
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 

Volume 6, Number 3, 427-483, 1998 

Minimizing fibrations and p-harmonic maps in 
homotopy classes from S'3 into S'2 

TRISTAN RIVIERE 

We prove that, contrary to the case of maps from 53 into S'3, there 
exist infinitely many homotopy classes from S3 into S2 having a 
minimizing 3-harmonic map. We prove that the first eigenforms of 
the linear operator A1/2 = d* on (Ker d) (1 A2n54n"*1 are stable for 
the associated conformal invariant non-linear variational problem 
and we deduce, in particular, that the Hopf map from 53 into 52 

minimizes the p-energy in it's homotopy class for p ^ 4 and that 
it remains true locally for 3 ^ p < 4. We prove that the Hopf 
map minimizes the p-energy for p ^ 3 among a class of symmetric 
fibrations from S3 into S2. 

I. Introduction. 

Denote by go the standard metric on Sn and by us* the associated 
volume form. For a map u between Sm and Sn we consider the p-energy 
defined by 

Ep(u)= /    \VufgodvolgQ. ,(«) = /   \Vu\l 
JSrn 

For m = n denote by deg^ the topological degree of u. Since we have 

(LI) mm/2\u*ujs™\^\Vu\m, 

we get 

(1.2) \Sm\ |degt*| = |/   ifujsr* 
\Jsm 

< —nEm(u), 
m2 

where jS'771) denotes the standard volume of 5m and equality holds if and 
only if u is constant or conformal. From (1.2) one deduces that 

(1.3) WEZ       Ei=    inf   Em(u) = mf\Sm\x\d\ 
degu=d 

427 



428 Tristan Riviere 

and, for m > 2, E^ is achieved if and only if d = 0, —1,+1 and u is 
respectively constant or conformal. 

In this paper we will focus on the other case where there are infinitely 
many homotopy classes between spheres, that is, m = 2n — 1 and n = 2p. 

Let u be a smooth map from 52n""1 into Sn. Since u*uJsn is a closed 
form and since iT^S271"1) = 0 there exists rj e A71'1^271-1) such that 
drj = u*(jJsn- The Hopf degree of u is the following quantity 

i?(^) is an integer which does not depend on u in a given homotopy class of 
fl"2n-i('S'n)- For the convenience of the reader we recall, in the preliminaries, 
some of the topological interpretations of H. 

In the case n = 2 we have TC^S
2
) = Z and H(u) coincides with the 

homotopy class of u. As in the S3 — 53 problem, we are interested with the 
following energy levels for maps from S3 into S2 

(1.5) S? = inf {£m(u);    t*: S3 -> 52,    ^(u) = d} . 

It is clear that for m < 3 (as in the 53 — S3 problem) we have £™ = 0 (use 
the action of the conformal group of S3 which is not compact). 
Consider now m ^ 3 and take u such that H(u) = d. Let £ be the closed 
2-form such that 

(1.6) As3£ = u*u;s2. 

We have 

(1.7) H{u)=ir  d*(iAu*ujS2. 
\S2\  Js* 

Using classical results on elliptic operators we have 

(1.8) ^Jd*£|3<c(73Ku/s2| 

and using the Holder inequality we get 

(1.9) |tf(«)K C (J^ |Vu|3) : 
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This implies clearly that for d -fi 0 and m ^ 3 we have E™ > 0. We are 
tempted to compare the problem of computing the energy levels E™ and 
the energy levels £™. The first difference comes from the fact that we used 
a non local operation for finding r? = d*£ and that one cannot hope to get 
a local upper bound of 77 A U*(JUS2 by |V^|3 like in (LI). This makes the 
second problem much more delicate than the first one. To illustrate this one 
has to think of the fact that, countrary to the scalar case, the best Sobolev 
constant in (1.8) is not known already. The second difference comes from 
the power | that we have in the upper-bound (1.9) compare to the power 
1 in (L3). This power | > 1 could be not optimal at all and could be a 
consequence of the method we used for establishing the upper-bound . One 
way for getting a Hopf degree d map, 114, from S3 into 52, is to collapse d 
exemplars of an Hopf degree 1 map u (see below) that we have contracted 
before using a conformal dilation (This is what we have done in the S3-S3 

case for realizing S3). For such construction we have Esiud) ^ Es(u) d and 
one can deal sufficiently carefully in such a way to get 

Es(ud) ~ E3(u)d ~ Cd. 
-\-oo +00 

In fact this way of constructing a Hopf degree d map in view of mini- 
mizing #3 in the 53-52 problem is not optimal at all. Using maps whose 
coimages of points have self-linked connected components (see part III), we 
prove that the exponent 4/3 we got by the non-local operation (1.6), (L7), 
(1.8) and (1.9) is the best that we can get. Precisely we establish the follow- 
ing fact 

(1.10) l^l—>?       asd^+oo 
logd 4 

and contrary to the 53~53 problem (see (1.3)) the infimum of the conformal 
energy is not proportional to the degree. This fact, combined with the 
concentration-compactness method developped in particular in [19], yields 
to the following result proved in part III. 

Theorem LI. There exists infinitely many homotopy classes 0/^3(S2) hav- 
ing a minimizing 3-harmonic map. 

Remark LI. The question about which homotopy class admits a mini- 
mizing 3-harmonic map is still open. 
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In parts IV and V of the paper we ask the question whether the Hopf map 

H : S3 C R4 si C © C —► S2 C M3 a R © C 

(«,«)—>{\u\2-\v\2,2uv) 

plays, in some sense, in the 53 — 52 problem, the role played by the identity 
in the Ss — 53 problem. In part IV we give to this question a partial answer. 

Theorem 1.2. The Hopf map is the only minimizer of the p-energy for 
p ^ 4 in its homotopy class modulo the action of the positive isometrics in 
S3. Moreover, there exists a neighborhood V of H for the C1-topology such 
that, H is the only minimizer of the p-energy for p ^ 3 modulo the action 
of the positive isometrics for p > 3 and the action of the positive conformal 
group of S3 for p = 3. 

Remark 1.2. It is clear that H is no more a local minimizer of the p- 
energy when p < 3, to see it , it suffices to compose H with dilations, (see 
the computation of the index of H for the 2-energy in [21], see also [6]). 

Remark 1.3. See [2] for other minimizing properties of the Hopf map rel- 
ative to p-energies. 

The idea for proving theorem 1.2 is to observe, first, that for any map 
from 53 into S2 we have, for q > 1, 

«i2« (LID ^i^i'si/jv. 

and that equality holds in (1.11) for u = H, that is to say that H is transver- 
sally conform. In view of the previous remark we are tempted to intro- 
duce the following variational problem with constraint for any p ^ 1 and 

0(4p-l)/2p 

(1.12) 

where W^'^A2?-^-1) is the Sobolev space of the 2p - 1-forms of S4^1 

having derivatives in Lq. Remark that the constraint 2p/\S4p~1\ JS4p-i V A 
drj = 1 only depends on drj like also J^p-i \dri\q. Thus for a given dr) we 
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often use the "Coulomb Gauge" 77 verifying d*r) = 0 to make the problem 
coercive. For q > (4p — l)/2p the existence of a minimizer is given by the 

4P-1 

compactness of the injections Wl,q <-> L2?-1. For q = (4p — l)/2p the 
existence of a minimizer is not so direct, one has to use the classical ideas 
of the concentration-compactness method of P.L.Lions (see [15]) to get the 
existence of a minimizer. Note that the problem X2-1/2P) the conformal 
invariant one, only depends on the conformal class of the metric we have 
chosen on 54p~1 and is in itself interesting. 
Let I = {ii,..., i2p} be a choice of 2p integers in {1,..., 4p} and denote by 
r)f the following (2p - l)-form of A*-

1
^-

1 

1   2p 

rfj = — ^(-l)s+1 x^dx^ A • • • A dxis A • • • A dxi. 
2p 5=1 

1>2p 

where 

1   2p 
+ 9^ S^"1)5"1"1 xh dxK A • • • A cixia A • • • A dxj2p 

Zp s=l 

dxfr A • • • A dxj2p = xdxi! A • • • A dxi2p    in 

We prove in part IV that theorem 1.2 is a consequence of the following result 
that we prove in part IV also. 

Theorem 1.3. The restrictions of the linear combinations of the rjf to 
S,4p~1 are the only minimizers oflq forq ^ 2 moreover there exists a neigh- 
borhood V of 77^ for the C1 norm, such that, rifQ minimizes Xq in V for 
q ^ 2 — ifc and it is the only minimizer ofXq in V modulo the linear combi- 

nations of the rfj forq > 2 — rt and modulo the linear combinations of the 

rfi and their pull-back by the positive conformal diffeomorphism of S4p~l for 
9 = 2-4.. 

Remark 1.4. The question to know wether the r)f minimize globally Xg L 
2p 

or not is still open. 

Remark 1.5. The proof of theorem 1.2 uses essentially the decomposition 
of the closed 2p-forms in the L2 eigenbasis of A^p-i on Kerd PI A2p54p""1 

and the fact that the constraint in .(1.12) has a very simple expression in 
this basis. Moreover we use also an identification of the second eigenspace 
of As4p-i on Ker dOA^S^"1 with the Lie derivatives of the first eigenforms 
by the conformal Killing fields which are not pure (see proposition IV.3). 
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Remark 1.6. The link between theorem 1.3 and theorem 1.2 is made by 
identifying H*u)S2 with the restriction to 53 of 4 {dxi A dx2 + dxs A dxi) (see 
the end of part IV). 

In part V of this paper we try to give a more geometric interpretation 
of the conformal invariant 3-energy in the first homotopy classes of 7r3(52). 
We give a lower bound of the 3-energy among fibrations from S'3 into S2 

in term of the Teichmiiller classes of the coimages of the great circles of S2 

(see proposition IV.2). This lower bound is optimal: it is an equality for 
the composition of the Hopf fibration with the conformal diffeomorphims of 
Ss. This approach allow us to prove that the Hopf map minimizes the 3- 
energy among the class of symmetric fibrations that we define in part V (see 
theorem V.l). This enforces the conjecture that H minimizes the 3-energy 
in it's homotopy class. 

II. Preliminaries. 

We recall some basic facts concerning the Hopf degree. 

In the definition of the Hopf degree (1.4) that we gave in the introduction 
we used the volume-form on Sn, but it can be replaced by any generators of 
H2R(Sn). This implies that, if ui and UJ2 are two n-forms on S71 such that 
fgn wi := Jsn ^2 = 1? if w is a map from S2n~l into S'n and let r/i, 772 be two 
(n — l)-forms of An~1(52n~1) such that drji = u*u)i (i = 1,2), we have 

(II. 1) H(u) =  /       771A u*uj2 = /       ^72 A U*UJI. 

See [1] page 230. It is proved also in [1] that if n is odd then H(u) is allways 
equal to zero and in [10] one can find a proof of the fact that when n is even 
H(.) can take infinitely many integer values. Thus, in the remain of the 
paper, we will always suppose that n is even, equal to 2p. 

