
by 

k k 

By the Lie theorem there exists a common eigenvector w for the extended 
representation. It is clear that w satisfies conditions (i) and (ii). 
Repeating the arguments of the first part of the proof we conclude that 
| A(/i) |= 1 for every h € G. This implies that the plurisubharmonic function 
| w(z) | is invariant with respect to the action of G on MQ- Since M is a 
compact complex manifold, the function has to be a constant. Prom here it 
follows that w is a constant too and therefore A = 1. □ 
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Lemma 2.2. Let dimcViiMo) = n. Then for every f e VI(MG) and 
91,—,971 € G 

Proof. Similarly to the construetion of the previous proof we can define the 
extension of r to a representation r' : G<g)R —> GLn(C). By Lemma 2.1 r7 

is unipotent. In virtue of the Lie theorem (see, e.g., [OV]), r' is equivalent 
to a, representation r" into the nilpotent matrix subgroup iV C GLn(C) of 
upper triangular matrices with units on the diagonal. Prom here it follows 
that in an appropriate basis of VI(MG) 

^,..,9n = fl(r"(9i)-I) 
i=l 

Now observe rf,(gi) — I is an upper triangular matrix with zero diagonal. So 
the product of n such matrices equals 0. □ 

Let ei,...,efc be a basis for G = Zk.  Denote by Si C G the I-simplex 
along the group G, that is, 

{k k } 

i=i i=i J 

Lerama 2.3. Let x € MG &e a fixed point Assume that a function f G 
Vi(Mc) equals 0 on the set Sn-ix C MQ. Then f = 0 identically. 

Proof. Let to the contrary / 7^ 0. Then Lemma 2.2 implies the existence of 
a difference Aplj..#j^ of the maximal order I such that 

(i) //:=A^ *i(/)^0; 

(ii) A^(//) = 0 for every g e G. 

Easy computation shows that 

where every gl coincides with one of ei,...,efc.   Therefore without loss of 
generality we can assume that in condition (i) every element gt belongs to 



Holomorphic functions of polynomial growth on abelian coverings     491 

the basis of G. Because of the maximality of I the condition (ii) is also 
fulfilled for this choice of <#. But fi(x) is a linear combination of T(sj)f(x) 
with Sj G 5n-i. So fi(x) = 0 by the assumption of lemma. Moreover, in 
virtue of (ii) the holomorphic function // is invariant with respect to the 
action of G and, therefore, is a constant. Hence, // = 0 on MQ and we 
obtain the contradiction with the maximality of l. □ 

Lemma 2.4. VI(MG) is annihilated by any (I + 1)-difference. 

Proof. Let x be a fixed point of MQ- Henceforth we identify the orbit {Gx} 
with the lattice Zk of integer points in Rfc. Let rx : VI(MG) —► loo(Sn-i) 
be the restriction to 5^-1(0;). According to Lemma 2.3 rx is injective. We 
define now the linear mapping i from loo{Sn-i) into the space Vn-i(R>k) 
of complex-valued polynomials of degree at most n — 1 as follows. Since 
S'n-i C G is the set of uniqueness for Vn-i(R>k) and dime Zoo(^n-i) = 
dime Vn-iCR!*), the operator p *-> pls^, wherep E Vn-i(R>k), is invertible. 
Its inverse is the required operator i. 

Let us choose now an arbitrary / 6 VI(MG) and denote by fx the re- 
striction of / to {Gx} = Zfc. We show that 

(iorx)(fx)\Zk= fx. 

Let <j) := (i o rx)(fx) \Zk -fx. Since (i o rx)(fx) e'<Pn-i(Rfc), this polyno- 
mial is annihilated by any n-difference. According to Lemma 2.2 fx is also 
annihilated by any n-difference and therefore the same is valid for </>. Using 
the arguments from the proof of Lemma 2.3 we can state that (/> is uniquely 
determined by its values on S'n-i. Since 0 |sn_i= 0 by the definition of i, 
this function equals 0 identically. 

Let us consider now the polynomial pfiX := (iorx)(fx) and prove that its 
degree less than or equal to I. From here will follow that this polynomial is 
annihilated by any (I + l)-difference and therefore fx will be also annihilated 
by such differences. Because of the arbitrariness of x this will prove the 
lemma. 

Assume, to the contrary, that deg(pfiX) > I. By the definition of VI(MG) 

the function pfiX |Zfc= fx has Z-polynomial growth at infinity. Let SfiX be 
the homogeneous part of pfiX of maximal degree. Then there exists a line 
L := {(ait, ...ja/jt) G Rfc;i G R, a* G Z, i = l,...fc} such that SfiX JL^ 0. 
Otherwise SfjX = 0 on Zk and hence it equals 0 on Rfc. According to our 
assumption (sfiX |L)(*) = ctd with d > I whereas this polynomial goes to 
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infinity as \t\l in integer points of L. Therefore c = 0 and this contradiction 
proves that deg(pfiX) < I. D 

We now are in a position to finish the proof of Theorem 1.1 by induction 
on /. Namely, we introduce the set VI(MG) of holomorphic on MQ functions 
annihilated by any (Z+Indifference and prove by induction that any element 
of this set can be represented as a polynomial in /i, ...,/* of degree at most 
/. Since every such polynomial belongs to VI{MG), this result together with 
Lemma 2.4 will complete the proof of the theorem. 
The basis of the induction is 

Lemma 2.5. Let f G 'DI(MG). Then f is a linear polynomial in /i, ...,-/*. 

