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The infinitesimal variation of the spin abelian 
differentials and periodic minimal surfaces 

GlAN PlETRO PlROLA1 

We study the first order variation of some abelian differentials 
closely related with the theory of triply periodic minimal surfaces. 
The main application is an existence result: We prove that there 
is a countable number of genus g, g > 2, compact minimal im- 
mersed surfaces in any flat real 3 torus. We also study the locus 
corresponding to proper triply periodic minimal surfaces in Mgy 

the moduli space of genus g compact connected Riemann surfaces: 
We show that its closure contains the thetanull divisor if g > 2 and 
the locus of the smooth plane quintics if g = 6. 

0. Introduction. 

The subjects of this paper are certain abelian differentials that play 
an important role in the theory of proper triply periodic minimal surfaces 
in the Euclidean space. This very classical topic (cf. [27] and [5]) was 
systematized more recently in (cf. [18] and [22]). Let us recall the generalized 
Weierstrass representation given in [18]. Let (UJI, o^, u^) be a triple of abelian 
differentials of a compact connected Riemann surface X, We assume: 

(o.i) E^ = o. 

(0.2) g = Ewia7i>0. 
i 

(0-3) 

The triples of real periods Re  / (a/i, u^ ^3), 7 € Hi(X, Z), generate a rank 3 lattice A of E3 

J1 
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Then, by choosing a fixed point p of Jf, 

(0.4) K(q) = Re[   .(wi^a*) 

is well defined modulo the periods for any q G X. Hence it gives a map 

K:X-*T, 

where T = R3/A. Prom (0.1) and (0.2) it follows that K(X) is an immersed 
minimal surface with respect to the natural flat metric of T. Therefore its 
inverse image in E3 is a proper triply periodic minimal surface. Conversely 
any such surface is of the above type. 

Let W == span(ct;i,u;2j^3) be the space generated by the a;*. The con- 
dition (0.2) holds if and only if the linear system \W\ is base points free. 
Then, by (0.1), the image of h : X -» \W\* = CP2 is the conic Q of equa- 
tion Yli zi == 0- This defines a map / : X —► Q = CP1 such that h is the 
composition of / with the Veronese embedding CP1 —► CP2 : 

(ti, fe) -+ (*? - tl t(t? + ti), 2*1*2), * = V^l. 

Let O(l) be the tautological bundle on CP1 and L = /*(0(1)) its the 
pull-back to X. Notice that L2 = h*(0 2(1)) is the canonical bundle ux of 
X, i.e. L defines a spin structure on X. Besides, again by pull-back, we find 
two sections si, 52 of L, such that: 

(0.5) W($l,S2) = (52-52,i(52+53), 25152) = (^l,^, ^3). 

The meromorphic map 51/52 can be identified with / and, up to the 
orientation, with the usual Gauss map of K(X) : / : X —> CP1 = Q = S2. 
Letting u = LJI — iu2 we have: 

(0.6) K(q) = Ref    (wi^a*) = Re /    (1 - /2,i(l + f2)J)u. 

Formula (0.6) is the usual Weierstrass-Enneper representation (see [18] 
and [25]) of the minimal surface K(X) and (0.5) another well-known version 
of it (see [10], Vol. 1, Theorem 3, page 119 and [16]). It follows that 
h0(L) = dim(iy0(X,L)) > 1 is a conformal invariant of K(X). We define 
even and odd periodic minimal surfaces according to the parity of h0(L). 
We recall (cf. [4] and [21]) that the parity of a spin structure is invariant 
under deformations. We suggest [16] for an extensive discussion about its 
geometric and topological meaning. 
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The abelian differentials satisfying (0.1) and (0.2) are the spin abelian 
differentials of the title. Their existence is equivalent to a spin bundle gen- 
erated by its sections. This gives conformal obstructions: X is special in the 
sense of the Brill-Noether theory (cf. [2]). The corresponding locus in Mg, 
the moduli space of the compact connected Riemann surfaces of genus 5, 
can be geometrically described (see [9], [14], [28], [29] and §2 below). This 
provides a Zariski open set of the theta-null divisor Eg (g > 2) in the even 
case, and of a codimension 3 locus Og (g > 4) of Mg in the odd one. For 
instance E3 (see also [23]) and O5 are the hyperelliptic loci and OQ is the 
closure of the locus defined by smooth plane quintics. 

The conformal obstruction given by (0.3) is more subtle and depends 
upon the arithmetic of the Riemann matrices: let (,) be the intersection 
form on fl^XC) and x : Hl(X,C) -> Hi(X,C) the induced map. Under 
the inclusion of i?10(X) = H^X.LOX) in Hl(X,C) we get: 

(7,^i) = /     "i 
X(7) 

By fixing a (symplectic) basis, ai, /?i,... ,a^,/3^, of if^XZ) C H^X^C) 
we construct the period matrix: 

(((XljWl), (Pi,ui)i • • • , {<Xg,U)l), (^,^l)> 

(ai,a^>,-(i8i,a^>,... , (a^a^), (Pg,V2} 
<ai, ws>, (Puwz),... , (ap,c^3>, {fig, us)j 

and its real part 

(0.8) E(X,L,5l,52) = Re(A) = ((aj,Re(a;i)), (^^Re^))) 

t = 1,2,3; .,7 = 1,... ,5. 

Let G = G(3, H1 (X, R)) and G = G(3, Hl (X, Q)) be respectively the 
GrassmannianoftheSplanesofif1^,^) and of if^X^Q), G CG .We 
may consider Re(a;i) e H1(X,R). Then 

$ = $(X, L, 5i, 52) = span(Re(>V)) = span(Re(a;i), Re(a;2)r ^(^3)) 

belongs to G because Re : if1,0(X) —^ Hl(X,R) is a real isomorphism. 
The group generated by the columns of Re(A) has rank 3 over Q(Z) if and 
only if there are 2g—3 linear combinations of them with rational coefficients. 
Then (0.3) holds if and only if: 

(0.9) 9(XiL,8i9S2)eG . 
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A main problem is to understand the role of the conditions (0.1) and 
(0.2) when the period matrix varies. As a first step we study the infinitesimal 
variation associated with the ^-periods. The starting point of our researches 
was an unexpected proof of an infinitesimal Torelli theorem in the even case 
and for X representing a general point [X] (see 2.2) of Eg. Following a 
suggestion of Bert van Geemen we, roughly speaking, have found that the 
injectivity of the infinitesimal variational map: 

aw : Hl{Tx) -* Hom(W;iJ1(C?x)) 

fails only on a distinguished direction normal to Eg. The well-known Hopf 
quadratic differential (cf. [22] and see (2.5) and (2.11) below) is the respon- 
sible of it. Moreover letting T^Mgi— Hl(Tx)) and Tpq,^ be respectively 
the tangent spaces of Mg and of Eg at [X] there is a natural splitting: 
T[x],Mg = T[x],Eg © N- The proof of this, together with a rough description 
of the moduli spaces, which we need, is the content of the first two sections. 

In §3 we set the basic notations we need to go further. Then, from 
a cancellation due to (0.1), we obtain (see 3.18) an easy, but quite useful 
formula. This provides a symmetric form on the first order deformation 
space of spin abelian differentials. In §4 we deal with the even case alone. 
The symmetry of (3.18) together with the above mentioned infinitesimal 
Torelli theorem gives a natural symmetric map 

P : Tix},Eg -> r[x],£. 

where * stands for dual. The result (see theorem 4.10) is that p is non trivial. 
More precisely if we take a ramification point P of /, then the associated 
Schiffer variation & belongs to Tp^,^. By rewriting our formulas in terms 
of second kind differentials we show that /?(CP) is non zero. The suspect is 
that p is an isomorphism. This map should be a "second fundamental form" 
of the immersion of the theta-null divisor in the period domain. 

In §5 we turn to the real periods. Let (wiji^tiWsj), t E] — e,e[e 6 
E, e > 0, be a family of spin abelian differentials, with varying the period 
matrix (0.7) A(t) : u^o = <*>* and A(0) = A. We study the stationary case: 
Re(A(i)) = Re(A) + o(t2). In terms of harmonic differentials this means: 

(0.10) ReK*) = Re(a;i) + o(i2)    i = 1,2,3. 

We show that (0.10) corresponds to a Jacobi field on the minimal surface 
obtained, after passing to the universal covering, from (0.4). Everything is 



The variation of the spin abelian differentials 397 

invariant under deck transformations. This defines a function (fronX which 
satisfies: 

(0.11) A<£-2i^ = 0, 

where A is the Laplace operator and K the Gauss curvature of the metric g 
defined in (0.2). The second order variation operator A—2K is a Schrodinger 
operator associated to the Gauss map / (cf. [20]). It turns out that 0 is 
trivial if and only if the first order deformation of our abelian differentials 
are actually trivial. 

