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Introduction. 

The "old" instanton theory naturally lead to the instanton Floer ho- 
mology of a 3-manifold as the missing piece in a general gluing formula for 
the Donaldson invariants. Similarly, the Seiberg-Witten theory leads to the 
"monopole homology" which is the Floer homology of the Seiberg-Witten 
functional defined by a spinc manifold (see [KM], [Mar], [MW], [Wa]). 

The first main difficulty in understanding this homology comes from the 
fact that its defining chains are not as explicit as the chains which generate 
the instanton homology. In the latter case, these are the flat connections on 
an SU{2) bundle which are well understood both topologically and geomet- 
rically. The meaning of the chains in monopole homology is far from obvious 
and the only explicit computations were made when the 3-manifold AT is a 
product Sl x E where S is a surface of genus > 2 (see [D] or [MST]). The 
equations are tractable in this case is because 51 x N is a Kdhler manifold. 
As was pointed out in [D], the solutions of the 3D Seiberg-Witten equations 
coincide with the 51-invariant solutions of the 4D Seiberg Witten equations. 
Fortunately, on a Kahler manifold the solutions of these equations can be 
described explicitly. 

If now N is the total space of a principal Sl bundle of nonzero degree 
over a surface S then Sl x N admits a natural complex structure but this 
time the manifold cannot be Kahler for the simple reason that the first Betti 
number is odd. 

We analyze the Seiberg-Witten equations on a special class of Riemann 
3-manifolds, namely those which admit a Killing vector field of constant 
pointwise length satisfying an additional technical condition. Topologically, 
these manifolds must be Seifert fibered manifolds. 

On such manifolds the Dirac operators have an especially nice form and 
in particular, the Seiberg-Witten equations can be further dissected. We are 
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interested in the behavior of the solutions of the Seiberg-Witten equations 
as the metric degenerates in the direction of the Killing vector field. This 
corresponds to collapsing the fibers of the Seifert fibration. 

The paper is divided into four parts. The first part describes in de- 
tail the differential geometric background. We build our geometry on an 
anisotropic foundation algebraically encoded as a metric almost contact 
structure (m.a.c). This is an [/(l)-reduction of the tangent frame bun- 
dle of our 3-manifold. In particular, we distinguish a special class of such 
manifolds the so called Killing m.a.c manifolds. These are Riemann mani- 
folds which admit a Killing vector field £ of pointwise length 1. Any oriented 
Killing m.a.c 3-manifold is diffeomorphic to a Seifert manifold and moreover, 
any Seifert 3-manifold admits a Killing m.a.c structure. A special class of 
Killing m.a.c. 3-manifolds consists of the (if, A) manifolds, A G M. They are 
characterized by the condition 

dr)(x) = 2\*r] 

where rj denotes the 1-form dual to the Killing vector field ( and A is a 
constant. These manifolds are also characterized by the fact that their 
product with S1 admits a natural integrable complex structure. 

The total space of a principal 51-bundle admits a natural (if, A)- 
structure described for the first time by Boothby and Wang. We present a 
1-parameter family of such nice metric structures and we explicitly compute 
its differential geometric invariants: the Levi-Civita connection, the Ricci 
and the scalar curvature. Factoring with suitable groups of isometries one 
can construct many other interesting examples. In particular, in subsection 
§1.4 we show that any Seifert manifold admits a natural (K, A)-structure. 
More precisely, the Thurston geometries on Seifert manifolds (from the list 
of 6 described in [S]) are (if, A) structures. The scalar A is proportional 
with the Euler number of the Seifert fibration and should be regarded as 
a measure of "twisting " of the fibration. As the metric degenerates (and 
so the fibers become shorter and shorter) A will go to zero and thus the 
fibration will become "less and less twisted". 

As was observed by several authors ([ENS], [V]) the (if, A) structures 
with A > 0 are links of quasihomogeneous singularities. Their Thurston 
geometry is (almost) uniquely determined by the analytical structure of the 
singularity and conversely, (see [Ne] or [Sch]) the Thurston geometry fixes 
the analytical type of the singularity. 

The second part is devoted to Dirac operators on m.a.c manifolds. The 
spinor bundles corresponding to the various spinc structures can be very 
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nicely described in the almost-contact language. An important part of this 
section is devoted to a commutator identity which is a key ingredient in the 
study of adiabatic limits. This is responsible for the adiabatic decoupling of 
the equations which in the limit look like a pair of equations, one along the 
fibers and one along the base. 

In the third part we introduce the 3-dimensional Seiberg-Witten equa- 
tions and study the adiabatic limits of solutions as the metric degenerates 
in the direction of £• In particular, we noticed an interesting analytical 
phenomenon. Although the various Dirac operators "explode" in the adia- 
batic limit, one can show that their graphs have a very nice behavior. More 
precisely, they converge (in the gap topology described e.g. in [K]). The 
gap convergence is responsible for uniform estimates for resolvents and, as 
shown in the works [MM] and [Dai], these estimates are essential in con- 
trolling the behavior of their spectra in the adiabatic limit. We believe this 
phenomenon of graph convergence is not restricted to three dimensions and 
deserves further investigation. 

On an 51- bundle of degree l over a surface of genus g the "adiabatic 
picture" is similar to the exact descriptions in [D], [MST] or [Mun] when 
the 3-manifold is the trivial 51-bundle over a surface. The set of all possible 
adiabatic limits consists of two parts: a reducible component (a torus of flat 
connections) and an irreducible part which is an union of moduli spaces of 
vortex pairs over the basis of the fibration. According to [Br], these vortex 
moduli spaces can be identified with symmetric products of smooth alge- 
braic curves and such objects were analyzed in great detail in [MD]. On an 
arbitrary Seifert manifold the irreducible part of the adiabatic moduli space 
consists of abelian vortices on 2-orbifolds. Remarkably, the adiabatic mod- 
uli space can be alternatively described as the solution set of an "adiabatic 
Seiberg-Witten equation" which is a very simple and explicit perturbation 
of the original one. 

The fourth section deals with the variational features of the adiabatic 
moduli space on a smooth S^-fibration over a surface. This moduli space 
is the critical set of a certain energy functional and its irreducible part is 
smooth and Bott nondegenerate. Additionally, we provide accurate spectral 
estimates for the Hessian of this functional on directions normal to the 
critical set (Corollary 4.8). Two key facts lie behind these estimates. The 
first is a vanishing result for the deformation complex of the abelian vortex 
problem on a Riemann surface while the second is a "rigidity" result. More 
precisely, the Hessian is naturally S^-equivariant and the weights of the 
5'1-action on its kernel are all trivial. 
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The above results suggest that, for topological purposes, the adiabatic 
Seiberg-Witten equations are better suited for the concrete computations of 
the Seiberg-Witten-Casson invariant and the Seiberg-Witten-Floer homol- 
ogy. 

Note. After this work was completed we learned that similar results on 
Seiberg-Witten monopoles on Seifert manifolds were independently estab- 
lished in [MOY]. 
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1. Metric almost contact structures. 

In this section we describe a differential-geometric setting rich in effects 
on the Dirac equations in general and the Seiberg-Witten equations in partic- 
ular. An important feature of such geometries is their anisotropy described 
as an almost contact structure satisfying additional metric properties. We 
compute the most important geometric invariants of such structures and 
then study their behavior under anisotropic adiabatic deformations. This 
will allow us to conclude that these geometries exist on any (and only on) 
Seifert manifolds and they are intimately related to Thurston's geometries. 
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1.1. Basic objects. 

Consider an oriented 3-manifold N. 

Definition 1.1.     (a) An almost contact structure on AT is a nowhere van- 
ishing 1-form 77 € n1(Ar). 

(b) A Riemann metric g on N is said to be compatible with an almost 
contact structure 77 if Ma;)^ = 1 for all x G N. A metric almost con- 
tact structure (m.a.c) on N is a pair (77, #)= (almost contact structure, 
compatible metric). 

Consider a m.a.c structure (77, g) on the oriented 3-manifold AT. A local, 
oriented, orthonormal frame {£0,(1,(2} of TN is said to be adapted to the 
m. a. c. structure if (0 is the metric dual of 77. The dual coframe of an adapted 
frame {(0,(1,(2} has the form {T?

0
,/?

1
^

2
} where 770 = 77 and *77 = 771 A r/2. 

In the sequel we will operate exclusively with adapted frames. 
Denote by Cl(N) the bundle of Clifford algebras generated by T*N 

equipped with the induced metric. The quantization map 

exterior   algebra —> Clifford    algebra 

(see [BGV]) induces a map 

q:A*T*Ar->CZ(iV). 

On the other hand A*T*N has a natural structure of Cl(N)-modnle so that 
via the quantization map we can construct an action of AT*M on itself 

c:A*T*JV-->End(A*T*AO 

called Clifford multiplication. 
On a m.a.c. 3-manifold (AT, 77, g) the Clifford multiplication by *77 has a 

remarkable property. More precisely 

c(*77) (T?)-
1
 = (T?)

1
 C A*T*iV. 

If (770', 771, T?
2
) is a local coframe then the bundle (77)    is locally spanned by 

r/1,//2 and c(*77) acts according to the prescription 

c(*7?) : v1 h~* v2 > w2 *-* —v1- 

In particular, notice that both c(*77) and —c(*77) define complex structures 
on the real 2-plane bundle (T?)"

1
. 
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Definition 1.2. The complex line bundle ((r])±, — c(*ri)) is called the 
canonical line bundle of the m.a.c. 3-manifold (AT, 77, g) and is denoted by 
/C = ICrj^. 

When viewed as a real bundle JC (and hence /C-1 as well) has a natural 
orientation. We have an isomorphism of oriented real vector bundles 

(1.1) T*iv ^ (-77) e /c ^ (77) e /c-1 

where (—77) (resp (77))denotes the real line bundle spanned and oriented by 
—77 (resp 77). 

We will be interested only in a special type of m.a.c. structures. More 
specifically, we will consider only Killing m.a.c manifolds. A m.a.c. struc- 
ture (g, 77, £) will be called Killing if the vector field £ is Killing. This geo- 
metric condition has substantial impact on the topology of the background 
manifold. More precisely, we have the following result. 

Proposition 1.3. Assume N is a compact oriented Killing m.a.c 3-mani- 
fold. Then N is diffeomorphic to an oriented Seifert fibered 3-manifold. 
Conversely, any compact oriented Seifert 3-manifold admits a Killing m.a.c 
structure. 

Proof. Suppose N is Killing m.a.c. Then the collection of Killing m.a.c. 
structures (3,77) with respect to the fixed metric g are parameterized by the 
unit sphere in the Lie algebra of compact Lie group of isometries Isom (iV, g). 
In particular, the group Isom (AT, g) has positive dimension. If this is the 
case, the maximal torus containing £ induces at least one fixed-point-free 
iS1 action on iV (slight perturbations of £ in the Lie algebra of Isom(iV, g) 
will not introduce zeroes of the corresponding vector field on N). Hence N 
must be a Seifert manifold. 

Conversely, given a Seifert fibered manifold A/", denote by £ the generator 
of the fixed-point-free 51 action and for each 6 G S1 denote by IZQ its action 
on N. Define DJl^ as the collection of Riemann metrics g on N such that 
|£(a:)|^ = 1. Note that 9JI is convex and 

n*emc c mc. 

The 51-average of any g £ 9Jl^ is C -invariant and thus defines a Killing 
m.a.c structure on N. □ 
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1.2. The structural equations of a m.a.c. manifold. 

Consider an oriented m.a.c. 3 manifold (N,ri,g) and denote by V the 
Levi-Civita connection of the metric g. Fix an adapted local frame of 
{Co?Ci>C2} and denote by O?0,??1,//2} the dual coframe. The connection 
1-form of V with respect to these trivializations can be computed using 
Cartan's structural equation. More precisely, if 

(1.2) 

,01 0 -A B~ Kl 
A 0 -C A r?1 

-B C 0 ^J 
(A, B, C are real valued 1-forms locally defined on N) then 

(1.3) 
r vco = -A^CI +-B®C2 

vci  -     4® Co -C®C2 • 
[ V<2   =   -B® Co   +C®Ci 

We will analyze the above equations when (iV,<7) is a Killing m.a.c. mani- 
fold. For j = 0,1,2 we set 

Aj^i^A,  B^i^B,  Cj^iQC. 

Since L^g = 0 we have the equality 

g(VxC, Y) = -g(X, VyC)   VX, Y € Vect (N). 

We substitute X and Y with pairs of basic vectors Cf ? Cj and we obtain the 
identities 

(1.4) A0 = Bo = Ax = B2 = 0 

and 

(1.5) jl2(aO = Bi(aO. 

Set A(x) := A2(x) = Bi(x). The structural equations now yield 

drj = 2X(x) * rj. 

