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Minimizing fibrations and p-harmonic maps in
homotopy classes from S° into 52

TRISTAN RIVIERE

We prove that, contrary to the case of maps from S2 into S2, there
exist infinitely many homotopy classes from S2 into S? having a
minimizing 3-harmonic map. We prove that the first eigenforms of
the linear operator A'/2 = dx on (Kerd) N A2?5%*~1 are stable for
the associated conformal invariant non-linear variational problem
and we deduce, in particular, that the Hopf map from S3 into S?
minimizes the p-energy in it’s homotopy class for p > 4 and that
it remains true locally for 3 < p < 4. We prove that the Hopf
map minimizes the p-energy for p > 3 among a class of symmetric
fibrations from S? into S2.

I. Introduction.

Denote by go the standard metric on S™ and by wgn the associated

volume form. For a map u between S™ and S™ we consider the p-energy
defined by

E(u) = /S | Valp, dvolg,

For m = n denote by degu the topological degree of u. Since we have

(L1) m™? [u*wgm| < [Vul™,
we get
1
(12) 57 1dogul = | [ wwsm| < i Bn(o),
. sm m?2

where |S™| denotes the standard volume of S™ and equality holds if and
only if u is constant or conformal. From (I.2) one deduces that

(1.3) VieZ E%= inf Epn(u)=m7|S™ x|d|
degu=d
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and, for m > 2, E3 is achieved if and only if d = 0,—1,+1 and u is
respectively constant or conformal.

In this paper we will focus on the other case where there are infinitely
many homotopy classes between spheres, that is, m = 2n — 1 and n = 2p.

Let u be a smooth map from $2*~! into S™. Since u*wgn is a closed
form and since H"(S?*~1) = 0 there exists n € A" }($?*~1) such that
dn = u*wgn. The Hopf degree of u is the following quantity

1 *
(14) H(u) = IS—n'I—z LG_lﬂA U wgn.

H(u) is an integer which does not depend on u in a given homotopy class of
mon—1(S™). For the convenience of the reader we recall, in the preliminaries,
some of the topological interpretations of H.

In the case n = 2 we have 73(S?) = Z and H(u) coincides with the
homotopy class of u. As in the §3 — S problem, we are interested with the
following energy levels for maps from S into S?

(L5) EF =inf {Em(u); u:S*—S% H(u)=d}.

It is clear that for m < 3 (as in the S — S problem) we have £7* = 0 (use
the action of the conformal group of S® which is not compact).

Consider now m > 3 and take u such that H(u) = d. Let ¢ be the closed
2-form such that

(16) A53€ = u*wgz.
We have

1 * *
(17) H(u)—'l-'S—2I—2 Sad f/\u Wwg2.

Using classical results on elliptic operators we have

3 2
(L8) /S Jegp<c ( /S 3 |u*wsz|§)

and using the Holder inequality we get
4
3

(L.9) <o ( [ 1vup)
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This implies clearly that for d # 0 and m > 3 we have £* > 0. We are
tempted to compare the problem of computing the energy levels ET* and
the energy levels £7*. The first difference comes from the fact that we used
a non local operation for finding 7 = d*¢ and that one cannot hope to get
~a local upper bound of 7 A u*wg2 by |Vul? like in (I.1). This makes the
second problem much more delicate than the first one. To illustrate this one
has to think of the fact that, countrary to the scalar case, the best Sobolev
constant in (I.8) is not known already. The second difference comes from
the power % that we have in the upper-bound (I.9) compare to the power
1 in (1.3). This power % > 1 could be not optimal at all and could be a
consequence of the method we used for establishing the upper-bound . One
way for getting a Hopf degree d map, uq4, from S3 into S2, is to collapse d
exemplars of an Hopf degree 1 map u (see below) that we have contracted
before using a conformal dilation (This is what we have done in the $3-$3
case for realizing E$). For such construction we have E3(ug) > E3(u) d and
one can deal sufficiently carefully in such a way to get

E3(’u,d) +:c:o E3(’u,)d +2°° Cd.

In fact this way of constructing a Hopf degree d map in view of mini-
mizing E3 in the §3-S2 problem is not optimal at all. Using maps whose
coimages of points have self-linked connected components (see part III), we
prove that the exponent 4/3 we got by the non-local operation (I1.6), (1.7),
(I.8) and (1.9) is the best that we can get. Precisely we establish the follow-
ing fact

log £¢ 3

(1.10) r :

as d — +oo

and contrary to the §3—S2 problem (see (1.3)) the infimum of the conformal
energy is not proportional to the degree. This fact, combined with the
concentration-compactness method developped in particular in [19], yields
to the following result proved in part III.

Theorem 1.1. There exists infinitely many homotopy classes of n3(S2%) hav-
ing a minimizing 3-harmonic map.

Remark I.1. The question about which homotopy class admits a mini-
mizing 3-harmonic map is still open.
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In parts IV and V of the paper we ask the question whether the Hopf map

H: PcR'~Co®C— S?2cR*~RaC
(u,v) — (|ul® = |[v]?, 2u)

plays, in some sense, in the S3 — S? problem, the role played by the identity
in the $2 — §3 problem. In part IV we give to this question a partial answer.

Theorem 1.2. The Hopf map is the only minimizer of the p-energy for
p = 4 in its homotopy class modulo the action of the positive isometries in
S3. Moreover, there exists a neighborhood V of H for the C*-topology such
that, H is the only minimizer of the p-energy for p > 3 modulo the action
of the positive isometries for p > 3 and the action of the positive conformal
group of S3 forp =3.

Remark 1.2. It is clear that H is no more a local minimizer of the p-
energy when p < 3, to see it , it suffices to compose H with dilations. (see
the computation of the index of H for the 2-energy in [21], see also [6]).

Remark I.3. See [2] for other minimizing properties of the Hopf map rel-
ative to p-energies.

The idea for proving theorem 1.2 is to observe, first, that for any map
from S into S? we have, for q > 1,

1
1 * 1 < _/ 2
(L) [ wost <5 [ 1vu

and that equality holds in (I.11) for v = H, that is to say that H is transver-
sally conform. In view of the previous remark we are tempted to intro-
duce the following variational problem with constraint for any p > 1 and

q=4p—-1)/2p
(L.12)
. 1 q 1 2p—1 g4p—-1
= _ W (AP 8P ’
1, mf{|S4P‘1| /g4p-1 ldn|?, n € ( )

2p
A = Ndn=1
s.t 1551 Jgups nAaan }

where W1H9(A?P~15%P—1) is the Sobolev space of the 2p — 1-forms of S4p-1
having derivatives in L9. Remark that the constraint 2p/ |S4P—1 /. sap—1 T A
dn = 1 only depends on dn like also [g4p—1 |dn|?. Thus for a given dn we
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often use the “Coulomb Gauge” 7 verifying d*n = 0 to make the problem
coercive. For ¢ > (4p — 1)/2p the existence of a minimizer is given by the
compactness of the injections W4 — L%}}. For ¢ = (4p — 1)/2p the
existence of a minimizer is not so direct, one has to use the classical ideas
of the concentration-compactness method of P.L.Lions (see [15]) to get the
existence of a minimizer. Note that the problem Z,_;/9;,, the conformal
invariant one, only depends on the conformal class of the metric we have
chosen on S*~1 and is in itself interesting.

Let I = {i1,...,i2} be a choice of 2p integers in {1,...,4p} and denote by
n} the following (2p — 1)-form of AZP~15%-1

2p
1 .
77;' = 2_p § (_1)s+1 xi, dziy Ao AdE, A A dxin

2p
1
+ Z) Z(—l)‘“‘1 Tj, d.’I:j1 VAR d.’I':js VANRERIAN dijp
s=1

where
dzj, A--- Adzjy, = *dziy A--- ANdzi,, in R,

We prove in part IV that theorem 1.2 is a consequence of the following result
that we prove in part IV also.

Theorem 1.3. The restrictions of the linear combinations of the 17}' to
S4=1 gre the only minimizers of I, for q = 2 moreover there exists a neigh-
borhood V of 17}'; for the C! norm, such that, n}; minimizes Iy in V for
q=>2- % and it is the only minimizer of I, in V modulo the linear combi-
nations of the n}" forqg>2-— 715 and modulo the linear combinations of the
nf and tilzez'r pull-back by the positive conformal diffeomorphism of S*~1 for
q=2- 2%

Remark 1.4. The question to know wether the 17}" minimize globally Z,,_ S
P
or not is still open.

Remark 1.5. The proof of theorem 1.2 uses essentially the decomposition
of the closed 2p-forms in the L? eigenbasis of Agsp-1 on Kerd N A%PS4P—1
and the fact that the constraint in (I.12) has a very simple expression in
this basis. Moreover we use also an identification of the second eigenspace
of Agap-1 on Ker dNAZPS%~1 with the Lie derivatives of the first eigenforms
by the conformal Killing fields which are not pure (see proposition IV.3).
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Remark I.6. The link between theorem I.3 and theorem 1.2 is made by
identifying H*wg: with the restriction to S3 of 4 (dz; Adza +dzs Adzy) (see
the end of part IV).

In part V of this paper we try to give a more geometric interpretation
of the conformal invariant 3-energy in the first homotopy classes of 73(S52).
We give a lower bound of the 3-energy among fibrations from S3 into S2
in term of the Teichmiiller classes of the coimages of the great circles of S2
(see proposition IV.2). This lower bound is optimal: it is an equality for
the composition of the Hopf fibration with the conformal diffeomorphims of
S3. This approach allow us to prove that the Hopf map minimizes the 3-
energy among the class of symmetric fibrations that we define in part V (see
theorem V.1). This enforces the conjecture that H minimizes the 3-energy
in it’s homotopy class.

II. Preliminaries.
We recall some basic facts concerning the Hopf degree.

In the definition of the Hopf degree (1.4) that we gave in the introduction
we used the volume-form on S™, but it can be replaced by any generators of
H7,(S™). This implies that, if w; and wy are two n-forms on S™ such that
fS" wp = fS" wy = 1, if w is a map from S?*~! into S™ and let 7y, 72 be two
(n — 1)-forms of A»~1(5?"1) such that dn; = u*w; (i = 1,2), we have

(I1.1) H(u) = / mAutwy = / o A u*wi.
S2n—-1 S2n—1

See [1] page 230. It is proved also in [1] that if n is odd then H(u) is allways
equal to zero and in [10] one can find a proof of the fact that when n is even
H(.) can take infinitely many integer values. Thus, in the remain of the
paper, we will always suppose that n is even, equal to 2p.

We give now three different topological and geometrical interpretations
of H(u).

I1.1. The Hopf degree as a n-topological degree.