We give now three different topological and geometrical interpretations 
oiH(u). 

II.l. The Hopf degree as a n-topological degree. 

Let ui and 002 be two generators of H2R (Sn) having disjoint supports, let 
u be a map from S271-1 into 5n, x a regular point in the support of ui and S 



Minimizing fibrations and p-harmonic maps 433 

a n-submanifold of S271'1 such that dE = u-l{{x}). Let r/i € An~1(S'2n"1) 
be such that <% = ix*a;i, it is proved in [1] page 232 that ryi is the Poincare 
dual of £ in the compactly supported cohomology ifc(5

2ri""1 \^""1(suppa;i)). 
Thus we have 

/        r}i A u"u)2 = / 7?i A u*a;2 

=  / u*a;2. 

This says that i?(^) is the topological degree of the restriction of u to S 
into5n. 

11,2. The Hopf degree as a Link. 

Let x and y be two distinct regular points of u in Sn and Bs(x), Bs(y) 
be two disjoint geodesic balls of center x and y. Let IT be the stereographic 
projection from S'2n~1 to R271"1 relative to a point which is not in Bs(x) U 
Bfiiy)- We still denote u the map u o II"1. The link L(a;, y) of the coimage 
of x and y by u is, by definition, the degree of the map 

L : u-1 ({x}) x u-1 ({y}) C K271-"1 x E271-1 —> 52n~2 

«,C) K-CI 

It is clear that, if a/ and y7 are two regular points of u in Bs(x) and !?£(y) 
we have L{x,y) = L(xf,yf).   Just deform isotopically in M271"1 x R271-1 

We present, now, the computations in the case n = 2. They can be 
established in the same way in the general case. By definition, for any 
couple (x',yf) of regular points in Bs(x) x Bs{y), we have 

(II.3) L(x',y') = -L // fiwi)*^- 
I*  I J Ju-H{x'})xu-H{y'}) \l? - QJ 

After some computations this gives 

(11.4) 

PI ./ A-i({x'})xW-i({y'}) \l« ~ Cr/ 
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where TI and T2 are the tangential vectors along u^^x'}) and ^""1({y/}). 
If we choose the normal parametrisations of the curves, TI and T2 are unit 
vectors and coincide with the vectors associated to the two forms 

u 0/52 
■(0 and 

u US2 

Denote by D{u) the following vector-field 

3 

(0- 

D{u) = ^ {u*u)g2\ dxi+i A ctet-i) e^, 
»=i 

where e* is the canonical basis in R3. We have r = mfoyr. 

Integrating (II.4) on Bs{x) x B^(j/) and using the coarea formula of Federer 
we get 

(11.5) 
\B5\lL{x,y) 

f 
l{Bs(x)) Ju-HBs(.v)) 

D.(u)(0 . rot 
1 (*«(*)) 

Moreover one verifies that 

"-x(5«(y))  47r i« - ci 

(11.6) div( /       -iir?Tr^tt^dC)=o. 
V Ju-HBsto))   47r I? - CI y 

Indeed this corresponds to integrate the gradient VJTZTT along the coimages 
of the points of Bs(y) which are closed curves. Thus we have on Bs(y) 

(11.7) 

rot rot / 
Ju-1 (Bs(y))     47r £ - C| 

= D(u){t). 

Combining (II.5) and (II.-7) we have, replacing vector-fields by associated 
forms, 

\Bs\2L(x,y)= lifviArh, 
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where 772 is a 1-form verifying d7]2 = u*uj2 and where 

UJi = US2 X Hjg^^), UJ2 = ^2 X SB6(y) 

(Syi denotes the caracteristic function of the set A). This yields the following 
result 

(11.8) L{x,y) = H(u). 

II.3.   The Hopf degree as a 2n — 1-topological degree for n = 2. 

Let u be a map from S3 into S2. Denote by u the lift oi u between 
the fiber bundle u~lH, the pull-back by u of the Hopf bundle if, and the 
fiber bundle H: Sz —► S2. tz^iJ is a bundle with fiber S1 and base S3. 
Denote by 11 the projection of this bundle. Such bundle is necessary trivial, 
vT1!! ~ S3 x S1 (because ^(S1) = 0), and u, restricted to 53 x {point}, 
realizes a map (/> from S3 into 53 such that 

(11.9) Ho<f) = u. 

Let K be a (n — l)-form verifying dK = H*u;S2, since H has Hopf degree 1, 
we have 

(11.10) 1 = -^ f  K A iJ*a;c2. 

In the other hand, because of (II.9), we have i^o;^ = ^H*uS2 and 77 = (l>*K 
verifies dr) = (j)*dK = U*UJS2. Thus we have 

(11.11) 

Hlu) = o /  V A ^W = ^T /   </>* (K A if*^^). 
V ;     \S2\2Jsz \S2\2Jsz 

(11.10) implies in particular that —jp- x K A 11*0)32 is a generator of H^R(S3) 

and (11.11) implies 

(11.12) H(u) = deg<j>. 

III. Minimizing S-harmonic maps in 
the homotopy classes of 7r3(52). 

This part is devoted to the proof of theorem LI stated in the introduc- 
tion. First of all we prove the following key lemma. 
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Lemma III.l. Let £<* be the infimum of the 3-energy among maps from 
S3 into S2 having Hopf degree d, we have 

(III.l) log5d ~ ^logd 
+00 4 

Proof. In the introduction, using Sobolev embedding and Holder inequality 
we have established that there exists C such that 

(111.2) \d\^c(ed)t. 

It suffices to prove that this inequality is asymptotically optimal in the 
following sense: there exists C such that 

(IIL3) £d^C'\d\*. 

Recall the following property verified by the Hopf degree. Let UQ be a map 
from S3 into S2 having Hopf degree H(uo) and let v be a map from S2 into 
S2 having a topological degree denoted by degv, we have 

H(v o UQ) = (deg v)2 H(uo) 

Indeed, if CJ denotes a generator of H2(S2) and uf = V*UJ we have, by 
definition, H(VOUQ) = TJ

7
 A UQ UJ' where drf = UQ uf and if deg v ^ 0, uJ j JS2 a/ 

is a generator of H2(S2) and we have 

H(v O UQ) 

Thus, if H denotes the complex Hopf map H{v o H) = (degv)2. Using the 
coarea formula of Federer we have 

7^3 JyeSPJ-H-Hy)      \H  ^52 1 

And since H is transversally conform, with uniform gradient |ViJ| = 2 y/2 
in 53, we get 

(III.4) 

/   |V(t; o iJ)|3 = f       f \Vv\3 (y) x 2 = 47r /   \Vv\3 . 
7g3 Jy&SlJH-Hy) JS* 
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We claim that there exists C > 0 such that 

(IIL5) min    /  \Vv\3^Cnh 
degv=nJS2 

Let -UQ be a degree 1 map from S'2 into S2 constant in the south hemi- 
sphere S^. and denote by VQ the map VQ O D£ where D£ is the dilation rela- 
tive to the north pole which sends the geodesic ball B£(North) in the north 
hemisphere. 
We clearly have | Vi^l ^ C/e. Moreover there exists A > 0 such that, for any 
integer n > 0 there are n disjoint geodesic balls of radius X/y/n included in 

S2. Let vn be the map which coincides with v0 in each of those geodesic 
balls and constant elsewhere. We clearly have deg vn = n arid | Vx;n| < C \Jn. 
This implies (IIL5). Combining (III.4) and (III.5) we get 

(IIL6) min    /  |V(t;o if)|3 < Cnt. 
deg v=n Js* 

This implies 

(III.7) fn2^Cnf =C(n2)^. 

Thus (III.3) is proved for d = n2. 

Let d be any integer and n such that n2 ^ d < (n + I)2, we have 
d — n2 ^ 2n. Consider a map u from S3 into S2 having Hopf degree d, one 
can insert to n, at d — n2 different points the negative Hopf map H~ by 
using less energy than 

Ez(u) + (d-n2)Ez(H-)+e 

for any e > 0. This is directly linked to the conformal invariance of the 
3-energy on S3. This implies 

£d < £n* + C(d-n2)^ Cdi + Cd* < C'd*. 

lemma III.l is proved. D 

We now prove the following proposition which is a consequence of the 
standard technics of concentration compactness whose reference papers are 
for instance [19] and [15]. 
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Proposition III.l. Let d be an integer. There exists a finite sequence of 

integers di, • • • , di such that X^=i di = d and a finite sequence of maps from 
S3 into S2 vi, • • • , vi such that 

H{vi) = di       E3(vi) = £di 

(111.8) ' 
and   £d = 2^ #3(*>»)• 

Proo/. Let un be a minimizer of .£3+1 among the maps from Sz into S2 

having Hopf degree d. Such un exists because of the compactness of the 
injection of Wli2 + *z (S3,S2) into L3 (53,52) and the constraint ^377 A 
u*u) = d becomes subcritical. We claim that un is a minimizing sequence of 
£3 in the homotopy class considered. If not, then there would exist a map 
v in this homotopy class such that 

(III.9) Ez(v) < lim^sK) < iim^s+iK) 

Since the regular maps are dense in Wl^{S3,S2) (see [20]), we can always 
suppose that v is regular. We clearly have E^+i (v) —► E3{v) and this 

contradicts the strict inequality (IIL9) because un minimizes E^i in the 
d-homotopy class. Thus un is a minimizing sequence of E$ in this homotopy 
class. 

It is clear that un is a locally minimizing 3 + —harmonic map and from 
classical results of the regularity theory for p-harmonic map, since un is 
C0'^ we have that un is at least C1,Q: for some 0 < a < 1 (see [9]). The 
proof of proposition III.l is essentially based on the following concentration 
compactness result for the sequence un whose ideas of the proof are devel- 
oped first in [19] for harmonic maps in dimension 2 and are adapted to the 
p-harmonic map case in [17]. 

Theorem III.l. [19], [17]. Let un be the sequence defined above. One can 
extract a subsequence, still denoted un, such that there exists a finite sequence 
of points {xi,... ,£&} (possibly empty) and a finite sequence of positive real 
numbers {/xi,..., /ifc} such that 

(i) un converges to some u in the C1 -Topology on any compact set of 
53\{a;i,...,rrfc}. 

(ii) The measure |V^n|3 on S3 converges weakly to \Vu\3 + Yli=i IH&xi- 
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(iii) u is a C1 3-harmonic map from 53 into 52. 

The proof of theorem III.l is not straightforward at all. The proof of 
(i) and (ii) can be carried out following step by step the arguments of the 
proof of theorem 2 in [17] (but for nX P < n + !)• The fact that u is a C1 

3-harmonic map in 53 \ {xi,..., x^} is a consequence of (i) and finally (iii) 
is a consequence of the previous fact and the singularity removability result 
for p-harmonic maps of Duzaar and Fuchs (see [3]). 