Many efforts have been done to estimate these Schrodinger operators. 
We suggest the paper of Montiel and Ros (see [20]) for an extensive exposi- 
tion and bibliography on the subject. We use a result obtained by Nayatani 
[24]. It implies, in particular, that the solutions of (0.11) are trivial for suit- 
able f having a unique pole. The existence of such f is stated in (6.16) and 
proved in the §8. Then, generically, the period map defined from (0.8) is a 
submersion. Set 

(0.12) 
Eg(Q) = {[X] € Eg : $(X, L, si, 52) € G , L is an even spin structure} 

Og(Q) = {[X] € Og : $(X, L, si, $2) € G , L is an odd spin structure} 

JE^(Q) = {[X} : ${X,L,shS2) eG.,X hyperelliptic} 

Interpreting (0.8) and (0.9) in the variational set up and recalling that G 
is dense in G , we obtain: 

Theorem 1. 

(i) Ifg > 2 ^(Q) is dense in Eg. 

(ii) //g = 6, then 06(Q) is dense in OQ. 

(iii) If g (g > 2) is odd, then Hg(Q) is dense in Hg. 

Density provides an existence result: 

Theorem 2. 

(i) Any flat 3 dimensional torus contains a countable number of distinct 
immersed compact even minimal surfaces if g > 2, odd minimal sur- 
faces ifg = 6 and hyperelliptic minimal surfaces if g is odd. 



398 Gian Pietro Pirola 

(ii) The Euclidean space contains a countable number of dimension 6 fam- 
ilies of proper periodic even minimal surfaces if g > 2, odd minimal 
surfaces if g = 6 and hyperelliptic minimal surfaces if g is odd. 

Examples of six dimensional families of proper triply periodic minimal 
surfaces were first given by Meeks (cf. [18] and see also [19]). Theorem 2 
prove the conjecture of Meeks in the hyperelliptic case and confirms part of 
the general conjecture stated by him (cf. [18]: (8.1)). The original require- 
ment was the existence of embedded minimal surfaces of any genus (differ- 
ent from 0 and 2, both orientable or not) in any three dimensional torus. 
We doubt this could be proved by pure infinitesimal methods, for example 
for g > 3 the hyperelliptic minimal surfaces are not embedded (see [23]). 
However we believe that the existence of non-orientable compact periodic 
minimal surfaces would follow along the above lines. This would require a 
discussion of the moduli of real Riemann surfaces without real points and 
of real special spin structures. We prefer let it for the future. The proofs of 
Theorem 1 and 2 are completed in §6. 

The density result seems to be completely new. In §7 we use it to give 
a negative answer (see 7.6) to a question risen in [22] about complex tori 
associated to triply periodic minimal surfaces. 

The reader only interested on periodic minimal surfaces could read only 
§5, §6 and §7 going back, when necessary, to the descriptive part of §2 and 
§3: It is enough to know that the moduli of the spin abelian differential 
depends upon 6g real parameters to get most of the results. The proof of 
(6.16), confined in §8, requires a known existence theorem of a certain type 
of Weierstrass points. 

We will, rarely, use the terms complete algebraic curve as a synonymous 
of compact Riemann surface and of algebraic variety as reduced algebraic 
scheme defined over the complex numbers. 

I would to thank Claudio Arezzo who explained to me the very interesting 
connection between the Noether theorem and the stability of the minimal 
surfaces in tori (cf. [3]), Alberto Collino and Bert van Geemen (loc. cit.) for 
many very fruitful conversations, and I am grateful to Letterio Gatto who 
explained to me some basic results about Weierstrass points theory. 

It took a long time to the author to get these results: The age of my 
daughter Margherita to whom this paper is dedicated. 
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Section 1. 

First we show an algebraic lemma whose proof was basically suggested 
by B. van Geemen. Let X be a compact connected Riemann surface and 
L be a non trivial holomorphic line bundle over X generated by its global 
sections: h0(L) = dim(if0(L)) > 2. Fix sections si,S2 without common 
zeroes and set V = span(si,S2) C H0(L). Evaluating sections we define 
h : V (8) Ox -> L : h(a(z)9 b(z)) = a(z)si(z) + b(z)s2(z). The kernel of h is 
the image of k : L-1 —► V ® C?x, fc(c) = (cs2, — C5i), where L-1 is the dual 
of L. This gives the exact sequence: 

(1.1) 0->L-1->V®Ox-*L->0. 

Let e(5i, S2) € Ext(L, i"1) = Hl(L~2) be the induced extension class. Next 
we consider the gaussian (or Wahl) map: Wh : A2H0(L) -* H0(L2 (8) c^x)? 
cf. [30], defined by the rule: 

(1.2) Wh(si A 52) — S\ds2 — S2dsi, 

Remark that H0(L2 ® ux) is dual to Hl(L~2) under Serre duality. 

Lemma 1.3. e(si, 52) • Wh(siAs2) 7^ 0. 

Proof. Set e(su S2) = C? Wh(siAs2) == ^ and let / = (si, S2) : X ~> CP1 be 
the induced map. The class £ .6 Ext(0(l), C?(-l)) = i?1^ 1) ^ C defined 
by the tautological sequence on CP1 : 

(1.4) 0 -♦ O(-l) -> O 0 O -> (9(1) -^ 0 

corresponds to 1. Letting /* : Hl(u) 1) —> Hl(L~2) be the map induced by 
/, we have /*(£) = C : The (1.1) sequence is the pull-back of (1.4) and L~2 

is isomorphic to f*u 1. Denote by R the ramification divisor of /. This is 
the zero divisor of Q and defines the exact Hurwitz sequence: 

(1.5) 0 -> L"2 & f*u   I-+UJX^ vx\R -> 0. 

Taking cohomology we obtain the exact sequence: 

(1.6) 0 - H0(ux) - H0(u>x\R) ± Hl{L-2) 2* H\u>x) - 0. 

The map 77: lf1(Zr2)..--> Hl(ux) is the multiplication by fcO, where k is a 
non-zero constant: fi • £ = fi • /*(0 = fe*"17/(/*(^))- Consider the following 
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commutative diagram: 

Hl{u   i) =  :  H^U     1 

dfi 

Under the isomorphisms H1
(OJ i) = C = Hl{(jJx)^ df is the degree of /. 

We get Q • C = fc"1^(0 = k-1 deg(/) ^ 0. □ 

We would like to obtain some consequence of (1.3). Tensoring (1.2) by 
ux <8> L we get: 

(1.7) 0 -> ux -> V ® oux ® ^ -♦ ^x ® i2 -> 0. 

Its cohomology sequence is: 

(1.8) 0 -> ff0^) ^ ^ ® i?0(^x ® i) -^ ^(WA: ® ^2) ^ ^H^x) -> o, 

where ^y is the multiplication and 6 the cup-product with the class £ = 
e(si,S2). It follows Imf/zv) = {^ ^ H0(vx ® i2) : ^ • a; = 0} and the 
splitting: 

(1.9) #0(u;x ® L2) = Im(W) e Qn, 

where QQ C H0
(OJX ® £2) is the space generated by fi = Wh(5i A 52). Set 

Tn = {^ e Hl(L-2) : f • fi = 0}, then from (1.9) we get: 

Corollary 1.10. S^rre duality defines a perfect pairing between TQ, and 
Im(^), moreover Hl{L~2) = span(C) © TQ. 

(1.11). Let W be the image of the map V ® V —> H0(L2) and /^ : 
W ® H0

{UJX) —* H0
((JJX ® £2) be induced by cup product. Consider the 

commutative diagram given by multiplication: 

V ® F ® i?0(a;x) —^ ^ ® ^(^A: ® i) 

1 Wi 
W®FVx)     -^^    i?0(a;x®i2). 

We get Im(^v^) = Ini(^v • F), then by standard argument, one proves the 
equalities dim(coker(F)) = 2h0(L) — 4 and dim(coker(^vr)) = 2h0(L) — 3. 
Dualizing the cup product fl^Zr2) ® H0(L2) -> iJ^Ox) we define a : 
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H1^-2) -► Hom^Cif^L2),^^^^)), (s) stands for symmetric, and by 
restriction: 

(1.12) aw : H1^-2) -+ Eom^{W,Hl(Ox))^ 

Clearly aw is dual to fiw and then dim(ker(av^)) = 2h0(L)—3. Since always 
Im(fjLw) C Im(fjby) we have Im(/i^) = Im(/iv) when /i0(L) = 2. It follows: 

Corollary 1.13. IfL is generated by its sections and h0(L) = 2. Then: 

(i) H0(ux ® i2) = ImO^y) 0 QQ and if^L"2) = kei(aw) 0 T^; 

(ii) Serre duality gives a perfect pairing between TQ and Im(^iy); 

(iii)  The restriction of aw, b : TQ —* Hom^^(WiiI1(C?x))? is injective. 

Section 2. 

Let X be a compact connected Riemann surface of genus g > 2. We keep 
the notations of §1, but assume that L is a spin bundle, L2 = u;x- Let M^ 
be the moduli space of genus g compact connected Riemann surfaces and 
Sg be the sub-locus corresponding to some special spin structure: 

Sg = {[X] e Mg:   there is L, L2 = ux and /i0(L) > 1}. 

WehaveS^^UOp, Eg = {[X] e S^ : L2 = u>x,h0(L) = 2n,n>0} and 
O^ = {[X] eS9:L

2= u>.x,h0{L) = 2n + l,n > 0}. 