Proof. Since / is annihilated by any 2-difference, f(gx) — f(x) is a constant 
for a fixed g E G. Therefore df is a G-invariant d-closed holomorphic 1-form 
on MQ* Hence there exists a form r] e ^(M; G) such that its pullback 
to MG coincides with df. Prom here it follows that / up to an additive 
constant can be represented as a linear combination of the functions /i, i.e., 

fePiifi,...,/.). □ 

Assume now that the statement of the induction has already been proved 
for I>/-.I(MG) and prove it for Z>/(MG). 

Let F be the maximal free abelian subgroup of the homology group 

#i(M, Z) and R C F determined by F/R ^ G. Since / u = 0 for every 

u e ^d(M; G) and 7 e R, we get 

dimc«d(M;G) < irank(G). 

In addition, ^(M; G) can be identified with a subspace of the space dual 
to F ® C = ifi(M, C). Therefore there exists a subgroup A C F of 

rank(^) = 2 dime nJ(M; G) 

such that the set F of the vectors f / w\,..., / a;s j € Cs (a G A) satisfies 

the condition 

(2.2) T  is a lattice of rank 25 in C5. 
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Since A p| R = {0}, the natural surjection F —> F/R = G imbeds A into 
G. So we can consider A as a subgroup of G. Denote by E the quotient 
group G/A and consider the regular covering PE : ME —► M with the 
transformation group E. Because of the choice of E there exists a regular 
covering pi : MQ —► ME with the transformation group A, Condition (2.2) 
implies that the multivalued function 

t(z) := 11  PEVI,...,J   PE^S)     (Z e ME), 

where ZQ 6 ME is fixed, determines the holomorphic mapping into the com- 
plex torus Cs/r. Then one naturally defines the mapping tf : MQ —► Cs, 
which covers t and is clear to be equivariant with respect to the actions of 
A on MQ and T on Cs. Therefore there exists the set {gi, ...,9S} of C-linear 
independent holomorphic polynomials of degree 1 on Cs such that 

(tTte)■= fi•= [yp*"i   (!<*<«)- 

Here y, yo € MQ and j/o is fixed. Using an affine transformation we can 
regard gi as the coordinate functions of Cs. Assume that the similar relation 
is valid for every / annihilated by any /-difference, that is, there exists a 
holomorphic polynomial p € Vi-i(Cs) of degree at most I — 1 such that 

(t'Tip) = /• 

In view of the previous relation this means that / is a polynomial in fi 
(1 < i < s) of degree at most I — 1. 

To finish the proof it remains therefore to establish the corresponding 
statement for / € V^MQ). TO this end choose an arbitrary x G MQ and 
consider the orbit {Ax} C MQ, which we can identify with the lattice Z2s C 
R25. Consider now the fc-simplex Sk along the group A = Z2s, see (2.1) for 
its definition. In this definition ei,..., e2s is the standard basis for Z2s. As a 
consequence of the statement of induction for (Z — 1) we get Si-i is a set of 
uniqueness for VI-I^MQ). Then Si is a set of uniqueness for UI(MG)- For if 
h G VI(MG) equals 0 on Si then clearly the function hi(z) := hfaz) — h(z) is 
an element of X>/_I(MG) equals 0 on S/_i. Therefore /ij = 0 for every i and 
thus h is A-invariant. The same is clear to be correct for h9(z) := h(gz)—h(z) 
(g e G). Moreover, h9 G VI-I(MG) and therefore by induction there exists 
a polynomial p9 G 'P/-i(Cs) such that 
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Then for every a € A vie get 

(i')*(^(a + z) - jP{z)) = h*(az) - ^(«) = 0, 

that is, pP is A-invariant. Thus p^ is a constant and so h9 is. This means 
that h E X>I(MG?) and by Lemma 2.5 h = 0. By this one has proved that Si 
is a set of uniqueness for P/(M<?). 

Using this fact we can find for the function / 6 T>I(MG) a polynomial 
Pf on R2s of degree at most I such that 

Pf = /   on r2s 

see Lemma, 2.4. Since £' is equivariant with respect to the actions of A on 
MG and T on C5, we can identify R2s with C5 and Z2s with T. These 
identifications and the assumption of the induction applying to / get that 
any difference Aa(pf) := pf(a+z)—pf(z) is a holomorphic on Cs polynomial 
of degree at most (I — 1). Then (0, l)-form dpf is F-invariant and therefore 
by the Hodge decomposition 

s 

dpf = 2^ aidzi + dw, 

where w is F-invariant and zi,..., zs stand for the standard coordinate func- 
tions on C5. This leads to the identity 

5 

P/C*) ^^o.izi + w^ + ^z), 
i=l 

wher(3 u is a holomorphic on C5 function of Z-polynomial growth, that is, u is 
a holomorphic polynomial of degree at most L From here and F-invariance it 
follows that w has to be a constant. Consider now the function / — {t'Y{u). 
Because of the above identity and the interpolating property of pf any 2- 
difference of the function equals 0 on the orbit {Ax}. Bearing in mind that 
such a difference belongs to VI^MQ) and applying the statement of the 
induction we obtain that any 2-difference of / — (O*^) equals 0 on M^. 
Therefore / — (O*(t0 € VI{MG) and by Lemma 2.5 there exists a linear 
holomorphic on Cs polynomial q such that 

/ = (*')> + 9). 