Let w; and wy be two generators of Hj (S™) having disjoint supports, let
u be a map from S?*~! into S™, z a regular point in the support of w; and ¥
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a n-submanifold of S~ such that 8% = u~1({z}). Let n; € A*"1(§2*"1)
be such that dg = u*wy, it is proved in [1] page 232 that 7; is the Poincaré
dual of ¥ in the compactly supported cohomology H.(S?"~!\u~!(suppw)).
Thus we have

/ m A uwy = / m A u*we
S2n-1 S2n—1\u-1(suppwl)

= / u*ws.
z

This says that H(u) is the topological degree of the restriction of u to X
into S™.

(IL.2)

I1.2. The Hopf degree as a Link.

Let z and y be two distinct regular points of u in S™ and Bs(z), Bs(y)
be two disjoint geodesic balls of center  and y. Let II be the stereographic
projection from S?*~1 to R2"~1 relative to a point which is not in Bs(z) U
Bs(y). We still denote u the map wo II™!. The link L(z,y) of the coimage
of x and y by u is, by definition, the degree of the map

L: u—l ({x}) x u—l({y}) C R?n—l X R2n—1 SN S2n—2

§-¢

It is clear that, if 2/ and y’ are two regular points of u in Bs(z) and Bs(y)
we have L(z,y) = L(a',y'). Just deform isotopically in R?"~! x R?~!

uH({z}) x u™H({y}) into ! ({z'}) x u~ ({y'}).

We present, now, the computations in the case n = 2. They can be
established in the same way in the general case. By definition, for any
couple (z’,y’) of regular points in Bs(z) x Bs(y), we have

' 1 E-¢\*
1.3 Lz, y) = — L£760) e
(IL3) (=) 152 //u"l({a:'})xu"l({y’}) <|§ - C|> v

After some computations this gives

(IL.4)
/A 1 5 - C
L = — ==
@) =g /[ ey OATO <|e— 413)’
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where 71 and 7, are the tangential vectors along u~!({z'}) and w~({¢'}).
If we choose the normal parametrisations of the curves, 7 and 75 are unit
vectors and coincide with the vectors associated to the two forms

u* wsz
[u*wge

u* wsz
|[u*wgz|

| o7& and  ———(().

Denote by D(u) the following vector-field

3
D(u) = Z (uwgz; dziv1 Adzi-1) e,

i=1
. . o . 3 _ D(u)
where e; is the canonical basis in R°. We have 7 = O

Integrating (I1.4) on Bs(z) x Bs(y) and using the coarea formula of Federer
we get

(IL5)
|B5|2 L(.’IZ, y)

1 §—¢
= . d
52| ~/u“1(36(:r.)) ~/u‘1(36(y)) D)@ A D)0 (lf ¢ |3) S

1
/u“(B.s(z)) D)%) - rot [/u—l(Ba(y)) 4r I€ ¢l bwi©) dg}

Moreover one verifies that

. 1
(IL6) div ( /u oy W D(u)(C)dC)

Indeed this corresponds to integrate the gradient Vﬁ[ along the coimages
of the points of Bs(y) which are closed curves. Thus we have on Bs(y)

(IL.7)

1
rot ot [ Lo~ = g P )(c)dc] D).

Combining (II.5) and (II.7) we have, replacing vector-fields by associated
forms,

|B¢5|2 L("E’ y) = /3”'*“)1 A n2,
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where 7 is a 1-form verifying dny = u*ws and where
w] = wg2 X E’Bg(m)a Wy = Wg2 X E'Bg(y)

(E4 denotes the caracteristic function of the set A). This yields the following
result

(I1.8) L(z,y) = H(u).

I1.3. The Hopf degree as a 2n — 1-topological degree for n = 2.

Let u be a map from S3 into S2. Denote by @ the lift of u between
the fiber bundle v~1H, the pull-back by u of the Hopf bundle H, and the
fiber bundle H: S — S2. u™!H is a bundle with fiber S and base S°.
Denote by II the projection of this bundle. Such bundle is necessary trivial,
u T H ~ §% x S (because m(S!) = 0), and 4, restricted to S3 x {point},
realizes a map ¢ from S3 into S3 such that

(I1.9) Ho¢=u.

Let K be a (n — 1)-form verifying dK = H*wgz, since H has Hopf degree 1,
we have

1
1.1 1=——= *wgz.
(I 0) |52|2 - KNH Wg2

In the other hand, because of (I1.9), we have u*wg2 = ¢* H*wg2 and n = ¢*K
verifies dn = ¢*dK = u*wg2. Thus we have

(IL11)
_1 * — 1 * *
AW = 1 /Ssn/\u v = o /SS ¢* (K A H*wgs) .

(I1.10) implies in particular that IS—{,F x K AH*wgz is a generator of H3,(S3)
and (II.11) implies

(I1.12) H(u) = deg ¢.

II1. Minimizing 3-harmonic maps in
the homotopy classes of m3(5?).

This part is devoted to the proof of theorem I.1 stated in the introduc-
tion. First of all we prove the following key lemma.
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Lemma IIL.1. Let & be the infimum of the 3-energy among maps from
S3 into S? having Hopf degree d, we have

3
(I11.1) log&q 1 logd

Proof. In the introduction, using Sobolev embedding and Hoélder inequality
we have established that there exists C such that

(II1.2) ld] < C (E4)% .

It suffices to prove that this inequality is asymptotically optimal in the
following sense: there exists C’ such that

(I1L3) E4< Cd% .

Recall the following property verified by the Hopf degree. Let ug be a map
from S?2 into S? having Hopf degree H(ug) and let v be a map from S? into
52 having a topological degree denoted by deg v, we have

H(v o ug) = (degv)? H(up)
Indeed, if w denotes a generator of H?(S?) and w’ = v*w we have, by

definition, H(voug) = 1’ Aufw’ where dn = u§w’ and if degv # 0, '/ [ o'
is a generator of H?(S?) and we have

1 / VA
H(uy) = —— N = ————.

Thus, if H denotes the complex Hopf map H(v o H) = (degv)?. Using the
coarea formula of Federer we have

[owemp= [ [ [FeeBE
53 vestJH-1(y) |[H*wsz|

And since H is transversally conform, with uniform gradient |VH| = 22
in S3, we get

(IL4)
/ V(vo H)[® = / / Vol (4) x 2 = 4r / Vof?.
S3 yeS2JH-1(y) S2
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We claim that there exists C' > 0 such that

(IIL.5) min f |Vof® < Cns.
S2

degv=n

Let vp be a degree 1 map from S? into S? constant in the south hemi-

sphere S2 and denote by v§ the map v o D where D* is the dilation rela-
tive to the north pole which sends the geodesic ball B.(North) in the north
hemisphere.
We clearly have |Vv§| < C/e. Moreover there exists A > 0 such that, for any
integer n > 0 there are n disjoint geodesic balls of radius A\/y/n included in
S2. Let v, be the map which coincides with v{,\/ V7 in each of those geodesic
balls and constant elsewhere. We clearly have deg v, = n and |Vv,| < C y/n.
This implies (II1.5). Combining (II1.4) and (II1.5) we get

(IIL6) min / V(wo H)® < Crd.
S3

degv=n
This implies
(IIL7) £,2 < Cnd = C (n?)1.
Thus (II1.3) is proved for d = n?.

Let d be any integer and n such that n? < d < (n + 1)2, we have
d —n? < 2n. Consider a map « from S into S? having Hopf degree d, one
can insert to u, at d — n? different points the negative Hopf map H~ by
using less energy than

E3(u)+ (d—n®)Es (H™) +¢

for any € > 0. This is directly linked to the conformal invariance of the
3-energy on S3. This implies

£4< Eyz+C (d—n?) < Cdi + Cdz < C'di.
lemma, III.1 is proved. _ O
We now prove the following proposition which is a consequence of the

standard technics of concentration compactness whose reference papers are
for instance [19] and [15].
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Proposition III.1. Let d be an integer. There erists a finite sequence of
integers dy, - -+ ,d; such that Zﬁ:l d; = d and a finite sequence of maps from
S3 into S? vy,--- ,v; such that

H(v;)=d;  E3(v) =&
!
(LL8) and &= Z E3(v;).

i=1

Proof. Let up be a minimizer of By 1 among the maps from S3 into S?
having Hopf degree d. Such up exists because of the compactness of the
1n3ect10n of Whiten (53,5?) into L3 (53,52) and the constraint Jssn A
u*w = d becomes subcritical. We claim that u, is a minimizing sequence of
E3 in the homotopy class considered. If not, then there would exist a map
v in this homotopy class such that

(I11.9) E3(v) < lim E3(us) < lim By, 1 (un)

Since the regular maps are dense in W13(S3, S%) (see [20]), we can always
suppose that v is regular. We clearly have E;, 1 (v) — E3(v) and this
contradicts the strict inequality (III.9) because u, minimizes E; +1 in the
d-homotopy class. Thus u, is a minimizing sequence of E3 in this hgmotopy
class.

It is clear that uy is a locally minimizing 3 + %-harmonic map and from
classical results of the regularity theory for p-harmonic map, since u, is
C%P we have that u, is at least C1 for some 0 < o < 1 (see [9]). The
proof of proposition III.1 is essentially based on the following concentration
compactness result for the sequence u, whose ideas of the proof are devel-
oped first in [19] for harmonic maps in dimension 2 and are adapted to the
p-harmonic map case in [17].

Theorem IIL.1. [19], [17]. Let up be the sequence defined above. One can
extract a subsequence, still denoted uy, such that there ezxists a finite sequence
of points {z1,...,zr} (possibly empty) and a finite sequence of positive real
numbers {p1, ..., pk} such that

(i) un converges to some u in the C1 -Topology on any compact set of

S3\{£B1,...,13]c}-

(ii) The measure |Vun|® on S® converges weakly to |Vul® + 3%, 11:6s,.
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(iii) uw is a C' 8-harmonic map from S into S2.

The proof of theorem III.1 is not straightforward at all. The proof of
(i) and (ii) can be carried out following step by step the arguments of the
proof of theorem 2 in [17] (but for n < p < n +1). The fact that u is a C*
3-harmonic map in S\ {z1,...,z} is a consequence of (i) and finally (iii)
is a consequence of the previous fact and the singularity removability result
for p-harmonic maps of Duzaar and Fuchs (see [3]).

From now on u, denotes the extracted subsequence having the conver-
gence given by theorem III.1. Let 7, be the coclosed 1-form such that
dnn = ujw, where w = wgz2/|wge|. We claim that there exists a sequence
{v1,...,vk} of non zero integer such that

k
(I11.10) ()0 Adnn — ()N Adn+ Y viby,
i=1
where 7 is the coclosed 1-form on S verifying dn = u*w. Since uw weakly

converges to u*w in L%(S3), 7n strongly converges to i in LP for any p < 3.
Because of the strong convergence of dn, = uyw to dn = v*w in

logc (53\{371,"'?1716})

we have, for p < 3,

(IIL.11)
(*)9n Adnn — (¥)pAdn  in L} (S3 \ {z1,...,zk})

Thus the signed measure (*)n, A dnn, — (¥)n A dn converges to a measure of
the form Zi;l V;bz,. We shall prove now that v; are non zero integers.