(2.1). Cf. [14], [28] and [29]. The locus Eg, g > 2, is always an irreducible 
divisor of Mg and Og, g > 4 (O3 and O4 are empty), has pure codimension 3 
in Mg. In particular E3 and O5 are the hyperelliptic loci, the canonical model 
in CP3 of a general element of E4 is contained in the quadric of equation 
(0.1): x2 ■+ X2 + £3 = 0, and Oe is the closure of the locus defined by the 
smooth quintics in the projective plane. 

Definition 2,2. We call a point [X] of Eg (respectively of Og) general if 
there is a unique spin structure L on X such that: 

i) h0(L) = 2 (respectively h0(L) = 3); 

ii) L is generated by its global sections. 
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Condition ii) is equivalent to the existence of two sections without common 
zeros. General points define (cf. [28]) a non-empty Zariski open set, that 
we denote by ^((9^), of Eg, g > 2, (Ogy g> 4). 

(2.3). The identification of Hl{Tx) with the tangent space of Mg at [X] is 
correct only if Aut(X) is trivial. Otherwise Hl(Tx) is naturally the tangent 
space of a suitable covering of Mg, for instance the Teichmiiller space. We 
will try implicitly to avoid this complication in the notation. 

The map (1.2) now becomes: 

Wh : A2#0(L) -> #Vi). 

Proposition 2.4. Let [X] be a point ofE'g(Og) andTEgi[x]i (TQ [x]) be the 
tangent space of Eg(Og) at X. Then: 

TE9,[X\{TO9,IX\) = {^ H\Tx) : Z ■ n = 0, ft G Wh(A2H0(L))}. 

In particular Tg [x] = ^h- 

Proof, (see [28]). 

Remark 2.5. (cf. [22]). In minimal surface case (0.5) Q, = Wh(si A 
52) can be obtained by writing Codazzi-Mainardi's equations in isothermal 
coordinates. Its zero divisor is the locus where the Gauss curvature of g (see 
0.2) vanishes. 

(2.6) Digression. (Will be used in §4). Let Q be any non zero quadratic 
differential. To describe TQ = {£ G H1^) : £ • ft = 0} we consider the 
sheaves exact sequence (cf. 1.5): 0 —► Tx —> wx — Tx(R) —> k^ifl "^ 
0, R = {£2 = 0}. Its cohomology sequence (cf. 1.6) is: 

(2.7) H0(Tx(R)\R) ± H\Tx) ^ H^TxiR)) = H1^) -> 0. 

Set TQ = Im(<$). Fix P G R and write R = nP + R', P 6 #. Let (17,2?) be 
an open coordinate set of X, P 6 U and z(P) = 0. The expressions {Ci,p = 
z~%d/dz}pez,i<n give a basis of ^(TxC-R)^). The class & = £(£1^) is 
customarily called the Schiffer variation of P. In Dolbeault cohomology we 
get 

(2.8) £P = 8{£if) = class of {z^dpe ® 0/0*}. 

(2.9). Coming back to spin, if V = span(si, 52) C H0(L), we define (cf. 
(0.5)): 

W(*i,*2) ='(*? ^ *2i*(*l +*2).2sls2) = (wiiWa,^), 
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uji e H0
(UJX), 1 < i < 3, Y^i^f = 0. Set W = span(u;i,a;2,u;3). Recall the 

maps (cf. (1.11), (1.12)) /iw : Ty<g)#Vx) -> H0(u2
x) and aw : H^Tx) -> 

Eom^iW^H^Ox))- The last one is the restriction of 

(2.10) a : H^Tx) - lWs)(#0(u;x), ^(OJC)) 

the infinitesimal variation of Hodge structure map (cf. [6] and 3.12 below). 
Hence aw gives the infinitesimal variation of the o^-periods. In the even 
general case Corollary (1.10) provides a natural splitting: 

TMg,{X\ = TEg,[x] © ker(a^). 

It follows that e(si, S2) ^ ker(a^) is normal to Eg. We have (cf. 1.13): 

Proposition 2.11.    There is a natural holomorphic splitting: TM ]&  = 
TE* © N. The fiber of N at [X] E Eg is generated by e(si,S2). Dually we 

have ffVx) = TEgi[x] ® Qn = Im(^^) © Qo- 

Corollary 2.12 (An infinitesimal Torelli Theorem).   Let [X] G Ef
g, the 

map (3 : TEgt[x\ -> Bom^iWjH^Ox)) is injective: If £ 6 Hl(Tx) and 
£-u>i = 0 i = 1,2,3 i/ien ^ = Ae(si, 52), ty/iere A Z5 a constant and e(si, S2) ^ 
Tn = TEg,[x}. 

(2.13). We complete now the description of the moduli space of the quadru- 
ples {AT, L, S1S2}, L2 = ux and 51,52 € H0(L). The theory of the linear se- 
ries on moving complex algebraic curves (see [1] and [2]) proves that there ex- 
ists an algebraic variety ^_1 whose points correspond to triples ([-X*], L, V), 
where X is a compact Riemann surface, L is a line bundle on X of degree 
g — 1, and V C H0(X, L) a subspace of dimension 2: |V| is a f7^_i. More- 
over (up to a base change as in 2.3) there is a rank 2 vector bundle S on 
S —► ^_1 whose fiber 5t, t = ([X], L, V), is isomorphic to V. Let fp and Og 
be the subsets of G^j-i defined by 

Sg = {([X], L, V) e $_! : L2 = wx, L even}, 

Ofl = {([X],L,y) € ej.! : L2 = wx, L odd}. 

The map £^ —»• JS^ around a general point is biholomorphic and the general 
fiber of Og —> Og is a complex projective plane isomorphic to F(H0(L)*). 
Hence £g and Og have both complex dimension 3g — 4. 

(2.14). In the sequel we will use the following notation: If K(= Q, E, C) is a 
field and q : E —> B a if-vector bundle over JB of rank e. If fc < e we denote 
by Fk(E, K) the space of the fc-frames and by Gk(E, K) the Grassmannian of 
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the fc-spaces of E. We write only Fk{E) and Gk{E) when confusion should 
not occur. The natural map F^E) —> Gk(E) is given by (51,... ,Sfc) —»• 
span(5i,... ,5^.). 

(2.15). Let F2(S) be the 2 frames space of 5 -> G^ i^^) and ^(O^) 
their restriction to Eg and to Og. A point of i^^X-F^C^)) corresponds to 
the data {X, L, 51,52}, where {X, L,span(si, 52)} G Eg(E Og). Denote by 
j the involution on ^(5) defined by J((

5
1J

5
2)) = (—51,-52). Let 5^,6 := 

F2(Eg)/j and 5^,© = F2(Og)/j be the quotient spaces. Note that >V(5,t) = 
W(s',t') if and only if either (5,*) = (5',*') or (s,t) = j((sf,t')). For this 
reason we will call the (disjoint) union 

Sg = Sgye U <Spj0 

the moduli space of the abelian spin differentials. Denote by Sg(Q) = 
Sg^iQ) U Sgio(Q) the sub-locus of Sg which corresponds to triply periodic 
minimal surfaces. Prom (0.9) we may set 

Sg(Q) = {{X,L,s1,S2} : *(X,L,si,S2) € G   = Gs^pf.Q))}. 

(2.16). A component of Sg will be called general if its image in Mg is a 
component of 5^. Remark that general points of Sg (cf. 2.2) define general 
components of Sg. It turns out, since Eg is irreducible (cf. [29]), that there 
is only one general component of Sgie. It is not known if Og is in general 
irreducible. Since dim i^V) = 4 any general component of Sg has real 
dimension 2(3g — 4) + 8 = 6g. 

(2.17). Non-general components of <S^ are provided by the hyperelliptic 
Riemann surfaces of odd genus. Let Hg,Hg C M^, be the hyperelliptic locus, 
we have dim(iJp) = 2g — 1. If g is odd, g = 2k + 1, we take a Weierstrass 
point P of X, it follows that L = Ox(2kP) is a spin bundle generated by 
its global sections and h0(L) = k + 1. Consider now 

(2.18) Hg = {{X, L,5i, 52} 6 Sg : [X] G JETp, ft0(L) = fc + 1}. 

The fiber of the projection Hg —► Hg can be identified with 

F2(H
0(L))/j   (j((s,t)) = (-s,-t)). 

Since the dimension of F2(H0(L)) is 2(k + 1) = g + 1, we get 

dim(W3) = diin(.ff9) + dim(F2(H0(L)) = 3g. 
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It follows that Hg is a component oi.Sg9e if g = 3 mod .4 and of Sgi0 if 
5 = 1 mod.4. Moreover if g > SHg is not a general component. We have 
again that the real dimension ofHg is 6g. 

Section 3. 

We first set up some notation (see [13]: §6). The new material starts at 
(3.13). Let X and B be complex varieties, C a line bundle on X and TT a 
map 

(3.1) ir:X->B. 

We assume that: 

(1) TT is holomorphic, smooth, proper and with connected fibers; 

(2) dim(X) = dim(J5) + 1, i.e. for any t G B, Xt = 7r""1(i) is a connected 
compact Riemann surface of genus g > 2; 

(3) the restriction of 1 to any fiber is a spin bundle, i.e.   if it : Xt = 
7r~1(^) —> X is the inclusion and i*(£) = Lt then 1% = uxt] 

(4) there are ai and a2 sections of C such that sij = ij.(cri)'and $2,* = 
ij (0*2) are independent for any i. 