Prom now on un denotes the extracted subsequence having the conver- 
gence given by theorem III.l. Let rin be the coclosed 1-form such that 
drjn = tfc*u;, where u = u^/jo^l. We claim that there exists a sequence 
{z/i,..., Uk} of non zero integer such that 

k 

(III. 10) (*)77n A drjn —> (*)r/ A dr] + ^ Ui6Xi 

i=l 

where r/ is the coclosed 1-form on S3 verifying dr) = u*u>. Since U^UJ weakly 
converges to U*UJ in L2 (53), r/n strongly converges to 77 in LP for any p < 3. 
Because of the strong convergence of drjn = it* u> to dr/ = U*UJ in 

^c(53\{xi)...,Xfc}) 

we have, for p < 3, 

(III.ll) 
(*)rin A dr]n —> (*)TI A dr/       in    Lfoc (S'3 \ {xi,..., Xk}) 

Thus the signed measure (*)ryn A dr]n — (*)r7 A dr] converges to a measure of 
the form YA=I Vi&xi* ^e shall prove now that Ui are non zero integers. 

Let 6 be a positive real number chosen sufficiently small such that Xi tfL 
Bsfai) for i ^ 2 where Bs{xi) denotes the geodesic ball of center xi and 
radius 6 in S'3. Since un converges for the C1-norm to u on dBs(xi) one can 
modify un in B$(xi) in such a way that the modified sequence un verifies 

(III 12) f^n = un 
in   S3\Bs(xi) 

[iin-^u in   Cloc (S
3 \ {X2,.. •, xk}) 

Let fjn be the coclosed 1-form on S3 such that dfjn = u^u. We have, like 
previously, the following weak convergence of the measures 

k 

(IIL13) (*)r7n A drjn —> (*.)t/ A dr] + ^ Ui6Xi. 
i=2 
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But we have the following elliptic equation 

/JJJ 14x fdfin - r]n = 0 in   53 \ Bs(xi) 

\d*fjn-Vn = 0 in    53\^(xi) 

Moreover fjn — % strongly converges to 0 in Lp(53) for p < 3. By classical 
elliptic estimates we have that r}n — 7]n converges to 0 in C1(53 \ Bs(xi)) 
thus combining this fact, (III. 10) and (111.12) we get i>i = Ui for i ^ 2. 
Using the preliminaries on the Hopf degree we have 

(111.15) Vn G Z / rjn A drjn - / fjn A dfjn G Z 

Combining (111.15), and the convergence of the measure 

(*) (Vn A drjn -fjn A dfjn) 

to ui 6Xl we get vi G Z. 

We claim that 

(111.16) Vl<tO       lJii = £vi. 

Let us prove it for i = 1. Let an be a sequence of positive number tending 
to zero, chosen in such a way that 

(111.17) 

|u(:r) - u{xi)\ + \Vu(x) - Vu{xi)\ < -       in   B6n{xi). 

Let Nn be a sequence of integers chosen such that 

(111.18) 

Vp > Arn    ||tip(a:) - u(x)l < -        in    B^(a?i) \ ^n(xi). 

We can modify u^n in «^n such that 

(111.19) 

UNn=uNn in ^(aji)- 

«JVB=«(X1) in S3\BSn+x(xi) 

andlVuiv^loo^C in BSn+i{xi)\BSn(xi) 



Minimizing fibrations and p-harmonic maps 441 

The map UNn has been constructed in such a way that the Hopf degree of 
UNn is ui. Moreover, the measure |Vtijvn|

3 converges weakly to a measure 
having support in {#1}. Thus there exists /Ii ^ 0 such that 

(111.20) iVfitfnP-M*!- 

Let a < 6, (IIL18) and (111.19) imply 

(111.21) ^C(3S. 
>BP 

This yields /ii = pi. Since H(uNn) = 1/1, we have 

(111.22) ^^^1=   Hm    /  \VuNn\\ 

Combining (ii) of theorem III.l and (111.22), we get 

k k 

(IIL23) £d = Ek(u) + Y^^^^ + ^Z£^ 

where 1/ is the Hopf degree of u. Moreover gluing together minimizing se- 
quences of £„, £1/li • ••. , £Uk one proves easily, since d = u + X]i=i ^i? *hat 

^d < £v+/,£vi' 

Thus equality holds in (111.22) and (111.23) and we have 

k k 

(111.24) fd = ^.(ti) + £^=6, + ^^.' 
i=i i=i 

(Since /ii = £Vi > 0 we have ^ 7^ 0). 

We claim that, if 1/ = 0, that is, if u is a constant map, we have k ^ 2. 
The approach used for proving this is similar to the one used in [19] for 
proving lemma 5.3. 

Suppose un concentrates at the north point, that is 

(111.25) \VUn\*^£d6North' 
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We are going to prove that, for any e > 0 there exists C£ independant of n 
such that 

(111.26) E+* (tin) ^ C£ EZf, K) 

where E^fx (un) (resp. #"' i (^n)) is the 3 + ~ energy of un restricted to 

the geodesic ball Bnorth(^ - P) (resp. jB50Wt/i(f - /?)) in i?3 for /? ^ 0. It is 
clear that (111.26) contradicts (111.25) and this establishes the claim. Let us 
prove now (IIL26). For simplicity of the notations denote by v any element 
of the sequence un and by p the corresponding exponent 3 + ^. With this 
notations v is a C1 p-harmonic map. Consider a perturbation of v given 
by an infinitesimal action of the conformal dilation of S3 relative to the 
north pole, that is sin ^ || where (j> is the angle function in [0, TT] such that 

cos <)) = £4 the forth coordinate of any point of 53 C M4. We shall use the 
spherical coordinate (0, ^, (j)) € [0,27r] x [0, TT] X [0, TT] on S3 recall that we 
have 

gs* = sin2</> sin2^ d92 + sin2^ d^2 + d(f>2 

Since v is p-harmonic and v. || = 0 we have by the 1st variational formula 
for the p-energy functional (see the derivation of the general formula for 
maps between Riemannian manifolds in [22]) 

(111.27) f  \dv\p-2 Idv. d (sin01^ J \ UJSZ = 0. 

We have 

dv-d (sin^))= (i£) • (^ (sin^^ d<f)JJ 

d(pJJ + (^^)-(|;(sin^)) 

+ (sin2 <£ sin2 V ^ j ' (^ V111^ WJ * 

where " . " denote the scalar product in TS2 and <, > the scalar product 
in T*^3 After computations we get 

(111.28) 

dv. d { sin</> -777 ) = - -^jldvl2 sin(/> + |Gfa;|2 cos0 
\        opj      2 ocp 
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Combining (111.27) and (111.28) we have 

(111.29) 

0 = -       /   /     (\dv\2) 2   — H2sm30sin^<ty#d0 
2 y0 Jo ^o ^0 
m27r 

|dt;|p cos^ sin2(/) simpd^di/jdO. 

Integrating the first term of the right hand side of (111.29) by part we get 

(111.30) /  Hpcos<£ = 0. 

This implies .(111.26). 

Proposition III.l is now a consequence of (111.24) and the fact that if 
v = 0, k = 2. Indeed, take d > 0, apply (111.24) to d, then apply (IIL24) 
to each Ui and so on. We develop a tree procedure and in each branch an 
integer appears at most one time. Moreover, since £p —> +oo as p —» +oo 
only a finite number of integers are concerned, and finally we get (III.8). □ 

The author learned that a similar result than the one stated in proposition 
III. 1 was recently established by F. Duzaar and E. Kuwert in a more general 
setting in a forthcoming paper [4]. 

Proof of theorem LI. Suppose there is only a finite number of non zero 
integers such that the corresponding homotopy class admits a minimizing 
3-harmonic map. Let Sd0 be the smallest of the energy of those homotopy 
classes and let |di| be the largest corresponding integer of those homotopy 
classes. (III.8) implies 

(111.31) Vd^O       Sd>4lx£do- 
lrfi| 

This contradicts lemma III.l as d tends to infinity and theorem 1.3 is proved. 
□ 
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IV. A conformal invariant variational problem on 
closed forms of APS4*'1. 

IV. 1. Presentation and basic properties. 

As we pointed out in the introduction, the study of the conformal invari- 
ant 3-energy from 53 into S2 in the first homotopy class yields naturally to 
the following constrained minimizing problem (in the case p = 1) 

(IV.l) 

J* = inf { I^I jf^ H2-£ , r, e W1'2^ (A*-1**-1) 

^ \s^\L-^Adr]=l} 
First we prove the following proposition. 

Proposition IV.l. The minimizing problem (IV.l) is achieved by a closed 
2p-form h* = drj* which verifies the following equation 

(IV.2) dri* = 2* M*^ (*)^ 

where (*) denotes the Hodge operator on S4p~l. 

Remark IV.l. Equation (IV.2) only depends on h* = drj* and is equiva- 
lent to the following one 

(IV.3) d(*) —^rr = 2?^ h*. 
IM 2p 

Remark IV.2. The minimisation problem (IV.l) and consequently equa- 
tion (IV.2) are invariant under the action of the non-compact conformal 
group of (S4*-1, Soon), denoted Conf S4*'1, i. e. 

(IV.4) 
V<£ e Conf+ (54p-1), Vry 6 A2""1 (S*"1) 



Minimizing fibrations and p-harmonic maps 445 

and naturally we have 

/        (jfrj Ad(j)*r) =  /        r]Adr] 

that is the main reason why the proof of proposition IV.2 is not so direct but 
is an application of the concentration-compactness method of P.L. Lions. 

Proof of proposition IVA.   We follow the arguments of [15]. 
Let hk = drjk be a minimizing sequence of X*, where % denotes the "Coulomb 
Gauge": 

(IV.5) d^k = 0. 

The choice of this rjk makes the problem coercive thus % weakly converges, 

up to a subsequence, in W ' ""2F(A2p~154p~1). Denote by rj the weak limit 

of r/fc, by fjb the limiting measure of \drik\ 2p and by z/ the limiting measure 
of (*)% A drik- We'first prove that there exists (vj)jej € R*J and (xj)jej 
a sequence of points of 54p"'1, where J is some at most countable set, such 
that 

(IV.6) 

v = (*)r)-A drj + ^T Vj8Xi 

izJ 

and   n > |di?|2"i + \S^-X| *p 1*Y, Wjf'^ 8Xj. 
jeJ 

Let £k = r/fc — 7?. Denote by 1/ the limit of (*)6: A d£fc and /x' the limit of 

|^fc|2"^. Let cf> € C00^-1), we clearly have #* A d(^fc) = ^^ A df* 
and this implies 

(IV.7) 

|5
4

P — /" rtk^dtk ^ _2 

Using the fact that £& weakly converges to 0 in W '    2
P and using also 

Rellich Theorem we get 

/    w&i2""^ - /    1012-* i^fci2-* 
Js4p-1 Js*?-1 

0. 
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Thus we have 

(IV.8) 
_2E_ 

is^L.H^zkfejL1^**')" 
This is the desired Holder reverse inequality in view of applying lemma 1.2 
of [15]. thus we obtain the existence of (i'j)jej such that 

[V = Y^Vj6x 

(IV.9) 
jeJ 

and   v'^lS^fil^hl1^6^- 

Because of the fact that 

6 A d€k = rikAdr)k-riAdr]k-r)kAdri + r)A dr/, 

using, once again, Rellich Theorem we get i/ = u—{^)r]Adr]^ this establishes 
the first line of (IV.6). Moreover the inequality 

Ai>|.S*-1|*Z;2>i|1-*$,i 

is a consequence of the following 

(IV.10) 

|5*- hLw* du < 
2* 

+ 
2p 

where inequality (IV.10) is established similarly than inequality (IV.8). Fi- 
nally, by lower semicontinuity of the L 2P-norm for the weak topology we 
have 

(IV.ll) 2—, 
^>\dr]\    ** 

and since \dr)\    2
P is a measure orthogonal to the sum of the Dirac masses, 

we establish the second line of (IV.6). 
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We now modify the minimizing sequence drjk to garantee that the weak 
limit be non zero if it is not the case. We proceed as follows. Denote by 
Lk = (I4)i=i,...,4p the following vector of 1 

(IV.12) H-^jf      „ rikAdrik. 