Thus the scalar A(a;) is independent of the local frame used i.e.   it is an 
invariant of the Killing m.a.c. structure (iV, 77, g). 
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Differentiating the above equality we deduce 0 = 2d(X(x) * rj) so that 

(1.6) dcX{x) = 0. 

Note that 

VcCi = -Co(s)C2,    VCC2 = Co(a;)Ci. 

Thus CQ(X) defines the infinitesimal rotation of (£) produced by the parallel 
transport along £. Hence this is another invariant of the Killing m.a.c. 
structure and will be denoted by ip(x). Finally set 

b(x) = \(x) + <p(x). 

Note for further references that 

(1-7) [Ci, Co] = VClCo - VoCi = fc(x)C2 

and 

(1.8) [C2, Co] = VC2Co - VCoC2 = -6(x)Ci. 

We can now easily compute the sectional curvatures (R((j, C)C> 0)- More 
precisely, we have 

i*(Ci,C)C=(vClvc-vcvCl-v[Cl>c])c 
= -Vc(A(x)C2) - K*)v<2C = A^^Ci. 

Hence 

(1.9) <i*(Ci,C)C,Ci> = A2OE) 

and similarly, 

(1.10) <i2(C2,C)C,C2> = A2(x). 

Hence the scalar curvature of N is determined by 

(1.11) s = 2^ + 4A2(x) 

where K(X) denotes the sectional curvature of the plane spanned by £i and 
C2. 

For each 6 > 0 denote by gs the anisotropic deformation of g defined by 

g6(X,X) = g(X,X) if g(X,C) = 0. 
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Set 
VS = ri/S. 

Note that e% = 2A5~1 *<$ %. Set A^ = |. Note that 

(1.12) b8 = 6b    ip6 = 6b- X/6 = Sip + \6 - j ) A. 

Anisotropic deformations as above were also discussed in [YK] where they 
were named D-homotheties. 

The connection V defines via orthogonal projections a connection V-1 on 
the complex line bundle Ann 77 = (C)"1- (This complex structure is defined 
by i£i = C2O More precisely 

{ V-LC2   =   C(aO®Ci 

where ^(a;) = ip{x)r) + C7i(a;)rji + C2(x)r]2- Using the complex structure in 
(£)~L we can locally describe V-1 as 

V-L=d-iC(x). 

Under anisotropic deformations this connection 1-form changes to 

1 
Cs = wns + Cim + C2m = -^wn + dm + ^2^2. 

The equality (1.12) shows that as 6 —> oo the form C^ converges to 

Coo := 6(a:)T/ + C7i(a;)T/i + C2{x)ri2 = X(x)r] + C{x). 

If we denote by V00 the limiting connection we have 

(1.13) V00 = V± - iA(x)T/. 

Denote by F-1 the curvature of the connection V-1 and by a the scalar 

(1.14) ff=(FJ-(Ci,C2)C2,Ci)- 

It is not difficult to show that a is independent of the local frame and so is 
an invariant of the Killing m.a.c. structure. With respect to this frame it 
has the description 

a{x) = %C2 - d^Cx - (Ci)2 - (C2)2. 
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Note that the anisotropic deformation introduced above does not change 
V-1 so that 

as(x) = a(x). 

Using the structural equations of V we deduce 

Vc1VC2C2 = (%C2)Ci-C1C2C2. 

Vc2Vc1C2 = (Ad - %A)C + (A2(a:)Ci + %d) Ci - ddC2 

[Ci,C2] = -2A(xK + dCi + dC2. 

Hence 

(1.15) 

«(a;) = (il(Ci,C2)C2,Ci> 

= dbd - dtoCi " (Ci)2 - (C2)2 - X2(x) + 2\(x)ip(x) 

= a(x) - X2(x) + 2X(x)(p(x). 

In particular, using (1.11) we deduce 

s(x) = 2{a(x) + X2(x) + 2X(x)(p(x)}. 

Note that 

so that 

ss{x) = 2{a(x) + X2/62 + 2X(b - X/6)/6} 

(1.16) lim ss{x) = 2a(x). 
6—>oo 

Thus for 6 very large a(x) is a good approximation for the scalar curvature. 
When the invariant X(x) is constant we will call the structure (N, 77, g) 

a (K, A)-manifold. The (if, l)-manifolds are also known as K-contact man- 
ifolds (cf. [B], [YK]). In dimension 3 this notion coincides with the notion 
of Sasakian manifold. 

On a (K, A) manifold the sectional curvature of any plane containing £ is 
A2 and the full curvature tensor is completely determined by the the sectional 
curvature K, of the planes spanned by d and £2- The scalar curvature of N 
is 

s = 2ft + 4A2. 

Using the structural equations we deduce that with respect to the adapted 
frame {Co? Ci? C2} the Ricci curvature has the form 

Ric = 
'2A2        0 0 

0     K + X2      -K 

0        -«      K, + X2 
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For any oriented (K, A) 3-manifold (not necessarily compact) we denote 
by .SJV the group of isomorphism of the (if, A) structure i.e. orientation 
preserving isometries which invariate 77. For any discrete subgroup F C ^AT 

acting freely and discontinuously on N we obtain a covering 

N -+ N/T. 

Clearly N/T admits a natural (if, A) structure induced from N. In §1.4 we 
will use this simple observation to construct (if, A)-structures on any Seifert 
3-manifold. 

1.3. The Boothby-Wang construction. 

In this subsection we describe some natural (if, A) structures on the total 
space of a principal S^-bundle over a compact oriented surface. Except some 
minor modifications this construction is due to Boothby and Wang, [BW] 
(see also [B]). 

Consider £ £ Z and denote by Afy the total space of a degree £ principal 
Sl bundle over a compact oriented surface of genus g: S1 t-> Ni —> E. We 
orient Afy using the rule 

det TNt = det TS1 A det TE. 

Assume E is equipped with a Riemann metric hb such that vol/l6(E) = TT. 

Recall that if LJ G iQl(Nt) is a connection form on Ne then dou descends to 
a 2-form Q on E, the curvature of a;. Moreover 

L^-hLtt=t=L^- 
Notice in particular that ifi is cohomologous to 2£dvflh. Now pick a connec- 
tion form u) such that 

iSl = 2ldvhh. 

Denote by £ the unique vertical vector field on JNfc such that ^{Q = i and 
set 77$ = —iuj/6. Thus %(C) == 1/5- Notice that Annrj coincides with the 
horizontal distribution Hu defined by the connection u. Now define a metric 
hs on Ni according to the prescriptions. 

MC,C) = i/«2 

and 
h$(X, Y) = /i&(7r*X, 7r*y) if X, y are horizontal. 
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Clearly L^h = i.e. £ is a Killing vector field. Moreover 

6dris = -ft = -2^dvhb = -2£ * %. 

In other words, we have constructed a (if, —i/S) structure on Afy. 
We conclude this subsection by describing the geometry of Ni in terms 

of the geometry of S. The only thing we need to determine is the curvature 
K introduced in the previous subsection in terms of the sectional curvature 
E. It is not difficult to see this coincides with the invariant a(x) defined in 
(1.14). Because of the special geometry of this situation formula (1.15) can 
be further simplified. 

To achieve this we will use again the structural equations. Denote by 
l^1,^2} a local, oriented orthonormal coframe on E and set ry-7 = TT*^-

7
, 

j = 1,2. Then {770 = 77,771, ry2} is an adapted coframe on Afy. 
The structural equations of E have the form 

0   -6 
e   0 

A (1.17) d 

where 6 is a 1-form locally defined on E. Set 

03 = i^0,  j = l,2 

Since drf = ^dipi we deduce that drf is horizontal.   On the other hand, 
using (1.2) we deduce 

dr)1 = A A rj0 - C A T?
2
 = {A2 + Co)r?2 A r?0 - CiT)1 A T?

2
. 

This implies Co = —A2 = £/6 so that 

(1.18) b(x) = 0 

and 

(1.19) (p = t/6. 

Using (1.17) we deduce dip1 = — 6 A I/J
2
 = — Blip1 A I/J

2
 which yields 

(1.20) Ci = 0i. 

Similarly one shows 

(1.21) C2 = 02. 
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Using the above two equalities and (1.13) we conclude that the limiting 
connection V00 on K is none-other than the pullback by TT : iV —> E of the 
Levi-Civita connection on the canonical line bundle K^, —> £ i.e. 

(1.22) V00 = 7r*V* 

Using (1.15) and (1.19) we deduce 

(1.23) K = a-3e2/62 

and in particular the scalar curvature of Ne is given by 

(1.24) sN = 2(a-f/62). 

Remark 1.4. Let iV denote the total space of a principal 51 bundle over 
an oriented surface E, not necessarily compact If u> denotes a connection 
form on N such that — idcu descends to a constant multiple of the volume 
form on E then the previous computations extend verbatim to this case and 
one sees that in this situation one also obtains a (if, A)-structure on N. 

For example, let N denote the unit tangent bundle of the hyperbolic 
plane H2. The Levi-Civita connection on H2 induces an S,1-connection cu on 
N. Then 

—idoj = —Idvolyp 

since H2 has constant curvature = —1. Thus N has a natural (K, 1) (= 
Sasakian) structure. 

The group of isometrics of H2 is PS 1,(2, E) and induces an action on N 
which preserves the above Sasakian structure. (In fact, iV is isomorphic with 
PSL(2, R) and via this isomorphism the above action is precisely the usual 
left action of a Lie group on itself.) If now F C PSX(2,R) is a Fuchsian 
group with a compact fundamental domain then N/T is a compact Seifert 
manifold with a natural Sasakian structure. 

1.4. Geometric Seifert structures. 

The main result of this subsection shows that any compact, oriented, 
Seifert 3-manifold admits a (if, A) structure. This will follow easily from 
the description of the geometric Seifert structures in [JN] or [S]. 

Theorem 1.5. Any compact, oriented, Seifert 3-manifold admits a (if, A) 
structure. 
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Proof. We will begin by reviewing the basic facts about the geometric Seifert 
structures in a form suitable to the application we have in mind. For details 
we refer to [JN] or [S] and the references therein. 

A geometric structure on a manifold M is a complete locally homoge- 
neous Riemann metric of finite volume. The universal cover of a manifold 
M equipped with a geometric structure is a homogeneous space which we 
will call the model of the structure. It is known that if a 3-manifold admits a 
geometric structure then its model belongs to a list of 8 homogeneous spaces 
(see [S]). 

Any Seifert manifold admits a geometric structure corresponding to one 
of the following 6 models: 

S2xE\   E3,    EpxE1,    S3,    AT,    PSL 

where E^ denotes the fc-dimensional Euclidean space, H2 denotes the hyper- 
bolic plane, iV denotes the Heisenberg group equipped with a left invariant 
metric and PSL denotes the universal cover of PSL(2, M) = Isom+(lHI2). 

According to [RV], the Seifert manifolds which admit N as a model are 
the nontrivial S4 bundles over a torus and, as we have seen in the previous 
subsection, such manifolds admit (iiT, A) structures. 

The Seifert manifolds which admit geometric structures modeled by E3 

are flat space form and are completely described in [Wo]. One can verify 
directly that these admit natural (K, A) structures. 

Ss has a natural (if, 1) structure as the total space of the Hopf fibration 
53 —> 52. Any Seifert manifold modeled by S3 is obtained as the quotient 
by a finite group of fiber preserving isometries. Thus they all inherit a (K, 1) 
structure. 

If X is a model other than S3 or E3 then the group of isomorphisms 
which fix a given point x G X fixes a tangent direction at that point. So X 
has an Aut (X)-invariant tangent line field. This line field fibers X over S2, 
E2 or H2. 

For X = §2 x E1,!!2 x E1 this is the obvious fibration. PSL can be 
alternatively identified with the universal cover of the unit tangent bundle 
TiH2 of H2. It thus has a natural line fibration which coincides with the 
fibration abstractly described above. Note that the (K, 1) structure on T1M2 
constructed at the end of §1.3 lifts to the universal cover PSL. 

If X is one of of these remaining three models denote by Aut/(X) C 
Aut (X) the subgroup preserving the above line fibration (as an oriented 
fibration). Note that each of them admits a (iiT, A) structure and Aut/ is in 
fact a group of isomorphisms of this structure. 
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The trivial Seifert manifold S2 x S1 presents a few "pathologies" as far 
as geometric Seifert structures are concerned (see [JN]) but we do not need 
to worry since it obviously admits a (K, 0) structure. 