(3.2). Fix be B and set {X^, 1/6, si,b, S2,b} = {^ i, si, 52}, we call {Xt, Lt, 
$1 u s21] a deformation of {X, L, si, 52}- Consider the modular map fj,: B -* 
Sg 

/i(£) = {Xt,Lt,5i)t,52,t}. 

A deformation of {X, L, si, 52} is then trivial if /x is constant and trivial up 
to the first order ifd/iQ)) = 0. Let m : B —> Mg, m(t) = {moduli of Xt}, be 
the composition of jx with the projection Sg —» Mg. If 5 is connected the 
image of /i is contained either in Sg^ or in Sgi0 (the image of m in i^ or in 
Og) depending on the parity of h0{Lt). Set B(Q) = ^"^^(Q)) (see 2.15). 
Set: 

Ml = (^l)2 - C^)2;  M2 = i{(<7l)2 + (^2)2);  M3 = 2(710-2, 

MiGif0^,/:2),    i = 1,2,3. 

Restriction to fibers gives rise to the abelian differentials (cf. (0.5)) 

>V(si,t,S2,t) = (<*>!,*, ^2,t,k>3,i) = (*t(^l)i<t(A«2)»*t(M3)).- 
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Alternatively we may consider the {wi^teB i = 1,2,3, as sections of A = 
7r*(£2). This is a Hodge bundle of the family (3.1), which is a rank g vector 
bundle whose fibers are isomorphic to H0(Xt,uJxt) = if10(^). 

We assume now that B is simply connected, there is therefore a C00 

isomorphism: 

(3.3) r : X x B -» X, 

inducing the identity on X. Let T(X) be the real tangent space of X. The 
complex structure of X induces a decomposition T(X) ® C = T" 0 T" and 
the variation (3.1) a C^-section of Hom(r//,r/) = T' ® T"*, which is a 
family of (0.1) vector valued forms, 0 : B —> ^^(Tx), on X. Let z and 
s = (... , 5i,...) be respectively holomorphic coordinates of X and 5, we 
assume b = {s = 0} and locally we write: 6 = 0(s,z)d/dzdz. If Tj, is the 
tangent space of B at 6 and v = Tiiaid/dsi e T^ is a tangent vector we set 
d/dsi(9(s,z))\s=0 = Ql. Therefore we have: 

(3.4) M{v) = (Vidie^d/dz ®dze A*A{Tx). 

Formula (3.4), by means of the Dolbeault cohomology, defines the Kodaira- 
Spencer map n : T& —► Hl(Tx) : 

(3.5) K(V) = (Zidie^d/dz (8) dz   mod. d(A0'0(Tx){= ^(C00^))). 

Let A and H be the Hodge bundles of (3.1): H ^ ^(X.C) x B. For 
s £ B, let ^4n(X5) and ^lp'9(Xs) be the spaces of the C00 of n and p.g forms 
of Xs, the diffeomorphism r5 : X —» Xs induced by (3.3) gives an inclusion: 

Applying 6 on r(X)*<8>C = T^eT01 we obtain the identity (Ts)*(dz(s)) = 
dz + 9(s, z)dz. An element in the image of (TS)* locally takes the form: 

(3.6) f(z,s)(dz + 6(s,z)dz). 

The abelian differentials are the closed 1.0 forms: 

(rsnH10(Xs)) = Im((Ts)*) UAHXUosed- 

If u)(s) € H10(XS) then (TS)*(W(S)) is a global 1-form which locally can be 
written as in (3.6) and satisfies the CR equation: 

(3.7) df/Bz - d{fe)/dz = 0. 
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The induced inclusions H^^X^'C if1(-X",C) can be clear up by Hodge 
theory. Write: 

(3.8) (TiJXa)) = (3(s) + 7(5) + dh(8) = (J3 + dh) + (7 + dh), 

where P(s) G H^X)^) G H^iX) and h G C00^),/?^) +7(5) is the 
harmonic representative of (TS)*(U/(S)). Writing locally (3(s) = l3(zJ s)dz, 7(5) 
= 7(2:, 5)^ and comparing type in (3.6) one obtains: 

(3.9) P(z, s) + dh/dz = f(z, 5), 7(2?, 5) + d/i/a* = ^(5, ^)/(z, s). 

Remark that (3.9) implies (3.7) because f3(z) is holomorphic and 7(2) is anti- 
holomorphic. The inclusions if10(Xs) C i3*1(X,C) are given by means of 
the identification u>(s) «-» ^(5) + 7(5) defining the Hodge filtration A C H . 
The Hodge structure variation map is (cf. [12]) V : J5 -> G(g,Hl(X,C)) 

V(s) = {Hl'0(Xs)cHl(X1C)}. 

With the above notation we study first order variation of a section UJ(S) 

of A : If (TS)*(CI;(S)) = ^(5) + 7(5) + dh(s) is the induced section of H is 
(3(s) + 7(5). Set UJ(0) = a;, 6 = {s = 0}. First order expansion at 0: 

(TS)*(W(S)) = a;+(Eia/a5i(a;(5))|s=0) ^+o(2) = a;+S(/3i+7i+d/ii)5i+o(2), 

/J* = dfdsMa))^ 7* = 9/^(7(5)),^ and V = a/asi(/i(5))|s=0. Re- 
mark that 7(0) = 0. Set v = Eidid/dsi. By taking derivative in the v- 
direction we get: 

(3-10) 
L(v) = Eiai/32 + Eia^1 + E^aid/i1 = /?v + 7^ + dhv = (/3V + d/iv) + (7^ + S/i^). 

Writing u>(s) = f(z,s)(dz + 0(s, z)<i£), /(z, 0) = /(^) and cu = f(z)dz, we 
obtain: 

a;(s) = /(^)d« + Effete + /^df) + o(2) 

L(v) = Hiditfidz + /^d^) = /vdz + /^df 

The (0.1) part of L{v) is the contraction dQ(v) • a; (cf. 3.4): 

(3.100 L(t/)ai = 7V + dhv = c»(t;) • a;    (loc. = fevdz) 

Hv)1'0 = Pv + dhv (loc. = fvdz). 

The first relation above will be called the "Kodaira-Spencer equation". In 
Dolbeault cohomology it gives (cf. 3.5): 

(3.11) K(V) 'U; = 7^. 
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Remark 3.12. Let V denote the Gauss Manin connection (see [6] and [12]) 
on H . We have: Vv(u>(s)) = (3V + K(V) • u. Moreover let 

dV : Tb -> Rom(Hl'0(X),H1(X,C)/H1'0(X)) £ Hom(#10(X),#al(X)) 

be the differential of V : B —> G(g, Hl(X, C)), i.e. the infinitesimal variation 
of the Hodge structure map. By (3.10) (and see also [6]) we have 

dV(v){uj) = (Vva;(5))ai = K{V) • u). 

It follows that dV factorizes, via the Kodaira-Spencer map, through $ : 
Hl(Tx) -+ Hom(5)(firL0(X), i?01(^))? where $ is given by the cup product. 

(3.13). Attached to n = a;(s) there are two bilinear forms defined on T&. 
For v and a; in T& we set 

AM(v,a;)=  /  PvAiw',        B^v.u) = /  dhvAdhw. 
Jx Jx 

The second one, i?M, possibly depending on the trivialization (3.3), is sym- 
metric by Stokes theorem. In fact: 

/ dhv A dhw — I  d(hv A dhw) —      hv A ddhw = / hv A ddhw 
Jx Jx Jx Jx 

= — / dhv A dhw = / dhw A dhv. 
Jx Jx 

We shall take now the sections defined in (3.2) and write: 

Vi(s) ^ fi(z,s)(dz - 0(s,z)dz) = fi(z,s)dz(s),uJi(Q) = fi(z)dz. 

Set uji(s) = Pi(s) +7i(s) +dhi(s) i = 1,2,3 and ft(s) = Pi(z,s)dz. The 
condition (0.1) E^s)2 = 0 gives T.if^z, s)2 = Ei(pi(z, s)+dhi(z1 s)/dz)2 = 
0 (see 3.9). Since /?i(z, 0) = /i(^), taking the directional derivatives at s = 0, 
we find: 

(3.14) Ei/iOsXA, t;(z) + dhiM/dz) = 0, 

which, by using quadratic differentials, becomes: 

(3.147) I!»WiA|V + XiUJidh^ = 0. 

Let p iTj, —> H0
(LJX) be the map defined by 

(3.15) p(v) = T,iUJipiiV = -IiiUJidhiiV. 
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We note that p(v) € Im(^^ ■: W ® H0
(UJX) -* H0^)) and (cf. 2.12) that 

Im(iJLw) =Tg r^i in the even general case. Now we get the following: 

Lemma 3.16. ^i{/3iiV + dhiiV) A (7^ +' dh^w) = 0. 