This proves the statement of the induction and completes the proof of The- 
orem 1.1. □ 
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3. Properties of PF Spaces. 

Here we collect a few results which will be used in the sequel. Some of 
them are interesting in their own right. To formulate the first result consider 
a compact complex manifold M possessing the following property: 

There exist collections {Fs}s<=S of complex compact manifolds 
and holomorphic mappings {(j)s : Vs —► M}s€5 such that 

(i) (j)s : Vs —► M induces the surjective homomorphism (0S)* : 
tfi(K,Z)—>ifi(M,Z); 

(ii) the union of all </>s(K) has nonempty interior. 

Denote by Fs and F the maximal free abelian subgroups of Hi(ys, Z) and 
Hi(M, Z), respectively. 

Proposition 3.1. Assume that for every s the regular covering Ws over Vs 

with the transformation group Fs belongs to VF. Then the regular covering 
Mp over M with the transformation group F belongs to VT. 

Proof. By assumption (z) the image (0S)*{Fs) can be represented as F ®GS 

with a finite subgroup Gs contained in the torsion subgroup of Hi(M, Z). 
Let Hs := (^s)^^) and consider a subgroup Es in Fs such that 

Hs Q ES = {0},    Hs + Es  has finite index in Fs. 

Let Mi be the regular covering over M with the transformation group 
Hi(M, Z). By assumption (i) and the covering homotopy theorem there 
is a holomorphic mapping $, : Ws —► Mi which covers (f>s and is equivari- 
ant with respect to the actions of i^ on Ws and (</>s)*(Fs) on Mi. Similarly 
for the covering Mp there exists the covering mapping r : Mi —► Mp 
equivariant with respect to the action F on Mi and Mp- 

Let now r*f be the pullback to Mi of a function / G VI(MF) and 
/' := ((f>f

s)*(r*f). In virtue of the definition of Es and the equivariance of 
05 and r the function /' is invariant with respect to the action of the group 
Es. Since the free abelian group F is quotient group of Hs and / G VI(MF), 

the function /' has /-polynomial growth with respect to the action of Hs. 
In addition, Hs © Es has a finite index in Fs and therefore /' has also l- 
polynomial growth with respect to the action of Fs. By the assumptions of 
the proposition Ws.G'VF. So applying the statement of Theorem 1.1 to f 
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we obtain that any (I + Indifference A/ll)...j/lz+1 with hi € Hs annihilates /'. 
Since the image of (<^5)*(//'5) coincides with F, the equivariance arguments 
imply the restriction of / to ^(Wg) is annihilated by any (Z'+ Indifference. 
However, from assumption (ii) it follows that the union of all ^f

s(Ws) has 
nonempty interior. So holomorphicity of / implies that any (/ + Indifference 
annihilates /, i.e., / € X>/(Mp). It was proved in Theorem 1.1 that the latter 
vector space admits an imbedding into the space of holomorphic polynomials 
of degree at most / defined on some Cs. This means that Mp e VF.       □ 

Let h : X —> Y be a holomorphic surjective mapping of compact com- 
plex manifolds. Assume that fiber h~1(y) over the generic point y G Y 
is finite. Let k := deg(h) be degree of ft, that is, the number of points in 
h~l{y) over the generic y G Y. Denote by H and G the maximal free abelian 
subgroups of ffi(y, Z) and Hi{X, Z), respectively. Assume also that 

(i) h* : #i(X, Z) —> Hity, Z) maps G into ff; 

(ii) there is a surjective homomorphism r from iJ into a free abelian group 
F. 

PutG' :=(Toh*)(G). 
Finally denote by Xc and Yp regular coverings over X and Y with the 

transformation groups G, and F, respectively. 

Proposition 3.2. Let VkiiYp) be finite dimensional Then VI{XG
I
) has 

finite dimension, as well. 

Proof. Surjectivity of h implies /i*(7ri(X)) is of finite index in niiY). In 
particular, G' is of finite index in F. From here and the covering homotopy 
theorem follow that there exists the covering to h holomorphic mapping 
h* : XQ' —► IF such that h! is a proper surjective mapping of the degree k 
equi variant with respect to the actions of G* on XQ' and Yp. Consider the 
Stein factorization of ft7, that is, the analytical variety V and holomorphic 
mappings fti : XQ' —► V and ft2 : V —► Yp such that ft2 is a finite 
branched covering over Yp of degree k and fti has compact connected fibers, 
and ft7 = ft2 o fti. Let /'be a holomorphic function on XQ'- Then / is clear 
to be constant on any fiber of fti and therefore there exists a holomorphic 
on V function f such that h\{f) = /. 

We are now in a position to prove the proposition.   To this end we 
construct a smooth immersion of VI{XG') into a finite dimensional space. 
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Since such immersion preserves dimension we obtain from here the required 
result. To construct the immersion fix a function / € V^XQ')- Then there 
exists a holomorphic on V function /' such that h\{f) = /. Let x G Yp be 
the generic point and AjjjTl{x) = {xi, ...,#fc}. Consider the polynomial 

n(t-/'(;ri)) = f>(/0(x)ti. 