The other Seifert manifolds which admit geometric structures modeled 
by S2 x E1, H2 x E1 or PSL can be obtained as quotients U\X where IT is 
some subgroup of Autf. Thus H invariates the universal (if, A) structures 
on these models and therefore the quotients will admit such structures as 
well. The list of Seifert manifolds is complete. □ 

Remark 1.6. The above analysis can be refined to offer an answer to the 
question raised in [We]: which Seifert manifolds admit Sasakian structures. 
The answer is simple. A Seifert manifold admits a Sasakian structure if and 
only if its (rational) Euler class is negative. According to [NR], these are pre- 
cisely the Seifert manifolds which can occur as links of a quasi-homogeneous 
singularity. This extends (in the 3D case) the previous result of [Sas] con- 
cerning Sasakian structures on Brieskorn manifolds. 

This fact was observed by many other authors (see [ENS], [Ne], [V]). In 
fact, this geometry of the link is in most cases a complete invariant of the 
analytic type of the singularity (see [Ne], [Sch]). 

2. Dirac operators on 3-manifolds. 

In this section we discuss the relationships between spinc structures and 
m.a.c. structures on a 3-manifold. On any m.a.c. 3-manifold, besides spinc 

Dirac operators there exists another natural Dirac operator which imitates 
the Hodge-Dolbeault operator on a complex manifold. We will analyze the 
relationships between them. 

2.1. 3-dimensional spinorial algebra. 

We include here a brief survey of the basic facts about the representations 
of Spin(3) ^ SU(2). -Denote by Ck the Clifford algebra generated by 
V = R3 and by H the skew-field of quaternions. Consider an orthogonal 
basis {eo, ei, 62} of V. 

It is convenient to identify H with C2 via the correspondence 

(2.1) U3q = u+jv^> EC2 
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where 
a + bi + cj + dk,   u = a + 6i,   v = c — di. 

For each quaternion g denote by Lg (resp. i?g) the left (resp. the right) mul- 
tiplication by q. Ri defines a complex structure on H and the correspondence 
(2.1) defines an isomorphism of complex vector spaces. 

The Clifford algebra CI3 can be represented on C2 = H using the corre- 
spondences 

(2.2) eo !-»• h <—► c(eo) = 
i    0 
0   -i 

(2.3) ei ^j- -> c(ei) = 
0     1 
-1   0 

(2.4) 62 »-> Lk <—> c(e2) = 
0    i 
i    0 

Note that tr (LiLjLk) = —2 which shows that the above representation of 
CI3 is the "positive " representation in the sense described in Lemma 1.22 
of [BC]. In [MOY] the "negative" representation is employed and thus the 
induced Dirac operators will differ by a sign from the Dirac operators in this 
paper. 

The restriction of the above representation to Spin(3) C CI3 defines the 
complex spinor representation of Spin(3) 

c:Spin(3) -► Aut(§3). 

The Clifford multiplication map 

(2.5) c:A*yACZ3-+End(§3) 

identifies A1^ with the space of traceless, skew-hermitian endomorphisms of 
S3. It extends by complex linearity to a map from A1 V ® C to the space of 
traceless endomorphisms of §3. In particular, the purely imaginary 1-forms 
are mapped to self adjoint endomorphisms. 

For each </> G S3 denote by T(</>) the endomorphism of S3 defined by 
T(0) = <£(g>(/>-i|</>|2i.e. 

r(^=(^0)0--HV. 
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The map r plays a central role in the 3-dimensional Seiberg-Witten equa- 
tions. 

If we identify S3 with C2 as above and if (j) has the form 

then T(<^) has the description 

(2.6) 

1   2 2 "(MMfl2) *P 
2i=o ffi/3 i(|/3|2 - |a|2). 

It is not difficult to check that the nonlinear map 

r : S3 :-> End (S3) 

is Spin(3) equivariant. 
We want to describe some of the invariant-theoretic features of the struc- 

ture: 

(oriented Euclidean 3 dimensional space + distinguished unit vector). 

This is the algebraic counterpart of a m.a.c. structure on an oriented 3- 
manifold. 

Assume V is an oriented Euclidean space which has a distinguished unit 
vector, say eo. The group of isomorphisms of this structure is U(l) = Sl = 
SO(2). The group Spin(3) acts naturally on V. The Lie algebra of the 
subgroup H of Spin(3) which fixes eo is generated by 6162 = q(*eo) and can 
be identified with ^(1) via the correspondence 

eie2 »-> i € 2/(1). 

This tautologically identifies H with S'1. The representation of H on S3 is no 
longer irreducible and consequently S3 splits as a direct sum of irreducible 
if-modules. Alternatively, this splitting can be described as the unitary 
spectral decomposition of S3 defined by the action of eie2 on S3. According 
to (2.3) and (2.4) we have 

S3 = S3(i)eS3(-i). 

The action of H on S3(i) is the tautological 51 representation, while the 
action on S3(—i) is the conjugate of the tautological representation. 
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2.2. 3-dimensional spin geometry. 

Consider a compact, oriented, m.a.c. 3-manifold (iV, 77,(7). Since 
W2{N) = 0 the manifold N is spin. To understand the relationship be- 
tween the spin structures on N and the m.a.c structure we need to consider 
gluing data of TN compatible with the m.a.c. structure. 

Consider a good, open cover {Ua} of JV and a gluing cocycle 

gap : Uap - 50(2) es u(l) 

defining TN. The cocycle is valued in 50(2) since TN has a distinguished 
section £? the dual of 77. Note that gap defines a complex structure in the real 
2-plane bundle (£) . It is not difficult to see that (£) = /C-1 as complex 
line bundles. 

A spin structure on TiV is a lift of this cocycle to an H-valued cocycle, 
where H is the subgroup of Spin(3) defined at the end of §2.1. Using the 
tautological identification H = 51 we can identify the cover if —> 50(2) 
with 

51451. 
Hence a spin structure is defined by a cocycle 

gap : U(l) <* 50(2) - C7(l) 

such that gfcp = gap.   In other words, gap defines a square root of /C"1. 
Moreover, two such lifts define isomorphic square roots if and only if they 
are cohomologous so there exists a bijective correspondence between the 
square roots of /C"1 (or, equivalently /C) and the spin structures on JV. 

Now, fix a spin structure on JV defined by a lift 

(2.7) gap : Uap -» H. 

The complex spinor bundle S of this spin structure is associated to the 
principal H-bundle defined by (2.7) via the representation 

#-->5pm(3)->Aut(§). 

As we have already seen this splits as TI © T_I where TI denotes the tauto- 
logical representation of 51 = H and T_I is its conjugate. 

The component TI defines the square root of of (£) i.e. the line bundle 
/C"1/2 characterizing the chosen spin structure. We have thus shown that a 
choice of a m.a.c. structure on JV produces a splitting 

(2.8) S ^ /C"1/2 © /C1/2. 
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Once we have fixed a spin structure it is very easy to classify the spinc 

structures: they are bijectively parameterized by the complex line bundles 
L —► JV. The complex spinor bundle associated to the spinc structure defined 
by the line bundle L is 

SL S § (8) L ^ /C-1/2 ® L 0 /C1/2 (8) L 

An important important special case is when L = /C-1/2. In this case 

where we denoted by C the trivial complex line bundle over N. 

Remark 2.1. Our sign conventions differ from those of [MST]. There they 
chose S(i) == /C1/2. The overall effect is a permutation of rows and columns 
in the block description of the geometric Dirac operator of §2.4. 

2.3. Pseudo Dolbeault operators. 

The complex bundle S^ introduced in §2.2 was a priori defined in terms 
of a fixed spin structure on N but a posteriori, the spin structure becomes 
irrelevant. This is similar to complex manifolds where A0'*T* is a complex 
spinor bundle of the spinc structure canonically associated to the complex 
manifold. In that case the Dolbeault operator is a Dirac operator compatible 
with the Clifford structure. Moreover it is a geometric Dirac operator if the 
manifold is Kahler. 

In this subsection want to pursue this analogy a little further. In the 
process we will construct an operator which behaves very much like the 
Dolbeault operator in the complex case. 

Denote by V the real 2-plane bundle (77) . We orient V using the com- 
plex structure — c(*r)) which identifies it with /C. Consider now a complex 
hermitian vector bundle E —* N. Any connection V on E defines an opera- 
tor 

V : C00^) -> C^CTiV ® E). 

Now observe that 

T*iV ® E & ((77) 0 V) ® E £ E © (/C ® E) © (/C-1 ® E). 

Hence for any section T/J E C00(E) the covariant derivative I/J orthogonally 
splits into three components: 

vcv> e c^iE) 
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bWeC00(£®£) 

and 

It terms of a local adapted frame {Co = C> Ci> C2} we have 

bVt/> = e ® (Vi - ^2)^ 

bVV' = e®(Vi + iV2) 

where 

Vj = Vc^ £ = ^(7?1 + i7?2)' f=7!(7?1""i7?2)- 
For example when E = C then bV^ € C00(/C-1). In this case if V is the 
trivial connection d we will write dj, (resp. <%) instead of ^V (resp. bV). 
Notice that if E = /C"1 then bV^ € C00®. 

Coupling a metric connection V^ on E with the Levi-Civita connection 
V"1" on /C^ we obtain connections V^'^ on jS?0/C:t and in particular operators 

bv25,- . ^oo^ 0 ^-j _, c00^),   bVE,+ : C^CE ® /C) -> C00^). 

Using the above explicit form of the operators b V and b V and the structural 
equations of the background m.a.c structure we obtain the following result. 

Lemma 2.2. For any hermitian vector bundle E and any hermitian con- 
nection VE on E we have 

bV* = bV£7,+,   bV* = bV£; " 

where the upper * denotes the formal adjoint 

The Levi-Civita connection on (AT, g) induces via orthogonal projection 
a connection V-1 on /C-1 compatible with the hermitian structure. The 
pseudo Dolbeault operator on (AT, 77, g) is the first order partial differential 
operator D : C,00(§77) -> C00^) which in terms of the splitting S^ = IC^toC 
has the block decomposition 

VN = 
^V-1   -idc 
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where ^V-1" is obtained as above starting from the connection V1- on /C-1. 
More generally, consider the complex spinor bundle §£ associated to the 
spinc structure defined by the complex line bundle L 

§L^£-1/2®Le/c1/2®L. 

Using the connection V on K and a connection A on L we obtain connections 
V* on /C±1//2 ® L. We can produce a twisted pseudo-Dolbeault operator 
T)L = $L,A 

on §L described by the block decomposition 

VL = ^L,A = 
iv; byi 

bv-   -iV+ 

Lemma 2.2 shows that DL is formally selfadjoint. Note that 

When L is trivial we set DL = ^o- 
Denote by F^ the curvature of V*. We want to analyze the "commuta- 

tor" 
fv^v+j   =   ^ovj-v-o^v4". 

assuming N is a Killing m.a.c manifold.   Choose a local adapted frame 
{C> Ci) C2} with dual coframe {77,771,172}. For any ip £ C°0(/C1'2 ® L) we have 

[bV+, V+]V = e ® (Vf + iVj)V+V - V^{e ® (Vf + iV^)}^ 

= e ® (Vf + iV^) V+^ - (V-'-e) ® (Vf + iVJ) ^ 

-f®(v+(vj- + iv^))v 

= £ ® {(V+ + iV+)V+ - V+(V+ + iV+)} v 

-(V^)®(V+ + V+)^ 

(use V^-e = -i^(a;)e) 

= e® (F+(Ci,C) + iF+(C2,C) + V+i)C] + iV+2)C])V 

+ i9?(a;)£®(V5t' + iVj)V' 

(use (1.7) and (1.8) ) 

= e ® (F+(Ci, C) + iF+(C2, C) + b(a:)Vj - ib(x)V+)iP 
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+ iV?(a:)e(8i(V^ + iVj)V' 

= e ® {F+(Ci, C) + iF+(C2, C) - ib(x)(Vt + iV+)} ^ 

= e® (F+(Ci,C) + iF+(C2,C))V'-iAe® (V+ + iVj)V. 

We have thus proved 

(2.9)        [bV+, V+] = -iA(a;)bV+ + e® {F+(Ci,C) + iF+(C2,C)} 

When dealing with the Seiberg-Witten equations it is convenient to de- 
scribe the curvature term in the above formula in terms of the curvature FA 

of L. We will use the formula 

Hence we need to explicitly describe the curvature of JC equipped with the 
connection V-1. 

Note that /C-1 can be identified with the bundle (£) equipped with the 
complex structure 

iCi = C2   iC2 = -Ci- 

We will compute the curvature of this line bundle using the structural equa- 
tions of V"1 

Assuming JV is a Killing m.a.c manifold we deduce after some simple ma- 
nipulations 

*]c-i(Ci,C) = -i(-di<p(x) + acCi + b(x)C2) 

Fz-iib,0 = -K-d2<p(x) + acC2 - 6(x)Ci). 
Set fi(x) = C\ + iC2. Some elementary algebra shows 

*ic-i(Ci,<) + ^-1^2,0 = m + Wfiv - (i^c + b(x))fx. 