Proof. The Kodaira-Spencer equations (3.10') in the tu-direction read-7^ + 
dhiiW = d0(w) -Wi. Therefore we get: 

EiO^v + dhhv) A (7i,w + dhiyW) = £»(#,,, + dhiiV) A dB{w) - uii. 

Since locally dQ(w) *u)i = 0w(z)fi(z)dz, from (3.14) we have: 

EtCA,,, + dhi,v) A de(ti;) • ^ = ew{z)Eifi(z){^iV(z) + dh^/dz) = 0. 

□ 

Let A^ and J5Mi be the quadratic forms (cf. 3.13) and define 

(3.17) il(t;,w) = EiA^Jv, 11;) = Si / /?i,v A 7^^ 
Jx 

B(v,w) = YtiB^v,™) = Si /  d/iiv A 9/1^. 

We have: 2^4(^,1?;) = 2Si/x/?i)V A n{w)ui = Si^i^i) v«(^) = p(v) • tt(ttf), 
where the last dot is Serre duality. We now prove the following: 

Proposition 3.18. A = —JB, in particular A is symmetric and hence 
2A(v1w) = p(v) • K,(W) = p(w).k(v). 

Proof. By (3.16) Si(/3i?v + 3/ii)V) A (7^ + ^i,^) is the zero form. Now /?i)V 

and 7ijtt; are harmonic of type (1.0) and (0.1) respectively. It follows 

/  Pi,v A dhiiW = /  d(piiV A hiiW) = 0 = /  d(hiiV A 7i)tx,) = /   dhiiV A 7^. 
JX Jx Jx Jx 

Hence 0 = Si Jx{^v+dhi^)A{^w+dhiiW) = Si /x /%,«A7i|t|,+Si /x 5/ii)V A 
dhiiW. D 

(3.19). We sketch a construction of the (uni)versal families to be used 
in §6 (see (6.10)). Let TT : X —> B be a (uni)versal family of compact 
connected Riemann of genus p, g > 2, B has dimension 3g — 3 and the 
modular map m : U —> M^ is surjective and has discrete fibers. For instance 
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B could be Teichmuller space. Let 77: A —► B be the Hodge bundle of TT and 
Vs : ^(A) -♦ B its 3-frame bundle (see (2.14)) : 

^(A) = {(ct;i,a;2,a;3) G A3 : dim(span(u;i,u;2,u;3)) = 3}. 

Defined by (0.1) and (0.2) we have the locus: 

V = I (a;i,(J2,a;3) G F3(A) : J2ui = 0; S^*57* > 0 f " 

Let /c : V —> JB be the map induced by 773 and define, by change of base, the 
family TI

7
 : X' -> P. We construct h : X' -> CP2, by 

h(p) = [(a;i(p),ci^(p),ci;3(p))] 

where (c^i,^,^) = vr^p). The image of h is the conic Q = {YA=izi ^ 
0} = CP1. The last identification is given as in (0.5) by the Veronese em- 
bedding. Let (9(1) be the tautological bundle of CP1 and set L = f*(0(l)). 
The Si, i = 1,2, define sections of L. The restriction of L gives spin struc- 
tures on the fibers of TT'. TO obtain smooth connected families we perform a 
desingularization of the irreducible components of V. If V is such a family 
then /jb(Vf) (see (3.2)) is a component of 5^. 

Section 4. 

In this section we will assume to be in the even case. We consider a 
general point, (see 2.2), [X] of Eg, {X, L, 51,52} G Sgie and the spin abelian 
differentials ui as before. We recall from (2.4) that Tg [x]i the tangent space 
of Eg at [X]j was identified with 7h, Q = Wh(siAs2). We shall prove that 
the bilinear form defined in §3 gives rise to a map Tg^x] ~^ Tg rxi. 

Take a family TT : X —► B, as in §3, such that {Xt, Lf, si,t, £2,*} is a 

deformation of {Xb,Lb, si,&, 52,5} = {X,L, 51,52} for some fixed /? G B. If 
there is t> G T^ such that 7c(v) = £ G 7h we will say that {Xt, Lt, sij, 82^} 
represents £. The existence oiEg proves that any element of TQ is represented 
by a deformation of {X, L, si, 52}. 

Let TT : X —» B and TT
7
 : Xf —► B7 be two 1-dimensional deformations 

of {X, L, 51,52} with base points b and bf respectively. Assume that both 
represent £. Write Ui(s) on B and u^(£) on Bf. Expansion (3.10) gives 

oJi(s) = uJi+s(/3iiV+^i+dhi)+s2{yi    (^(t) = cJi+i^y+^+d/i^+i2!}, 



The variation of the spin abelian differentials 411 

where v £ T&, v' 6 2&/ K(V) = K(vf) = ^. It could be that piiV ^ (3[v,, but the 
following holds: 

Lemma 4.1. // p : Tj, —> ^(CJ^) and p7 : T^ —> £r0(a;^) are the maps 
defined in (3.15), then p(v) = //(i/J. 

Proof. Fix C ^ ^b and a one dimensional deformation, p : 3^ —> C, of 
{X, L, 5i, 52} which represents £> so there are c £ C and tt; G Tc such that 
^C^) ^ C- By taking fiber product we construct two families: 

y -> c x 5;      y -+ C x ^ 

such that both the restrictions y —► Cx {6} and yf —> Cx {b'} are isomorphic 
to p. We asume that 3^ —> {c} x {B} and y —> {c} x {JB'} restrict to TT and 
respectively to TT'. Let r : Tcx T^ -* TQ, and r': Tc x T^ —> T^ be the induced 
maps (cf. 3.15). We have r(0,t>) = r{v) and r^O,?;) = r^i/) and therefore 
by (3.18): 

/?(t;) • C = r(0, v) • ^(-w;, 0) = r(^, 0) • /c(0,-i;') = r(w, 0) • ^ 

fl-tf). C = /(O, v') • /c(ti;,;0) = r7^, 0) • /*((), v7) = r'(w, 0) • ^ 

Since r(w, 0) = ^(ty, 0) we get (p(v)-f/(i/)yc = 0. This holds for any C € TQ 

and gives (/>(?;) — pt{ri)) G Ann(rn) = QQ. Since /o('y) — ^'(v7) also belongs 
to Im(fin) = T^ (see 3.15) it follows from (2.12) that p{v) - //(</) = 0.    D 

After (4.1) we can define p(£) by means of any 1-dimensional deformation 
of {X, L, 5i, $2} which represents ^. Under the identifications of section 2 the 
map lh —* Ini(/ifl) is 

(4-2) p : T^JXJ - T*Egt[x] 

and the symmetry (3.18): 

(4-3) t-p(0 = (-P(0- 

We may consider p as an element of Sym2(T| rX]). 

(4.4). Let P be a point in the support of the zero locus of ft and £p be 
the Schiffer variation of P. After (2.6) we know that £p belongs to 7h. To 
compute p(£p) we take a one dimensional family TT : X —> B representing 
£p. Next we choose a trivialization (3.3) in such a way to obtain (see 2.8) 
d9(v) = z~1d{p£) ® d/dz. We recall that /^ = 1 near P and = 0 outside C7, 
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where (U, z) is an open coordinate neighbourhood of P and z{P) = 0. Set 
Pi,v = A and (,pu)i = 7J. First order expansion gives: 

cjiis) = Ui + s(pi + dhi) + s^pui + Bhi) + s2{} = (on U)fi(s, z)dz(s) 

= fi{z)dz + s{j3i{z) + dhi(z)/dz)dz + s^iz) + dhi(z)/dz)dz + s2{}. 

The Kodaira-Spencer equations become 

(4.5) n+dhi = z^dip^d/dz-Ui) = z^fiiz^dpe/d^dz = diz^fi^pe). 

Set gi = z~1fi(z)pe — hi, and rji = d(gi). Since ji — d(gi) we obtain 

(4.6) 0 = -97, = -d(dgi) = d{dgi) = %, 

Hence rji is holomorphic in X —p. Expanding near P (pe = 1), we find out: 

(4.7) m = (-z-ifiW+z-'ifm-tim+H^dz = (-z-tm+kiWdz 

where k(z) is a holomorphic near 0.   Remark that rji G H
0
(UJX(2P)) is a 

differential of the second kind. 

Claim 4.8. p(£p) = XWi • rfr. 

Proof. Formula (3.15) allows us to write 

p(£p) = -^i^idhi = Y>iUi(r}i - d(z~lfi(z)pe). 

Since Efu;? = 0, ^ = fi(z)dz, we have E^/i^)2 = (Ei/i^)2)7 = Ei/i(z)//(z) 
= 0. On the locus where p^ = 1 we get: 

= -XiiMz) 2z-2 + z-^iViWfKzftdz2 = 0. 