Let g be a point in the open unit ball B4p of R4p, denote by g the following 
positive conformal transformation of S4p~l 

(IV.13) Vx € S4?-1       g^x) = a: + (^-g + % 
\{l + x.g) 

where A = -y/1 — |5|2, fj, = (A — l)/\g\2. Denote by ipf. the following map 
from B4? into R4" 

^ —ifc(fl>)=(4a7))i=if...A> 
(IV.14) 1        f 

where CfcCflO is the coclosed form of A2^"1^4^"1 verifying d£k{g) = dg*rik. 
rfk can be extended by continuity from B4? into E4p. Indeed, as 5 —> 0 G 
^4^-1 one verjfies that the total mass of CfcCflO A ^5*% concentrates at 6 and 
since 

l^i f^fiig) A *r»ft = i^rrj 1^ 9*m A **% = i 

one has Lk{g) —^ 0. Thus t^ restricted to SAv~~l is the identity map and 
using Brower theorem, we deduce that there exists g^ € BAlp such that 
Lk(gk) = 0. Instead of considering % as a minimizing sequence, we take 
Ckidk) that we will also denote %. 

Suppose dr] = 0, combining (IV. 10) for 77 = 0 and the last part of lemma 
1.2 of [15] we deduce that Card J = 1. Let £0 be the point where r/fc A drjk 
concentrates we have that 

Lk —► XQ 

which contradicts the fact that we have chosen a minimizing sequence such 
that Lk = 0 for all fc. Thus dr) ^ 0. 

Inequality (IV.6) yields 

(IV.15) 

is^jL'^M'-gW 
l-tp 
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and we have 

(IV.16) 

<* f1-C1-155=11 jL.''A*,),"'e, 
 / n A W/n  I 

ry realizes the minimum Z* and proposition IV. 1 is proved. □ 

^i^^\LP-1
vAdv) 

IV.2. The associated linear problem.. 

More generally we are interested in finding solutions of the following 
conformal invariant equation for fi ^ 0 

fd7? = Ai|7?|5FT(*)77 in     A2p-i154P-i 

(IV.17) {      2p      f J       , 

There are solutions which are given by the associated linear problem on the 
coclosed forms of A^S4?-1: 

(IV.18) dr) = \(*)r), 

which is equivalent to the following eigenvalue problem on KerdHA^S^"1 

(IV..19) d(*)h = \h. 

(IV. 19) is the eigenvalue problem for the square root of the Hodge lapla- 
cian, A 2 = d(*), on Kerdfl A2p54p~1. The eigenvalues and the eigenspaces 
of the Hodge Laplacian on Kerd fl A^S4?"1 are described in [8], [11] and 
[13]. Those eigenvalues are (2p)2, (2p+l)2, (2p+2)2, ... and the eigenspace 
Eij corresponding to the eigenvalues (n + i)2 are the restrictions to S4?"1 

of the set of closed and coclosed , polynomial, homogeneous 2p-forms in 
A2pR4p, having degree i Thus, in particular, the eigenvalues A in (IV.19) 
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can only be A = ±(n + z), i € N. d(*)/(n + i) is an orthogonal symmetry in 
Ei for the L2-scalar product. Moreover, if S is the symmetry on R4p 

S: (a:i,a:2,...,a;4p)—► (-^1,^2, • • • ,^4p) 

we have 
5*(*)/i = -(*)S*/i       in    A2p S4^1. 

Thus the pull-back by S realizes an isometry between 

Ef = Ker (d(*) - (n + i) Id) 

and 
E7 =Ker{d{*) + (n + i)Id), 

this implies dim E* = dim E^. In fact there is a more precise description 
oiE±. 

Proposition IV.2.  The eigenspaces Ef = Ker(d(*) — ±(n + i) Id) in 
/\2pg4p-i p| Ker d are respectively the restrictions to 54p~1 0/ f/ie dwa/ and 
antidual closed, degree i, polynomial homogeneous 2p-forms ofM^p. 

Proof. Prom [8] and [13] we know that 

Ker (d(*) - (n + %)) 0 Ker (d{*) + (n + i)) 

is the restriction to S4p~l of the closed and coclosed, degree i, polynomial, 
homogeneous 2p-forms of R4p. 

First of all we prove that, if h is a coclosed, degree i, polynomial, homo- 
geneous 2p-form of R4p we have 

(IV.20) d(*)fe=(2p + i)*.ft       on   fif^"1. 

Recall that * and (*) denote respectively the Hodge operators in E4p and 
g4p-i   pjr-Qjn ^1] we know that for such h we have 

(IV.21) ck(r —J *fc = (2p + i)*fc       on 

where 
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and i(X) denotes the interior product by X on forms. Thus for proving 
(IV.20) it suffices to verify that 

(IV.22) L(r-pJ*h=(*)h       on   S4?"1. 

Let x G S4p~l and (dr, ei,..., ^4p-i) an orthonormal basis of T* M4p where 
(ei,... ,£4^-1) is an orthonormal basis of T* S^"1. Decompose h in this 
basis 

j / 

where J denotes a choice 

{jl,...,j2p-l} 

of 2p — 1 elements among {1,..., 4p — 1} and / denotes a choice 

{ii,...,i2p} 

of 2p elements among {!,••• , 4p — 1}. We have 

*h = ^2 aJ sgn(J) ej{ A " • • A eftp + ^2, & sSn(/) drAeqA"- A eq^, 
J I 

where {#, • • • , Jlp-i) is the complement of {ji, • • • , J2p} in {1, • • • , 4p - 1} 
and where sgn(J) and sgn(J) are the signs such that 

sgn( J)dr Ae^A-'-A e^^ A Sj* A • • • A ejip 

= sgn(I) e^ A - • • A ei2p Adr Asq A-•-A eq^ 

= (J   4p. 

We have 

Moreover the restriction of /i to 54p~1 is equal to 

^/J/^A.-.A^        in    S4"-1, 
I 

and 
(*)fe = J2 Pi S

^(I) eqA>--A ^p_1. 
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Here we have used the fact that n = 2p is even and 

e*! A • • • A £i2p A dr = dr A e^ A • • • A ei2p. 

Combining (IV.21) and (IV.22) we get (IV.20). Thus h is a closed 
and coclosed degree i polynomial homogeneous 2p-form of ]R4p belonging 
to Ker(d(*) - ±(2p + %) Id) if and only if 

*/i = ±/>       on   fi^"1. 

But since h is closed and coclosed in R4p this implies 

*/i = ±/i       in 

Proposition IV.2 is proved. 

For any part / = {ii, • • • , i2V) of {1, • • • , 4p} denote by hf the following 
forms in M4p 

(IV.23) hf = dx^ A • • • A dxi2p ± *(da;t1 A • • • A dxi2p). 

Prom the discussion above we deduce that, since /i^ is respectively dual and 
antidual in R4p, we have 

(IV.24) d(*)hf = ±.2phf. 

Moreover, one verifies that, since dim EQ = C^ (see [13]), and since the hf 
are orthonormal for the L2-scalar product, hf realize an orthonormal basis 
of E$'. Let nf be the following (2p - l)-fonn in ]R

4
P 

(IV.25) 

1   2p 

vf = Y X^^"1)^1 Xi» dxii A ''' A d£i« A • • • A dxi2p 

1   2p 

:t5r^-1)8+1^«da:^A'"A<tei»A,"Adx*p 

where ^dx^ A • • • A dxi2p) = dx^ A • • • A rfa;jn. We have 

drit = hf,        \hf\stp_1 = 1,        |^|54P-i = ^ 

and       T)f Ahf = ±—Wg4p-i, 



452 Tristan Riviere 

thus rjf = ±^ (*)hf = ±^ (*)drjf and this implies 

(IV.26) 

We have constructed solutions of (IV.17) for C = ±(2p)2P-1. Erom the 
above discussion we know that the space generated by the rjj is the set of 
minimizers of 

(IV.27) min 

\ 

Adt] 
2p, 

/ 

which is the variational problem associated with the eigenvalue problem for 
A^ = <*(*) in Ker d n A^^4^1. 

4p~l 
We are tempted to say that 2* = (2p) 4

P but this is still an open ques- 
tion, we are just able to give a "local" answer which is theorem 1.2 in the 
introduction. 

IV.3. Local Minimizers. 

The aim of this part is to prove theorem 1.2 in the introduction. 

We will need the following proposition 

i 
Proposition IV.3. The second positive and negative eigenspaces of A 2 = 

rf(*) in Kerd D A2pS4p~l, i. e. E^, corresponding to the eigenvalues 
±(2p + 1) is generated by the Lie derivatives along the positive conformal 
Killing fields which are not pure of the eigenforms of the first eigenspaces 
EQ  corresponding to the eigenvalues ±2p. 

By positive conformal Killing fields which are not pure, we mean the 
Killing fields which generate the positive conformal transformations of 54p"'1 

which are-mot isometric. Those Killing vector-fields are generated by the 
following ones: 

(IV.28) 
Vfe = 1,..., 4p   -Xjb.(a?)-= ek — x. e^rc   for x G 54p~1 

where (e^) denotes the canonical basis of 
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Before proving proposition IV. 3 we construct a particular family of forms 
which generates E* (equivalentely JS?j"). Let / be still a choice {ii,..., Z2p} 
of 2p integers in {!,..., 4p}, denote by J = {ji,..., J2p} the complement 
of / in {■!,... ,4p} (the indexing is chosen such that dx^ A • • • A dxj2p = 
^(dx^ A ••• Adxi2p)). 
For any it € I and js € J denote by Iitlj8 the following subset of {1,..., 4p} 

litja = {*!» • • 'jH-UJsyH+li • • • ^2p} 

and remark that 

dxj! A • • • A dxjs_1 A da;jt A da;j-+1 A • • • A cfay2   = 

— *(cJa;i1 A • • • A da;it_1 A o?a;j5 A • • • A dxi2p). 