Hence 

(2.10) 

We now want to clarify the "mysterious" term (id^ + b(x))fi in the above 
formula. To achieve this we will use the structural equations (1.2). Thus 

dr]1 = A A r] - C A r?2 = -b(x)r] A ry2 - Ci * rj 
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and 
drj1 = -B A 7} + C A 771 = 6(x)r/ A 771 - C2 * r/. 

Temporarily set u; = \/2£ = 771 + i??2. The above equalities yield 

(2.11) do; = ib{x)7] A a; — ^ * r?. 

Differentiating the last equality we deduce 

d(/x * 77) = id(6(x)ry A a;) 

i.e. 
(d^fjb)dvolg = i{d6(a;) A r/ A a; + b(x)dr) Aw — b(x)r) A da;}. 

The middle term in the right-hand-side of the above formula cancels. The 
third term can be computed using (2.11). Hence 

(d^fx)dvolg = i{db(x) A 77 A w + b(x)r) A *ry} 

or equivalently, 

(9f - ib(x))[idvolg = id6(a;) Ar] Au. 

Since 
d6(x) Arj AUJ = (—idib(x) + d2b(x))dvolg 

we deduce 
(iac + 6(x))/z = i(ai + i^)b(a:). 

In a more invariant form 

(2.12) e (8) (iac + 6(a:))Ai = ifyb(x). 

Using the above equality in (2.10) we deduce 

(2.13) 
e ® (FJCCCI, 0 + tficte, 0} = -i^y + id<,b(x) = i^A(x). 

Set 

and 
F_A1:=£®Fyl(C,Ci + iC2) 

F^^eOF^CCi-iCa). 

We can now rephrase the commutativity relation (2.9) as 

(2.14) pv", V+] = -iA(rr)bV+ + ^(x) - F0/ 
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By passing to formal adjoints we deduce using Lemma 2.2 

(2.15) 

[bv-, v^-]* = [(bv+)*, v^ ] := (bv+)*v^ - v+^v1")* 

= iA(bV+)*-i(b5)*A + Fj'0. 

On a (X, A) manifold the commutativity relations (2.14) and (2.14) fur- 
ther simplify. Fix a spinc structure determined by a line bundle L and 
choose a connection A on L. It will be extremely convenient to introduce 
two new differential operators ZA,TA 

block decompositions 
C

00
(SL) -> C00

(SL) defined by the 

ZA = 

TA = 

iV A- 
C 
0 

0 
(bV+)* 

-iV^+ 

0 

Then the commutativity relations (2.14) and (2.15) can be simultaneously 
rephrased as an anti-commutator identity 

(2.16) 

{ZA, TA} := ZATA + TAZA = -XTA + i 
-F 1,0 

po,i n 

o 

We want to point out that the operators ZA, TA and FA depend on the back- 
ground m.a.c. structure. Both ZA and FA will be affected by anisotropic 
deformations while TA is invariant. We will write ZAts and F^s to emphasize 
this dependence. Clearly 

To describe the dependence 6 »-> ZA,6 
we w^ use the equality (1.13) of §1.2 

describing the dependence on 6 of the Levi-Civita connection on /C"1. More 
precisely define 

0 

0 ZA.00 :— 
iVf'" 

-iV^+ 

where for each connection A on L we denoted by VA,± the connection on 
K^1'2 ® L obtained by tensoring the limiting connection V00 on /C^1/2 (de- 
scribed in (1.13)) with the connection A. We have 

(2.17) 8ZA,<X> = ZAjs + ^T- 
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Using this equality in (2.16) we deduce 

(2.18) 

{ZA^OOITA} = -r 
'    0     F%- 

.^3   0 . = i 
r   o    F0/] 
.-F1/     0 

2.4. Geometric Dirac operators. 

In this subsection we will analyze the geometric Dirac operators on 3- 
manifolds and in particular, we will relate them with the pseudo-Dolbeault 
operators of §2.3. 

Consider an oriented Killing m.a.c manifold (N,ri,g) with a fixed spin 
structure. Denote by S = K~1'2 @ /C1/2 the bundle of complex spinors 
associated to this structure. 

We begin by first recalling the construction of the canonical connection 
on /C. Pick a local adapted frame {Co = C>C:bC2} and denote by <jj the 
Clifford multiplication by Cj> j — 0,1,2. With respect to the canonical 
decomposition S = /C-1/2 © /C1/2 these operators have the descriptions 

<7o = 

0"! 

(J2 = 

where e (resp. e) denotes the tensor multiplication by e (resp e) 

E-.K^^K-V2   (resp.   e : /C"1^ _ K}'
2
). 

If {uJij) denotes the 5o(3) valued 1-form associated to the Levi-Civita con- 
nection via the local frame {(j} i.e. 

i 0 
0 -i 

'0 e 
—e 0 

'  0 ie 
is 0 

V0 = 5^a;yCi 

then the canonical connection on S is defined by 

V = d — - ^ UJij ® GiGj 

Kj 
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Using the structural equations (1.3) we deduce that, with respect to the 
local frame {Cj}* the canonical connection on S has the form 

V = d - -(A (g)cr2 + i?(g>cri + C® CTQ). 

Using the fact that AT is a Killing m.a.c. we deduce 

Vc = ^-2 

Vi = ck - 

V2 = %-- 

\y{x) 0 
0 -vp{x) 

'   i^ Ae ' 
-Ae -iCi 

'iCa iAe' 
iAe -iC2 

The canonical, untwisted (geometric) Dirac operator on S is defined by 

£>o = S)s = o-o Vo + o-i Vi + 0-2 V2 

eOf^t + iCi^) 
1^-1^/2) 

e<g>{-(di + iCi/2) 
+i(a2 + iC2/2)} 

+i(52 + iC2/2)} 

-i(ac + V/2) 
+ Als. 

In terms of the pseudo-Dolbeault operator we have 

S)s = Os + A. 

More generally if we twist S by a line bundle L equipped with a hermitian 
connection A we obtain a geometric Dirac operator on §L = S ® L and as 
above one establishes the following identity 

(2.19) <QL = 1)A + \ = ZA + TA + \. 

Clearly 2)^ changes under the adiabatic deformations of the metric. More 
precisely, we deduce from the equality (2.17) that 

(2.20) 2) A,6 = SZA.OO 
+

 
TA+

2S 

3. The Seiberg-Witten equations. 

In this section we finally take-up the study of the 3-dimensional Seiberg- 
Witten equations.   We will restrict our considerations to the special case 
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when the 3-manifold N has a(i;f, A)-structure. When A = 0 it was observed 
by many authors that these equations can be solved quite explicitly. The 
situation is more complicated when A ^ 0 for the reasons explained in the 
introduction. We subject N to an anisotropic adiabatic deformation so that 
in the limit A^ —> 0 and study the behavior of the solutions of the Seiberg- 
Witten equations as the metric degenerates. The solutions converge either 
to pairs (flat connections, zero spinor) or to vortices on the base of the Seifert 
manifold. 

3.1. Generalities. 

The goal of this subsection is to describe the 3-dimensional Seiberg- 
Witten equations and then derive a few elementary consequences. 

Consider a compact, oriented m.a.c 3-manifold (N,g). Fix a spin struc- 
ture on N defined by the square root /C"1/2. The data entering the Seiberg- 
Witten equations are the following. 

(a) A spinc structure determined by the line bundle L. 

(b) A connection A of L —> iV. 

(c) A spinor </> i.e. a section of the complex spinor bundle SL associated 
to the given spinc structure. 

The connection A defines a geometric Dirac operator 2)A on §£• The 
Seiberg-Witten equations are 

f      2>A0   = 0 
I c(*FA)    =   rfo) 

where * is the Hodge *-operator of the metric 5, r is defined in (2.6) and c 
is the Clifford multiplication described in (2.5). We will omit the symbol c 
when no confusion is possible. 

The Seiberg-Witten equations have a variational nature. Fix a smooth 
connection AQ on L and define 

f: Ll>2(SL®iT*N) -tR 

by 

fOM = - / a A (FAo + FAo+a) + - /  (fatoAo+atydvg. 
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Lemma 3.1.  The differential of f at a point c = (0, a) is 

dcf(<j),a)= / (d.c"1^^))-*^^)^^- / Dlt^'DAo+a^dvg. 

Proof. Set A = AQ + a. We have 

dcj (0, d) = —      f (^ + t^, a + to) 
az\t=o 

= ^J dA(FAo+FA) + ^J aAdd- J VKt^VA^dvg 

(Stokes) 

= I [ a A (FAo + FA) + i / a A da 

--I  ((/), c(a)4>) dvg -Viz (<j), 5)A</>} dvg 

= I dAFA + - j   {(j),c{a)(t>)dvg+ I V\t(<j),®A<f))dvg. 

Since both a and FA are purely imaginary we get 

/  (&, *FA) dvg = - / a A FA 
JN JN 

where * is the complex linear Hodge *-operator. On the other hand, a simple 
computation shows that (d = ^ dfift) 

/   (cj), c(a)<l>) dvg = -      y^di (cj),c{r]i)(j)) dvg 
JN JNi 

= -    ^2\dimA^c(m)(t>)vi)dvg 

=   2    [     {d,C-l{T{(t>)))dVg. 
JN 

Putting all the above together we get the lemma. □ 
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The gauge group <3L = Aut (L) = Map (AT, S1) acts on the space of pairs 
(if), a) by 

7 •(?/>, a) := (7"0,a-7"1^7)- 

Moreover 

f(7-UM)-f(<M = - /   T"1^ A FAo = 27ri /  7-^7 Aci(Ao) 

Thus f is unchanged by the gauge transformations homotopic to the con- 
stants. We see that the critical points of f are precisely the solutions of the 
Seiberg-Witten equations. In particular, the above considerations show that 
the moduli space of solutions is invariant under the action of 0^ and so it 
suffices to look at the quotient of this action. 

The Seiberg-Witten equations have a more explicit description once we 
choose an adapted orthonormal frame (1(1X2- Using the decomposition 
§L £ /C"1/2 ® L © /C1/2 ® L we can represent (f) as 

0 = 
a 

0 

If AT is a (if, A)- manifold and we denote by W± the covariant derivatives in- 
duced by A on K±l/2®L then the Seiberg-Witten equations can be rephrased 
as 

(3-1) 

(l'V+)*a - iV^/3 +\p   =   0 

iV^a + bV+/3 +Aa   =   0 

i(|a|2 - |/?|2)   =   iFA(Ci,C2) 

\ap   =   e®FA(Ci + iC2,C) = -^'1 

In particular, note that 

V A diA) = ^(Cl, C2)*? A V
l A V

2 = ~(\a\2 - \(3\2)dvolg. 

Hence 

(3-2) ^7?ACl(yl) = ^(||a||2-||/?||2) 
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where ||-|| denotes the L2- norm over N. 
In terms of the operators ZA and TA defined in §2.3 we can rewrite the 

first two equations as 

The anti-commutation relation (2.16) shows that if (</>, A) is a solution of 
the Seiberg-Witten equation then 

(3-3) 

A2 a 
= (ZA + TA)

2
^ = Zfo + Tfo - XTA(j> + 

0     a/? 
ap    0 

a 

3.2. Adiabatic limits. 

We now have all the data we need to study the behavior of the Seiberg- 
Witten equations as the metric is anisotropically deformed until it degener- 
ates. 

Let (N,r],g) and /C1/2 as above. As usual we denote by (N^r/s^gs) the 
anisotropic deformation defined in §1.1. For each S > 1 we will refer to 
the Seiberg-Witten equations defined in terms of the metric gs as the SW$ 
equations. More explicitly these are (|^|p1 = l,   Iry^^l) 

(3.4) 
■+, SiV^a + bV /? +7* =   0 

^Y7+ (bV  )*a - (5iV+/3 +1/3 

i(M2-|/?|2)   =   iFv(Ci,C2) 

iap   =   <5e(g)Fv(Ci + iC2,C) 

The operator ZA depends on the metric gg through the Levi-Civita connec- 
tion V"1 on JC while TA is unaffected by the adiabatic changes in the metric. 
Note that 

lim -^ZAJ = ZA,™- 
6—►oo 0 

We will fix a smooth connection V0 on L. The Sobolev norms will 
be defined in terms of this connection and its tensor products with the 
connections induced by the Levi-Civita connection of the fixed metric g = gi. 
An arbitrary connection on L will have the form 

V0 + ^,   AeeufttotfiN). 
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For 1 < p < oo we denoted by ||'|| the Z^-norm with respect to the metric 
g = <7l5 by ||'|| the L2-norm with respect to the same metric while ||«||^ will 
denote the L2-norm with respect to the metric gs- 

We denote by 21/, the affine space of smooth connections on L and by Ss 
the collection of gauge equivalence classes of solutions of SWs- 

Theorem 3.2. Let (JV, 77,5) as above and fix a spinc structure defined by 
a complex line bundle L (so that the associated complex spinor bundle has 
determinant L2). Assume that for each sufficiently large 6 

Then any sequence {[^,-4^] G Ss ; <S S> 1} admits a subsequence which 
converges in the L1,2 topology to a pair 

[^AleCaLxC^CLJJ/AutCL) 

satisfying the following conditions. 