The equality 
ZiUirji = p(£p) = Eia;i/3i 

holds near P : EiU^Tft is holomorphic on X. Since p(£p) — Ei^r/i vanishes on 
a non empty open set it follows that p(£p) — EjO^Tft = 0. D 

Coming back to the rn we have: & -Ui + Vi ^ li + Vi^ dgi + dgi = dgi. 
Then, by taking cohomology classes, we deduce the equality [7*] = —[rji] 

in H^X-frC) = ^(^C). We recall that fr : H^X) -► i?ai(X) has 
rank one: ker(^p) is the space of the abelian differentials vanishing at P (see 
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[13]). It follows that the £P • ui and therefore the rji, are all proportional. 
Set ai = /i(0). Take r) € H0(ux(2P)) such that rn = ^77, locally 

77 = (z~2 + r(z))dz 

where r(z) is holomorphic: air(z) = ri{z). Clearly rj ^ 0. We obtain: 

(4.9) p(fp) = Xmrn = r){Y,iaiUJi) = TJO; 

where a; = Eiaia^. The forms cJi, i = 1,2,3, are linearly independent and 
without common zeroes. It follows that the a^ cannot be all zero and hence 
that LJ ^ 0. This gives p(£p) := ^ ¥" 0. 

To obtain a further information we expand the UJI around P : 

u;i(;2;) = (ai + ^i^ + Q*2 + ^i^3 + o(^4))d^, 

a;(^) = Siaia;i(z) = {Eiaf + (EiOibiJz-f (EiaiCi)z2+ (Eiaidi)z3 + o(2;4)} dz 

Since Eitcf = 0 we have Efaf = Eiai6i = 2EiaiCj+Ei6f = EiOidi+EtfriCi = 0. 
Since P is a ramification point of h : X —■> C1P2 there is a complex number 

£ such that (61,62,63) = t(ai, 02,^3). This implies Ef&f = i2Eia? = 0, then 
EiaiCj = 0, and Ej6jCj = tEjaiQ = 0 which proves that UJ has a zero of order 
4 and 77a; one of order 2 at P. Note that £PP(£P) 

= 0- We have shown: 

Theorem 4.10. If^p is a Schiffer variation of a point P in the ramification 
locus of f, then p^p) == r/o; is a non trivial holomorphic quadratic differential 
having a zero of order 2 at P. 

Section 5. 

We study now the infinitesimal variation of the real part of the spin 
abelian differentials. Let TT : X —> B be a family of Riemann surfaces 
satisfying (1.. .4) of (3.1). Fix p G X and b € B and write {X,L,51,52} 
for {Xfa Lb, sifij S2yb}' Let J=] — e, £[ be a real open interval and k : I -* B 
a smooth map, fc(0) = 6. Set v = d/dt and denote by £ = K(dk(v)) its 
Kodaira-Spencer class. Pull-back defines the Riemann surfaces family TT' : 
X' —> /. and the deformation {Xt, Lt, si,*, S2,*}ie/ 0f (^ ^» S1J 

52}- Assume 
that sx^t and 52,t have not common zeros and write as usual W(sijt, S2,t) = 
(ttJr(i),u;2.(i),ci;3(£)). By means of a trivialization X x I. —* X' (see 3.3 and 
3.8) we write: 

Vi(t) = Pi(t) + ii(t)+dhi(t), 
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where /%(*) and ^(t) are harmonic forms of type (1.0) and (0.1). We have: 
Re(uJi(t)) = Re(/?i(i)) + Re(7i(t)) + dRe(hi(t)) and therefore: 

(5.1) Re(a;i(t)) = Re(a;i) + t(Re(/%) + Re(7i) + dRe(fci)) + o(i2). 

The piece /(TT') = Re(a;i) + t(Re(/?i) + Re(7i) + dRe(hi)) will be called the 
first order variation of TT

7
. If 

(5.2) Re(A) + Re(7i) = 0,    i = 1,2,3, 

we say that /(TT
7
) is homologically trivial (see 0.10). It means that there is 

no first order variation of the harmonic forms: VvReui(t) = 0 (cf. 3.12). 
Comparing type we see that (5.2) is equivalent to fy + 7i = 0 hence to: 

(5.20 # = _7i =-^    ^ = 1,2,3. 

Lemma 5.3. If I (it') is homologically trivial, then iA(v,v) > 0. 

Proof. By substituting the equation (5.2') in (3.17) we find out: 

iA(v,v) = Xi /  AA7i = S~i /  AAA>0. 
Jx Jx 

Let D be the hyperbolic disk and A : D —> X the universal covering, 
A(O) = p, where O is the origin of D. This induces a family of universal 
coverings DxI->XxI-^>X. We define y : D x / —> E3 by 

y(Q,t) = Re J(ni(t),to2(t),nz(t)) 

where the £ti(t) are the pull-back to D of the uji(t). For fixed t, y(., £), defines 
an immersed minimal surface Yj in the Euclidean space: we have assumed 
sij and S2,t without common zeros. Note that Y* is closed in R3 if and only 
if it is triply periodic. If /(TI

7
) is homologically trivial: 

y(Q,£) = x(Q) +1 [(dReH^dRe^dReHs) + o(t2) 

where x(Q) = y(Q,0) = Re/^Qj(ni(0), (12(0), 03(0)), x : D -> M3 and 
Hi = hi • A. Setting Re Hi = Gi we obtain: 

(5.4) y(Q,t) = yi(Q) + t(G(Q) + C) + o(t2), 
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where G(Q) = (Gi{Q)1G2(Q),Gs(Q)) and C = (Ci^Cs) is a constant 
vector. 

Let dy = (Gi, G2, G3) denote the flow defined by the minimal surfaces. 
Up to a change of the trivialization in (3.3) we may assume that dy is 
normal to the immersed minimal surface x = YQ. We point out that a 
deck transformation a of A acts, up to the first order, as a translation by 
the periods: P(a) = Re/' (wi,^,^), where 7 is a closed curve whose 
lifting connects O € D with a(0). The homological triviality gives P(a, t) = 
P(a) + o(t2) for all a. 

Next for any fixed real numbers r and r' : 0 < r < rf < 1, let p^ be a 
bump function on JD, pry = 1 on Dr = {z e D : \z\ < r} and pr)r/ = 0 for 
|2:| > r7. Consider the compactly supported variation of x : 

yry(Q) = x(Q) + ^(GiCQ), G2(Q), G3(Q)). 

We have: y = yrjr/ + o(t2) on Dr. Normalizing we rewrite it as: 

yr,r,(Q) = x(Q) + t$rjr,(Q)nQ + o(t2), 

where ng is the unit normal of x at Q. Let -Pi and F2 be two fundamental 
domains of A : D —> X and a : D —► JD, a(Fi) = i7^ their deck transforma- 
tion. Assume that £)r contains both Fi and P^- Since a acts up to the first 
order as the period translation we get two expressions: 

yr,r'(a(Q)) = x(a(Q)) + t$ry(a(Q))nQ + o{t2) 

= x(g) + P{a) + i$r,r/(a(Q))nQ + o(t2) 

yr,r/(a(Q)) = yr,AQ) + P(a, t) + o{t2) 

= x(Q) + P(a, t) + £$r)r/(Q)nQ + o(t2). 

Hence: 

P(a) + t$r,r'(«(Q))^Q = Pfat) + t$rAQ)nQ 

Since P(a, i) = P(a) + o(t2) this implies <I>r,r'(Q) = ^r'C^CQ)) for ^ Q 0f 
Pi. Letting $ = limr_+i($r)r/) then for any Q € D 

(5.5) y(Q, t) = x(Q) + <$(Q)nQ + o(t2) 

flyCQ) = (G1(Q))G2(Q))G3(Q)) = $(Q)nQ 

where $ : D —> M, is invariant under deck transformations. Therefore there 
is a real valued function 0 on X such that $ = 0 • A. 
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The mean curvature of Yj is identically zero.  Let H(t,Q) denote the 
mean curvature function along the osculating variation: 

(5.6) x + t$n. 

It follows that dH/dt(0, Q) = 0 and hence by a standard computation: 

(5.7) A$ - 2K$ = 0, 

where A is the Laplacian and K is the Gauss curvature of the metric ^ fiffij 
on D. It means that $ • n is a Jacobi field of x. If g is the metric defined in 
(0.2) we have: Ei^A = A*(£i<^) = A*(g). Then (5.7) can be written 
on X as in (0.11): 

(5.70 &</> - 2K<f> = 0 

where by abuse of notation we have denoted with A and K the Laplacian 
and the Gauss curvature of g. The second variation operator A — 2K is (cf. 
[20]) a Schrodinger operator on X. From (5.7') it follows: 

(5.8) Qffa </>)=[ |V0|2 + 2 f Ktf = 0 
Jx Jx 

and (f> belongs to 

(5.9) N(f) = {tp:(A-2K)(<p) = 0} 

the nullity space of Q/. The form Qf and N(f) depend (cf. [20]) only upon 
the conformal structure of X and on /. Translations give deck transforma- 
tions invariant Jacobi fields of x. Let j : E3 —► N(f) be the induced inclusion 
and 

(5.9') M(/) = N(f)/m3) 

be its quotient. If the class [</>] e M(f) is zero then, up to a change of the 
integration constant C in (5.4), we may assume (j) = 0. In this case we have 
Re(hi) = Gi = 0, i = 1,2,3, then hi = ifc*, where the ki are real functions. 
We compute the form B in (3.17): 

iB(v,v) = iSi /  dhi Adhi = —iSj /  dki A dki 
Jx Jx 

= -iE / (fci,*)2 + {ki,y)2dz A dz 
Jx 

= 1/2E / {{ki%x)
2 + {k^y)2)dx Ady>0. 