Finally denote by fci'.  the following 2p-form 

(IV.29) A;^ = ^ fc± - ^ h%t.s. 

We have 

(IV.30) 
dkf\ = do;;, Ahf — dxi, A /if1 

= da:it A drrj! A • • • A dxj2p 

+ (ia;ja A dx^^ A • • • A dxjs_1 A <ia:ft A d^j5+1 A • • • dxj2p 

= dx^ A dx^ A • • • A da;j2  — dx^ A dx^ A • • • A cte^p = ^ 

Moreover, we clearly have *fcf. '• = ±fc-'- . Thus fc '• is a closed and 
coclosed homogeneous degree 1 polynomial 2p-form of R4p which is selfdual, 
resp. anti-selfdual. From proposition IV.2 we deduce 

(IV.31) d(*)^j:=±(^+l)^. 

In fact we have the following 

Proposition IV.4.  The kitja generate Ef. 

Proof. Let k be in E*, k is an homogeneous degree 1 polynomial 2p-form of 
R4p, thus there exists ajj 6 R for I E {1,..., 4p} and / = {ii,..., i2p} any 
choice of 2p elements in {1,..., 4p}, such that 

(IV.32) k = ]P ^ a/,/ x/ dx^ A • • • A dxi2p 
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Since k 6 E*, by proposition IV.2, we have *fc = k and ajj = ajj where 
J = {Ju--">J2p} and 

dx^ A • • • A dxi2p = ^(dx^ A • • • A dxj2p). 

(IV.32) becomes 

(IV.33) k=:J2Y^^lXlh'i 
i    I 

where /?/}/ = iaj^ and where we have restricted the sum among the (/, I) 
such that / G /. 

Let 1° = {tf,..., if^} and 1° = i? e 1° such that /Jjo^o ^ 0. Consider the 
couples (/, /) such that / € / and 

dxio A hfo = ±dxi A hf. 

We can always assume that the indexation of those / is chosen such that 

(IV.34) dxio A hfo = dxi A hf. 

Let us denote * dxq A • • • A dxi© = dxjj A • • • A rfx^o . For any (7, Z) chosen 
as above, there exists s in {1,..., 2p} such that Z = j% and / = /^ .0 . Since 

k 6 Sj^ we have dk = 0. Combining this fact with the previous remark we 
get 

2p 

(IV.35) /?/M? + E%,^o==0' 

and 

2p 

5=1 '     ' **"" 

2p p 

5=1 

5=1 

This proves proposition IV.4. □ 
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Proof of proposition IV.3.   Let / = {ii,..., izp) be a choice of 2p integers 
in {1,..., 4p} and Z0 = it0 G /. We compute Cxlo hf. 
Using Cartan formula on Lie derivation, since h* is closed, we have 

(IV.36) 

^Xio hi = d{L(Xlo) {dxii A • ■ • A dxi2p + dxjl A • • • A dxJ2p)j 

where L(XI0) is the inner product by the Killing field Xi0 defined by (IV.28) 
and where dx^ A • • • A dxj2  = * dx^ A • • • A dxi2p in R4p. We compute 

(IV.37) 
6(X/0) ((fai! A---AGtei2p) 

= ^(~l)lta;/o Xit dx^ A • • • A drr^ A • • • A da;i2p + 

+ (-l)to+1 da;i1 A • • • A dxito A • • • A dxi2p 

and 

(IV.38) 
^Xi0){dxjl A--Adxj2p) 

2p 

= X)^1)5^ ^ dxnA *" ■A dij*A'' •A ^p • 
5=1 

Combining (IV.36), (IV.37) and (IV.38) we get 

(IV.39) 

£xioht ^ -(2P)xlo dxh A • • • A dxi2p - xi0 dxi1 A • • • A dxi2p 

-(2p)xi0dxjlA'-AdxJ2p 

2p 

~~ 5-/ x^s ^'i A • • • A dxj,^ A da;/0 A • • • A da:j2p • 
5=1 

On S4*-1 we have 

—rE/0 aa;/0 = / ^ x^ arr^ + } ^ Xjs dxjs, 
t^to 5=1 
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and (IV.39) becomes 

£xloht = -(2p)xi0h+ 
2p 

+ 2 Xi° (dXii A ' " A dxito-i A dxJ* A dxit0+i A * • • dxi2p 

- dxfr A • • • A da;^.! A da;ito A dxja+1 A • • • dx^) 

thus 

(IV.40) 
2p 2p 

cxloht = -(2p)xloht+Ex^htto,js--E kti- 
s=l 0 s=l 

(IV.40) implies that Cxlohf € E*, moreover one verifies that 

generates E* but we do not give the proof of it here because we will not use 
it bellow. Proposition IV.3 is proved. □ 

Before proving theorem 1.2 we need a last proposition. 

Proposition IV.5. Let I and I' be two different choices of 2p integers 
among {1,..., 4p} such that IU F ^ {1,..., 4p} we have 

(IV.41) \/x 6 fi^"1 (hfix), hf, (x))s4p_1 = 0 

where < , >54p_1 denotes the scalar product of2p-forms on A2pS4p'~'1. 

Proof of proposition IV.5.    Let J = {ii,..., i2p} and I' = {i^ ..., i^} we 
have 

Va; € S4^1        (hf(x) , ^(x))^.! =drAhf.drA hf, (x). 

OnS^-1 we have 

2p 2p 

dr Ah~j = Y^ Xjs <ia:Ja A dx^ A • • • A da;i2p + ^J a:it dxit A dx^! A • • • A dxj2p 

5=1 «=l 
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and 

2p 2p 

dr A hff = V^ Xjts dxjt3 A dx^ A • • • A dx^   + Y^ ^i' rfx*' A dxy A • • • A dxj/ 
s=i t=l 

The result is straightforward if neither of the following occurs 

3s0,sf
0   s.t.    {jSo}UJ = {j;,o}UJ,   or 

(IV 42) 3to't'0   ^    {^}UJ = ^}UJ,   0r 

380X   s.t.    {jSo}U/ = {^;,o}UJ,    or 

3 410   s.t.    {<tJUJ={j^}U// 

Suppose the first situation occurs.  Since / ^ I', there exists t^ such that 

Js'0 = *to and ^ = 4O,J.O 
aild 

dr A /it. dr A /it        = 

I 2^ ^js ^j* A dx^ A • • • A dxi2p + ^^ Xit dxit A dojj^ A • • • /\dxj2p 1 

&,..,. .:,.. ^ 

+ a;ito dxito A da;i1 A • • • A dx^^ A da;j5o A • • • A dxi2p — 

- ]r a:it dxtj A dxj! A • • • A ctojao-1 A da:ito A • • • A dx^ - 

- ^ia0 ^ia0 
A dxjl A * " ' Adxjs0-1 A ^ito A ■• • • A dx^ 

Consider first the case 2p> 2. In this case we have 

Vs Vt    dxit Adxh A- • 'Adxj2p . da^ Adx^A- • -Adxit^ AdxjSo/\- • 'Adxi2p = 0 

and 

Vs Vt    dxja Adxij A• • 'Adxi2p . dxit Adxjj A• • • Ada;>7-5o_1 Adxito A• • 'Adxj2p = 0 
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This implies 

dr A ht . dr A ht 1 ttorUo 

= x3soXno dx3so A dxh ' *' A ^i2p • ^tp A ^ii ' * • A dx3s0 
A " •' <foi2p - 

"~ xit0
x3aodxn0 

A ^xji * * 'A dx32p ' dx3so A dxh ' " A dx3so-l ^dxit0' * * ^J^p 

= *ijoxito (-l)*»-i+*» - x^x^ (-l)--i+»o = 0 

Remark that the two first situations of (IV.42) are equivalent and the two 
second also and one prove exactly inthe same way (IV.41) in the case where 
{js0} UI = {ift, } U Jf (i. e. J7 = Iito,jSo ). Consider now the case p = 1 and 
compute 

(dxi A cfa;2 + dxs A da;4 ; dxi A dx^ + dx^ A ^2)53 

= (a;4 da;4 A dxi A da;2 + 3:3 dx^ A dxi A dx2 

+ xi dxi A (ixs A dx^ + 0:2 dx2 A dxs A ^4) 

. (#4 dx4 A dxi A dxs + X2 dx2 A dxi A d^s 

+ xi dxi A ^0:4 A da;2 + #3 dxs A dx4 A dx2) 

= —X4X1+ X1X4 — X%X2 + #3#2 =:::: 0. 

Proposition IV.5 is proved. □ 

1 2 i- 
Proof of theorem 1.2.    Denote by F the following functional on W '    2

P 
(A2p54p-inKerd) 

(IV.43) 
1 i_ L    4p 

where dry = h.    Let / =  {ii,... .,i2p} be a choice of 2p integer among 
{1,..., 4p}. Denote by Qi the following quadratic form on L2: 

(IV.44) 

V^ € L2 (A*"1^-1) Q/(#) = ^F(fc+ + t#)u=0. 

This is well defined because |/i/I54P-1 = 1 > 0 for any x G S4?"1. We shall 
prove the following lemma. 
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Lemma IV.l. For any # G L^A^S4?-1) we have Q/(#) ^ 0 with 
equality if and only if dfi is a linear combination of the hp and the Cxh'j 
where X is any conformal Killing field of 54p~1. Moreover if d(j) is orthog- 
onal to all of those previous forms for the L2-norm we have 

(IV.45) Qi(dct>)>c   [       |#|2 

where c> 0 is independant of <f). 