The symmetric polynomials Si{f) are correctly defined outside of a divisor 
D C Yp and locally bounded in a neighborhood of every point of JO. So by 
the Riemann theorem they can be extended to Yp as holomorphic functions 
for which we preserve the same notations. Moreover, in virtue of equivari- 
ance of h! with respect to the cocompact actions of Gf on XQ* and Y/r, the 
function Si(f) belongs to 7^/(IF)- Let now 

<(/):=(«i(n ••..«*(/'))   (/eT^XoO). 

Since the Gateaux derivative of / H* Sl■(/,) is readily seen to be different 
from 0, i has no critical points, i.e., the smooth mapping i is an immersion 
into the direct product ViiXp) x ... x ^/(Yp)- By the assumption of the 
proposition the latter is finite dimensional. This completes the proof.       D 

Remark 3.3. Literally repeating these arguments we obtain the same re- 
sult in the case where h : X -—► Y is a finite branched covering over a 
compact complex manifold Y with irreducible X. 

Let h : X —► Y be a holomorphic surjective mapping of compact com- 
plex manifolds with connected fibers. Denote a fiber /i"1(y) over the generic 
point y EY by Zy and the maximal free abelian subgroup of Hi(Zy, Z) by 
Hy. Let G and F be the maximal free abelian subgroups of Hi(Y, Z) and 
Hi(X, Z), respectively. Finally denote by YQ, Xp and Zy the regular cov- 
erings over X, Y and Zy with the transformation groups G, F and Hy, 
respectively. 

Proposition 3.3. Let YQ € VF and Z'y E VF for the generic y. Then 
Xp € VF. 

Proof. Let K be an arbitrary fiber of h : X —> Y and iK : K —► X be the 
natural imbedding into X. 
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Lemma 3 A.  There exists an injective linear mapping 

s:#i(Y;R)—>#i(X,R) 

such that Hi(X,Il) is isomorphic to s(#i(Y,R)) © (iK)^Hi(K,R)). 

Proof. By the Sard theorem there exists a proper closed analytical subset 
D C Y such that h:X\h^{D) —>Y\D is a C00 fiber bundle. To begin 
with let K be a fiber of this bundle. Since X is a connected complex mani- 
fold, the imbedding X \ h~l(D) —► X induces a surjective homomorphism 
r of the corresponding 1-homology groups. Moreover, the exactness of the 
homotopy sequence for the above constructed fiber bundle leads to existence 
of an injective linear mapping s': Hi(Y\D, R) —> Hi(X\h~l(D)yTl) such 
that 

(i) 
H^X \ h'^D^R) = AHi(Y \ D, R)) © (i^H^K, R)); 

(ii) the mapping r o s' equals 0 on 

Ker{Hi(Y\D,IL) —> Hi(Y,R)}. 

The mapping of the homology groups in (ii) is induced by the natu- 
ral imbedding. It follows from (ii) that r o s' determines the injec- 
tive mapping s : iJi(y,R) —► Hi(X,R). In addition, (i) implies that 

s(iJi(r,R))p| (iK)m(Hi(K}IL)) = {0} and direct sum of these two vec- 
tor spaces coincides with H^X^H). It proves the result in this case. In 
particular, in this situation we obtained that 

(3.1) (iK),(ff1(^,R)) = Ker(/i)*. 

Let now K be an arbitrary fiber of h. Then the triangulation theorem 
for analytical sets implies that there exists an open neighborhood U of K 
such that if is a deformation retract of U. By compactness arguments U 
contains a fiber E of the above constructed C00 fiber bundle. Using this 
fact we will prove (3.1) for such K. Then the above defined imbedding s 
determines the required decomposition of iIi(X,R). To prove (3.1) assume 
to the contrary that (iK)*(Hi(K,R))>^ Ker(/i)+. Since K is a deformation 
retract of £/, from here it follows that there exist a d-closed 1-form ou on X 

and an element 7 € (iE)*(Hi(E, R)) such that LJ \u is d-exact but / u ^ 0. 

However, E C U and we get a contradiction. □ 
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Denote now by A(K) the maximal free abelian subgroup of (^^(if^jfiT, Z)). 
As a consequence of the lemma we obtain that A(K) ®s(G) is of finite index 
inF. 

Lemma 3.5. Let H be the maximal free abelian subgroup o/Ker(ft)+. Then 
there exists a subgroup L C H of a finite index such that for every fiber K 
ofh 

LcA(K)cH. 

Proof Let E be a fiber of the above constructed C00 bundle over Y \ D. 
It is clear that A(E) is independent of E and has a finite index in H. 
Denote this group by L. For an arbitrary fiber K choose as above an open 
neighborhood U such that K is a deformation retract of U and U contains 
E. Then L = A(E) is to be contained in A{K) CH. □ 

Consider now the regular covering p : XE —■* X with the finite transfor- 
mation group E := F/{L © s(G)). Let (V, /i, /ia) be the Stein factorization 
of the mapping hop : XE —> Y. So V is an analytic space, fi : XE —► V 
is a surjective holomorphic mapping with connected fibers and /2 : V —► Y 
is a finite branched covering. According to definition of E the composite 
mapping 

HI{XE,Z.)(:QHI(V,Z)V&H1{Y,Z)—+G 

is surjective. Therefore there exists the regular covering VQ over V with the 
transformation group G. Then the covering to /2 mapping /^ : VQ —> YQ 

is finite branched and equivariant with respect to the actions of G on VQ 

and YQ- Note that the generic fiber of fi is biholomorphic to the generic 
fiber of h : X -—► Y. The same is clear to be true for the generic fiber 
of the covering to fi mapping /{ : XQ —> VQ, where XQ is the covering 
over XE with the transformation group G. Finally, consider the covering 
r : Xp —► Xf

G with the transformation group L. According to Lemmae 3.4 
and 3.5 we get: 

/{or: Xp —> VQ has connected fibers and L acts cocompactly 
on every fiber of /{ o r. 