Jx 
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By (3.18) and (5.3) we have: 

l/2Ei I {(kt^ + iki^dxAdy + Xi-i [ l3iApi = iA(v,v) + iB(v,v)=0. 
Jx Jx 

The only possibility is that Afo^v) = B(v,v) = 0 : Hence </) = 0 if and only 
if Pi = 0 = — fii = 7* and the /if are constant i = 1,2,3. We can prove: 

Proposition 5.10. // [</>] = 0, then the first order deformation of {X, L, si, 
52} associated to {Xt, Lt, sij, S2,t}tel ^ trivial. 

Proof Since 7i)V = dhijV = 0 the Kodaira-Spencer equations gives dQ(v)-Ui = 
0. It implies dO(v) = 0 and hence £ = 0. This could be deduced directly: The 
metric g(t) in (5.6) (and hence the conformal structure!) is fixed. In any 
case the first order deformation of {Xt} and therefore of {X^, Lt} is trivial. 
Moreover the fc are all zeros: uj^t = o;* + o(t2) i = 1,2,3. Then we have 
Sij = Si + o(*2), i = 1,2, and hence (cf. 3.2) d/x(6) = 0. □ 

Remark 5.11. Reversing the process we find a one to one correspondence 
between homologically trivial 1° order variations of {X, L, si, S2} and M(/). 
By (5.3) iA(v,v) > 0 for v e M{f). Now iA(v,v) = 0 implies $ = 7$ = 
fa;* = 0, i = 1,2,3. In the even case and with X general we infer by (2.12) 
that £ = 0 then u)^ = Ui + o(t2) : iA defines a scalar product. 

Section 6 (proof of Theorem 1 and 2). 

We are ready to study the periodicity condition (0.9) by using variational 
methods. Let TT : X —► B be a family as in (3.1), b G B and {X^, L&, Si^, $2,6} 
= {X, L, 51,52}. We assume B simply connected. Let■ K, K = C,E,Q,Z, 
be the constant sheaf K.x X —> A^ and Ti = jR17r*(K) be its first direct 
image. The fibers of H are isomorphic to Jif1(X,IK),7^ is the Hodge 
bundle considered in section 3. Letting Fs(H ) = F3(H1(X,R)) x B be the 
3-frames bundle (see 2.14), we get 

(6.1) Re(W(sM,S2,t)) = (IteKt),Re(c^lt)>Re(w3lt)) € F3(F1(x,R))xB. 

Set F  = Fs(Hl(X, R)) and define E : J5 -♦ F  by projection. We still write 

(6.2) E(t) = Re(W(5i,i,52,i)). 

Let G   be the 3-planes Grassmannian of H1 (X, R) and $ : B —* G 

(6.3) *(t) = Re(Wt) = span((Re(a;i,t), Re(w2,0, Re(w3,t)) 
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be the composition of E with the span map F  —► G   (see 2.14). 

(6.4). The map E is the variational form of the period matrix (0.8): Iden- 
tifying the frames as the rows of the matrices we rewrite (6.2): 

'(a:i,Rea;M),   (f3i,ReuJht},   ...,    (ag,Reulyt),    ((3g,Reujlity 
(ai,Reu;2,t>,    (/?i,Reu;2,t),    ...,    (a^Reu^,*),    (^,Rea;2,t) 

^(ai,Rea;3)t),    (p^Revsj),   ...,    (a^,Rea;3>t),    (figiReutsj); 

where ai,/3i,... ,a^,^, is a (symplectic) basis of ^(X^Z). Notice again 
that E gives the variation of the real periods of the u^. Letting /J, : B —> Sg 
be the (3.2) modular map, we recall that 2?(Q) = //""1(<S^(Q)) are the points 
of B defining periodic minimal surfaces. Prom (0.9) and (2.15) we have: 

(6.6) S(Q) = {$>rl(G ). 

To study the differential of E at b we identify the holomorphic and the real 
tangent spaces of B and write: 

dE : Th -+ Hl(X, R) 0 H^X, R). 0 H1^, R). 

We have already computed it: Expansion (5.1) along the fixed direction v in 
Tft reads Re(u;i(i)) = Ui + t(Re(PiiV) + Re(^v) + dRe(hiiV)) + o(t2), therefore: 

(6.7) dZ(v) = (Re(/?i,v + 71,,,), Reifcv + 72,v), Be(fo,v + 73,t;)). 

In particular, if we assume that si and 52 have not common zeros, we see 
that the elements of Ker(dE) give rise to first order homologically trivial 
deformations of {X, L, 51,52}. As usual set / = $1/52 and let M(/) be 
defined as in (S.J)7). Then, by taking classes, we define a map: 

(6.8) i/:Ker(dE).^M(/). 

^Prom (5.10) we know that the kernel of v is given by the first order defor- 
mations of {X, L, 51,52} that are actually trivial. 

Definition 6.9. A family (3.1) will be called complete if /z(i?) is a com- 
ponent of Sg and versal at b if the differential of fx : JB —» S^ at 6, 
d/j, : Tj, —> 2^0(6), is an isomorphism. 

(6.10). One constructs (as in 3.19) complete versal families. If TT : X —> B is 
versal at b then any non zero element of T& gives non-trivial first order defor- 
mation of nib) = {X, L, 5i, 52}. Moreover if B is complete and either fi(B) is 
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a general component of Sg (2.16) or ji(B) = Tig (2.18) then dim (B) = 6g. 
As a straightforward consequence of (5.10) we obtain: 

Proposition 6.11. Assume that B is versal atb,fj,(b) = {X, L, 51,52} and 
si and 52 without common zeros, then n : Ker((iE) —> M(/) is injective. 

We can now prove the following: 

Proposition 6.12. With the hypothesis 0/(6.11) we also assume M(f) = 0 
and dim (B) = 63, then : 

(i) 2?(Q) is dense in B\ 

(ii) J5(Q) contains a countable number of connected components of (reat) 
dimension 9. 

Proof, i) Passing to universal covering we assume B simply connected. Next 
observe that E is a real analytic map, hence {t € B : dim(M(/t)) > 0} is 
a closed proper analytic set of B. Since dim (F ) = dim (B) = 65, dE is 
an isomorphism on an open dense set Bf of B. Therefore d$ is submersive 
on Bf. Since G is dense in G then 1?(Q) = ($)"1(G ) is dense in Bf and 
hence in J5. 

ii) The dimension of any fiber of a regular value is equal to dim (F ) — 
dim (G ) = 9. We have B(Q) = UneG ($)""1(n)). □ 

(6.13). The submersivity of E gives more than the density, it proves that 
the image of E contains an open set of the lattices of some fixed real 3-space. 
This corresponds to an open set in the moduli of the flat conformal 3-tori. 
The dimension 9 of the fibers bears the same meaning: Let G be the group 
generated by the orthogonal group 0(3) and the non zero scalars. Let F 
be a general fiber of E, plainly G acts on F and dim(F/G) = 9 — 4 = 5, 
the moduli of the flat tori. The modular map m : F —> Mg (see 3.2) 
factorizes through F/G and Re : if1,0 —> iirl(X,E) is an isomorphism. We 
get dim(m(F)) = 5. 

To complete the proof of Theorem 1, we need to know whenever the 
conditions of (6.12) are fulfilled. For, let 0 = (X, L, 5i, 52) E Sg and consider 
the curve in Sg (cf. [17]): 

G(t) = ((Z,L,t5i,52), teR. 

We remark that the associated meromorphic function is ft = tf. We have: 

Theorem 6.14. /// has only one pole then fort > 0 small enough M(ft) = 
0. 
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Proof. See [24], Theorem 2, page 318. 

Definition 6.15. We call a point P = {X, L, si, 52} of Sg "good" if / has 
only one pole and the pencil \s\ +[182 is base point free, i.e. deg(/) = g — 1. 

Next we state our basic existence result: 

Theorem 6.16. 

(i) If g is odd (g > 2) there is a good point P = {X, L, 51,52} of Tig {see 
2.18); 

(ii) If g > 2 there is a good point P G Sgie; 

(hi) Ifg = Q there is a good point P G <S6,o. 

Proof (see §8 below). 

(6.17). It is perhaps worthwhile to spend a comment about the common 
zeros assumption, also contained in (2.2): Unnecessary in (6.14), which 
holds for arbitrary meromorphic functions on compact connected Riemann 
surfaces (cf. [24]), it was used to define the Jacobi field (5.7). On the other 
hand if a family of pencils, {Asi^ + ^£2,*}, acquires a fixed point then the 
degree of ft = si,*/s2,* drops. The Schrodinger operators behaviour has not 
been, as far as we know, carried out. 