Let 6 be a positive real number chosen sufficiently small such that z; ¢
Bs(x1) for i > 2 where Bs(z1) denotes the geodesic ball of center z; and
radius 6 in $3. Since u, converges for the C'-norm to u on dBg(x1) one can
modify u, in Bs(z1) in such a way that the modified sequence @, verifies

’ﬁn = Up in 53 \ Bg(:l:l)
Up — U in CL,(S*\{=z2,...,zx})

loc

(II1.12)

Let 7, be the coclosed 1-form on S3 such that dij, = @iw. We have, like
previously, the following weak convergence of the measures

k
(I11.13) (¥)7in A dil, — (K Adn+ Y Db,

=2
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But we have the following elliptic equation

. . 3
(IIL14) {dnn =0 in S°\ Bs(z1)

& =M =0 in S3\ Bs(z1)

Moreover 7, — 7, strongly converges to 0 in L?(S3) for p < 3. By classical
elliptic estimates we have that 7, — 7, converges to 0 in C*(S3\ Bs(z1))
thus combining this fact, (II1.10) and (II1.12) we get &; = v; for 7 > 2.
Using the preliminaries on the Hopf degree we have

(III.15) VnezZ /Ssnn A dny — /SSﬁn Adi, € Z

Combining (III.15), and the convergence of the measure
(*) (1 A dipn = i A difn)

to vy 6, we get v, € Z.

We claim that

(I11.16) Vii<k p=§&,.

Let us prove it for 7 = 1. Let o, be a sequence of positive number tending
to zero, chosen in such a way that

(IIL.17)
|[u(z) — u(z1)| + |Vu(z) — Vu(z1)| < % in Bs,(z1)-

Let N, be a sequence of integers chosen such that

(IIL18)
Vo> Ny [up(@) — u(@)] < % in Bs(z1)\ Bs, (z1).

We can modify up, in 4y, such that

(I11.19)
’ iUN, = UN, in Bs, (z1)
i, = u(z1) in §%\ Bs, +1(z1)
and |Vip,|, <C i B&,‘.}.% (z1) \ Bs,(z1)

=]

=]
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The map 4y, has been constructed in such a way that the Hopf degree of
i, is v1. Moreover, the measure |V, |? converges weakly to a measure
having support in {z;}. Thus there exists (7 > 0 such that

(I11.20) |Van, [* — ji1 6,

Let a < 4, (I11.18) and (III.19) imply

(I11.21) < Cpe.

[ 1V, - v,
Bg

This yields ji; = p;. Since H(idn,) = v1, we have

(I11.22) &, <= lim / | Vi, 2.

n—-+00

Combining (ii) of theorem III.1 and (II1.22), we get

(II1.23) €a= By(u) + Zu, > &+ Zﬁu,,

where v is the Hopf degree of u. Moreover gluing together minimizing se-
quences of &, &, -+ ,&,, one proves easily, since d = v + Zf=1 v;, that

k
Ea<E+ ) &
i=1

Thus equality holds in (ITI.22) and (III.23) and we have

k k
(IIL.24) Ea=Esw)+) En=6+) &,

(Since p; = &,, > 0 we have v; # 0).
We claim that, if v = 0, that is, if u is a constant map, we have k > 2.
The approach used for proving this is similar to the one used in [19] for

proving lemma 5.3.
Suppose u, concentrates at the north point, that is

(I11.25) |Vun|* = E48North-
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We are going to prove that, for any € > 0 there exists C. independant of n
such that

(I11.26) EJ%\ (un) < Ce B (un)

where E;' +ﬂ% (un) (resp. E. 1 (un)) is the 3 + ;11- energy of u, restricted to

the geodesic ball Brorn(F — B) (resp. Bsousn( — B)) in S2 for 8> 0. It is
clear that (II1.26) contradicts (II1.25) and this establishes the claim. Let us
prove now (II1.26). For simplicity of the notations denote by v any element
of the sequence u, and by p the corresponding exponent 3 + ;11— With this
notations v is a C! p-harmonic map. Consider a perturbation of v given
by an infinitesimal action of the conformal dilation of S3 relative to the
north pole, that is sin ¢ % where ¢ is the angle function in [0, 7] such that
cos ¢ = x4 the forth coordinate of any point of S® C R%. We shall use the
spherical coordinate (8,,¢) € [0,2x] x [0,7] x [0, 7] on S3 recall that we
have
ggs = sin’¢ sin® d6? + sin?¢p dyp? + d¢?

Since v is p-harmonic and v. % = 0 we have by the 1st variational formula

for the p-energy functional (see the derivation of the general formula for
maps between Riemannian manifolds in [22])

(I11.27) /S . |dv|P~2 <dv.d (sin¢-g—‘%>>wgs =0.
‘We have
., Ov _(Ov o (. ,0v
(a-d (im0 35)) = () (7 (0 5))
w5 55) (35 (7))
+ = 7) 50 sm¢a¢

(o) (40 2)
sin? ¢ sin2 80 ) *\ 90 ) )
where “.” denote the scalar product in T'S? and <, > the scalar product
in T*S3 After computations we get

(II1.28)
)

dv.d (sin¢a¢

19 5. 9
) =3 Bqﬁldvl sin ¢ + |dv|® cos ¢
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Combining (II1.27) and (III.28) we have

(II1.29)
T [, P2 —
_1 / / / (Idv2) " 2 |dvl? sin®s siny dé di db
2Jo Jo Jo o

T P P2
+ / / / |dv|P cos sin?¢ sing de dp df.
0JO JO

Integrating the first term of the right hand side of (II1.29) by part we get

(I11.30) / |dv|P cos¢ = 0.
3

This implies (III.26).

Proposition III.1 is now a consequence of (II1.24) and the fact that if
v =0, k = 2. Indeed, take d > 0, apply (II1.24) to d, then apply (II1.24)
to each v; and so on. We develop a tree procedure and in each branch an
integer appears at most one time. Moreover, since £, — 400 as p — +00
only a finite number of integers are concerned, and finally we get (IIL.8). O

The author learned that a similar result than the one stated in proposition
II1.1 was recently established by F. Duzaar and E. Kuwert in a more general
setting in a forthcoming paper [4].

Proof of theorem I.1. Suppose there is only a finite number of non zero
integers such that the corresponding homotopy class admits a minimizing
3-harmonic map. Let &, be the smallest of the energy of those homotopy
classes and let |d;| be the largest corresponding integer of those homotopy
classes. (II1.8) implies

(I11.31) Vd>0 > I—g_l X Eqq.
1

This contradicts lemma ITI.1 as d tends to infinity and theorem 1.3 is proved.
O
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IV. A conformal invariant variational problem on
closed forms of A?S%1,

IV.1. Presentation and basic properties.

As we pointed out in the introduction, the study of the conformal invari-
ant 3-energy from S° into S2 in the first homotopy class yields naturally to
the following constrained minimizing problem (in the case p = 1)

(IV.1)

T, = inf{ ldn|>~% , n € Wh2" 5 (AZ-1gte-1)
1

|S4P=1| Jgap-

1
s.t. W gpo1 nA d’l] = 1}

First we prove the following proposition.

Proposition IV.1. The minimizing problem (IV.1) is achieved by a closed
2p-form h, = dn, which verifies the following equation

22 1
(Iv.2) dne =770 [me| 27T (%) 74

where (*) denotes the Hodge operator on S4P~1.

Remark IV.1. Equation (IV.2) only depends on h, = dn, and is equiva-
lent to the following one

he  _gme1,
2p—1 — Tx %

|| 27

(IV.3) d(%)

Remark IV.2. The minimisation problem (IV.1) and consequently equa-
tion (IV.2) are invariant under the action of the non-compact conformal
group of (%=1, g..,) denoted Conf S%7~1, i. e.

(IV.4)
V¢ € Conf* (5%~1), Vn € A%~ (§%71)

/ dgn|2% = / \dn|>%
S4p—1 S4p—l
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and naturally we have

/ ¢*n/\d¢*n=/ nAdy
S4p—1 S4p-1

that is the main reason why the proof of proposition IV.2 is not so direct but
is an application of the concentration-compactness method of P.L. Lions.

Proof of proposition IV.1. We follow the arguments of [15].
Let hy, = dny be a minimizing sequence of Z,, where 7, denotes the “Coulomb
Gauge”:

(IV.5) d*ny, = 0.

The choice of this 7 makes the problem coercive thus 7, weakly converges,
1
up to a subsequence, in wh? A%~184P-1)  Denote by 71 the weak limit

1
of n, by p the limiting measure of |d77k|2—'27> and by v the limiting measure
of (*)nk A dn.. We first prove that there exists (vj)jcs € R*/ and (z;)jes
a sequence of points of S%~1, where J is some at most countable set, such
that

(IV.6)
v=(¥)nAdn+ Z Vjbz;
Jjed
and p> |dn|2_% + |S4p“1|4_1" I*Z |1/j|l-‘%z‘7 bz;.

jedJ
Let & = mx — 0. Denote by v/ the limit of (*)éx A d€; and p' the limit of
1
|d§k|2_5. Let ¢ € C®(S%1), we clearly have ¢&x, A d(d€r) = @2 €k A déx
and this implies
(Iv.n
1

2
155 Jgapr ¢°Ek N dé

11 1 do€ |2‘L)
I 2p
1,751 <|54”'1| /54p-1 144

1
Using the fact that &, weakly converges to 0 in Wh* % and using also
Rellich Theorem we get

| I i
Sip—1 Stp-1

— 0.
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Thus we have

(IV.8)

1
|51 Jsap-1

% 1 1 42

1 p—1
< =% dy .
< 2p (1541,_1' tp-1 |¢| ,U)

I,%-1

|61 &/

This is the desired Holder reverse inequality in view of applying lemma, 1.2
of [15]. thus we obtain the existence of (v;);ecs such that

! .
v= ZVJ‘S%'
jeJ

L -1
and 4 > |SP% I, |y 6.
jeJ

(IV.9)

Because of the fact that
& Ndék =k Adng —n Adn — ik Adn +n Adn,

using, once again, Rellich Theorem we get v/ = v — (*)nAdn, this establishes
the first line of (IV.6). Moreover the inequality

1l 1--L
#2 |S4P 1I4p I*ZIVJI 1p 6:12_7'
jeJ
is a consequence of the following

(IV.10)

2

1
2 1 1 2_.L 4p—1
S = (lS4p—1| - lp|* 2 d#)

I* 4p—-1

vo ([, w5 )"
S4p—l

where inequality (IV.10) is established similarly than inequality (IV.8). Fi-

1
nally, by lower semicontinuity of the L?> % -norm for the weak topology we
have

1
154271 Jsep-1

|6l* dv

_.L
(Iv.11) p> |dnl* %

and since |dn|2_§1'5 is a measure orthogonal to the sum of the Dirac masses,
we establish the second line of (IV.6).
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We now modify the minimizing sequence dny, to garantee that the weak
limit be non zero if it is not the case. We proceed as follows. Denote by
Ly = (L})i=1,... 4p the following vector of R*

i 1
1’ TS e——— . .
(Iv.a2) L [5%1] /5:4p-1mznk Adng

Let g be a point in the open unit ball B4’ of R, denote by g the following
positive conformal transformation of S4~1
z+ (px.g+ N)g

A(l+z.9)

where A = /1 —|g|2, p = (A —1)/|g|?>. Denote by ) the following map
from B into R

(IV.13) vre Sl g(z) =

Yrg — Li(g) = (Lfc(g))i=1,...,4p

(Iv.14) ; 1 , .
o) = g [, =4Gelo) A deme

where (x(g) is the coclosed form of /\2”‘1_5'41"1 verifying d(x(g9) = dg*nk.
. can be extended by continuity from B4 into R*. Indeed, as g — 0 €
$4P=1 one verifies that the total mass of (x(g) A dg*ny, concentrates at 6 and
since

1 * 1 * *
|S4p_1| L4p—l<k(g)Adg Nk = |S4p_l| Sdp—lg ”7k/\dg Nk = 1

one has Li(g) — 6. Thus 1, restricted to S%~! is the identity map and
using Brower theorem, we deduce that there exists g € B* such that
Li(gx) = 0. Instead of considering 7 as a minimizing sequence, we take
Ck(gr) that we will also denote 7.