Futher fix an x G YQ such that its preimage (fy o /{ o r)"1^) in Xp is a 
smooth submanifold. Consider the set SikX C IGJ where k := deg(f2) and 
Sik is the Zfc-simplex along the group G (see (2.1)). Denote by 5 preimage 
of SikX under the mapping /g. So, S C VQ and is finite. Let R be a finite 
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subset of Xp such that /' \R is a bijection onto 5. Finally, consider the set 
SiR) where Si is the Z-simplex along the group L. To complete the proof of 
the proposition it remains to establish the following result. 

Lemma 3.6. Let f G VI{XF) equal 0 on the set SiR. Then f equals 0 on 
XF. 

Proof, Assume, to the contrary, that / ^ 0. Let Z C Xp be the generic 
fiber of /{ o r. Then as above the group L acts cocompactly on the complex 
manifold Z and the quotient manifold Z/L is biholomorphic to the generic 
fiber of h : X -—» Y. By the assumption of the proposition the space Vi{Z) 
of holomorphic /-polynomial growth functions with respect to the action of 
L is finite dimensional. In virtue of Theorem 1.1 every (Z + Indifference 
defined with the help of elements of L annihilates Vi(Z). Since / \z belongs 
to Vi{Z) and union of generic fibers of /{ o r has nonempty interior, / is 
annihilated by each (/ + l)-difference defined by elements of L. This and 
the arguments from the proof of Lemma 2.3 applying to the / ^ 0 lead to 
existence of a difference A^lj##>j^ {s < I) with gi from the set of generators 
of L such that 

Q := Agu.^gsf i1 0 and &gQ = 0, /or every g^L. 

Therefore for each fiber K of /{or the function Q IK is invariant with respect 
to the action of L. But KjL is a compact connected complex variety and so 
Q \K is a constant. Consequently, there exists a holomorphic on VQ function 
Q' =£ 0 such that (/{ o r)*(Q/) = Q. Since /{ o r is equivariant with respect 
to the action of G, the function Q1 belongs to ^/(VG). By the assumption 
of the lemma Q = A^,...^/ equals 0 on the set R and therefore Q1 = 0 on 
S, Show now that Q1 = 0 identically that will lead to contradiction with 
/ ^ 0. To establish this consider the symmetric polynomials 5i(Q/) defined 
by 

k k 

l[(t-Q,(yi)) = Y,si(Q')(y)t\ 

where {yu.~,yk} is a fiber of /2 : VQ —> YG over the generic y. As in 
the proof of Proposition 3.2 Si(Qf) can be extended to a holomorphic on YQ 

function from VuiYo). Moreover, Si(Q') equals 0 on the set SMX. Since YQ- € 
VJ7, the arguments from proof of Theorem 1.1 applying to functions Si(Qf) 
yield these functions equal 0 identically (i < &). This implies immediately 
Q' = 0. □ 
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To finish the proof of the proposition consider the mapping from VI(XF) 

into ^(SiR) defined by / »-* / [5^. The above lemma states that it is 
injective. Therefore diracViiMc) < 00. □ 

4. Proof of Theorem 1.4. 

The proof is divided into three parts. First we prove the theorem in the 
case of a compact complex curve. Then we consider the case of a compact 
projective manifold and, finally, finish the proof. 

Let M be a compact complex curve of genus g. The Albanese mapping 
A imbeds M into its Jacobi manifold biholomorphic to a complex torus 
CT9 and induces the surjective homomorphism of the corresponding fun- 
damental groups. As well-known the regular covering MQ over M with the 
transformation group G = A*(7ri(M)) = Z29 is the maximal abelian cover- 
ing over M. Therefore it suffices to prove the theorem for the case of MQ- 

Let Af : MQ —► C^ be the holomorphic imbedding that covers A. Since 
the Jacobi manifold of the curve M is projective, there exists a very ample 
line bundle L over CT9. According to the Kodaira imbedding theorem we 
may think of CT^ as imbedded in some projective space CP^ and of L 
as the restriction to CT^ of the hyperplane bundle with the standard posi- 
tively curved metric. Then zero loci of sections of L are hyperplane sections 
of CT^. By Bertini's theorem, the generic linear subspace of codimension 
g — 1 intersects CT9 transversely in a smooth curve C. By the Lefschetz 
hyperplane theorem, C is connected and the map 7ri(C) —► 7ri(CTfl) is 
surjective. Let CQ be the regular covering with the above defined transfor- 
mation group G = 7ri(CTflf). Then there exists a holomorphic imbedding of 
CG into C9 and we will consider CQ as a submanifold of C^. 

Proposition 4.1. For every integer I > 0 there exists a very ample bundle 
L over CT9 such that V^^CG) is finite-dimensional Moreover, for every 
f G VS(CG) with s < (g\)l there exists a holomorphic polynomial p on C9 of 
degree at most s such that its restriction to CG coincides with f. 

Proof Let 

/    9      y/2 

p(zu...,zg):= (l + X^I^U 
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Obviously, / € VI(CG) if and only if 

(4-1) | /(*) |< C(f)p(zy   (zeCa). 