Proof Take dcj) G C00(A2p54p~1) after some computations we find 

(IV.46) 

Let us introduce a particular orthonormal basis for the L2-norm in E*. First 
of all remark that, if k and I G /, 

(IV.47) 

w^\ L-iCxkht •Cxiht=W^l I**-*Xkxi 

Shi      f + hi     f      X^ 2 

where we have used the fact that h^. h^, ^ 0 if and only if K' = K or 
K U K' = {1,..., 4p}. In the other hand we have 

1 f .        c 1 f 2   _   % 
\S*r-i\Js*P-i

XkXl- dk'l\S*P-i\ ]sip-,
Xk -   V 

i     [    X 2_ i 
and 

2p 

Thus (IV.47) becomes 

2p + l 
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One verifies that this is still the case when k or / do not belong to /. Take 

to be the Ap first elements of our basis. For any i^ if € / (t ^ t') and js 6 Jv 

consider the 2p-form 

(IV.49) C^^^^i.-^^. 

and for any it G L and js, jst G J {s ^ s') the 2p-form 

(IV.50) k*'^'is = x,- hi      - ^ , /i+ 

Using still proposition IV.5 and the fact that 

\S4P — f XkXl   = 
4p 

one verifies easily that, in one hand, the forms defined by (IV.49) and (IV.50) 
are all orthogonal between themselves and that, in the other hand, they are 
all orthogonal with all the f^ (k < 4p). We complete the familly (/^")i k 4p 
with the forms (IV.49) and (IV.50) denoted 

\Jk )4p+l   k   N 

that we have renormalised in such a way that 

WZif^W-l       tor   *<*. 
One verifies also that Vi € {1,..., 2p} and Vs G {1,..., 2p} 

(IV.51) 

2p Jit + Z^KJ3,ja> — — Xit hj + Xja hj 

= -k: it,js 

and 

(IV.52) 

2p 
Jjs ^ jLjKh,it' — — x^ hj + x^ hj 

Hi 38 

'kjs\it 
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Consider kpj, which is neither of the form (IV.49), (IV.50) nor on the form 

(IV.51), (IV.52). We claim that 

(IV.53) kpf,    is orthogonal to   Vect ft.        ' 
' %>3 Ik  N   * 

We can always assume that i' G I'. (IV.53) is straightforward in the case 
where If and I^ -, are not on the form Iiujs or in the case where I' = / or 
jf^j/. Suppose now I' = /it,j5. Since i' 6 /it,j5) i' is equal to some i^ for 
(t7 7^ t) or %' = js. The case i' = js has already been considered because in 

such case we have either fct'., = k, VVJ5 or fet'., = fct'• . Thus the only 
case we have to consider is 

where 
J(*i,v) 0-J» - {{*!» • • • > **} \ {**» ^,}} u 0«» JV}-' 

Using once again proposition IV.5 and the fact that 

1       f _lhd 
^\Js^XkXl^ 4p 

we deduce (IV.53) in the case where I' = Iitja. 
One proves exactly in the same way that (IV.53) holds in the case where 

i?/ ., = litjs- Thus we have proved that (IV.53) holds in all the cases. 
Using this result and proposition IV.4 we complete the orthonormal familly 
(/^)i k N by linear combinations of the kp., which are neither of the form 
(IV.49), (IV.50) nor on the form (IV.51), (IV.52) in such a way to get an 
orthonormal basis (/^*)i k Np of E* which verifies, using also proposition 
IV.5, 

(IV.54) 
If   3xeS4p-1     such that     f£-h}(x)^0 

then   fee {!,...,4p} and /+ = £ l-s-„ hf. 
V  2p+lAfc 

We are now in position to prove lemma IV. 1, with the help of this basis 
ofJBf. 

Decompose dcf) in (E£ 0 Ef) © (Ef © Ef)1 we have 

Np 

(IV.55) dt^a+hj + Y, <*$ + E Pkfk + dR 
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where dR € (E£ + E*)-1-. Let us compute the 4 terms in the left hand side 
of equality (IV.46). We have 

(IV.56) 

We have also 

(IV.57) 

4-     * V GL,'^-*) - 5 (IS^IL.W^A*)' |54P-l|^ 

2p 

and 

(IV.58)   /, = j^jj^_/A#= (<.?)'+ E W.)2 + 

Finally 

(IV.59) 
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where we have used (IV.40) and (IV.54). We compute 

(IV.60) 

u - W) 
+\2        2p 

+ E2p+l|54p-i| ^? ]s4p_/k 2p 

where we have used the fact J^p-i Xk = 0. We claim that the two last terms 
of (IV.60) are equal to 0.    JS4p-i h* . dR = 0 because dR E EQ. 

We prove, now, the following 

(IV.61) 

WReiE*)1    Vfc €{!,..., Ap} I      xkht.dR = 0. 
JS4p-l 

Suppose fe G J, fc = ito and compute 

d (*) [xk hf] = 2 pxk hj + 2p dxk A r]f 

= 2pxk hf + XitQ dx^ A • • • A dxi2p 

2p 

+ S x^ ^'i A * * * A ^i-i A da:^o A ''" A dxtep- 
5=1 

Using the fact that 

Xi^dXitQ = — 2J ^it ^it ~" X^ XJ» dx3s     0n    A2P ^   1 

t^to s=l 

we get 

d (*) [xfc /i/] = 2pxk hf + 
2p 

}] Xj3 [dx^ A • • • A dxit^ A dxj5 A • • •. A da;i2p 

s=l 

—drrj! A • • • A cte^..! A cteito A • • • A da;^] . 
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Thus 

(IV.62) 

d (*) [xk hf) = -CXk h+ = - -i-j d(*)£Xk hf. 

This implies the existence of a (2p — l)-form ^ such that 

We clearly have /S4p-i(*)d£ . dR = 0 and since dR e (Ef)1, (IV.61) is 
proved and J4 is equal to 

(IV.63) 
„+\2        2p    /.+X2 

2p    + ^ 2p + 1 + 2p |54P-i| Js^ \h' • dR\  ■ 

Since Q/(<fy) = (1 - l/4p)[/1 - /4 + /2 - /a], combining (IV.56), (IV.57), 
(IV.58) and (IV.63) we get 

(IV.64) 

Np 

E 
4p+l 

RAdR 

where we have used the fact that |/i^| = 1 on 54p 1. dR admits a decom- 
position dR = dR+ + dR~ in 

i=2...oo 2=0.. .00 
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and we have 

(IV.65) 

- /       R/\dR= - [      R+ AdR+ - f      RT AdR' 
JS±P-I Js^P"1 J^4p-1 

^ - f      R+ A dR+ 
JS4P-1 

Using the fact that the third positive eigenvalue of d(*) on E+ is 2p + 2, we 
have 

(IV.66) /       \dR+\2 ^ (2p + 2) /      #+ A di?4". 

Combining (IV.64), (IV.65) and (IV.66) we get 

(IV.67) 
Nv 

*<*»H) ^TS^^^ML,^-' + 
4p4-l 

+p(2p+2) i^-i] y^-x i^+i' 

(IV.67) proves Lemma IV. 1 for p > 1. 

In the case p = 1 one has to refine a little the lower bounds. We start 
from (IV.64). We decompose dR in ^e^)-1: dR = dR2 + dR'. We have 

(IV.68) 

f       \dR.ht\2= f       \dR2.ht\2+ [       \dR\hj\2 

Js^P-i Js^p-1 Js^p-1 

+ 2 f      di^./ij xdR'.h+. 
JSAp-l 

Using proposition IV.2 and proposition IV.5 we obtain that 

di?2 'hj = axkXi    for   oc G R and fc,Z € {!,. ..,4p}. 

The third term of (IV.68) becomes 

2a /        XkXiht.dR'. 
JS4p-l 
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Let us study the Hodge decomposition of Xk xi hf in A2p S4?"1. We have 

(IV.69) 
d (*) [xk xi h^] = Xk dxi A (*)/J/ +' xi d [xk (*) h^] 

= -xk Cxx hf - xi Cxk hf - 2pa:/ xk hf 

where we have used (IV.62). Let P be the following homogeneous degree 2, 
2p~form in R4*7 

(IV.70) 

P = Xk 

2p 

2pxlh+-YlxJ'ht,i 
5=1 

+Xl 

2p 

2pxkht-Y^x3°htjs,k 
8=1 

-2pxiXkhf. 

We have *P = P moreover P restricted to 54p~1 is equal to d(*) [xk xi hf], 
thus dP restricted to S4?"1 is equal to 0 and since *dP is a coclosed degree 
1 polynomial 2p-form one verifies, uding corollary 6.6 of [11] that dP = 0 
in E4p. P is a self-dual closed degree 2 homogeneous 2p-form of M4p thus, 
from proposition IV^, d!(*) [xkxi hf], the restriction of P to S4?"1 belongs 
to ^2" and we have 

(IV.71) 
3geEf and sEA^S4?-1   s.t.    xk xi hf = g + (*)ds 

This implies 

(IV.72) 

/       \dR.hf\2=[       \dR2.hf\2+ [       \dR'.hf\2 

JS*P-I Js*p-1 Jstp-1 

Since none element of Ef is of the form a(x) hf there exists 7 < 1 such 
that 

//       \dR2.hj\^ 
(IV.73) max 

dR2€E£ 

\ 

= 7 

/ 
We get 

(IV.74) 
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We decompose dRf = dR'* + dR'" in 

i 

This time we have 

467 

i=3...oo i=0...oo 

(IV.75) /        di2/+%(2p + 3) / 
JS*P-I Jstp-1 

R'+ A dR'+ 

Combining (IV.56), (IV.57), (IV.58), (IV.63), (IV.65), (IV.74) and (IV.75) 
we have 

(IV.76)   <2/(#)^ 

\      Ap)    2p + l^Pk)  +    2p    \S+-i\Ja+-i 

+ 

4p+l 

4p-3 
2p(2p + 3) S^P'1 JS4p-i 

dR' 

v-1 L dR ,/+ 
2     (2-7)p-7 

2p(p+l) 
dR' J+ 

Since 7 < 1 lemma IV.l is proved in all the cases. □ 

Using the result established at the end of the proof of proposition IV.l 
we have 

W> € A2p-1
)S

4P-1    33 € Conf+(S'4p-1) such that 

/       xC(</)Ad<?*V = 0, 

where £(</) is the (2p — l)-form verifying d * £(</) = 0 and d^(g) = g*dip. 
Since F(g*dip) = F(d\l>) we are tempted to work on M 

M = 
h$ + d4>   s.t.    d^el/^and   ./.       x<f> + rjf A d<t> + hf = 0 

JS4p-l 

where   d(*)^> = 0 

Let dip G M such that 

|^-#L<a    and    _^=-j^J^p = 1, 
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decompose dij) in E^® (EQ)
L
 we have 

# = Y^, ai' hft+d<f> = (l + 6)hT + ^ + d& 
r 

where h+ € E£,   h+.hf = 0 and /54p-i \h+\2 = 1.  We claim that, for a 
sufficiently small, independant of di/; we have F{diJ)) ^ 0. We have 

\6\=\(       h+.tdip-hf)  ^a   and    |^| =   /       h+. (di/; - h+) <« 

Denote h+ = (1 + 6) Kj + /i h+ and we compute 

F{dil)) = 

('-*) 
#.ft+ 

h+ 
2p <f>/\d4 

+ o(a f       |#|2 

V Jsip-1 

but 

rf^.ft-1- 
f        ^ /       \d<j>.ht\2 <Ca /        |#| 

Thus we have 

(IV.77) |F(#) - Q/(#)| < Ca /       |#|2 

J54P-I 

Let us decompose dcf) in 

Vect{CXkhj} 0 (Vect^^/i^})-1 

we have 

where we have chosen i? such that d(*)i? = 0. Since d^ is in M we get 

(IV.78)     / 
JS

4
P-

1 

k=l 

A 

4p 

^ + 2^I^^(*)£Xfc^ + jR 
fc=l 
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Since h+ A fj+ = ^ a;54p-i 

/        xh+ A f?+ = 0. (IV.79) 

Prom (IV.61) we have 

(IV.80) /       xdRArjf = ^ /        xdR.hf = 0, 
Js4?-1 2p 754P-1 

and 

(IV.81) 

<Ca \ xdRAfj*- xdRArjf 

Moreover, since 'd('*)jR = 0 and 

(*)R€(E+®Yectp{£xkhi}) 

we have also 

(IV.82) /       xhJAR=f       xht.{*)R = 0 
Jg4p-l Js*P-1 

(f     mrf. 

and 

(IV.83) 

/       xh+ AR- xhj AR £Ca ([..   m2) \J54p-l / 

One verifies also, using (IV.40), that 

(IV.84) 

Vfe = l,...4p /       xhf ..Cxkhf = -2p /       xlek 
JS4p-l JS^P-1 

where (ei)i=i...4p is the canonical basis of R4p.    Combining (IV.78) ., 
(IV.84), we have 

(IV.85) 

Vfc = l,...,4p.     m<Ca([       \dR\2)2. 
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This yields 

(IV.86) /       \d(t>\2 ^ C f       |di?|2 

Prom Lemma IV. 1 we have 

|2 QiW) >C f       \dR\ 
JS4p-l S4P- 

Combining (IV.86), the previous inequality and (IV.TT), for a chosen suffi- 
ciently small, we have 

(IV.87)   V#<EM   s.t.    Idt/s-hfl^^a 

F(dil>) ^ C f       |#|2 ^ C dist2 (#, JS^) 

Since /^p-i x h~j A rfj = 0 there exists (3 > 0 such that 

V^ e A^fi^-1       s.t.     \drl> - h^ < p 

3g € Conf,-(S4p-1)     s.t.    5*# G M,   \g*<hl> - hf] < a. 