(3.5) ^(CO^O 

(3.6) '"V4"/9 = Vf'a = 0 

(3.7) (l,V+)*a = V^+y3 = 0 

(3.8) Hall • Hill = 0. 

The equations (3.6) and (3.7) can be equivalently rephrased as 

(3.9) ZA^(j> = TA(j> = 0. 

Definition 3.3. A pair (0, A) satisfying (3.5)-(3.8) will be called an adi- 
abatic solution of the Seiberg-Witten equations. The collection of gauge 
equivalence classes of adiabatic solutions will be called the adiabatic moduli 
space corresponding to the fixed spin0 structure. 

Proof. The proof of the theorem relies essentially on the following uniform 
estimates. 
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Lemma 3.4. There exist i?i, R2 > 0 such that 

(3.10) sup|^(x)| <Ri V(5>1 

and 

(3.11) II^WIIoo^^J   W>1. 

(3.12) II Kl • 1^11|2 = 0(1/6)   as S^oo. 

Proof of the lemma.   As in Lemma 2 of [KM] we deduce that 

sup |^(a;)I < sup |^(a:)| 

where ss denotes the scalar curvature of gs- The estimate (3.10) is now a 
consequence of (1.16) in §1.2. 

To prove (3.11) note first that F(A$) splits into two orthogonal parts. A 
horizontal part 

Fh(As) = F12(AsWAr]
2 

and a vertical part 

FV(AS) = Foi(As)ri A 771 + F2O(AS)T)
2
 A 77. 

The third equation in (3.4) coupled with (3.10) yields 

LF,l(J4*)||    =0(1) as 6-»oo. 

The fourth equality in (3.4) implies 

(3.13) im^lL < const.*-1 || M • |/%| IU = OiS-1) 

where 

0(5 = 
as 

To prove (3.12) we will use (3.3) and we get (writing ZAS instead of the 
more accurate ZA6I6) 

^sfo = (ZA6 +TA6)
2
^6 

0      asPs 
dsfis      0 

as 
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Taking the inner product with (/)$ in the above equality and then integrating 
by parts with respect to the metric gs we deduce 

The Cauchy inequality yields 

(3.14)   wz+M* + WTAMI + 2IIM • Iftl |g 
<\^\-m\s{\xs\-\\<t>6\\s+\\TASMs) 

Since |A^|, WfoW's — 0(5~1) we first deduce from the above inequality that 

WTAMS^OV"
3
'
2
) 

and then 

ii M • m \\s=ov-W). 
Up to a rescaling this is precisely the inequality (3.12). □ 

Prom the estimate (3.11) we deduce that As (modulo Coulomb gauges) is 
bounded in the L1,p-norm for any 1 < p < oo. Thus a subsequence converges 
strongly in U* and weakly in LliP to some Holder continuous connection A 
on L. The fourth equation in (3.4) and the estimate (3.12) we have just 
proved show that 

= 0(6-2). 

For each connection A on L set 

For 8 — 1 we will write simply D^. Recall that D^ = S)^ — A$/2. 
The condition (3.9) is a consequence of the following auxiliary result. 

Lemma 3.5 (Adiabatic decoupling lemma).    Consider a sequence of 
smooth connections As € 21L satisfying the following conditions. 

(i) As converges in the weak L1,p topology (p > 3 = dimN) to a Holder 
continuous connection A. 

(») *As = o(6 1) as 6 —► oo. 

Then any sequence fo G C00
(§L) such that 

||^|| = 0(1) as6->oo 
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and 

113)^11 = 0(1) 

contains a subsequence which converges strongly in L1'2(Sx/) to a spinor </> E 
L

1,2
(SL) satisfying 

(3.15) ZA,oo<f> = TA(t> = 0. 

(Above, for simplicity, we denoted by 2)^6 the Dirac operator 'DAS,6-) 

Proof Set ZA6 = ZA6i6, ws = ^Asfis and Es = ^ZA6. The coefficients of 5^ 
converge uniformly to the coefficients of ZA^OO- More precisely, the condition 
(i) implies Es = ZA^OO + R where the zeroth order term R satisfies 

(3.16) PIU = o(l) 

Note that although Es is defined using the metric gs it is formally self-adjoint 
with respect to the metric gi as well. 

The equation 2)yi6</\5 = ws can be rewritten as 

(ZA6 + TA6)(J)6 = —^6^6 + W6 

so that 
||(^+r^)^||2<2Ai||^||+o(l) 

Using the equation (2.16) we get 

JN 

= \\ZAM
2
 + \\TAsM? -^6 [ (TAsfc, fa) dvg 

JN 

+ /   (^s(f>sAs)dvg 
JN 

where 

Hence 

62 ||s^l||2 + nr^^H2 < H^ll {\xs\ • lir^^n + m\\ + 2X1 m\ + o(i)}. 
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Since ||<fo|| = 0(1) and ||^|| = 0{6 F^\) = o(l) we deduce 

62 ||H^1||
2
 + nr^^ii2 < c (s-1 \\TAM + <r2 + 0(1)). 

This yields 

(3.17) ||T^|| = o(l) and   ||H^|| = o^"1). 

We know have 

The estimates (3.16) and (3.17) show that ||^|| = 0(1). The elliptic es- 
timates applied to the fixed elliptic operator D^ (with Holder continuous 
zeroth order part) show that 

ll&llu < C(U6\\ + ||^y. 

Thus (j)s is bounded in the L1'2-norm so a subsequence (still denoted by <fo) 
will converge strongly in L2. Using again the elliptic estimates we get 

Us, -&2||lj2 < caifo -M + ll^JI + H^ll). 

This shows the (sub)sequence (j)^ is Cauchy in the L1,2 norm and in particular 
it must converge in this norm to a </> which must satisfy 

ZA,OQ<t> = TAQ = 0 

due to (3.17). The proof is complete. □ 

We can now conclude the proof of the theorem. Prom the above lemma 
we know that <fo converges in L1,2. By Sobolev inequality the sequence (/)$ 
must also converge in LP, 1 < p < 6. The last two equations in (3.4) allow 
us to conclude that FA6 is actually convergent in L3 so we can conclude that 
modulo Coulomb gauges the connections As converge strongly in L1,3. 

Note that (f> satisfies a condition slightly weaker than (3.8) namely 

II M • m II=o. 
We will now prove this implies (3.8). We can rewrite the limiting connection 
VA as a sum VA = V0 + B, where B € L^End (§L)) for any 1 < p < oo. 
Note that a and (3 satisfy the elliptic Dirac equation with Holder continuous 
coefficients 

(3.18) 2W = 0 
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This equation can be rewritten as 

(3.19) 2>^ + QB0 = O 

where QB 6 L1^(End(SL)), 1 < p < oo. Since (/> e L^^SL) n I/^SL) we 
deduce 

Using this in (3.19) we deduce </> e L2'2. Note that V^ = V^,=fc ± A/2 where 
VA denotes the spinor connection on §£, obtained by tensoring the connec- 
tion A with the Levi-Civita connection defined by the metric gi. Applying 
bV to the second equation in (3.18) and using the commutator equality 
(2.14) we deduce after some simple manipulations that 

^V*a - V^a + |/?|2a + AbV/? = 0. 

Since b V/3 = 0 and a ® /? = 0 we deduce 

^^a - V^a = 0. 

We can rewrite the above equation as 

bV0(bV0)*a - V^a + P(Va) + Qa = 0 

where the "coefficient" P e L1'2 C L6 while Q G L2 is at least L2 (it 
is a linear combination of the connection A and its derivatives) while the 
differential operator above is a generalized Laplacian. This is more than 
sufficient to apply the unique continuation principle in Thm. 4.3 of [H] 
to deduce that if a vanishes on an open subset of N then it must vanish 
everywhere. 

A dual argument proves a similar result for /?. Since the product a® (3 
is identically zero we deduce that one of them must vanish on an open set 
and hence everywhere. The equality (3.8) is proved and this completes the 
proof of the theorem. □ 

For later applications to Seiberg-Witten-Floer theory it is very impor- 
tant to present a more compact description of the adiabatic Seiberg-Witten 
equations (3.5)-(3.8). This is achieved in our next result. 

Proposition 3.6.   The following conditions are equivalent. 

(i)  The pair (il),A) is an adiabatic solution of the Seiberg-Witten equa- 
tions. 
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(ii)   The pair (V>, A) is a solutions of the equations 

(SWW:      {       ***   =    ^ 
c(*FA)   =   T(V0 

Proof. Note that the first equation can be rephrased as D^ = 0. The 
implication (i) =4> (ii) is now obvious. We prove the converse. Set as usual 
ip = a © (3 The first equation of (SWOQ) implies 

o = D^V = zl^ + rjv + {^oo, TA}^ 

Using (2.18) we deduce 

Zloo + n + i 0       F0/ 1 

-F7      0 
a 

(3 
= 0. 

Taking the inner product with tp and then integrating by parts over N (using 
the second equation of (SWOQ)) we deduce 

ll^^||2 + ||rAvil2 + 2||H-|^|||2 = o. 

This last equality implies immediately the conditions (3.6) -(3.8) so that 
(?/>, A) is indeed an adiabatic solution. □ 

Remark 3.7. The equation (SWoo) is also equivalent with (SWoo)6 which 
is defined as (SWQO) but using the deformed metric gs and its associated 
geometric objects instead of g. 

3.3. The Seiberg-Witten equations on circle bundles. 

When N is the total space of a circle bundle over a surface the above 
result can be given a more precise form. 

Let Nt be the total space of a degree £ principal 51 bundle 

S1 ^ Ne^ E 

where E is a compact surface of genus g > 1. Fix a complex structure on E 
and denote by K the canonical line bundle. Then 
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Moreover, according to (1.22), in this case the limiting connection V00 on 
/C coincides with the connection pulled back from K. 

1/2 Now fix a spin structure on S by choosing a square root K^ on E. 
This defines by pullback a spin structure on N. Denote by (A^,^, h$) the 
Boothby-Wang (if, A) structure described in §1.3. 

Fix a spinc structure on N given by a line bundle L^. If the Seiberg- 
Witten equations SW$ corresponding to the above spinc structure have so- 
lutions for every 6 » 1 we deduce from the above theorem that L^ admits 
a connection A such that ^(C') — 0. This implies TT+FA = 0 where TT* 

denotes the integration along the fibers of TT : iV^ —> S. From the Gysin 
sequence of this fibration we deduce that ci{Ljsr) € 7r*H2(E) i.e. Ljy is 
the pullback of a line bundle Ls —» S. In particular we have the following 
vanishing result. 

Corollary 3.8. Fix a spinc structure on Ng which is not the pullback of 
any spinc structure on E. Then the Seiberg-Witten equations SW$ have no 
solutions for any 6 » 1. In particular, when \£\ = 1 then for any nontrivial 
spinc structure on N and for all 6 ^> 1 the equations SWs have no solutions. 

Now fix a spinc structure on Nt defined by a complex line bundle Ljy = 
7r*Ls- Any adiabatic solution of Seiberg-Witten equation is a pair (0, A) 
satisfying the following conditions. 

(a) A connection A on Ljy with horizontal curvature i.e. FA(C, •) = 0. 

(b) Sections a e /C"1/2 (8) Ljv and /? € /C1/2 ® LN such that 

ZA,CO<I> = TA(j) = 0^^ bVA/? = 0 = Vfa and (bVA)*a = 0 = Vf/3. 

M • m = 0 
where the derivation V^ is the tensor product of the corresponding 

zbl/2 derivations on 7r*K^      and LN. 

(c) i(M2-|/?l2) = tfMCi,C2). 

We denote by Aoo = Aoo(^ g, LN) the collection of gauge equivalence classes 
of adiabatic solutions and we will call it the adiabatic moduli space. Note 
that it is not a priori clear whether any adiabatic solution is in fact an 
adiabatic limit. All we can state at this point is that 

Soo :=lim«S$ C Aoo- 
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We will further disect the adiabatic moduli space.  It can be naturally 
decomposed into reducible and irreducible parts 

Ax> = ^rfU.4£r:={(<M)€Ao; <f> = 0}l){(4>,A)€AOQ; <j>^0}. 