Suppose dn = 0, combining (IV.10) for n = 0 and the last part of lemma
1.2 of [15] we deduce that Card J = 1. Let zp be the point where 7 A dn,
concentrates we have that
Ly — zo

which contradicts the fact that we have chosen a minimizing sequence such
that Ly = 0 for all k. Thus dn # 0.

Inequality (IV.6) yields

(IV.15)

jeJ

1
1 2L |l/j| 1_4_P
15%1] fgaps ldn|“"% < I (1— > :(|S—4p_*1|
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and we have

(Iv.16)
5
1 91 ¥
|§4-1] /g4p_1 ldn|"" 2 <L, | 1- Z |51
JjeJ
1
1 =%
<L |1-(1- o
% (1 (1 1591 S4P_177 A dﬂ) )
<Z _L d "
X &% (|S4p_1| S4p—177/\ n) .
7 realizes the minimum Z, and proposition IV.1 is proved. O

IV.2. The associated linear problem..

More generally we are interested in finding solutions of the following
conformal invariant equation for p # 0

1
dn=p[n|?T (x)n  in APTL g%
(Iv.1m ‘ 2
|S4P=1] Jsap—1
There are solutions which are given by the associated linear problem on the
coclosed forms of AZP—15%P-1.

(IV.18) dn = X (*)n,
which is equivalent to the following eigenvalue problem on Kerd N A% S4P—1
(Iv.19) d(¥)h = A h.

(IV.19) is the eigenvalue problem for the square root of the Hodge lapla-
cian, Az = d(*), on KerdnN A?S%=1  The eigenvalues and the eigenspaces
of the Hodge Laplacian on Kerd N A2 S$%P~! are described in [8], [11] and
[13]. Those eigenvalues are (2p)?, (2p+1)2%, (2p+2)?, ... and the eigenspace
E;, corresponding to the eigenvalues (n + 4)? are the restrictions to S4~!
of the set of closed and coclosed , polynomial, homogeneous 2p-forms in
A% R, having degree i. Thus, in particular, the eigenvalues X in (IV.19)
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can only be A = £(n +1), i € N. d(x)/(n + 1) is an orthogonal symmetry in
E; for the L2-scalar product. Moreover, if S is the symmetry on R%?

S: ($1,$2,.-.,$4p) ""'_) (—.’111,.'32,"' ,x4p)

we have
S*(x)h = —(¥)S*h  in A% g1,

Thus the pull-back by S realizes an isometry between
E;" = Ker (d(*) — (n + i) 1d)

and

E; =Ker (d(*) + (n+1) I1d),
this implies dim E;" = dim E;". In fact there is a more precise description
of EE.

Proposition IV.2. The eigenspaces E:t = Ker(d(x) — £(n +¢) Id) in
A2PS%~1 N Kerd are respectively the restrictions to S*~1 of the dual and
antidual closed, degree i, polynomial homogeneous 2p-forms of R*P.

Proof. From [8] and [13] we know that
Ker (d(*) — (n + 1)) @ Ker (d(*) + (n + 1))

is the restriction to S~ of the closed and coclosed, degree i, polynomial,
homogeneous 2p-forms of R*.

First of all we prove that, if h is a coclosed, degree i, polynomial, homo-
geneous 2p-form of R* we have

(Iv.20) d(x)h=(2p+i)*h  on S%°L

Recall that * and (*) denote respectively the Hodge operators in R* and
S4~1. From [11] we know that for such h we have

(Iv.21) du ('r %) *h=(2p+i)*h on R

where

4p
d 0
7‘% = kzﬂ.wka—x;
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and ¢(X) denotes the interior product by X on forms. Thus for proving
(IV.20) it suffices to verify that

(Iv.22) L (r dir) xh=(x)h on S§%1

Let z € $4~! and (dr,éy,..., €4p—1) an orthonormal basis of Ty R* where
(e1,...,€4p—1) is an orthonormal basis of T $4%-1, Decompose h in this
basis

h=3 asdrNe; Ao Nej,y + > Brei A Neiy,,
J I

where J denotes a choice
{j1, .-, jop—1}
of 2p — 1 elements among {1,...,4p — 1} and I denotes a choice

{i1,...,92p}

of 2p elements among {1,--- ,4p — 1}. We have

xh = ZaJ sgn(J) gjz Ao A €3, + Z,BI sgn(l)dr Aegz A--- A Eiy,_y»
J I
where {j{,---,j3,_1} is the complement of {j1,--- ,jzp} in {1,---,4p —1}
and where sgn(J) and sgn(I) are the signs such that

SgIl(J)dT/\&‘j1 Nooo NEjpy y NEjE N> /\Ej;p
— sgn(I)Eil A ~--/\€i2p/\d1"/\€i; /\“'/\Ei;p_1

=W 4p.

‘We have d
(rar) b =S prsen(eg Ao nes,
I

Moreover the restriction of k to %1 is equal to

Zﬂ; €y N " NEiy, in %71
I

and
(¥)h = 2,31 sgn([I) Eig Ao NEig -
I
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Here we have used the fact that n = 2p is even and
€iy N+ NEiy, Ndr =dr Ngjy A-+- NEiy,.

Combining (IV.21) and (IV.22) we get (IV.20). Thus h is a closed
and coclosed degree i polynomial homogeneous 2p-form of R belonging
to Ker(d(*) — £(2p + ¢) 1d) if and only if

xh = th on S%¥-1,
But since h is closed and coclosed in R*? this implies
*xh=1+h in R*.

Proposition IV.2 is proved. a

For any part I = {41, ,ig} of {1,---,4p} denote by h}k the following
forms in R*?

(IV.23) hE = dzi, A+ Adziy, £ *(dziy A+ Adiy,).

From the discussion above we deduce that, since h}t is respectively dual and
antidual in R*, we have

(IV.24) d(*)hf = + 2p hE.
I

Moreover, one verifies that, since dim Ey = C’Zg (see [13]), and since the h}:

are orthonormal for the L?-scalar product, h;‘ realize an orthonormal basis
of Ef. Let nf be the following (2p — 1)-form in R*

(IV.25)

2p
1
77;: = —2-; Z(—1)8+1 Tiy dTiy A~ NdEig A=+ A dxin
s=1

2p
1 1 .
+ -z—z; E (—1)8+ Zj, dzjy Ao NdZj, A~ A dil)jzp

s=1
where *(dzi, A --- Adziy,) = dzj; A+ Adxj,. We have

1

d’ﬁz = h?’:’ |h:It!s4p-1 =1, |77}t|s4p—1 = 51—'

1
and nli A hf = :i:z—pw34p-1,
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thus nf = :l:2lp (*)hli = :t-;; (*)dn}t and this implies

(IV.26)
_ 1
dnf = £(2p)F BT nF|FT ()nF  im 5L

2
We have constructed solutions of (IV.17) for C = :i:(2p)55;Ll. From the
above discussion we know that the space generated by the 7f is the set of
minimizers of

d 2
(IV.27) min M

/ nAdn
S4p—1

W}}ich is the variational problem associated with the eigenvalue problem for
Az = d(*) in Kerd N A2PS%P-1,

4p—-1
We are tempted to say that Z, = (2p)'§T but this is still an open ques-
tion, we are just able to give a “local” answer which is theorem 1.2 in the
introduction.

= 2p,

IV.3. Local Minimizers.
The aim of this part is to prove theorem I.2 in the introduction.
We will need the following proposition

Proposition IV.3. The second positive and negative eigenspaces of A7 =

d(*) in Kerd N APS%®-1 4 e Eit, corresponding to the eigenvalues
+(2p + 1) is generated by the Lie derivatives along the positive conformal
Killing fields which are not pure of the eigenforms of the first eigenspaces
Ef)': corresponding to the eigenvalues £2p.

By positive conformal Killing fields which are not pure, we mean the
Killing fields which generate the positive conformal transformations of S4P~!
which arevnot isometric. Those Killing vector-fields are generated by the
following ones:

(IV.28)
VE=1,...,4p Xp(z)=er—z.epz forz e S¥!

where (e;) denotes the canonical basis of R%.
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Before proving proposition IV.3 we construct a particular family of forms
which generates E;t (equivalentely E; ). Let I be still a choice {i1,...,42}
of 2p integers in {1,...,4p}, denote by J = {j1,...,jop} the complement
of I in {1,...,4p} (the indexing is chosen such that dzj A --- A dzj,, =
*(dzi; A--- A da:izp)).

For any i; € I and js € J denote by I;, ;, the following subset of {1,...,4p}

Ly, = {i1, .+, 86—1, Jss G415 - - -5 2p}
and remark that

dzj, A---Ndzj,_, Adzi, Adzj, N Ndxj,, =
— *(doiy A-os Adai,_y Adaj, A+ Aday,).

Finally denote by ki’fa the following 2p-form
+,I _ + +
(IV.29) kit,js - mit hI - mjs hIit,J's .
We have
(Iv.30)
dk] = dzi, NRF — dzj, A h,

=dz;, Ndzj; N--- A\ dszp
+ dxjs AN dle VANCERIVAN dsz-l Adzi, A d$j3+1 AR dszp
= dz;, /\dﬂ:j1 AN -"/\d.'L‘jz,7 —dz;, /\d.’l:j1 A "'/\d.’ltjzp =0
Moreover, we clearly have *kf:,’;s = :I:k;fjls Thus k;fjfs is a closed and

coclosed homogeneous degree 1 polynomial 2p-form of R*? which is selfdual,
resp. anti-selfdual. From proposition IV.2 we deduce

(IV.31) d(x)kE = +(2p + 1)kE!

it,Js it,Js "

In fact we have the following

Proposition IV.4. The kft:’;s generate Ef.