Thus 

with equality if and only if 

#GConf+(54^1)*^. 

This proves theorem 1.2. □ 

IV.4. Stability of the complex Hopf fibration. 

In this part we establish theorem LI. As it is stated in the introduction 
we just have to identify H*UJ^ , where H is the complex Hopf fibration, with 
the restriction to S3 of 4 hf = 4 dxi A dx2 + 4 dxs A d!x4. 

Since if is a transversally conformal map having constant gradient, i.e. 
\S7H\ = 2\/2 in S3 we have \H*u)S2\ =4 on iS3. Moreover the coimages of 
points are given in 53 by the left multiplication of unit complex number in 
R4-H 

e7,0 . (xi, X2,0:3, X4) = (cos 9xi — sin 0 0:2 , cos 0X2 + sin 0 xi, 

cosflxa — sin0a;4, cosOx^ + 81x16x3). 
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Thus the unit 1-form in A153 tangent to the coimages is 

—X2 dx\ + xi dx2 — #4 dx^ + £3 dX4. 

This implies 

(*)H*(JJS2 = 4:(—X2 dx\ + xi dx2 — X4 dxs + £3 dx^) = 877J1" 

thus H*UJS2 = 4 hf and theorem LI is proved. D 

Remark IV.3. Denote by H and H respectively the quaternionic and 
the Cayley or octonionic Hopf fibrations from S7 into 54 and S15 into Ss (see 
the definitions in [5] for instance). H and H are also transversally conform 
they have uniform gradient , i. e. |Vif I57 = 4 and \VH j^is = 4\/2 and 
they are fibrations having Hopf degree equal to 1. For all those reasons we 
are tempted to study the minimality of their p energy in their homotopy 
class using the same approach used above for the complex Hopf map but 
one verifies that H* u;^ and H* u^isare not in EQ. 

We justify in the end of this part the last statement in the previous remark. 

Since H   and H   have Hopf degree 1 we have 

 o  /   H* u;o4 A 77   =1    and    ——x /    if* u;c8 A 77   =1 

where dr)   = if* uig* and drj   = if* uS8. Moreover we have 

/  |if*c^4|2=|S7|44   and     /    lif* u^sl2 = I 515| 48 

Js7 Js^ 

Thus 

/. 

and 

I 

Js? 

lqiJ
H "^ 2x7r8xr  I 2x48 

— = —^5 o    „,0.— = 1120 > 8. „*        A 22 x TT
9
 x r(8) 

H u>S8 A 77 K ' 
515 
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V.       Geometric lower-bounds of the 3-energy among 
the fibrations from S3 into S2. 

In this part we restrict ourselves to the case p = 1. The maps u, that 
we will consider, are fibrations of the form u = H o ip where H is the Hopf 
fibration from 53 into S2 and ^ an orientation preserving diffeomorphism 
from S3 into S3. 

Consider a closed oriented regular embedded curve F in S2 such that F 
separates the north and the south poles of 52. Denote by EJV and E5 the two 
disjoint open sets, having F as boundary, containing respectively the north 
and the south poles. One can allways assume that the orientation of F is 
chosen such that dEjv = —dEs = F where E^v and E5 are oriented like S2. 
Denote by cr^v and 05 the generators of 7ri(^~1(r)) c^ TT^S

1
 X S1) such that 

any representant of ajv (resp. as) corresponds to the positive generator 
of 7ri(tz~"1(Eiv)) = ^i(D2 X S1) = Z ( resp. to the positive generator of 
7ri(^"~1(E5)) = Z) where the orientations of u~1(Eiv) and n~1(EJs') are given 
by the orientation of S3 and the orientation of the fibers. One verifies that 
u restricted to W1^) realizes a (1,1) map into F ^ 51. That is, if TJJV and 
rjs denote respectively the Poincare duals of cr/v and as in ^~"1(r) we have 

/ u*d6 A r/jv = 1 =   / u*de A 775, 
Ju-HT) Ju-HT) 

where d0 is a generator of H^R(r). 
Let (T, p, a) be a riemannian genus one surface where we have identified 

two generators ai and 02 of 7ri(T). Such object will be called a marked 
genus one surface and simply denoted by T. Consider the following set 

W(T) = {ve W^frS1)   such that  degaV = (1,1)} 

where W1,2(T, S1) is the set of map from (T,g) into S1 having gradient in 
L2, deg0. v is the couple of integer 

I / u*deAr]i ,   / u*d6Ar)2) 

where rji and 7/2 are the Poincare duals of ai and 0*2 and d0 is a form 
generating H^iS1). 

We introduce, now, a quantity which plays a central role in this part 

(V.l) J(D=    inf     [\Vv\2dvolg. 
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First observe that, if (T^g'^a') is another marked genus one surface, such 
that there exists a conformal diffeomorphism (j> from T into T" preserving 
the choice of generators i.e. 

3/ T s.t.       g — ef(j)*gf   and   ^V* = a^   for   i = 1,2 

where 0* denotes the induced map by (j) from 7ri(T) into TT^T
7
). Then we 

have 

(V.2) I(T) = I(T'). 

This corresponds to say that I(T) only depends on the Teichmiiler class of 
T (see for instance [12]). The Teichmiiler Space in the case of genus 1 is 
given by the flat Tori C/rT where 7T is a lattice group of the form 

rT = {m + nr       s.t.    (m,n) € Z2} 

for any r G H = {r G C | Imr > 0}. Thus we just have to compute I for 
such tori. We have the following proposition. 

Proposition V.l* Let T be a marked genus 1 surface and let r = a + i b 
be it's Teichmuller class in H we have 

(l-af 
(V.3) I{T) = W 6 + 

Proof. T is identified with it's corresponding representant C/rT. Let v be a 
map of W(r). Consider the following diffeomorphism ^ which sends <

C/TT 

into C/rj 

iK(z»y)) = (s-!v.f) 
and let w = v o •0~1 we have 

W is (1,1) from C/Fi into S1 thus we can write w in the form 

1 dw       dw 
dy        dx 

w = e2^^27"1"^^^^ 

where /is a Z2 periodic function in Wl(^c (C). (V.4) becomes 

/|V<;|2 = 47r2 pfb 
JT JO JO 

1 + 
df 
dx 

^    (l-a)2 + 
dl_adl 
dy       dx 
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The minimum is achieved for / = cte and this yields the desired result.   □ 

The following proposition illustrates the link between the function / and 
the 3-energy on S3. 

Proposition V,2. Let u be a fibration from S3 into S2, we have 

J2 
Js3 n JS2 

Js* Kv) 

(V.5) ^ * JS2 

where Sy is the great circle perpendicular to y and a+ib(y) is the Teichmiiler 
class ofu^1(Sy) for the generators O/TTI mentioned above. Equality holds in 
(V.5) when u is the composition of any conformal map of S3 with the Hopf 
fibration: in this case a(y) = 1 and b(y) = 1. 

Remark V.l. The two sides of inequality (V.5) are invariant under the 
action of the conformal group of 53, i. e. when we replace u by u o ip where 
tl> e Conf(53). 

Remark V.2. It is a natural question to ask wether we have to deal in 
proposition V.2 with all the a + ib in the upper half complex plane. Indeed, 
from [7] (see also the proof of [18]) we know that each conformal class of 
flat tori admits a conformal embedding in S3 but it is still an open question 
to know whether each marked flat torus can be conformally embedded in 
S3 such that there exists an isotopy of S3 which diffeomorphically deforms 
our embedding into the the standard Clifford torus and which sends the 
chosen generators of our embedded torus into the standard generators of 
the Clifford torus. 

For proving proposition V.2 we will use an inequality stated in the follow- 
ing lemma. Let y € S2, denote by py the distance function relative to y on S2 

and by d0y the 1-form perpendicular to dpy such that dpy A d6y = ^g~^- ^2 
we have 

Lemma V.l. Let u be a W1,3 (53, S2) map, the following inequality holds 

(V.6) / /      \U*dpy\2   \u*d0y\   ^   ^    /      l^l3' 
Jyes^Js3 v2 Js3 

Equality holds in (V.6) if and only if u is transversally conform. 
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Proof. Let x £ S3 and let 0U(X) be an angle function in S2 \ {±u{x)} with 
value in R/27rZ corresponding to the choice of an orthonormal basis in 
Tu{x)S2- Using the coarea formula of Federer we have, for any x in iS3, 

(V.7) 

/ \u*dpy\2\u*d6y\=    / dB    / K^Pj, 
Aes2 ^0=0    Jo<x)=6 

tfdO,, 

dO. u(x) 

but I sinpu(x)(y)\ \d0u(x)\ = 1 and Isin/y^y)! = \smpy(u(x))\. More- 
over for ^(x) constant equal to 0, dpy and sinpy dOy are constant equal 
to cos 0 dxi + sin 9 dx2 and — sin 0 dxi + cos 0 dx2 where we have fixed an or- 
thonormal basis {dxx, dx2) of T*,sS2 corresponding to the choice of 0U(X). 
Thus (V.7) becomes 

(V.8)     /      \u*dpy\2\u*d0y\ 

= TT /     \u* cos0dxi + sin0dx2\2 \u* — sin0dxi + cos0dx2\ d0 
Je=o 

Take x G S* such that rankcfax(a:) = 2 (otherwise the left hand side of (V.8) 
is 0) and choose an orthonormal basis (ei,e2) of (Kerdufa))^ such that 

du 
dei 

du        , x = A^i       and       —— = ufcos a Si + sm a. 82) 
062 

where e* is the dual basis of dxi. (V.8) is equivalent to 

(V.9)     /      Kdp/Kd^l 
JytS* 

= TT / ^ (A2 cos2 0 + /i2 cos2(0 + a)) yA2sin20H-/i2sin2(0 + a) 