A. Reducible adiabatic solutions, i.e. ||a|| + \\/3\\ = 0. In this case 
the connection A must be flat. Thus it is uniquely defined by its holonomy 
representation 

hoU : 7ri(J\fc) -> S1. 

The fundamental group of Afy can be presented as 

ni(Ni) = laub1,...ag,bgJ\f-e- JJa^&i] = [ajj] = [bkJ] = 1,   Vj,fc\ 

where / denotes the homotopy class of a fiber. We conclude that the space 
of its S,1-representations is a 2g + 1-dimensional torus if £ = 0 while if £ ^ 0 
it is a collection of \£\ tori T29 parameterized by the group of \£\-th roots of 
unity. For any representation p : 7ri(iV) —> .S1 we have p(f) = exp(27rfci/^) 
for some k G Z and if we denote by Ljv,p the line bundle it determines on N 
we have 

(3.20) ci^p) = k e Zw C H2{Ne, Z). 

To see this, denote by Ap flat the connection on LJV,/? with holonomy p 
and set Bp := Ap + ik/lrj. Then the curvature of Bp is purely horizontal, 
FBP = ik/Mrj and its holonomy along the fibers is zero. Thus Bp is the 
pull-back of a connection Dp on a line bundle Ls,p —» 2 whose curvature 
satisfies 

7T*FDp = ik/Mrj = -2ik *NV = -2ik7r*dvolx- 

Thus 
ci(Dp) = k/irdvolx 

i.e. degLs,p = k since by construction vol(E) = TT. The equality (3.20) 
now follows from the equality Lj^^ = '7r*Ls,p combined with Gysin's exact 
sequence. To summarize, when ci(Lj^) is a torsion class, the collection 
of gauge equivalence classes of reducible adiabatic solutions is a torus of 
dimension 2g. 

Any reducible adiabatic solution is obviously a bona-fide solution of SWs 
for all 6 > 0 and in particular it is a limit of (reducible) solutions of the 
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Seiberg-Witten equations. Naturally one wonders whether there exists a 
sequence (0$, A^) of irreducible solutions of SWs converging to a reducible 
adiabatic solution. Our next result will show this thing is not possible for 
nontrivial spinc structures. 

Proposition 3.9. Fix a spinc structure on Ngj defined by a nontrivial line 
bundle LN —> N such that C^LN) is torsion. If ((f)$,As) is a sequence of 
solutions of SWs such that As converges (in the sense of Theorem 3.2) to a 
flat connection then (j)s = 0 for all 6 S> 1. 

Proof. Assume the contrary. Thus, for all 6 » 1 there exists (As^s) G Ss 
such that cfo 7^ 0. Set ips = Tutl^s so that HVtoll =: 1> V5. We can now apply 
the adiabatic decoupling lemma to the sequence (As, ips) to conclude that 
there exists ip £ L1,2(§£,) such that ||^|| = 1 and 

ZA,OOII> = TA<iP = 0 

where A = lim^. Thus ip is a nontrivial section of 7T*(K^ ' © K^ ) ® 
L which is covariant constant along the fibers of N with respect to the 
connection (V00'" 0 V00'*) ®A. The holonomy of V00 along a fiber is trivial 
(since it is a pullback connection) and since ci(L) ^ 0 the holonomy of 
the flat connection A around a fiber is nontrivial. Hence there cannot exist 
nontrivial, fiberwise covariant constant sections of §£• This contradiction 
concludes the proof of Proposition 3.9. □ 

B. Irreducible adiabatic solutions, i.e.  ||a|| + ||/?|| ^ 0. 

Lemma 3.10. // ||a|| + ||/?|| ^ 0 then (modulo gauge transformations) the 
connection A is the pull back of a connection on a line bundle Ls —> S. 

Proof of the lemma. Because the connection A is vertically flat one can 
prove easily that the holonomy along a fiber is independent of the particular 
fiber. Since either a or /? is not identically zero and is covariant constant 
along fibers we deduce that the holonomy along fibers is trivial. □ 

Consider now an irreducible adiabatic solution (a © /?, A). Thus there 
exists a connection A^ on Ls such that 7r*Ls = Ljq and TTMS = A. Since 
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a and $ are covariant constant along fibers they can be regarded as sections 
of Ls ® K^ ' . We can decide which of a or /? vanishes. More precisely if 

— 1/2 
degLx; <degi;Cs      =1-3 

1/2 then the line bundle Ls ® i^s cannot admit holomorphic sections so that 
/J = 0. In particular, a ^ 0. In this case, using the equality (3.2) we deduce 
after an integration along fibers that 

l-<7>degLs = ^y   i/AFi4 = -||a| 

This is impossible since a ^ 0. If 

1/2 
degLs > degtfj/   =flf-l 

—1/2 then Ls ® i^s cannot admit antiholomorphic sections so that a = 0. 
Reasoning as above we deduce another contradiction so we can conclude the 
adiabatic limit set is empty when | degLsl > 9 — 1- 

We now analyze what happens when | degLs| < g — 1. We will discuss 
only the case 1 — g < deg Ls < 0. The other half is completely similar. 

Using the equality (3.2) again we deduce 

(3.21) ^(|H|2-P|2)=degLs<0. 

Since one of a or /3 is identically zero we deduce that a = 0.   Hence /3 
1/2 is a nontrivial holomorphic section of Ls ® K^ . Moreover, deg Ls ^ 0. 

This shows that when g = 1, for any spin0 structure, the corresponding SW 
equations have no irreducible adiabatic solutions. 

We see that the irreducible part of the adiabatic limit set is determined 
entirely in terms of of objects defined on the base of iV. Using the termi- 
nology of [Br] (or [BGP]), the pair (^E^E) is a vortex pair on Ls —► S. 
Furthermore, in [Br] it is shown that the correspondence </> *-» {(/)~1(0)} 
(multiplicities included) identifies the moduli space of gauge equivalence 
classes of vortex pairs on LE with a symmetric product S(d) of d copies of 
E? d = (g — 1) — | degLsl (see also the discussion in §4.2.) 

1/2 When deg LE = 1 - g the bundle LE ® K^ is topologically trivial. 
The only topologically trivial holomorphic line bundle which admits a holo- 
morphic section is the holomorphically trivial line bundle. Hence, when 
deg LE = 1 — g there exists exactly one irreducible adiabatic solution (up to 
a gauge transformations). 
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The above picture resembles very much the exact computations in the 
trivial case H = 0. There are however some notable differences. When H = 0 
if the spin0 structure is non-trivial there exist no reducible solutions for the 
simple fact that there exist no flat connections. This is no longer the case 
when l ^ 0. Moreover, according to Gysin's exact sequence the kernel of 
the morphism 

TT* : Z £ #2(E,Z) -+ H2(N£,Z) 

is the subgroup £Z. If £ = 0 this means the spinc-structure Ljy uniquely 
determines a line bundle Ls -^ E such that 7r*Ls — LJV. 

If £ 7^ 0 there are infinitely many line bundles on E with the above 
property and their degrees are congruent modulo £ with ci(Lj^) e Z? C 
H2{Nz, Z). On the other hand, in case B the only line bundles on E relevant 
in the adiabatic limit are those of degree in the interval [— (g — 1), (g — 1)]. 

Assume now \£\ > 2g and 

ci(LN) e Vgti = {g,g + 1, • • • , \£\ - g} (mod £) c Zi 

Then there is no integer n such that n mod £ E Vgj and 0 < |n| < g — 1. 
In other words if CI(LN) £ Vgj then there exists no line bundle Ls —> S of 
degree 0 < | degLsl ^ g — 1 such that 7r*L^ = LJV. We have thus proved 
the following result. 

Corollary 3.11.     (a) // \£\ > 2g > 4 and Ljsr -^ Ne is a line bundle on Ni 
with CI(LN) G Vg}£ then the collection A1^ = 0. 

(b) If g = I, \£\ > 1 and L is nontrivial, then the set AQO = 0.   If L is 
trivial then A1^ = 0. 

The range Vg/ of spin0 structures will be called the adiabatically stable 
range. Using Proposition 3.9 we deduce the following consequence. 

Corollary 3.12. For any spin0 structure in the stable range the correspond- 
ing SWs equations have no irreducible solutions for 6 » 1. 

Remark 3.13. The above arguments extend easily to most Seifert mani- 
folds. More precisely, as indicated in [FS], many Seifert manifolds are finite 
quotients of circle bundles. One can easily incorporate a finite action in the 
above arguments. The adiabatic solutions on such a Seifert manifold are 
then invariant adiabatic solutions on a circle bundle. This can be conve- 
niently reformulated using the language of orbifolds as in [MOY]. 
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4. Variational features of the adiabatic moduli space. 

In this section we prove that the irreducible components of the adiabatic 
moduli space (over a smooth 51-fibration) are Bott nondegenerate as critical 
sets of a suitable energy functional. 

4.1. Algebraic and analytic preliminaries. 

We continue to use the same notations as in §3.3. Fix a line bundle 
LE —> S and set L = 7r*Ls —► N. 

The configuration space for all the SW equations will be 

c = a1'2(L)eL1'2osL) 
consisting of pairs of L1'2-connections and spinors. This is a metric affine 
space but the L1,2-metric obviously depends on the Riemann metric on N. 
When using the deformed metric gs we will write Cs instead. 

This configuration space is acted upon by the gauge group 0^ consisting 
of L2'2-gauge transformations of L. For each c = (0, A) we will denote by 
[c] = [0, A] its gauge equivalence class. 

Using Lemma 3.1 we deduce the solutions of (5W)oo are critical points 
of the energy functional 

<£(<M) = f(^) ~ M2. 

This energy functional depends on the metric gs and we will indicate this 
dependence by a ^-subscript. (We will use the same convention when indi- 
cating various Sobolev norms.) However, its critical set which is Aoo does 
not depend on 6. Lemma 3.1 shows that the L2-gradient of (Bs is 

V(B6 = (Vd
A - X6/2)^ 0 c^fotyO) - *FA). 

GM) 

Since ci (L) is torsion the functional (S^ is (S-invariant and thus descends to 
a well defined functional 6^ on 

Bs:=Cs/(&. 

We will be interested in its restriction to the irreducible part 

which is a Hilbert manifold (see e.g. [FU]). The following is the main result 
of this section. 
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Theorem 4.1. For 8 3> 1 the energy functional (£$ is Bott nondegenerate. 

To prove the Bott nondegeneracy of ^ we have to establish two things. 

(a) A"^ is a smooth manifold and 

(b) the Hessian of ^ along A*^ is nondegenerate in the normal directions. 

The first task is to describe a suitable functional set-up and to keep track of 
the gauge action. We will work with the undeformed metric g on N leaving 
the reader to perform the obvious changes to g$. Also, when speaking of 
adjoints of operators we will always understand L2-adjoints. 

The group 0 is a Hilbert Lie group (cf. [FU]) and its Lie algebra can 
be identified with the space g := L2'2(iV, iM). The exponential map has the 
form 

0 3 if » (exp(i/) : N -> S1). 

The tangent space to the orbit O^A of © through (</>, A) is the range of the 
infinitesimal action operator 

£ = AM 
: S "+ * := £1,2

(SL) © L^iiT+N),    if *-> if(/> © (-idf). 

The tangent space to B* at [0, A] can be identified with the L2-orthogonal 
complement to TfaA&faA in 3£ and ultimately, with the kernel of £*, the 
adjoint of £. We will treat X as a real Hilbert space and we will generically 
denote its elements by (^, id) where d denotes a real valued 1-form. The 
adjoint of £ is determined from the equality 

/  /iJi/, ip®ia\dvg=  /  / • JHe £*(^ © id)d^,    V/, ^, id 

upon integrating by parts in the left-hand-side. A simple computation yields 

(4.1) £*(^ © id) = -kfd - Dm ($, ^ G L2(N, iR) 

where (•, •) denotes the complex, pointwise inner product in the fibers of §L- 

The affine structure on C can be used to linearize V<£ at a given config- 
uration (</>, A). More precisely, define the unrestricted Hessian at (0, A) as 
the operator 

Sj = ^A : X - 2) := L2^) © L2(iT*iV) 

defined by 
//I 

^(^i«) = ^ 
t=o 
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A simple computation yields 

(4.2) $ 
id 

DAV* + c(id)(/> - A^/2 
—i * da + f((^, '0) 

The term f(0,-0) needs further clarification.  It is formally defined by the 
equality 

d 
f^):=dt 

T(0 + ty) 
t=0 

where we regard r as a quadratic map r : §£ 
description 

iT*iV.   Using the local 

1 

i=0 

we deduce after some simple manipulations that 

2 

(4.3) f(^) = Dm J^ (^cfa)^. 