Proof. Let k be in E;f, k is an homogeneous degree 1 polynomial 2p-form of
R*, thus there exists ay; € R for I € {1,...,4p} and I = {iy,...,i%p} any
choice of 2p elements in {1,...,4p}, such that

(IV.32) k= Z Z arizydzi A -+ Adzi,,
[ |
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Since k € Ei" , by proposition IV.2, we have *k = k and a;; = aj; where
J= {jl, e ,jgp}v and

dxiy A+ Ndziy, = *(dzj A ANdjy,).

(IV.32) becomes

(IV.33) k =‘ Z Z ﬁj’[ .’l?lh'}'
[ §

where 81, = *aj,; and where we have restricted the sum among the (7,1)
such that [ € I.

Let I° = {19, ...,45,} and I° = if € I° such that Bo ;0 # 0. Consider the
couples (I,!) such that ! € I and

dze N\ h;'o = 4dz; A h}'.

We can always assume that the indexation of those I is chosen such that

(Iv.34) dzio A Y, = dzy A BT
Let us denote *dzig A -+ Adzig = dzjo A--- Adzjg . For any (I,1) chosen
as above, there exists s in {1 .,2p} such that l= ]s and I =1If, ;, . Since

k € E;}t we have dk = 0. Combining this fact with the previous remark we
get

(IV.35) B +Zﬁ jo08 =

and
2p
o 250 B jo Tjg b
Bre, ig Tig hfo + Zﬂlfg,jg”g T3 hIf".fg
s=1
e
_Zﬁ o o’Js l: Ioo 0 —:171,;’ hI°:|

t’]s
lé oa]s lt ,jso

s=1

This proves proposition IV .4. a
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Proof of proposition IV.3. Let I = {i1,...,i9} be a choice of 2p integers
in {1,...,4p} and I, = i;, € I. We compute Lx, h}.
Using Cartan formula on Lie derivation, since h}' is closed, we have

(IV.36)
Lxi, b} = d(4Xs,) (doig A+ A dig, +dojy A+ Adzy,))

where ¢(X;,) is the inner product by the Killing field X;, defined by (IV.28)
and where dzj, A --- Adzj,, = *xdzi; A--- Adzi,, in R*. We compute

(Iv.37)
L(Xlo) (d!l)il ARERWAN dil)izp)
2p
= Z(—-l)t.’rlo i dxiy Ao ANdEi, A+ A d:l)izp +

t=1

+ (1)t dgy A--- AdEi, A-- Adagy,
and
(IV.38)

L(Xlo) (d:l:j1 JARERWAN da:jzp)

2p
= Z(—l)sxlo Tj, dTjy A+ NdEj, A+ A dwjzp .

s=1
Combining (IV.36), (IV.37) and (IV.38) we get

(IV.39)
‘CXto h}' = —(2p):1:lo d:ltil A=A d:l:izp -z, d:l:il A=A d:l:izp
- (2p):13lo d:l,'jl VAEEEWAN dfvjzp

2p
- ij, dzj; A--- Ndzj,_, Adz, A -+ Ndj,, .
s=1
On S%~! we have

%p
-z, dz, = Z z;, dz;, + Z zj, dxj,,
t?éto s=1
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and (IV.39) becomes

‘CXz I == (2p)xloh+
+ Z zj, (dziy A+ A dzi,,_y Adzj, ANdzi, oy A+ daiy,

- dle AN A dxjs_l A dx'ito A dil:ja_,_l ARER dm]’2p)
thus
(Iv.40)

‘Cxl =- (2p)xloh + Zx:"’hjtt v Js == Z lo,]a
s=1 '

(IV.40) implies that Lx, hf € E;, moreover one verifies that

2p
( ki )
s=1 %))

generates E]” but we do not give the proof of it here because we will not use
it bellow. Proposition IV.3 is proved. O

Before proving theorem 1.2 we need a last proposition.

Proposition IV.5. Let I and I' be two different choices of 2p integers
among {1,...,4p} such that TUI' # {1,...,4p} we have

(IV.41) Vze S* 1 (hf(z), b (7)) gup1 =0

where <, >ga,_1 denotes the scalar product of 2p-forms on AP S4P-1,

Proof of proposition IV.5. Let I = {i1,...,i3} and I' = {i},...,i5,} we
have

vz € St (hf(x), hfi(2)) gap-1 = dr ABT .dr A BT (2).

On $%-1 we have
2p 2p

dr NBf = i, dzj, Ndwiy Ao NdTi, + Y i dmi, NdTjy A A dag,,
s=1 t=1
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and
2 2p
dr Ahf, =z dzj Ny A~ Adey + ) wy day Adag A Aday

s=1 t=1
The result is straightforward if neither of the following occurs
350,85, st {Gs,}UI={ju}Ul' or
Jto,t) st {ig,}UJ = {zgz} uJ' or
Isort, st {fs,JUI={ix}UJ" or
Jsgrto st {ig,JUJT = {jg Ul

(IV.42)

Suppose the first situation occurs. Since I # I', there exists £, such that

o I 1. .
Jg =1, and I' = I ;. and

dr/\h}'.dr/\h+ =

Ito' jsa

2p 2p
(Z zj, drj, ANdziy A+ A d:l:izp + Z Ty dxi, Adxjy Ao+ A\ dxj2p>
S=1 t=1

Z zj, dxj, Ndziyg A+ A dwito_l Adzj, A--- A dzi,,+
S#So
+ Zi,, d-Tito ANdziy A A d.'):ito_l A da:jso VAR d.’):izp -

- Z Ti, dxiy, Adzjy A« Ndxjg, _, Ndzi, A -- - Adxg,, —
t#to

= Tj,, d:l,'j,o A d:tjl FARERWAN d:L'jso_1 A d:l:ito AN A d(ltjzp

Consider first the case 2p > 2. In this case we have
VsVt dzi,Adzj A\ - - ANdTjy, . dTj, AdTyy A+ - -Adxi,,_y Adxj, A---AdTiy, =0
and

Vs Vit d:I)js Adzi A-- °/\d:1:i2p . dz;, /\d:l:j1 A-- -/\d:l:j_,,o_1 /\d:l:ito AR ~/\d:ltjzp =0
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This implies

dr/\h}".dr/\h}t

01780
= Tj,, Ti,, da:j,o A d:n,-l e A dx,-zp . dxito A dfl:il cee A d:l:j,o A-ee dxizp —
= Tij,, Tj,, dxito A dd:jl SERVAN dzjz;; . dxjso A dle SERVAN Cl:l:j‘,;a_1 AN dxi:o cee da:jzp

~1 -
= zj,,Ti,, (=17 — @y, @y, (<1)7HH =0

Remark that the two first situations of (IV.42) are equivalent and the two
second also and one prove exactly inthe same way (IV.41) in the case where
{dsoyUI ={i}, }UJ (i. e. J'=1,,,, ). Consider now the case p=1 and
compute

(d:l:l Adzo + dxz Ndxy ; dzy A dzs + dzg A d:l:z)ss
= (x4 dz4 A dz1 A dzo + 23 d23 A dT1 A dT2
+ z1dz1 A dxz Adxg + z2dxa A dxs A dzy)
. (:1:4 dxq Adzi Adx3 + o dze N dxy N dzs
+ z1dx1 Adzg Adxo + 23dT3 AdTy A d:L'z)
= —2421 + 21T4 — 322 + 2322 = 0.

Proposition IV.5 is proved. a

Proof of theorem I.2. Denote by F the following functional on w2
(A?SP~1 N Kerd)

(IV.43)
1 1-%

2p
—_— Ah
|54~ Jsap-1 7

|h|2_% ol ke
lSp I S4p-1

F(h) =

where dn = h. Let I = {i,...,i2} be a choice of 2p integer among
{1,...,4p}. Denote by Qr the following quadratic form on L2

(Iv.44)
2
Vo € L? (Azp—1S4p—1) Qr(de) = %F(h}L +tde)),_o-

This is well defined because |hf|s4-1 =1 > 0 for any z € S%-1, We shall
prove the following lemma.
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Lemma IV.1. For any d¢ € L2(APS*?~1) we have Ql(d¢) 0 with
equality if and only if dp is a linear combination of the h and the Lxh}
where X is any conformal Killing field of S%~1. Moreover if d¢ is orthog-
onal to all of those previous forms for the L?-norm we have

(IV.45) Qr(dg) > c /S ot |dg|?

where ¢ > 0 is independant of ¢.

Proof. Take d¢ € C®(A2S*~1) after some computations we find
(IV.46)

— L
Qr(dg) = % [ Lo gt =g [ ao.np

- 2 ndg)
2p/s4p- pAdp + |S4p_1| (/541’-1 r Ad¢) ]

Let us introduce a particular orthonormal basis for the L2-norm in Ef' . First
of all remark that, if k and | € I,

(IV.47)
1

@)
.,‘S—‘lm p— lﬁxkh-*— £ h+ Tk

|S4p_l| S4r-1

g [ lz: :

where we have used the fact that Af; . b}, # 0 if and only if K’ = K or
KUK’ =/{1,...,4p}. In the other hand we have

! TpTy = 0 1 i = Bk
[S%=1| Jgapor 4T ORGHT] [ TR T A
and
1 >,
IS4P—1| Sap—1 ;xjs = 5

Thus (IV.47) becomes

1
IS4p—1| S4p—1

1
Cx,ht . Lxht = 23T

(IV.48) 5
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One verifies that this is still the case when & or [ do not belong to I. Take

to be the 4p first elements of our basis. For any i, iy € I (t # t’) and js € J,
consider the 2p-form

(IV.49) ko fivis = g pF

ity Lyt it, s

— . BT
Tiy hItl, is

and for any i; € L and js, j& € J (s # §') the 2p-form

+,Ii Js +
(IV.50) kjsyj:; s =g, hIn ie = T hIt i
Using still proposition IV.5 and the fact that
1 TLxT) = Ok
'54”_1' sr-1 k= 4p

one verifies easily that, in one hand, the forms defined by (IV.49) and (IV.50)
are all orthogonal between themselves and that, in the other hand, they are
all orthogonal with all the f; (k < 4p). We complete the familly ( f,;" Mk 4
with the forms (IV.49) and (IV.50) denoted

+
(f k )4p+1 k N
that we have renormalised in such a way that

1 .
|S4P=1] Jsap-1

One verifies also that V¢ € {1,...,2p} and Vs € {1,...,2p}
(Iv.51)

Iff?=1 for k<N.