9 

Let uj := 2^dziAdzi be the Kahler form on CT^ defining the Euclidean 

metric and dVc and dV be the volume forms determined by u; on C and 
CT9, respectively. We preserve the same notations for the pullback volume 
forms on CQ and C9 and the pullback Kahler form on C^. 

Lemma 4.2. For every f e VS{CG) the inequality 

| / |2 p^dVc < oo 
Jc< icG 

holds with t := 25 + 2g + 1. 

Proof. Since dVc is invariant with respect to the action of G, the integrability 
condition can be rewritten as 

W   \f{gz)\2p{9z)-tdVc<oo, 
geGJv° 

where VQ is a compact fundamental domain. Because of compactness of VQ 

Cp(g)<p(gz)   (geG,z€Vo) 

for some constant C > 0. Together with (4.1) this gives for t > 2s: 

E /   IfM \2P(9zrtdVc<CfJ2p(9)28'tvoKVo). 
geGJvo geG 

The righthand side is finite if 2s — t < —2g.  Letting t := 2s + 2g + 1 we 
complete the proof. □ 

To construct the required bundle L consider a positive linear vector 
bundle E on CT9 that determines an imbedding into some linear projective 
space. Let @(E) G ^^(CT9) be the curvature form of E. Now observe 
that the function log(p) satisfies 

(i) dlog(p) is bounded on C9 with respect to the Euclidean metric; 
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(ii) the Levi form £(log(p)) is bounded on C9 with respect to the Euclidean 
metric. 

Then there exists a postive integer n := n(lyE) such that for the linear 
vector bundle L := E®n the inequality 

(4.2) G(L) = nG(E) > {2{g\)l + 2g + l)£(log(p)) + eu 

holds on C^ for some e > 0. 
Let now / G VS{CG) and s < (g\)L By Lemma 4.2 / belongs to the 

weighted space £2(^5 CQ) with the weight w = exp(—(2s + 2g + 1) log(p)). 
This and inequality (4.2) show that the conditions of Larusson's extension 
theorem (see [La], th.3.1) are fulfilled for / and zero loci C of L. Applying 
his result we can extend / to a holomorphic function /' E L2(exp(—(2s + 
2<7 + 1) log(p)), C9). By subharmonity of | f \ from here it follows (see, e.g., 
[FN], p.1117) that /' is a holomorphic polynomial of degree at most s. 
So, / is the restriction of the polynomial /' to CQ- D 

Going over to the covering MQ over the curve M consider the direct and 
the symmetric products MX9 and SMX9 of 5-copies of M. Then SM*9 is 
the quotient manifold of MX9 under the action of the permutation group Sg. 
Therefore there exists the finite holomorphic surjective mapping M*9 —> 
SMX9. Further, SM*9 is birational isomorphic to CT^ (see, e.g., [GH]). 
Denote by j : MX9 —> CT9 the composition of these two mappings. Let 
X C MX9 be an irreducible component of j""1(C), which without loss of 
generality we can assume to be a smooth curve. X clearly satisfies the 
following conditions: 

(i) j \x is a finite branched covering over C of degree at most | Sg |= 5!; 

(ii) there exists a holomorphic surjective mapping h : X —> M (restric- 
tion to X of projection on a factor of MX9). 

Let  Gf  be  the  image  of 7ri(X)  under  the  composite homomorphism 

7ri(X) -^ 7ri(C) —-> 7ri(CT3). Clearly G' is of a finite index in 7ri(CT^). 
Consider the regular covering XQ* over X with the transformation group 
G'. 

Lemma 4.3. There exist finite branched coverings f : XQ* —> CQ and 
h' : XQ' —► MQ such that 

(i) f and h1 are equivariant with respect to the action of G': 

f(9z)=9f(z)    and   ti(gz) = gti(z)    (g G <?'); 
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(ii) / is a covering to j. 

Proof. In what follows we think of M as a subvariety of CT^. Let 771,..., rig be 
a basis for the space f]1(CT^) of holomorphic 1-forms on CT^. Consider g- 
dimensional subspaces Ej and Eh of Q,l(X) spanned.by..(j)*(77i),..., (j)*(%) 
and (/i)*(77i),..., (^)*(%)J respectively. Denote by Fj and F/! their comple- 
ments in r21(X). Then there exists a C-linear isomorphism (/> : ^(X) —► 
Q1(X) such that 

(4.3)     <KFh) = Fj9 mnnd)•= unvi), (i<<<p). 
If wi,..., cc;s is a basis of F/,, then <^(wi),..., <^(a;s) is a basis of Fj. Define now 
two lattices r, and rh of C9+s by 

Tj := {5= (Jj*(m),:;ff(rig),J<K<'>i),-,J<K<».)) ;7€ffi(X,Z)j; 

rh:={g=(Jh*(rn),...,Jh*(ilg),Jul,...,Jusy,ieH1(X,Z)y 

Let Tj := C9+s/Tj and T^ := C9*8/Th be the corresponding complex tori. 
The Albanese mappings constructed by the above two bases of n1(X) imbed 
X into 7} and Tft, respectively. Denote the corresponding image of X in Tj 
by Xj and in 7X by Xh- In virtue of (4.3) the linear operator (j) induces an 
isomorphism of V^iTh) onto n1(3)). Since the latter two spaces are naturally 
isomorphic to C^+s, we determine in this way the C-linear automorphism 
<// of C^+s. Let / : C^+s —-> C^+s be the C-linear operator conjugate to <£'. 
Then / : Tj —> Y^ and therefore / determines the biholomorphic mapping 
I' which maps Tj onto T^. Moreover, J7 maps Xj onto Xh. Consider the 
induced homomorphisms j* : TTLCXJ) —► 7ri(CT^) and (hoi')* : 7ri(Xj) —► 
7ri(CT0) and show that 

(4.4) Ker(^) = Ker((/lo/,)*). 