Sometimes it will be convenient to regard f as a symmetric endomorphism 
of §£• To obtain its explicit description we must derivate the equality 

T(0) = <W-M72 

along tp and we get 

(4.4) f (</>, ^) = -0 ® 0 + ^ ® ^ - 9te /<£, ^\ . 

The affine connection on C* we used to define the Hessian of (£ is (25- 
equivariant and thus defines a connection on the quotient B* which can be 
used to define the Hessian i} of €. This leads to the following formula for 

£LM(^ 
id) = M(M3(^ id)> v(^ii<i) G ker £0,A 

where ^Jtoj^^ denotes the L2-orthogonal projection onto the kernel of ££ A. 
We will be interested only in the eigenvalues of iL,^. In searching for 

eigenvectors and eigenvalues we will use a well known trick in gauge theory. 
A pair (T/J, id) £ ker £* is an eigenvector of ij corresponding to the eigenvalue 
fi if and only if there exists an infinitesimal gauge transformation if G fl such 
that the triple (ip, id, if) is a solution of the following system of p.d.e.s 

(4.5) 

-ft<M 
if £* 

£ 
0 if M 0 
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S) is called the stabilized hessian of <£ at (0, A). A solution of the above 
equation will be called a ^-eigenvector of f). The proof of following result is 
left to the reader. 

Lemma 4.2. The partial differential operator fi^A is elliptic and selfad- 
joint for all (cj), A) G ^4^. 

We conclude this subsection with a variational identity which will play 
a key role in the sequel. Set 

3~X@Ll>2(N,m). 

Lemma 4.3 (Main variational identity).    Fix (</>, A) € AZQ. If 

is a fA-eigenvector of fi^A then for all (j) 6 L1,2(Si,) we have 

VKz(J   (pAJ>,T>Ai)dvg + J ^i)\ct>\2dv, 

= JHe (J(p - A/2) (D^, i) + Y (^ i) dv, 

where v = fj, + A/2, DA is the adiabatic Dirac operator DA = ZA,OO + TA> 

while Va = V^ denotes the covariant derivative on §L along the vector field 
dual to a. 

Proof The equality (4.5) has the more explicit form 

(S)A^ + c(id)(/> - A^/2 + i/0    = /Mtp 

—i * da + f((/), ^i') — id/ = //id 

d*d = 3m U), <f>\ 

Now apply 2)A to the first equation in (4.6). We deduce 

(4.7) 3)^ + 2>Ac(ia)0 + ©AW) = ^DA^ 

We can transform the last term in the left-hand-side of (4.7) using the 
classical identity ©A^/^ = c{^df)(f> + if1)A</>- Similarly since ©^^(id) = 
—c(id)S)A + {2)A,c(id)} we deduce from Proposition 3.45 of [BGV] that 

S)Ac(id) = -c(ia)3)yt - 2iVa + c(i * da) + id*a 
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Recall now that 2)A</> = A0/2 since (0, A) G Ax>- Puting all these facts 
together in (4.7) we deduce 

(4.8) ©^ + {-Ac(id)/2 - 2iVa + c(i * da) 

+c(id/) + i(d*d + A//2) } 0 = i/S)^. 

The second equation in (4.6) gives c(i*dd) + c(id/) = f(0,^O — /xc(id) while 
the third one implies (d*a)<j) = (3m (ip^cf)})(/). Thus we can rephrase (4.8) 
as 

(4.9) 

©^ - uc(ia)(j) + f(</>, ■0)0 + i(Jm /^, </.\ + A//2)0 = i^D^- 

Using the equality ©A = D^ + A/2 we deduce 2)^ = D^ + AD^ + A2/4 and 
(4.9) can be further transformed to 

(4.10) D^ - vc(ia)<l> + +(<(>, i>)4> + ipm (i>, $) + \f/2)<t> 

= {(ji - A/2)DA + A/x/2}^. 

Using (4.4) we deduce that 

f(4>, ^)^ = ($, ^<j>+ (</>, <l>)iP-Xt ^, ^^ «/»• 

Hence we have the pointwise equalities 

9ie (f ((/>, ^)0,0) = jRe ((0, ^) ((/>, (/>) + H2 (^, 0) - (iHe (0, ^)) (0, (/>)) 

= -3m (fa <ip) • Ofm ^, ^ + |(/>|29te (ij>, <j>) . 

Similarly we get 

9\z (i3m U), A fa ip) = ^m (fa TA • 3m (fa 4>\ 

Hence 

(4.11) 

Xt { (f (</>, ^^ </») + (Dm (^ </») </», ^ } = H2$ne (V;, ^) . 

If we now take the real inner product of (4.10) by fa then integrate by parts 
and use (4.11) we obtain the main variational identity. □ 
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4.2. Abelian vortices on Riemann surfaces. 

In this subsection we describe a natural smooth structure on A^. We 
begin by considering a related gauge theoretic problem on a Riemann surface 
E of positive genus g. Fix a Riemann metric h on E and denote by K the 
canonical line bundle with the induced metric and connection. Consider a 
hermitian line bundle L —> E 

An L-valued vortex pair on E is a pair ((/>, A) where </> = a © (3 is a 
section of §£ := L ® K~1/2 © L ® if1/2 and >1 is a hermitian connection on 
L satisfying the vortex equations 

(4.12) 
o   dA 

5%   o 
a 

(4.13) i*FJ4 = i(H2-|/3|2),   IMI • ||/?|| = 0. 

The solutions of this equation were described in great detail in [Br]. Here we 
want to prove some additional facts related to the deformation complex of 
this problem. For brevity we will consider only the holomorphic case (3 7^ 0 
since the anti-holomorphic situation can be dealt with following a similar 
approach. Thus (4.12) +(4.13) can be rephrased as 

(4.14) BAP = 0, *FA = -^m2- 

Note that in the holomorphic case the second equation implies degL < 0. 
The functional set-up is identical to the one described in §4.1 for the Seiberg- 
Witten equations and we will omit references to various Sobolev spaces to 
make the presentation more transparent. 

The space of configurations C = r(L®i<r1/2)ffi2t(L) is acted upon by the 
gauge group Aut (L) whose Lie algebra is i$70(E). The infinitesimal action 
of if G if20(E) on (/?, A) is given as usual by 

GMj^Ci/ZM-itf). 

Denoting the tangent spaces to C by C we can compute the linearization 
T = T^A : C -* r(L ® X"1/2) © in0(S) of (4.14) and we get 

id 

dAP + 2-1/2id0'1p 

i*da- me (B, P 



Adiabatic limits of the Seiberg-Witten equations 379 

id0,1 component is the K~1 -component of id corresponding to the orthogonal 
decomposition T*T> ® C = K © K'1. The normalization constant 2~1/2 is 
obtained from the equality (d/)0,1 = 21/2df. We will sometimes find it 
convenient to write P0,1d instead of d0,1. 

The deformation complex of this problem is the following sequence of 
partial differential operators 

(V^A) :   0 -> in0(E) -i r(L ® K1'2) © in^S) 

^r(L(8)if-1/2)©in0(E)-^0. 

Let us first notice the following fact. 

Lemma 4.4. // (/?, A) is a solution of ^4.14^ mtft (3 ^ 0 ^Zien 

(a) (T^A) is an elliptic complex. 

(b) i?0(^,A) = iJ2(y^) = o. 

(c) dimR ffH^AA) = 2d+(L) := 2(» - 1 + degL). 

Proof, (a) The fact that (V/?^) is a complex (i.e. To/ = 0) is elementary and 
is left to the reader. The ellipticity follows by observing that modulo zero 
order terms this complex is the direct sum of the Hodge-DeRham complex 
on A*T*S and the (degree shifted) Hodge-Dolbeault complex corresponding 
to the line bundle L <g> if1/2. In particular we have the following equality of 
Euler characteristics (over M) 

(4.15) x(V) = x(S) - X(L ® K1'2) = 2(1-g- degL). 

(b) Since the infinitesimal action of Aut (L) on (/?, A) is free (/3 ^ 0) we 
deduce H0(V) = 0. To prove that H2(VpiA) = 0 we rely on the ellipticity of 
the complex and it suffices to show ker T* = 0. Let (a, if) G ker T* that is 

(4.16) I mt /?0®ia),a®if\dvh = Q   V/3©idGC^A. 

Several clever choices of $ and id in (4.16) will produce the desired conclu- 
sion. Let us now describe these choices. 

• ft = 9^a, d = 0. We get 

[ \d*Aa\2dvh= [<Rz(d*AaJp)dvh 
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and integrating by parts in the right hand side we get 

(4.17) f \d*Aa\2dvh = f JHe (a, (0/)/?) dvh 

• /? = 0, a = *df. We get 

2-1/2Jnz (iP^\*df)(3,a)dvh = J \df\2dvh. 

The term in the left-hand-side needs further clarification. We will 
work out the expression of the integrand in local conformal coordinates 
(x,y) on S. Set z = x + iy. We have *df = fxdy — fydx. Since 
dx = (dz + dz)/2 and dy = —i(dz — dz)/2 we deduce 

2-1/2p0,i(^) = i^ 

This yields 

(4.18) -We / ((df)0,a)dvh = / \df\2dvh 

Coupling (4.17) and (4.18) we deduce df = 0 and &%(* = 0. 

• 0 = 0, d arbitrary. Since df = 0 we deduce 

f y\e(ia0'1,/3a)dvh = 0,   Vd. 

Hence /5a = 0. Since /? is a nontrivial holomorphic section its zero set 
is finite so that a = 0. 

• 0 = j3, a = 0. We get 

',2dvh = 0. /E/I/?|
2 

Since / is constant (df = 0) the above equality implies / = 0. This 
shows ker T* = 0. 

Part (c) of the lemma now follows from part (b) coupled with (4.15).       □ 

Corollary 4.5. H1^^) - kerif/?^ where 

H{>%A = TftA 0 IlA : r(L ® i^1/2) © ifl^E) 

^ (r(L (8) ii:-1/2) © ifi0(E)) 0 ifi0(S) 
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is defined by 

H P 
id 

i*dd-UHe //?,/?) 

id*a-i3m /j3,p\ 

Denote by QJ+(L, E) the space of holomorphic L-valued vortices (eq. 
(4.14) ) and by 2J!J. the irreducible part 

2j; = {(/3,A)€2J+;/?^0} 

Then the above lemma shows that if nonempty 971^(5]) := 9J^(L)/Aut (L) 
is a smooth manifold of dimension 2d+(L). Note that if degL ^ 0 then 
QJ+ = QJ^. Moreover, the results of [Br] show that this moduli space is 
indeed nonempty and can be identified with the space of effective divisors 
on E of degree d+(L). This space of divisors can then be identified with a 
symmetric product of d+(L) copies of E. 

When 0 < degL < (g—1) one can construct similarly the space of 9J_(L) 
of antiholomorphic L-valued vortices. Its Aut (L)-quotient will be a smooth 
manifold of dimension 2d-(L) := 2(g — 1) — 2degL (again a symmetric 
product). 

Finally, define 9J(L,E) = 9JC(L), where 0 < |degL| < (g - 1) and 
6 = —sign degL. 

With these 2-dimensional clarifications in place we can now return to 
our original 3-dimensional problem. We have seen that if TT : L^v —* N is a 
complex line bundle over N there exist finitely many line bundles Li —> E 
over the base of N such that 

(i) IdegLil <((/-!) and 

(ii) LN!*ic*(Li),  Vt. 

Denote by C*(Li) the space of irreducible configurations for the L^-vortex 
problem on E and by C^, the space of irreducible configurations for the 
Seiberg-Witten equations. Then we have the equalities 

V<E-1(Q) = <5N-Un*Z}(Li). 
i 

The adiabatic moduli space can then be represented as 

Ve-^O) = UN ■Un*V3(Li)) /<5N. 
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The unrestricted moduli space 

i 

(equipped with the L1,2 topology) is a (25jv-invariant Hilbert manifold. This 
follows from the following simple observations. 

(a) The first observation has an infinitesimal nature, namely if for some 
(0, A) G 7r*2J and some the infinitesimal gauge transformation if G 0 
the induced tangent vector £^(1/) = (i/</>, —id/) on CM is actually 
tangent to 2J then if must be the pullback of some infinitesimal gauge 
transformation on S. 

(b) The second observation has a global character namely that the stabi- 
lizer of each component 7r*2J(L;) coincides with the pulled-back gauge 
group 7r*0x;. 

The details can be safely left to the reader. We can now conclude that the 
quotient .AQO can be given a smooth structure. Moreover, the tangent spaces 
can be identified with a cohomology group Hl(ym^) arising from a suitable 
deformation complex. 