1 58 Liyjs | _ + +
5; { + Z ]ay]t’ “ =T hI + zj’ hIit-js
s#s’

and
(IV.52)

£t

1 i s
2_2; |: Z 1t,1,t/t]:| =—w]sh +w’tthIZ s

—k+I

Jsytt
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Consider kJ,” *;+» which is neither of the form (IV.49), (IV.50) nor on the form
(IV.51), (IV.52). We claim that

(Iv.53) k;',' I s orthogonal to lVgctjsv fif.

We can always assume that ¢/ € I'. (IV.53) is straightforward in the case
Where I' and I, ,j# are not on the form I;, ;, or in the case where I’ = I or
l, . Suppose now I’ = I,t,Js Since ¢ € I, j,, ¢ is equal to some iy for
(t’ 75 t) or i’ = js. The case ¢’ = js has already been considered because in
such case we have either k;",, ’j, = k;;ﬁ’:, I k;’,: ]I, = k;: 7§3. Thus the only
case we have to consider is

kil = i, b o hy
3’ e Ly Ti i) Gsrign)

where

I(it,'ig') (Gsigr) = {{il’ R 7:21)} \ {itv z't’}} U {js,js'}-
- Using once again proposition IV.5 and the fact that
1 Ol

|S4p‘1| Sip—1 Tk = -4;

we deduce (IV.53) in the case where I' = I, ;,.

One proves exactly in the same way that (IV.53) holds in the case where
I, g = I;, j,- Thus we have proved that (IV.53) holds in all the cases.
Using this result and proposition IV.4 we complete the orthonormal familly
(ff)1 & n by linear combinations of the k",' *;» which are neither of the form
(IV.49), (IV.50) nor on the form (IV.51), (IV.52) in such a way to get an
orthonormal basis ( f,'c*' )1 & N, of Ei" which verifies, using also proposition
IV.5, ‘

(IV.54) |
If 3ze€ S suchthat f.h(z)#0
then ke {1,...,4p} and ff =£¢kah}*'.
2p+1

We are now in position to prove lemma IV.1, with the help of this basis
of Ef.

Decompose d¢ in (Ef @ Ef) @ (Ef @ EfF)* we have

(IV.55) d¢ = o} h++za,,+2ﬂ,jfk +dR
I'#I k=1
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where dR € (Ef + Ef)*. Let us compute the 4 terms in the left hand side
of equality (IV.46). We have

(IV.56)
1

I = — d 2 ’
1 [S%-T] Jgap- l| B° = aI +I'Z¢I aI

2
+Z ﬂk |S4p__1| S4p X ‘de .

‘We have also

(IV.57)
2p N 2 1 1 . )2
_ == (= hiAd
== swp (Lo na9) = 55 (g [, o
2
_ (of)
2p
and
2p 2 2
(V-58) Is = 1z [, #Ade=(of )"+ %: (o2:)" +
I'#£T
Np
2p +12 2p
= e RAdR.
+Z 2p+1 ('Bk:) + |S4p——1| Sap-1
Finally
(IV.59)
L= — o |do . h|?

2p|S*P1| Jgap-

1 &
= —n + - 2
2p |S%-1| Jgap-1 (az ; P

2
- B o+ b dR)
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where we have used (IV.40) and (IV.54). We compute

(IV..60)
@) & 4 ,
I =1 + / 2
4 2p +; 2p + 1|54 ('Bk) S4r—1 Tk
1 2 2
L a0 L —— / ¥
+ |S%T] S4p_1| 7 -dR|" + 2p|S%1] oy S4P-1hI dR

2 T &
- + Rt .d
|S4-1 'V 2p + 1 kz___;ﬂk /S4p_1xk 1-dR

where we have used the fact [g4,-1 Zx = 0. We claim that the two last terms
of (IV.60) are equal t0 0. [g4,— hf . dR = 0 because dR € Ej-.

We prove, now, the following

(Iv.61)
VdRe (Ef)" Vke{l,...,4p} / T hf .dR=0.
S4p-l

Suppose k € I, k = i;, and compute

d (%) [:ck h}'] = 2pxy, h}" + 2pdxzi A 77_}"
= 2pxg h}" + iy, dzi; A -+ ANdziy,

2p
+ 3wy, dwjy A+ Adzj,_ Adzig Ao Adag,,.
s=1

Using the fact that

2p
zi, dzi, =— Y xi,dzi, — Y =xj,dzj, on AP S¥P!
0 0
t#to s=1

we get

d (%) [ze hf] = 2pz A +
2p
Z:Bjs [d.’L‘il Ao A d.’l:,;to_l A de‘j, VAR dmizp
s=1

—dzj, N---ANdzj,_, A da:,-to JARERWAN dijp] .
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* Thus

(IV.62)

() x, B

46) [on k] = ~Lx, b = =

This implies the existence of a (2p — 1)-form £ such that

:Ekh;': +1£Xk h’I -I-(*)df

2p

We clearly have [g4,-1(*)d¢ . dR = 0 and since dR € (Ef)*, (IV. 61) is
proved and I is equal to :

(IV.63)
1

+ 2
22p+1 SoTST o 117 4B

 Since Qr(dg) = (1 — 1/4p)[Iy — Iy + I, — Is], combining (IV.56), (IV.57),
(IV.58) and (IV.63) we get

(IV.64) -
Qu(dg) = (1-— S2 (6 + e o |, 1R
4p 2p+14 ] k S4p+1| S4p+1
1 + 2 2p
- - . — s RAdR
5 55T Jyeps "B~ T5mT] o ]
1 -1 1 )
>(1- e dR
< 4p> [2p+ 1 4102_*_1 ('Bk ,2p | S4p+1| S4p+1| |
_2p
RAdRY,
|S4p ~1 Jgp-1 }

where we have used the fact that |h}| =1 on $%~!. dR admits a decom-
position dR = dR* + dR™ in

D e D E

i=2...00 i=0...c0
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and we have
(IV.65)
- "RAdR = — RY* AdRT - R~ AdR~

S4p—1 .J§ir-1 S4p—1

> — R* AdR*
S4p-1

Using the fact that the third positive eigenvalue of d(x) on E* is 2p+ 2, we
have
(IV.66) / |dRY2 > (2p+2) RY AdR™.

S4p—1

Sip—1

Combining (IV.64), (IV.65) and (IV.66) we get

(IV.67)
1 1 & -1 1
s (1- 1) [ S e+ 2=l L [ arpy
p— 1 1 +12
p(2p+2) |71 Jgap 4] :l .

(IV.67) proves Lemma IV.1 for p > 1.

In the case p = 1 one has to refine a little the lower bounds. We start
from (IV.64). We decompose dR in EF @ (Ef)': dR = dRy+dR'. We have

(IV.68)
/S”_l |dR.1f|? = /S4p_1 |dRy .1 |* + /SM |dR'. h}|?
42 /S ., dRa.hf X dR.h}.
Using proposition IV.2 and proposition IV.5 we obtain that
dRy .hf =azpz; for a€Randk,le€{l,...,4p}.

The third term of (IV.68) becomes

2a/ kalh}'. dR’.
S4p—1
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Let us study the Hodge decomposition of zx z; h] in A% %=1, We have
(IV.69)
d(x) [:L‘k I h;'] =z dx; A (*)h}" +x;d [:I:k (%) h;']
=~z LXx, h}" -1 Lx, h}' — 2px; xR, h}"

where we have used (IV.62). Let P be the following homogeneous degree 2,
2p-form in R

(IV.70)
2p 2p
P = x| 2pmihf — Z:L‘j, hz,,z} +1; [2pmkh}’ - ij, h}t',,k —2pzizihy.
s=1 s=1

We have *P = P moreover P restricted to S~ is equal to d(x) [:z:k z h}'],
thus dP restricted to S%~! is equal to 0 and since *dP is a coclosed degree
1 polynomial 2p-form one verifies, uding corollary 6.6 of {11] that dP = 0
in R%. P is a self-dual closed degree 2 homogeneous 2p-form of R* thus,
from proposition IV.2, d(x) [z z; k], the restriction of P to $*~! belongs
to E5 and we have

(Iv.71)

Jg€ Ef and s € AP7IS% st mpahf =g+ (+)ds

This implies

(Iv.72)
+12 _ +12 ! 2
/54p-1 |dR.&F| [g4p-1 |dRy . h}| +/S4p_1 |dR' . nF|
Since none element of E is of the form a(z) A} there exists v < 1 such

that
/ |dRz . b |*
(IV.73) max | L8277 =y

ngeEé" / I d R2 |2
S4p-1

We get
(IV.74)

1 2
dR|?> - — / k¥ .dR
fg4p-—1l | 2p S4p-1| 1 l

1 2 1 2
= 2 4 R—— ht.dR -——-/ ht.dR'
/S o AR AR = o /S it dral = [ |

Y 2 1 / 2
> —_— dR: 1—— dR
(1 2P) /5417-1 IRl + ( 21’) S4r—1 | |
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We decompose dR' = dR'Y +dR'™ in

P Efd P Er

1=3...00 1=0...00 °

This time we have

(IV.75) /S o

Combining (IV.56), (IV.57), (IV.58), (IV.63), (IV.65), (IV.74) and (IV.75)
we have

2
dR'+| > (2p+3) R AdR™T

S4p-1

(IV.76) Q:(d¢) >

N,
1 1 % 2 2p—-1 1
1— — ) | — -+ = -
( 4P) [2p+1 Z ('Bk) + 2p |81 Jgap—1

/= 2
dR l
4p+1

+ 4p -3 1 /
2p(2p + 3) SP1 Jgap

o[ G |dRr;|2}

Since vy < 1 lemma IV.1 is proved in all the cases. O

Using the result established at the end of the proof of proposition IV.1
we have

Vi € A?P-18%-1 3g € Conf* (5%1) such that
/ z((9) Ndg™y =0,
S4p—1

where ((g) is the (2p — 1)-form verifying d * {(g) = 0 and d{(g) = g*di.
Since F(g*dy) = F(dy) we are tempted to work on M

—_ 4p—

{h}'-!—dqb st. d¢ € L® and /
= 5
where d(x¥)¢p=0

1:c¢+17}'/\d¢+h+=0}

Let dip € M such that

1 2
Ih;- - d¢|°o <a and W’ - Id’l[]l = 1,
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decompose dy in Ef @ (Ef)* we have
dyp = Za,, h}, +dp = (1 +6)hf + pht + dg,

where ht € Ef, ht.hf =0 and [g,-, |ht[2 = 1. We claim that, for o
sufficiently small, independant of di) we have F(dw) > 0. We have

RGN [ W @=h7)| <a
S4p-1 Sép—-1
Denote ht = (1 + 6) hf + pht and we compute

F(dy) =

(1-4)

1 |dé Rt
= oo oo -4 | |77+|2’ et

+0 (a / |d¢|2>
S4p—-1
|d¢.ﬁ+|2
/ T‘/ |dg. hF|*| < Ca/ |do|?
S4p-1 |h| S4r-1 S4p-1