After some computations we get 

(V.10) 

(A2 cos2 0 + fj? cos2(0 + a))2 (A2 sin2 6 + p?- sin2(0 + a)) 

= 1 [A6 + M6 + |A2M4 + A4M2j x (3 cos2 a + 7sin2 ^J 

< | [(A2 + M2)3 + 4Ay (A2 + M
2
)] < \ (A2 + M2)3 

I 
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with equality if and only if a = ± f and A = \i Combining (V.9) and (V.10) 
we get 

./i/€S2 V2 

du 
dei 

2 

+ du 
dei 

v    3 
2\   2 

'yes' 

This yields the desired result and lemma V.l is proved. □ 

Proof of proposition V.2.   Let y G 52, using the coarea formula of Federer 
we have 

(V.ll)     /  \u* dpy\2 \u* dOy] = f * dO I \u* dpy\2 

Js3 Je=o    Joyou=e 

=      T       del    f \U*dpy\2+    f Wdpyf 
J0=O \JOyOU=:0 J0yOU=0+7r 

where we have chosen an angular function 0y G M^ corresponding to an 
orthonormal basis (£1,62) of TyS2 C R3. Let Sy0 be the great circle of S2 

orthogonal to cos0£i + sin 9 £2, we have 

{x   s.t.       9yOu = 6   or   9y ou = 0 + 7r} = u~l{Sye) 

and since dpy represents, up to a sign, the volume form of 5^, we have 

(V.12) .    [  \u*dpy\2\u*d9y\^ [    l(u-1(Sy0))d9 
Js3 Je=o 

Thus combining (V.12) and inequality (V.6) of lemma V.l we get 

(V.13) 

4   /     |V«|3  >    f U     /(U-1^))   dtflSy®. 
V2 Js* JyeS* l JSy 

We claim that V/ € L\{S2) we have 

(V.14) /      /     m)dH1[Sy(0 = 2ir f f 
JyeszJzeSy Js2 

Let x be the following cut-off function on R : x = 1 for ^ € [—1,1], x = 0 
elsewhere. Denote by Xe(l) y) the following function on S2 x S2: 

1      /arccos^.yN 
*(*,!f)=.£X^ " ) 
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Let g be a regular positive function on S2 and y € 52 we clearly have 

(V.15) lim/      Xett,v)0(O= / 9. 
e^J^S2 JSy 

This yields 

Using Fubini's theorem and (V.15) for g = 1 we get (V.14). Finally com- 
bining (V.14) and (V.13) we get the desired result and inequality (V.5) is 
proved. 

One can verify that inequality (V.5) is optimal for the Hopf fibration, 
using the fact that |Vi?|3 = 16\/2, |53| = 27r2 and that the coimage of any 
great circle by the Hopf map is a Clifford torus (i. e. a flat square torus in 
S3) see [18]. Proposition V.2 is proved. □ 

In the remainder of this part we will use the function / for proving that 
the complex Hopf fibration minimizes the 3-energy among a particular class 
of fibration. 

An axially symmetric torus in S3 is the rotation of a smooth closed 
embedded curve F in 

5| = {(a;i,0,X3,a?4)e M4| xi >0}n53 

around the 2-plane {#1 = 0} A {0:2 = 0}. It can be parametrized in the 
following form 

(V.16) (7(5) cos27rt; 7(5) sin27rt; a(s); /3(s) ) 

for (£, s) G [0,1] x [0,6] where a,/3,7 are 3 6-periodic functions such that 
72 + a2 + 01 = 1 and 7 > 0. (a, /?, 7) is the embedding of F in S\. Such an 
axially symmetric torus is said to be "well centered" if Jr ^ = Jr ^ = 0. 

A symmetric fibration from 53 into S2 is, by definition, a fibration u 
such that the coimage of the north and the south poles are respectively the 
circles ({2:3 = 0} A {^4 = 0}) fl S3 and {{xi = 0} A {x2 = 0}) H S3 and such 
that the coimage of each circle in S2, parallel to the plane xOy, is a "well 
centered" axially symmetric torus. 

We have the following theorem 
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Theorem V.l. The Hopffibration minimizes the 3-energy among the sym- 
metric fibrations. 

Proof. Let p be the distance function on S2 relative to the north pole and 
dd be the 1-form orthogonal to dp such that dpAd0 = ■^— u>S2. sin p will 
be often denoted by r. We have 

f |Vu|3 = /   (\u* dp\2 + \u*r d0\2^ 5 

^A=f  (it** dp\2 + \u*r dety (\u* dp\ + \u*r d0\) 

= 4= /  \u*dP\3 + W*dp\ \u*rd9\2 + \u*rd6\ {\u*dp\2 + \u*rdO\2) 

Using the fact that \u*dp\2 + \u*rd6\2 ^ 2 \u*dp\ \u*rdd\ we finally get 

(V.17) 

J^ \Vu\3 > -^ J^ \u* dpf + ^=Js3 \u* dp\ \u*r d9\2. 

Remark that equality holds in (V.17) if and only if u is transversally conform. 
We give first a lower bound for the second term of the right hand side of 
(V.17). Using the coarea formula of Federer we have 

(V.18) 

/  |ti* dp\ \v* r de\2 = f ds f       \u* r d6\2 

JS3 Js=0       J pou=s 

f    sm2sds f       \u*d6\2. 
Js=0 J pou=s 

Since u is a symmetric fibration {x \ p o u(x) = 5} is an axially symmetric 
torus whose Teichmiiller class (for the generators of 7ri(n"1(/?""1(5))) men- 
tioned in the begining of part V) is a pure imaginary complex number de- 
noted ib(s) thus (V.18) implies 

(V.19) 

/   |ti* dp\ \u* r de\2 ^ P sin2 s I (u'1 (p"1^))) ds 
JS3 Js=0 

= 47r2 T 
Js=0 

.   2    l + b2(S) J sm  S r-y-r—- as 
b(s) 
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We establish now a lower bound for the first term of the right hand side of 
(V.17). 

Since u is a symmetric fibration p o u is uniquely determined on 53 by 
it's values on Sz fl {(rci, 0, £3, £4) G M4 | xi > 0}. For x G 53 we denote by z 
the distance in R4 between x and the 2-plane {xi = 0} A {X2 = 0}. Let 9 be 
the angle function (taking values in M/27rZ on S3 \ ({xi = 0} A {X2 = 0}) 
) such that xi + 1x2= ze16. We have \d9\s3 = ~ and using one more time 
the coarea formula of Federer we get 

(V.20) 

/   K dP\* = f^ da f J^M- = 2*1   z \vr dp\* 
Js* Ja=o     J{e=a}ns3     \dtf\ Jsl 

Let / be a function on 5^ taking values in [0, TT], we say that / is centered 
if /|   2 = TT, f (North) = 0, any s G (0, TT) is a regular point for / and 

(V.21) 

v< €[0,7r] / ,7|V/|= / *|V/| = 0 
[{[o,t]) z Jf-l(M) 

For instance any / symmetric relatively to the y Oz and x Oz planes verifies 
(V.21). We will use the following lemma 

Lemma V.2. Let f be a centered function from S^. into [0, TT] we have 

(V.22) 

/ \3 

J_ /        I 
f *|V/1J 
Jsl 

^STT ds 

\ 
1+ 

(2' 7r)2 \Jf-Hs) zl ) 

Equality holds if and only if f is 2 times the distance to the north pole in 
s%. 

Remark V.3. Both of the two sides of inequality (V.22) are invariant 
under the action of the conformal group of S\. 

Remark V.4. If f~l(s) = F is a closed regular embedded curve in S\, 
55f /r \ is exactly the conformal class ib of the axially symmetric torus given 
by (V.16). Using this remark lemma V.2 becomes a direct application of 
proposition 5 in [16] (see also [14]). 
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Proof of lemma V.2.   Using Holder inequality we have 

(V.23) 

r (lzm)     ifr    r 
Jsl f f    \ V0        /"1 

where we have used also Federer's Coarea Formula. Remark that equality 
holds in (V.23) if and only if |V/| = cte. Since / is a centered function on 
S+, for any s in (0, TT), f~l(s) is an embedded closed curve in S+. Because 
of (V.21) we have 

(V.24) /        -= /        ^ = 0. 
7/-i(s) *     Jf-Hs) z 

We claim that for such a curve in S+ we have 

/    i 
Jf-i(s) z 

(V.25) /        z^4n2 

Jf-Hs) 
47r2 + 7 - 

Remark that 27r Jf-irs) z is the area of the axially symmetric torus given by 

(V.16) for r = f-l(s) and using remark V.3 and (V.24) inequality (V.25) 
is exactly the inequality of proposition 5 in [16]. Actually one can prove 
(V.25) directly with no reference to it's geometric interpretation and without 
using the spectra of A on fiat tori just using Fourier decomposition of the 
coordinates of /~1(s) for a parametrisation of f~1(s) = (a,/3,j) verifying 
bj2 = a2 + /?2 + 72. Lemma V.2 is proved. □ 

We apply Lemma V.2 to / = p o u, since ^ //-i(5) \ ^ th® conformal 
class of vT1 o p"*1^) denoted by b(s) above, combining (V.22) and (V.20) 
we have 

(v.26) ^K^^^'-iW^;)3 

Combining (V.17), (V.19) and (V.26) we have the following lower bound 

(V.27) 

Jss V2      \Jo   1 + b2(s)    J Jo b(s) 
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For simplicity denote A(s) = l+ltls\ - We have 

f* sin2s r ( [* \2 

/      A, x ds x  /   ^4(5)ds ^ ( /   sin5ds )   =4. 
70   ^(5) Jo \Jo J 

Let A = JQ A(S) ds we have 

/  \Vu\s > 16 ^= U3 + 41 ^ 2>/2 x IGTT
2
 = /  |V#|3. 

This is the desired result and theorem V.l is proved. □ 

Remark V.5. In fact one could have proved more directly the previous 
result. First of all one can establish the following lower bound of the 3-energy 

(V.28)     /   |Vu|3 ^ 4= r^2sl (u-1 (/T1 (*)) Yds 
Js3 v2 Jo 

and use proposition V.l above and also Proposition 5 of [16] to get directly 
(V.27). But we wanted to state explicitely lemma V.2 which is interesting 
in itself. 

Remark V.6. One of the essential ingredients which makes the previous 
proof work is that, the restriction of H to any coimages by H of the hor- 
izontal circles in S2 ( which are tori of Teichimiller class i b) is exactly an 
harmonic map into Sl which realizes /. When b is close to 1,1(b) = 47r2 ^jj*- 
is smaller, but the area of the Torus, which is centered and equal to 47r2:n^ 

(= the conformal volume for 1 ^ b ^ W| see [14] and [16]) is greater in 
this case. It is a striking result that the equilibrium between those two 
constraints, in view of minimizing (V.28), is just achieved for u = H. 
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