4.3. Bott nondegeneracy. 

We now have all the informations we need to prove Theorem 4.1. For 
applications to Floer theory it will be convenient to prove a sharper version 
of this theorem. We assume the base of TT : iV —> E has genus g>2. 

Consider first a vortex pair (^SJ ^E) 
on the base S and we assume it is a 

holomorphic is-valued vortex fa = 00/fe, where Ls —> E is a complex line 
1/2 bundle such that — (g — 1) < deg L < 0 and /3s is a section of Ls ® K^ . Set 

L = 7r*Ls. By pull-back we get a solution (0, A) of (SWoo) where A = TTME 

and</>=(0e/3) = 0e7r*/?E. 
According to Remark 3.7 the configuration (0, A) is also a solution of 

the equation (SW^s- We denote by fis the stabilized hessian of <Es at 
((^, A). This is an unbounded, Fredholm, selfadjoint operator fig : 3(5 —► 3<5- 
For each 7 > 0 define 2% (7) as the space spanned by the ^-eigenvectors 
corresponding to values \fi\ < 7. Since S)s is Fredholm this space is finite 
dimensional. Finally, define J^oo := kerii/^. Via the pull-back map we can 
regard £"00 as a subspace of T^AC C 3- More precisely, the following is true. 
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Proposition 4.6. 

Proof. Consider 

This means 

IaA/3 + 2-1/2id0'1/? = 0 

i*sdd-ilRe(A/5) = 0 

id*d-Dm(/?,/^ = 0 

We claim that (0 © /?, d,0) G ker^^^ i.e.   (conf.   (4.6) with / = 0 and 
DA = ©A - A/2) 

(DA^ + c(id)0 = 0 

-i^Ndd + f((f),ip)   =   0 

d*d - 3m U, A   =   0 

where ^ = 0 © /?. This follows immediately from the following elementary 
observations. 

• Since d is a pullback it is a basic invariant form i.e. 

Lcd = 0,   d(C) = 0. 

This essentially shows that the last two equalities in (4.19) imply the 
last two equalities in (4.20). 

• Since ip is a pullback and so are the connections A and V00 we deduce 
that ZA^OQIP = 0- Using the identity D^ = ZA,OO + TA it is not difficult 
to see that the first equality in (4.19) implies the first equality in (4.20). 
We leave the reader fill-in the missing details. 

□ 
Our next result is a considerable improvement of the above proposition. 
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Theorem 4.7.  Consider a sequence 75 of nonnegative numbers such that 

7$ = o(l) as 6 —> 00. 

Then 

Es('Y6)=Eco,  V£»l. 

Proof. We will argue by contradiction. Consider a sequence 

£* = (ipSiias/ifs) €3(5 

of//^-eigenvalues of fi^Aj such that l/i^l < 7^ 

(4.21) ES ± EooQ). 

(4.22) P*   = ^5 + IM2 + ll/*ll2 = l.   V6>1 

The L2-norms are defined in terms of the metric g. UJ$ is defined by u^ = 
8av

6ri + dj- where d£ and d^- are given by 

Note that 

and 

^ = ^(0,    as -as-a^rj. 

61/2 Mh+lkll =*1/2 iMw = INIIS 

c^^) =c(a;tf). 

We will show that (on a subsequence) ||E$|| = o(l) thus contradicting (4.22). 
The proof will be carried out in several steps. Decompose as usual ips ~ 
as®$6- Then 

Step 1. Haall^ = o(l) as 6 —> 00 where the Sobolev norm is defined in 
terms of the metric g and the fixed connection A. 

Step 2. \\fs\\lt2 = 0(1) and M1|2 = 0(1) as S -> 00. (The above Sobolev 
norms are defined in terms of the metric g and its Levi-Civita connec- 
tion(s).) 

Step 3. ZA.OO^S = 0, L^ds = 0 and d^fs = 0 for all 6 » 1. 

Step 4. Conclusion. 
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We now supply the details. Recall the notations D^ = 6ZA,OO + TA and 
V"4 - the connection on §L obtained by tensoring the limiting Levi-Civita 
connection V00 on S with the connection A. The equations (4.6) can be 
rewritten as 

(4.23) 

'DA^S + (c6(iaa)0 + ifs)<l> = ^s 

-i *6 das + 7*(0, tys) - idfs = Vsias 

d*6a6 =3mN)sA/ 

For the proofs of steps 1-3 we only need to assume (4.22). The condition 
(4.21) will be used only at the final step. 

Step 1.    Set 0 = fo = as ® 0 in the main variational identity (expressed 
in terms of the metric gs). Using dvs = 6~1dvg we get 

(4.24)     / [D^s^dvg + [ \as\2 • \</>\2dvg 

= ^JN {^ (csiias)^) + (/* - A^/2) (DA,^,^) + ^|d6|
2| dvg. 

Neglecting the second term in the left-hand-side of the above equality we 
deduce 

^A^e     < lw - A5/2I fo ^Ajfo 

+ W*\-\M2-M0o-\M2 + ^ 

Thus, if we set ts = DA,6^ we obtain a quadratic inequality 
2 

t2s = o{ts + 1) 

which implies ts = o(l) as 5 —> 00. Using the adiabatic decoupling lemma 
we deduce that (on a subsequence) as © 0 converges in L1,2 to a spinor 
0oo = ^oo ffi 0 satisfying JDA^OO = 0. Using again (4.24) in which we neglect 
the first term in the left-hand-side we conclude that 

/,< 
lo:^2 • \^\2dvg = o(l)   as 6 —> 00. 

By passing to the limit we deduce 

/ 
JN 
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m 

which implies doo = 0. 

Step 2.      Take the ^-inner product with df$ of the second equation 
(4.23). After an integration by parts we get 

/   \f6\26dv9= I 9s[df6^rnfs((/)^s))dvg. 

Using the (pointwise) Cauchy-Schwartz inequality for the metric gs we de- 
duce 

(4.25) 

/ S^fsl2 + \dfs - (dsfs^dvg [ \dfs\26dvg = O (Us\\   • / \dfs\dv 

This implies \\df6\\2 = 0(1) so that H/sll^ = 0(1). 
To establish the second estimate we first use Bochner's identity ([Ber]) 

A^ = {V6yVa6 + Ric6a6 

where A^ denotes the Hodge Laplacian (of gs), Vs denotes the Levi-Civita 
connection of the metric gs and Ric^ denotes the Ricci curvature of the 
metric gs. Since sup^^ |Ric^(a;)|^ = 0(1) the above inequality implies 

(4.26) 

J \VSag\2sdvh = 0^ \as\sdvg^ = 0(\\LJS\\1) = 0(1). 

Locally we have 

IV^H = Stasis + WtM + WcMl 
On the other hand, since £ is Killing we have 

/ hsJav
sV + ai)\2dvg= [ \vl(av

sV)f 

which coupled with the above equality yields 

'«AJ. V?a cP-e dv„ 

(4.27) f \vsa62dvg> f \vsU6 
JN' 6 JN* 

dVg. 

The structural equations of the metric gs imply immediately that 

(4.28) (v-V*)a;,||2 = 0(|M) 
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The equations (4.26)-(4.28) now imply that \\u)6\\lt2 = 0(1). 

Step 3. This is essentially a "rigidity" result for the Hessian. More 
precisely, we will show that the natural 51 action on N induces an action 
on 3«5 such that fi^Aj ls S^-equivariant. Thus the spectral spaces are Sl- 
modules and we will show that for 6 » 1 the weights of these modules are 
all trivial. The equalities at Step 2 are just infinitesimal reformulations of 
this fact but the proof we offer below does not explicitly mention the above 
representation theoretic remarks. 

Define 

e: c00(sL e r*iv e R) -> c00^ e rw e E) 

by 
6(^,4,/) = i(V^, Led, »c/). 

Note first that 

(4.29) [4M,S>0] =0 

where [•, •] denotes the commutator of two operators. The proof of (4.29) is 
a consequence of the following facts left to the reader as exercises. 

. [Vf,DA,*] = 0 (since {ZA^TA} = 0) 

• [(V^,c^(d)] = cs(L^a) (since the invariant b(x) defined in (1.7) and 
(1.8) vanishes for the Boothby-Wang structures). 

• [L^, *$] = 0 (since £ is Killing). 

• V^V = 0 (since ZA,OQ<\> = 0. 

• [Lc,d] = 0. 

Since div^(C) = 0 the operator 02 is formally selfadjoint (with respect to 
the metric g^) and from (4.29) we deduce that 02 is a non-negative, sym- 
metric endomorphismofthe spectral space ^(7^). Moreover, its eigenvalues 
can only be of the form fc2, k € Z since only these can be eigenvalues of —9? 
acting on C00(iV), the third summand in the domain of G. Assume now 
that V6 » 1 the operator ©2 acting on Es^s) has a nontrivial eigenvalue 
fc2 > 1. Assume now that 5$ is a fc2-eigenvalue of O2. 
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We now use the main variational identity with </> = ips, noting that 
in the term Va^ the ^-component vanishes (since ZA^OO^ = 0).   If we set 

(4.30) 

~DA,6'
1
1>6     then we obtain as in the proof of Step 1 

*«<C(||^||  +ofe)) 

which implies tj = 0(1).  On the other hand, i| = S2kg 

which shows that 
^ + TAfo 

(4.31) ips = o(l). 

Using this last information in the inequality (4.30) we conclude that t^ = 
o(l + ts) which implies 

(4.32) 'DA^S    ^C1)- 

We can now choose a subsequence 6 —> 00 such that 

$6, us, fs) -> (^oo, ^oo, foo) strongly in L2. 

In particular, the equality (4.22) implies 

(4.33) V'o + IK>||2+||/oo||2 = l. 

The inequality (4.31) implies ^oo = 0. 
On the other hand, the inequalities (4.25) and (4.31) yield 

/ \dfs\26dvg = o(l) 
JN 

and in particular 

#% mil = I Wi? ■ \v\2sdvg = o(l) 
JN 

so that 

(4.34) ||M|2 = o(l). 

Hence /oo = 0 as well. 
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We now pass to the limit in the first equation of (4.23) using the inequal- 
ity (4.32). We get 

c(iu;oo)0 = 0. 

Since ^^(O) is a finite set of fibers of N we deduce CJOQ = 0 almost every- 
where. This contradicts (3.6) and concludes the proof of Step 3. 

Step 4.   Using the information from Step 3 we deduce that DA^S = "DA^S 

for all 6 ^$> 1. The first equation of (4.23) coupled with (4.22) implies 

"DA^S 2 = 0(1). 

^6 
1,2 

Invoking the elliptic estimates for the operator D^ we deduce that 

0(1). Pick now a subsequence 6 —> oo such that 

(ips, us, fs) -> (^oo, ^oov/oo) in the norm of L2. 

Prom the equality 

DAV\5 + {c{\us) + ifs)^ = W0(5 

we deduce (via elliptic estimates again) that ^ is a Cauchy sequence in L1,2 

and thus converges strongly in this Banach space. We can now pass to the 
limit in the above equality using the fact that ZA,OO^6 = 0 and we deduce 

TA^POO + (c(iu;oo) + i/oo)0 = 0. 

Using the decompositions ^QQ = 0 © poo (Step 1) and 0 = 0' © (3 we deduce 

(a;oo(C) + i/oo)/3 = 0. 

Since P~l{fy is a finite collections of fibers we deduce from the above equality 
that 

/oo = ^oo(C) = 0 a.e. on JV. 

In particular ||a$||2 + 5||a^||2 = o(l) and L^oo = 0. Hence (^ooi^oo, foo) 
is a pullback of a similar object on the base E. Using all the informations 
we have gathered up to this point it is a simple exercise (left to the reader) 
to show that HQO = (^OO^OOJO) G 3 is a O-eigenvector of the extended 
g-Hessian i.e. 

£J(Ms°o = 0. 

Using the fact that SQQ is a pullback we deduce SQQ G -E?OO(0). This contra- 
dicts the assumption (4.21). Theorem 4.7 is proved. □ 

Theorem 4.7 can also be rephrased as a spectral estimate. 
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Corollary 4.8. There exist constants joo > 0 and SQQ > 1 such that for any 
irreducible adiabatic solution and any 6 > Soo the only eigenvalue of ij, As 

in the interval [—700? 7oo] is 0 and moreover the corresponding eigenvectors 
span the space EQO (0) which is the tangent space at ((/), A) of the adiabatic 
moduli space. 

The spectral gap estimate can be used (in combination with the tech- 
niques of [T]) to "reverse0 the adiabatic flow i.e. to reconstruct the solutions 
of the original equations starting from the adiabatic ones. This may not be 
a very useful thing to do since the adiabatic equations are better suited for 
topological computations due mainly to the fact that they can be solved ex- 
plicitly. Since they are (zeroth order) perturbations of the original equations 
one will obtain the same results. 
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