Thus we have
(1v.77) IF(@) - Qrig)| < Ca [ laoP
Let us decompose d¢ in

Vect{Lx,hf} & (Vect{Lx, h]}) +

6] = a and |u|=

but

we have

4p 4p
1
d¢ = ,; BeLx,hf +dR=d (2 —1 E Br(*)Lx, hf + R)

where we have chosen R such that d(*)R = 0. Slnce dy is in M we get

(IV.78) / [h+ + Z BoLx b + dR]

=1

A [ﬁ+ 2p1+ 1 Zﬂk(*)£th+ + R]
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Since At AfjT = 213 wWgtp-1

(IV.79) / zht AfT = 0.
S4p—-1
From (IV.61) we have
(Iv.80) / cdRADf = 1 zdR.hi =0,
S4p-1 D Js4r-1
and
(Iv.81)

/ :cdR/\ﬁ"'—/ zdRAnf
S4p-1 S4p-1

Moreover, since d(*)R = 0 and

%
< Ca ( / |dR|2) .
S4p-1

1
+ +
(R € (Eo ® Vect {Lx.hf })

we have also
(IV.82) / zhf AR = / zhi . (x)R=0
S4p—-1 S4p—-1

and

(IV.83)

1
~ 2
/ zh* AR - wh}AR)<Ca(/ [dez) .
S4p—-1 S4p-1 S4p—1

One verifies also, using (IV.40), that
(IV.84)
VE=1,...4p / xh}"..’.’xkh+=—2p/ zlep
S4p-1 S

4p—1

=3 57| ex

where (e;)i=1..4p is the canonical basis of R*. Combining (IV.78) ...
(IV.84), we have '

(IV.85)
1
VE=1,....4p |Gl <0a</ |dR[2>2.
S4p-1
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This yields
(IV.86) / |do|? < C / |dR)?.
S4p-1 S4p—1
From Lemma IV.1 we have
Qg >c [ jarp
S4p—-1

Combining (IV.86), the previous inequality and (IV.77), for o chosen suffi-
ciently small, we have

(IV87) VdpeM st |dp—hf| <o
. F(y)>C / _|def? > C dist? (dy, EF)
Sip-1

Since [g4p-1  hf An} = 0 there exists 8 > 0 such that

Vi e APSPTL st |dy—RF| < B
dg € Conf* (S*~1) st. g*dy € M, |g*dy — h}|< e
Thus
|dy —hF| < B => F(dy) >0
with equality if and only if
dyp € Conf™ (S*~1)" Ef.

This proves theorem I.2. : | O

IV.4. Stability of the complex Hopf fibration.

In this part we establish theorem I.1. As it is stated in the introduction
we just have to identify H*wg2, where H is the complex Hopf fibration, with
the restriction to S% of 4h'1" =4dz; ANdxy + 4dx3z Adzy.

Since H is a transversally conformal map having constant gradient, i.e.
|VH| =2v?2 in S3 we have |H*wgz2| = 4 on S3. Moreover the coimages of
points are given in S3 by the left multiplication of unit complex number in
R~ H

e® . (x1,z2,23,74) = (cos@x; —sinfzq, cosfzy +sinbz;,
cos@x3 —sinf x4, cosf x4 + sin b z3).
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Thus the unit 1-form in A’S3 tangent to the coimages is
—zodxy + 1 dzo — T4 dx3 + T3 dTy4.
This implies
(*)H*wgz = 4(—z2 dz1 + 71 dT2 — T4 dT3 + T3 dTa) = 8]
thus H*wgz = 4 h{ and theorem 1.1 is proved. a

Remark IV.3. Denote by H and H respectively the quaternionic and
the Cayley or octonionic Hopf fibrations from S7 into S* and S'° into S8 (see
the definitions in [5] for instance). H and H are also transversally conform
they have uniform gradient , i. e. |[VH |gr =4 and |VH |g15 = 4v2 and
they are fibrations having Hopf degree equal to 1. For all those reasons we
are tempted to study the minimality of their p energy in their homotopy
class using the same approach used above for the complex Hopf map but
one verifies that H* wgr and H* wgisare not in Eg’ .

We justify in the end of this part the last statement in the previous remark.

Since H and H have Hopf degree 1 we have

1 . 1 . -
WL7H wgs AN =1 and WLlsH wgs AN =1

where dn = H* wgs and dp = H* wgs. Moreover we have

/|H*wg4|2=|s7| 4* and / |H* wes|® = | $15| 48
S7 Sl5

Thus
* 2
/S7IH wst| 2 x 7t x T (3)° x 44
T T 2 x5 xI(4) =12>4,
S7H*wS4
and
H* wes|? 2
/515I ssl =2><7r8><I‘(%) X48=1120>8.
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V. Geometric lower-bounds of the 3-energy among
the fibrations from S° into S2.

In this part we restrict ourselves to the case p = 1. The maps u, that
we will consider, are fibrations of the form u = H o where H is the Hopf
fibration from S2 into S? and % an orientation preserving diffeomorphism
from $3 into S3.

Consider a closed oriented regular embedded curve I in $? such that I"
separates the north and the south péles of S2. Denote by £ and g the two
disjoint open sets, having I as boundary, containing respectively the north
and the south pdéles. One can allways assume that the orientation of I' is
chosen such that 05y = —0Xg = I" where £ and Tg are oriented like S2.
Denote by o and o5 the generators of m (u™1(T")) ~ m (S* x S') such that
any representant of oy (resp. og) corresponds to the positive generator
of m(u™(En)) = m(D? x S1) = Z ( resp. to the positive generator of
71(u~}(Zs)) = Z) where the orientations of u~!(Zy) and u~}(Zg) are given
by the orientation of S and the orientation of the fibers. One verifies that
u restricted to u1(T') realizes a (1,1) map into I' ~ S1. That is, if ny and
ns denote respectively the Poincaré duals of ox and og in u™!(I") we have

/ wdfAngy =1= / u*dd A s,
w () u=1(T)

where df is a generator of Hjp(T').

Let (T, g,0) be a riemannian genus one surface where we have identified
two generators o, and o2 of m1(T"). Such object will be called a marked
genus one surface and simply denoted by T'. Consider the following set

W(T)={ve W2 (T,S) such that deg,V = (1,1)}

where W12(T, ) is the set of map from (T}, g) into S having gradient in
L?, deg, v is the couple of integer

(/ u*d&/\m,/u*d@/\n2>
T T

where 71 and 72 are the Poincaré duals of o1 and o2 and df is a form
generating Hjp (S).

We introduce, now, a quantity which plays a central role in this part

(V.1) I(T) = UG%ET) /T |Vu|?dvoly.
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First observe that, if (T”,¢’,0’) is another marked genus one surface, such
that there exists a conformal diffeomorphism ¢ from T into T” preserving
the choice of generators i. e.

f T-R  st. g=e¢*d and ¢'oi=0] for i=1,2

where ¢* denotes the induced map by ¢ from 7;(T’) into 71(7”). Then we
have

(V.2) I(T) = I(T").

This corresponds to say that I(T") only depends on the Teichmiiler class of
T (see for instance [12]). The Teichmiiler Space in the case of genus 1 is
given by the flat Tori C/I"; where «, is a lattice group of the form

I;={m+nr st (m,n)ez?}

for any r € H = {r € C | Im7 > 0}. Thus we just have to compute I for
such tori. We have the following proposition.

Proposition V.1. Let T' be a marked genus 1 surface and let T =a+1b
be it’s Teichmiiller class in H we have

(V.3) I(T) = 4n? [b 4 (i‘b_‘l)f] :

Proof. T is identified with it’s corresponding representant C/r,. Let v be a
map of W(T'). Consider the following diffeomorphism % which sends C/r_
into C/r,

a
¢(($,y))= (x—'gy) %)
and let w = v o~ we have

2 1 |0w ow|?

ow c1|ow _ Ow
ox b |y * oz

(V.4) /T|Vv|2=/01/01b ow

W is (1,1) from C/T; into S* thus we can write w in the form

w = e 2 (@+y+f(z.y))

where f is a Z? periodic function in W'lf,cz((C) (V.4) becomes

11 aflt\ 1 8f  of
/T|V11|2=47r2/0/0 b(1+‘% )+-5<(1—a)2+‘—8-§—a%

)
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The minimum is achieved for f = cte and this yields the desired result. [J

The following proposition illustrates the link between the function I and
the 3-energy on S3.

Proposition V.2. Let u be a fibration from S? into S2, we have

[93 |Vaul? > g/sz I (u"l(Sy)) dy

_ b*(y) + (1 — a(y))”
=4V s? b(y) W

~ where Sy is the great circle perpendicular to y and a+1ib(y) is the Teichmiiler
class of u=1(Sy) for the generators of m1 mentioned above. Equality holds in
(V.5) when u is the composition of any conformal map of S® with the Hopf
fibration: in this case a(y) =1 and b(y) = 1.

(V.5)

Remark V.1. The two sides of inequality (V.5) are invariant under the
action of the conformal group of S3, i. e. when we replace u by u o where

¥ € Conf(S3).

Remark V.2. It is a natural question to ask wether we have to deal in
proposition V.2 with all the a + b in the upper half complex plane. Indeed,
from (7] (see also the proof of [18]) we know that each conformal class of
flat tori admits a conformal embedding in S2 but it is still an open question
‘to know whether each marked flat torus can be conformally embedded in
83 such that there exists an isotopy of $2 which diffeomorphically deforms
our embedding into the the standard Clifford torus and which sends the
chosen generators of our embedded torus into the standard generators of
the Clifford torus.

For proving proposition V.2 we will use an inequality stated in the follow-
ing lemma. Let y € S2, denote by py the distance function relative to y on 52
and by dfy the 1-form perpendicular to dp, such that dp, Adfy = ﬁnl’Ty wg2
we have

Lemma V.1. Let u be a W13 (83, 52) map, the following inequality holds

72
V.6 / / u* dpy|* |u* dé <—/ Vul®.
(V.6) es2 ssl pyl” | y|\\/§ssl |
Equality holds in (V.6) if and only if u is transversally conform.
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Proof. Let z € 8% and let 6,,;) be an angle function in S2\ {u(z)} with
value in R/2wZ corresponding to the choice of an orthonormal basis in
Tu(x)S"’. Using the coarea formula of Federer we have, for any z in S3,

(V.7)

[ wanPuasi= ["a [ tdap—
y€eS? u(z:)— l u(m)l

but |sin Pu(z) ] Idou(m)| = 1 and [sin Pu(z) ()| = |sinpy(u(z))|. More-
over for fy(;) constant equal to 6, dpy and sinp, df, are constant equal
to cos 8 dxy +sin 8 dzo and — sin 8 dz1 + cos 8 dzy where we have fixed an or-
thonormal basis (dz;, dza) of T*(x)S’2 corresponding to the ch01ce of Oy(z)-
Thus (V.7) becomes

(V8 [ lutdpl udsy
yes?
27
=7 / |u* cos 0 dz1 + sin 0 dza|? [u* — sin 6 dz; + cos 8 dza| df
4

=0

Take = € S3 such that rank du(z) = 2 (otherwise the left hand side of (V.8)
is 0) and choose an orthonormal basis (e}, e2) of (Ker du(z))* such that

ou ou )
B = Aeq and Doy p(cosae; +sinaes)

where ¢; is the dual basis of dz;. (V.8) is equivalent to
(V.9) |u* dpy|? [u* dby|
yes?