(6.18). (Completion of the proof of Theorem 1). Take P = {X, L, si, 52} £ 
Sg which satisfies (6.16). If B is a complete family versal at b = P we get 
by (6.12) that B(Q) is dense in B. Then the closure of m(B(Q)) contains 
Eg or OQ if B is general (cf. 2.16), and Hg in the odd genus hyperelliptic 
case (cf. 2.18): Eg, Hg and OQ are irreducible varieties. □ 

(6.19). (Completion of the proof of Theorem 2). i) Fix a versal simply 
connected and complete (even, odd, hyperelliptic) family B. Let E : B —► 
F , $ : B —> G be the above maps. Assume there is II G G and b G B 
such that <&(&) = II and d(E)(6) is an isomorphism. It follows that d($)(6) 
is surjective. For any t G $""1(n) = Fn let //(£) = {Xti Lt^ si^ 82,1} and 
Kt be the group generated by the columns of E(i) = Re(W(5ijt,52,t)) (see 
6.5). As in (0.4) we define the torus Tt = 11/Kt together with a minimal 
immersion: 

Kf.Xt-* Tt. 

Let M be the moduli space of the conformal flat real 3-tori and define 
-il>: Fn -> M by: 

(6.20) il){t) = [Tt] = {isomorphism class of Tt}. 
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As remarked in (6.13) the image of -0 contains an open set fl of M. Let T be 
any 3 dimensional real compact torus. We can find an isogeny z :Tt -> T, 
where ^(t) 6 fl. The composition 

z-KtiXt^T, 

defines an immersed compact minimal surface in T. Varying 11 G G one 
constructs a countable number of even (g > 2), odd (g = 6) and hyperelliptic 
(g odd) immersed minimal surfaces on T. 

ii) The conformal tori depends upon 5 moduli, adding the rescaling we 
get our six dimensional families of proper triply periodic minimal surfaces 
in the Euclidean space. □ 

(6.21). Let Mg(T) C Mg be the set defined by the moduli of the Riemann 
surfaces which can be minimally immersed in the 3 torus T. Combining 
Theorem 1 and the proof of Theorem 2 one sees that the closure of Mg(T) 
contains Eg (g > 2) and OQ. Using even, odd or hyperelliptic families we 
see that (cf. 0.12): 

Eg(Q). = Un6GQm(($)-1(n))(5 > 2),    06(Q) = Un€GQm(($)-1(n)) 

and 

Hg(Q) = UneGgmttSrHn)) (g > 2 odd). 

If g > 2 we get a countable number of connected components of Eg(Q)1 

Oe(Q) and Hg(Q). Most of them have real dimension 5. It would be inter- 
esting to know if there are families of bigger dimension. This is strongly 
related with the existence and the integrability of the Jacobi fields (5.7) and 
hence with the rigidity theory of the minimal surfaces. 

Section 7. 

Let K : X—> T be a periodic minimal compact surface as in (0.4). We 
say that K defines a complex 3-tor us T if there are a Lie group homomor- 
phism a : T  —> T and a holomorphic map 

(7.1) K7: X -> T 

such that K = a-K'. This is the case when K(X) has a periodic "associated" 
or obtained as a covering of a genus 3 minimal Riemann surface (see [18] 
and [22] and (7.5) below). In [22] the following question arises: 

(7.2) Does always K define a complex three torus? 
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We will see that in general the answer to (7.2) is negative: Let B be a 
versal simply connected and complete family (see 6.9) and {X, L, si, 52} = 
{X6,L6,516,526}. Set G' =G(6JH

1(X,R)),Gf = G^H^X.Q)) and as 
usual W* = span(W(5ijt,S2,t))- In complete analogy with (6.3) define S : 
B-+G' by: 

(7.3) X(t) = Re(Wi) elm(Wi) = Re(Wi) eRe(iWi).. 

Set B^Q) = S-^G' ). We observe that t belongs to B'(Q) if and only if 
Wt is naturally the cotangent space of a complex 3 sub-torus of the Jacobian 
variety of Xt. Next for any W € G7 we set F^, = H'"1(n/) and Zw = 
m(^n/) ^ Mg. It is known (see [7]) that F^ and Zn' are complex varieties. 
Besides, since E(t) does not depend on the chosen complex frame of V = 
span(5ijt, S2,t), we ge* dim (i7^/) = dim (Zu/) + S. It follows that either Fjp 
is empty or dim (i^/) > 8. If the image of 5 contains an open set then 
dim(G/ ) + 8 < 6*7: g < 4. We will role out the case g = 4. 

Proposition 7.4. Ifg = 4 then dE is generically surjective. 

Proof. Let m : B -> M4 be the modular map, m(B) = JE4. Let JH4 C JK4 
be the hyperelliptic locus and H = m~1(ii/4) be its inverse image. A point 
of H corresponds to {X, L, 51,52}, where X is hyperelliptic and L2 = ux- 
It turns out that 5i and 52 have a Weierstrass point p as a common zero: 
W = H0

(UJX(-P))- Prom [8] it follows that S(H)' is an open set of G7 . The 
proposition follows now from the Sard lemma. □ 

We still let g = 4. By (7.4) there is b £ S, /x(6) = {X,L, 51,52}, such 
that both S and $ are submersive at b and 11 = $(6) G G . Set Fn = 
^(II), 3(6) = IT, i^, = ET^IT). There are two possibilities: either IT G 
G/ or IT € G7 . In any case we have dim (i^,) = 12, dim (Fn) = 9, 
dim (ra(Fn)) = 5 and dim m(Fn) = 4. This implies that Fa (jL FJJ and we 
can find c G B such that $(c) = U G G , but S(c) g G7 . Let if : X -> T 
be the corresponding genus 4 minimal surface on T. By construction K(X) 
does not define a complex 3-torus. Moreover if zi : Ti —» T is any isogeny 
we construct, by taking inverse image, a commutative diagram: 

Xi  > Ti 

<") 1    1 
X   > T. 

where Xi —> X is an unramified covering and iiTi : Xi —> Ti a minimal 
immersion. This provides counter-examples to (7.2) for g > 4 : 
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Theorem 7.6. There are compact minimal surfaces on compact real 3-ton 
that do not define any complex 3 torus. 

Section 8. 

Proof of (6.16): i) Hyperelliptic odd genus case: 
Let X be a compact hyperelliptic Riemann X of genus g = 2k + 1 > 2. 

Set L = (9x(2fcp), where p is a Weierstrass point of X, i.e. p is invariant 
under the hyperelliptic involution. Set M = Ox{2p) and let s and t be two 
global independent sections of M. We assume that the divisor of t is 2p. Set 
si = sk, S2 = tk and / = 51/52. □ 

We need some notation from the theory of Weierstrass points on a com- 
pact Riemann surface. An increasing sequence of integers: 

(8.1) 0 < ai < ... < ag < 2g,    g > 1, 

is called a gap sequence if 

(8.2) H = N-{a1,...,ag} 

is a sub-semigroup of the non-negative integers (AT,-)-). The integers a^, 
i = 1,... ,5, are the gaps of H. Let X be a compact Riemann surface of 
genus g > 1 and p be a point of X. A non negative integer m (see [2], 
page 41) is a non-gap of p if there is a meromorphic functions on X of / 
degree m > 0 holomorphic on X — p. The non gaps define a sub-semigroup 
of (JV, +). By duality an integer n > 0 is a gap of p if 

(8.3) h0(ujx(~np)) = h0(ujx(-n + l)p) - 1. 

By Riemann Roch theorem and (8.3) there are exactly g gaps of p which 
define the Weierstrass gap sequence: 

(8.4) 0<ai(p)<...<a^(p)<2^ 

We recall that p is a Weierstrass point of X if ag(p) > g. It is a classical un- 
solved problem (but see [11] and [26]) to determinate which of the sequences 
(8.1) are Weierstrass gap sequences (8.4). We have: 

Theorem 8.5. The sequence: ■ 1,... , g — 2,5,2g — 1, g > 3, is a Weierstrass 
gap sequence. 
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Proof. See [26]: Th. (4.7), page 463, and Cor.(5.10), page 472. 

Proof of (6.16) ii) Even case: 
We assume g > 3 (g = 3 is the hyperelliptic case i). By (8.5) there is 

a compact Riemann surface X of genus g and p € X having gap sequence 
1,... ,5 — 2,5,2g — 1. Since 2g — 1 is a gap Ox((2g — 2)p) (see 8.3) is 
isomorphic to a;xj the canonical bundle of X. Set L = Ox((g — l)p). Since 
^ — 1 is the first non gap of p we obtain /i0(£) = 2. Therefore L defines an 
even spin structure of X and we may find a basis si, 52 of H0(L) where p 
is the unique pole of / = S1/S2. Note that the degree of / is # — 1 because 
g — 2 is a gap of p. □ 

Proof of (6.16) iii) Odd case g=6. 
Consider the Fermat curve: X = {(z, y, 2) G CP2 : x5+y5+z5 = 0}. The 

genus of X is 6. Let L be the restriction of Ocp2(l) to X. By adjunction 
Ocp2(2)\x = k>x> hence L is a spin bundle of X. The coordinates x^y^z 
provide a basis of L, /i0(X) = 3. Set si = y + z and 52 = x + ^. Then 
/ = si/s2 has a unique pole of order 5 at (1,0, —1). □ 

Remark 8.4, Likely for g > 5 (1,... ,5 — 3,5 + 1, # + 2,2^ — 1) is a 
Weierstrass gap sequence. The above case iii) provides an example for g = 6 
and see [15] for g = 7. If this is granted the general odd case follows as 
before. 
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