Note that h G Ker^V) if and only if 

77; = 0    (l<i<g), 1 
Jib I'm 

and / G Ker((/i o J')*) if and only if 

L (Ao/')(0 
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So for such / we have 

o= /       f«= /   fc*(t»)= lf{m)= ( m 
J{hoi')(i)       Jr(i) Ji Jj(i) 

and hence I € Ker(j*). The inverse imbedding is proved similarly. 
Since j(Xj) = C and (h o If)(Xj) = M, equality (4.4) leads to existence 

of holomorphic mappings / : XQ* —■» Co and h' : XQ/ —> MQ that cover 
j and h o /', respectively. These mappings clearly satisfy the statement of 
the lemma. □ 

We are now in a position to prove the theorem for the complex curve 
M. By Propositions 4.1 and 3.2 VI(XG') is finite dimensional. Moreover, by 
statement {%) of the previous lemma (h!)* determines imbedding of VI(MG) 

into VI(XG'). Therefore VI(MG) is finite dimensional, as well. Apply now 
to our situation the result of Theorem 1.1. The functions fi of the theo- 
rem in this case coincide with the pullback of linear holomorphic functions 
defined on C9 by the mapping Af : MG —► C^ which covers the Albanese 
mapping A. Prom here it follows that every / G VI(MG) is the pullback of 
a holomorphic polynomial of degree at most I on C^. 

This completes the proof in the case of curves. 
Let now M C CPn be a projective manifold. Since the Albanese map- 

ping from M into its Picard manifold (complex torus) induces a surjec- 
tive homomorphism of 7ri(M) onto the maximal free abelian subgroup G of 
Hi{M) Z), it suffices to prove the theorem for the covering MG- By Bertini's 
theorem the generic subspace L of codimension dime M — 1 intersects M 
transversely in a smooth curve C and the imbedding C C M induces the 
surjective homomorphism of fundamental groups. Moreover, the union U 
of such curves C is an open subset of M. Finally, according to Theorem 
1.2 in the case of curves CG € VF. So the conditions of Proposition 3.1 
are fulfilled for the family of curves C and therefore MG € VF, that is, the 
theorem is proved in this case, as well. 

Finally, consider the general case of a compact complex manifold M 
and a holomorphic mapping A : M —> CTr which induces the surjective 
homomorphism of the corresponding fundamental groups. Show that this 
case can be reduced to the case of a manifold Y' which is a desingularisation 
dy : Y' —► Y of the image Y := A(M). To accomplish this note that 
there exist a desingularisation CJM ' M! —> M and a holomorphic surjective 
mapping B : M' —► Y' such that 

dy o B = Ao dM- 
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It is clear that M' is birational equivalent to M and therefore 7ri(M/) = 
7ri(M). Consider regular coverings Mf

G and MQ with the transformation 
group G := A*(7ri(M)) over Mf and M, respectively. Then there exists 
covering to (IM holomorphic mapping h : M'G —> MQ which is a birational 
isomorphism too. From here it follows that (/&)* : VI(MG) —► Vi(M'G) is an 
isomorphism. Thus it suffices to prove the theorem for MQ. 

Let now (V,/i,/2) be the Stein factorization of B : M' —► Y', that 
is, V be a compact complex variety, /i : M' —> V be surjective with 
connected fibers and /z : V —► Yf be a finite branched covering such 
that B = f2 o fi. Because of surjectivity of A* one can define correctly 
coverings VQ and YQ with the same transformation group G over V and 
y', respectively. Then there exist covering to fi and /2 mappings /{ : 
MQ —► VQ and /^ : VQ —> YQ equivariant with respect to the actions of 
G. Every fiber of f[ is a connected compact complex variety and therefore 
(/{)* determines an isomorphism of VI(VQ) onto VI(MQ). So it remains to 
proof that VQ € P^7. But we can apply Proposition 3.2 (see also Remark 3.3) 
to the case of the finite branched covering /2 : V —> Y7. According to this 
proposition VG £ VF if and only if YQ G VJ7. SO we reduce the problem 
to the case of a desingularisation Yf of Y = ^4(M). To choose the required 
desingularisation we make use of the next statement which follows directly 
from theorem 10.9 of [U]. 

There exists a desingularisation Yf of Y, a projective manifold Z and 
a holomorphic surjective mapping g : Y' —> Z such that g has connected 
fibers and the generic fiber of g is biholomorphic to a complex torus. 

Taking the Yf from the statement and applying Theorem 1.2 to the case 
of projective manifolds and complex tori and then applying Proposition 3.3 
to the mapping g we obtain that YQ G VJ7. 