2
= 7r/ (A2 cos® 0 + p? cos’(0 + ) \/)\2 sin? @ + u2 sin%(0 + @)
=0

After some computations we get
(V.10)
‘/021r (A2 cos® 8 + p? cos®(0 + oz))2 (A2 sin% 0 + p? sin®(0 + @)
= % NS+ € + [A2u* + M*pu?] x (3cos® a + 7sin? )]

% [(}\2+y, ) + 4x%u2 (A2 +,u2)] < _1[ ()‘2+#2)3
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with equality if and only if @ = & F and /\_# p Combining (V.9) and (V.10)
we get

k]
| 2 (lou]? | oul?\?
* d 2, % ) g l el el
[t doul? ) < T2 ( ol |
This yields the desired result and lemma V.1 is proved. O

Proof of proposition V.2. Let y € S2, using the coarea formula of Federer
we have

27
va) [ wranPudsl= [Cao [ juranp

6=0 Oyou=0

T
= / dé [/ lu* dpy|? + / |u* dpy|2]
=0 Gyou=0 Oyou=0+m

where we have chosen an angular function 6, € R/o; corresponding to an
orthonormal basis (e1,¢€2) of T,$? C R3. Let S, be the great circle of S2
orthogonal to cosfe; + sinf e, we have

{x st. OByou=60 or fou=0+m}=u"1(Sy)

and since dpy represents, up to a sign, the volume form of Sy,, we have

T
(V.12) , / [u* dpy|? [u* dby| > / I (u™(Sy,)) do
s3 _ 6=0
Thus combining (V.12) and inequality (V.6) of lemma V.1 we get
(V.13) '

71'2 .
> /S |vap > /y GSZ% /S I (w™Y(Se)) dHM| 5,(6)-

14

We claim that Vf € L} (5?) we have

1 —
(V.14) /y s, 7O LSy = m L1

Let x be the following cut-off functionon R: x =1 for z € [-1,1], x =0
elsewhere. Denote by xc(¢,y) the following function on S2? x S

arccos € . y)

1
%@w=%x( e
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Let g be a regular positive function on S2 and y € S2 we clearly have

(V.15) im [ xe(6,9)9(6) = / g
s2 S,

e—0 Ee

This yields

; 1 o ,
/y R CE TGRS /y B /ﬁ _xle) 1o

Using Fubini’s theorem and (V.15) for g = 1 we get (V.14). Finally com-
bining (V.14) and (V.13) we get the desired result and inequality (V.5) is
proved.

One can verify that inequality (V.5) is optimal for the Hopf fibration,
using the fact that |VH|? = 16v/2, |S3| = 272 and that the coimage of any
great circle by the Hopf map is a Clifford torus (i. e. a flat square torus in
S3) see [18]. Proposition V.2 is proved. O

In the remainder of this part we will use the function I for proving that
the complex Hopf fibration minimizes the 3-energy among a particular class
of fibration.

An axially symmetric torus in S is the rotation of a smooth closed
embedded curve I' in

S3 = {(z1,0,23,74) € ]R“l ,>0}ns?

around the 2-plane {z; = 0} A {z2 = 0}. It can be parametrized in the
following form

(V.16) _('y(s) cos2mt; y(s)sin2nt; a(s); B(s) )

for (t,s) € [0,1] x [0,b] where a, 3,7 are 3 b-periodic functions such that
y?+a?+ (2 =1and v >0. (o,f,7) is the embedding of " in $2. Such an
axially symmetric torus is said to be “well centered” if [. & = fr‘g =0.

A symmetric fibration from S® into S? is, by definition, a fibration u
such that the coimage of the north and the south poles are respectively the
circles ({z3 = 0} A {z4 = 0}) N S3 and ({z1 = 0} A {z2 = 0}) N S? and such
that the coimage of each circle in $2, parallel to the plane 2Oy, is a “well
centered” axially symmetric torus.

We have the following theorem
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Theorem V.1. The Hopf fibration minimizes the 3-energy among the sym-
metric fibrations.

Proof. Let p be the distance function on S? relative to the north pole and
dod be
be often denoted by r. We have

/|‘7u|3 / |u* dp| + |u* rd0|)
S * 2 * * *
> \/2_[53 ju* dpl? + fur doP) ( fu* dol + fur do]

1 .
= %/3 lu*dp|® + |[u*dp| |u*r dO|* + |u*r dB] (|u*dp|® + |u*r d6)?)
S

Using the fact that |u*dp|? + |u*r d6]*> > 2 |u*dp| |u*r df]| we finally get

1 3
3> * 3 * * 2
/Ss|Vu| /—\/ﬁ/ssm do| +—\/§/33|u dp| |u*r dB2.

Remark that equality holds in (V.17) if and only if u is transversally conform.
We give first a lower bound for the second term of the right hand side of
(V.17). Using the coarea formula of Federer we have

™
/ |u* dp)| |u* r d6|? =/ ds/ |u*r d6)?
- Jss s=0 pou=s
™
/ sin’ s ds/ |u* df|?.
s=0 pou=s

Since u is a symmetric fibration {z | p o u(z) = s} is an axially symmetric
torus whose Teichmiiller class (for the generators of m1(u~1(p™!(s))) men-
tioned in the begining of part V) is a pure imaginary complex number de-
noted i b(s) thus (V.18) implies

(V.17)

(V.18)

(V.19)
/ |u* dp| [u* r dB|% > / sin?s ] ('u,'1 (p71(s))) ds
S3 s=0

i + b%(s)
= 472 / sin? s ——2Lds
s=0 b(s)
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We establish now a lower bound for the first term of the right hand side of
(V.17).

Since u is a symmetric fibration p o u is uniquely determined on S® by
it’s values on S3N{(z1,0,z3,z4) € R* | 21 > 0}. For z € S® we denote by z
the distance in R* between z and the 2-plane {z; = 0} A {2 = 0}. Let 0 be
the angle function (taking values in R/2wZ on S2\ ({z1 = 0} A {z2 =0})
) such that z; 4+ ize = z€'?. We have |df|gs = % and using one more time
the coarea formula of Federer we get

(V.20)
27 * 3
/ |u* dp|3 =/ da/ [u” dp) =27r/ z |u* dp|3
53 a=0 J{o=ajnss [d6| s2

Let f be a function on S?l_ taking values in [0, 7], we say that f is centered
if f|as2 =, f(North) =0, any s € (0,) is a regular point for f and
+

(V.21)
Vit € [0, Livsl= Yivel=0
& [0,7] /f o) T /f (o) 21V

For instance any f symmetric relatively to the y Oz and x Oz planes verifies
(V.21). We will use the following lemma

Lemma V.2. Let f be a centered function from S2 into [0, n] we have

(V.22)
3

L L
ug 2 _
/ z|Vf]? > 8n / S ki Ol 5 ds
52 0 1 1
+ el (]
(271') f-1(s) #?

Equality holds if and only if f is 2 times the distance to the north pole in
s2.

Remark V.3. Both of the two sides of inequality (V.22) are invariant
under the action of the conformal group of S2.

Remark V.4. If f~1(s) = T is a closed regular embedded curve in S2,
% fr‘ % is exactly the conformal class b of the axially symmetric torus given
by (V.16). Using this remark lemma V.2 becomes a direct application of
proposition 5 in [16] (see also [14]).
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Proof of lemma V.2. Using Holder inequality we have

(V.23) (/S N |)3 |
[, #vsp > A =), 5)
3 ( /52 ) ( >

where we have used also Federer’s Coarea Formula. Remark that equality
holds in (V.23) if and only if |V f| = cte. Since f is a centered function on
82, for any s in (0,7), f~!(s) is an embedded closed curve in S2. Because
of (V.21) we have :

(V.24) / f:/ Y_o.
i 2 i 2

We claim that for such a curve in S?,_ we have

/ 1
f~1(s)
2
i (/- Zl)
()

Remark that 27 [ f£-1(s) % 1s the area of the axially symmetric torus given by '
(V.16) for T' = f~!(s) and using remark V.3 and (V.24) inequality (V.25)
is exactly the inequality of proposition 5 in [16]. Actually one can. prove
(V.25) directly with no reference to it’s geometric interpretation and without
using the spectra of A on flat tori just using Fourier decomposition of the
coordinates of f~1(s) for a parametrisation of f~1(s) = (o, 3,7) verifying
by? =62+ ,32 + 42. Lemma V.2 is proved. a

(V.25) / z > 4r?
~1(s)

We apply Lemma V.2 to f = p o, since 51; i) F-1(s) % is the conformal
class of u™1 o p~1(s) denoted by b(s) above, combining (V.22) and (V.20)
we have

I ONFAY
2 *dpl® > 16 w2 /———-—-d)
(V29 /Ss‘“ o> 100 ([ 255
Combining (V.17), (V.19) and (V.26) we have the following lower bound

(v.27)
4m T b(s) 3 T o 14+0%(s) s
u[g3|V ul® > \/.2_{4(0 ——1+b2(3)ds) +3/0 sin S__b(s) d].
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For simplicity denote A(s) = ﬁ%. We have

T sin? s " 2
—ds x/ A(s)ds > (/ sinsds) =4.
o A(s) (=) 0

Let A= [ A(s) ds we have

2
3516 (43, 3] 2=/ 3
/S3|Vu| /16—\/5 [A +A]/2\/§x167r : SslVH|.

This is the desired result and theorem V.1 is proved. O

Remark V.5. In fact one could have proved more directly the previous
result. First of all one can establish the following lower bound of the 3-energy

(V.28) | /53 |Vul® > %/0 sin?s1 (u"l (p“l(s))) ds |
1 T2 1~ 5
+ WoArd (/0 H2 (u™t (p71(9))) ds)

and use proposition V.1 above and also Proposition 5 of [16] to get directly
(V.27). But we wanted to state explicitely lemma V.2 which is interesting
in itself.

Remark V.6. One of the essential ingredients which makes the previous
proof work is that, the restriction of H to any coimages by H of the hor-
izontal circles in $2 ( which are tori of Teichmiiller class ib) is exactly an
harmonic map into S! which realizes I. When b is close to 1, I(b) = 42 1",')”2

is smaller, but the area of the Torus, which is centered and equal to 47 %;

(= the conformal volume for 1 < b < \/—g see [14] and [16]) is greater in
this case. It is a striking result that the equilibrium between those two
constraints, in view of minimizing (V.28), is just achieved for u = H.
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