This completes the proof of the theorem. □ 

5. Proof of Corollaries. 

Proof of Corollary 1.3. Let MQ be a regular covering over a compact Kahler 
manifold M with a free abelian transformation group G. Since WMG) is 
linearly imbedded into VI(MF), where F is the maximal freejibelian sub- 
group of H\(M, Z) it suffices to consider the case G = F. The Albanese 
mapping A : M —► CTr, where r := \ dime i?i(M, C) induces the surjec- 
tive homomorphism A* onto F. So Theorem 1.2 with this A imposes that 
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every / G VI(MG) has a form (A,y(p). Here Af: MQ -—► Cr is the covering 
of A and p is a holomorphic polynomial on Cr of degree at most I. □ 

Proof of Corollary 1.4. Let MG be a regular covering over a compact com- 
plex manifold M with r(M) > dime M—1 and a free abelian transformation 
group G. Recall that T(M) is the transcendency degree of the field of mero- 
morphic functions on M. As above it suffices to consider the case where G 
is the maximal free abelian subgroup of i?i(M, Z). First consider the case 
r(M) = dime M. Then M is birational equivalent to a compact projective 
manifold M' (see, e.g., [Sh], ch.8, sec.3) and, in particular, 7ri(M) = 7ri(M/). 
Applying Corollary 1.3 to the projective manifold M' we get the required 
result. 

Let now T(M) == dimcM — 1. Then there exists a modification p : 
M1 —> M such that M' admits a holomorphic surjective mapping onto a 
projective manifold of complex dimension dime M — 1 and the generic fiber 
of this mapping is biholomorphic to an elliptic curve (see, e.g., [Sh], ch.8, 
sec.4). It remains to apply Theorem 1.2 in the case of projective manifolds 
and elliptic curves and then to use Proposition 3.3. □ 

Proof of Corollary 1.5. Let MQ be a regular covering over a compact 
complex curve M of genus g. Here G is a free abelian transformation group 
which without loss of generality to be assumed maximal. We have to prove 
that every / £ HI(MG) can be represented as (Af)*(p) with a harmonic 
polynomial p on C9 which is a sum of holomorphic and antiholomorphic ones 
of degrees at most /. Here A' : MQ —► C^ is the covering of the Albanese 
mapping A : M —► CT^. In what follows we regard M as a submanifold of 
CT^. Since CT^ is a complex abelian Lie group, there exists a neighborhood 
U C CT9 of M such that M is a holomorphic retract of U. Let UQ be the 
preimage of U in C^ with respect to the canonical covering C9 —► CT^ 
and r : UQ —► MQ be the corresponding retraction. Since / is a harmonic 
function on the complex curve MG, it satisfies the equation ddf = 0. In 
particular, / is locally a sum of holomorphic and antiholomorphic functions. 
Because of holomorphicity of r, dd(r*f) = 0. In addition, r*f is an Z-growth 
function on UG with respect to the Euclidean metric on C^. Then the 
Cauchy inequalities for derivatives of the holomorphic part of r*f show that 
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the d-closed holomorphic 1-form a := d(r*f) can be represented as follows: 

9 

a = y~]ai(z)dzi, 

where ai is a holomorphic function of /-growth on UG, 1 < i < g- Theorem 
1.2 implies that ai \MG is restriction to MQ of a holomorphic polynomial 
of degree at most /. Therefore Aplv..}^+1(ai) = 0, where 51,..., t/j+i belong 
to G. Since / = r*/ \MG we get from here that d(Agli„.igl+1f) = 0. The 
similar arguments applied to d(r*f) lead to the equality d(Agli„migl+lf) = 0. 
These two equalities imply Agli,„igl+1f is a constant on MQ and so every 
/ G HI{MG) is annihilated by any (Z+2)-difference. Applying the arguments 
of the proof of Lemma 2.3 we conclude from here that HI(MG) is finite 
dimensional. In addition, the induction arguments of Theorem 1.1 show 
that every / G HI(MG) can be written as / = (A,)*(p) with a polynomial p 
on Cg of degree at most Z. 

It remains to prove that the p is sum of holomorphic and antiholomorphic 
polynomials. To this end note that the restrictions a* \MG of the coefficients 
of the above defined holomorphic 1-form a coincide with restrictions to MG 

of holomorphic polynomials on C5. So we can extend a \MG 
to a holomorphic 

polynomial 1-form /? and therefore the polynomial p satisfies 

dp-(3 = 0 on MG. 

Check that dp — /3 = J2i=iPi(z)^zi equals 0 identically on C^. Assume to 
the contrary that pi0 ^ 0 for some io. Then there exists a difference operator 
Agii...,gt such that Agu„,:gt(dp-P) + 0 but A«7(A<7l)...)<7t(<9p-£)) = 0 for any 
g G G. From here we get 

9 

with some constants q. But (dp — ft) |MG= 0. and the forms dzi \MG 

,..., dzg \MG are linearly independent. Hence all Ci = 0 and we get a contra- 
diction to the condition Agii_igt(dp — (3) ^ 0. 

Thus dp — /3 = 0 and, in particular, dp is a d-closed holomorphic 1-form 
on C9. Therefore the holomorphic function 

hi :=  /   dp 
J ZQ 
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is correctly defined on C9. Moreover, the growth conditions on p show that 
hi is a holomorphic polynomial. Then /12 := p — hi is an antiholomorphic 
polynomial and therefore p = hi + /12 is harmonic. □ 

Remark 5.1. The latter corollary can be extended with the same proof to 
the case of i-polynomial growth functions / on MQ with a compact Kahler 
manifold M satisfying ddf = 0. In the case of curves the latter condition is 
equivalent to the harmonicity of /. 
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