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Two index theorems in odd dimensions 
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A recent paper of Hof ava and Witten [HW]—part of the current flurry of 
activity in string theory—contains an anomaly computation for 51/(r) xE10, 
where (r) is the cyclic group of order two generated by a reflection. It 
was well established 10 years ago (e.g. [AS1], [Fl]) that anomalies mea- 
sure nontriviality in the determinant line bundle of a family of Dirac op- 
erators, and so can be computed topologically from the Atiyah-Singer in- 
dex theory. The novelty in the Hofava-Witten computation is a nontriv- 
ial index in odd dimensions of a type not seen in standard index theory. 
We abstract two general theorems which imply the Hof ava-Witten result. 
(Naturally, we replace M10 by a compact manifold F10). Theorem A is a 
Lefschetz formula for an orientation-reversing isometric involution on an 
odd dimensional manifold. The Atiyah-Bott-Segal-Singer applications of 
Lefschetz theory [AB1], [ASe], [AS2] all deal with orientation-preserving 
isometries for which there is no nontrivial Lefschetz formula in odd dimen- 
sions [AS2, Proposition 9.3]. Alternatively, we can consider [0,1] x Y in 
place of S1

/(T) X Y and then the Hof ava-Witten anomaly computation is a 
boundary value problem with local boundary conditions. Theorem B gen- 
eralizes this situation and is closely related to the boundary value problem 
in the original proof of the Atiyah-Singer index theorem [P]. 

Our proofs use standard techniques, except for a small trick used to prove 
Theorem A. For simplicity we discuss the standard complex Dirac operator; 
the theorems are true for any Dirac operator. Our language refers mostly to 
a single operator, though the results hold for families of Dirac operators as 
required by the anomaly problem. In this regard we remark that Theorem A 
only holds modulo 2-torsion in the if-theory of the parameter space, whereas 
Theorem B holds exactly in if-theory. For the anomaly problem this means 
that Theorem A may not be adequate to detect all global anomalies. (In the 
general situation of Theorem A, there is probably no fixed-point formula for 
the exact index.) 

^he author is supported by NSF grant DMS-9307446, Presidential Young In- 
vestigators award DMS-9057144, and by the O'Donnell Foundation. 
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I thank Edward Witten for bringing this anomaly computation to my 
attention and for discussions. 

1. A Lefschetz formula for orientation-reversing isometries. 

Let X be a compact odd dimensional spin manifold. Suppose r : X —» 
X is an orientation-reversing isometric involution. Assume there exists a 
lift f : Sx —► Sx to the complex spinor bundle Sx on X such that 

(1.1) Dxf = -TDX, 

where Dx is the Dirac operator. It follows from Lemma 1.5 below that 
f2 is locally constant, so dividing by a square root of that locally constant 
function we may assume 

(1.2) f2 = 1. 

Then the ±l-eigenspaces of f give a splitting of the spinor fields 

(1.3) S{X) 9* S+(X) © S-(X), 

and the Dirac operator interchanges S+(X) and S~(X). Our problem is to 
compute 

(1.4) index[£>x : S+(X) —► S'tf)]. 

The simplest example is X = S1 = R/Z with r the reflection x »-> —x. 
The spinor fields may be identified with the complex functions, the Dirac 
operator with i^, and the splitting (1.3) is the splitting into even and 
odd functions. Here the index is 1. The Hofava-Witten example is the 
product with a fixed even dimensional manifold Y, in which case the index 
is index Dy. 

The lift f, if it exists, is almost unique. 

Lemma 1.5. Suppose X is an odd dimensional spin manifold, and 0 : 
Sx —» Sx a bundle map such that Dx6 = 6Dx- Then 6 is a locally constant 
multiple of the identity. 

If Ti,f2 are two lifts of r satisfying (1.1) and (1.2), set 6 = fif2 to 
conclude that fi = ±f2 on each component of X. 
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Proof. Fix x G X and choose a local oriented orthonormal framing {ei} 
near x. Then if ij) is a spinor field with ^(x) = 0, an easy computation 
shows 

(1.6) 0 = (DxO - eDx)^(x) = [0(6% 0(xj\ VeMx), 

where {e1} is the dual coframing, c(-) is Clifford multiplication, and V is 
the Levi-Civita covariant derivative. Fix an index i. Choose a set of spinor 
fields {^(o)}a so that ^a\x) = 0, the derivatives Vej.^

(a)(^) = 0 for j ^ i, 

and {Ve^
(a)(^)}a sPan the fiber (Sx)x. Then (1.6) implies [cfe*), 0(x)] = 0 

for all i, and since the spin representation is irreducible in odd dimensions, 
0(x) is a scalar. Then for any spinor field ^, 

0 = (DxO - 9Dx)^ = c(d6)Tp, 

from which d6 = 0 so that 6 is locally constant. D 

Concerning the existence of f, we recall that in odd dimensions the spin 
representation S extends to an ungraded module for the Clifford algebra on 
which the volume form, suitably normalized, acts as +1. In particular, S is 
a representation of the Pin group. Now the isometry r lifts to the bundle 
of orthonormal frames O(-X') of X. The spin structure induces a pin struc- 
ture Pin(X)—a principal Pin bundle which double covers 0(X)—and it is a 
topological question about covering spaces to determine if r acting on O(X) 
lifts to Pin(X). If so, the lift may have order 4. In any case the spinor bun- 
dle Sx is associated to Pin(X), and the lift induces a map f on spinor fields. 
But Clifford multiplication is not a map of Pin representations—there is a 
sign for elements which reverse the orientation—and so the Dirac operator 
does not extend simply extend to the Pin bundle. Rather, the sign means 
that the lift f of an orientation-reversing isometry anticommutes with the 
Dirac operator as in (1.1). 

We turn now to the index (1.4). The general Lefschetz formulas of 
Atiyah-Bott-Segal-Singer [AB1], [ASe], [AS2] apply to an elliptic operator 
D : C^iE) -> C00(F) acting between two vector bundles E,F with endo- 
morphisms TE^TF such that 

(1.7) DfE = TFD. 

Our problem concerns the Dirac operator Dx ' C00(Sx) —* C00(Sx)1 but 
the given lift f satisfies (1.1), not (1.7). Here is the trick: Define 

.     v „ _ J    f,    on the domain copy of Sx] 

|—f,    on the codomain copy of Sx- 
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Now f satisfies (1.7)! The Lefschetz number is 

L(T,Dx)=Tracet\KerDx - Trace f|CokerDx, 

= 2 index [Dx : S+(X) —> S'iX)], 

twice the index we would like to compute. 
The generalized Lefschetz formulas compute this index in terms of the 

fixed point set Fix(T) of r. In our situation each component F of Fix(r) is an 
even dimensional manifold. The Atiyah-Segal formula [ASe, Theorem 2.12] 
applies in general; we first state the result with the vastly simplifying as- 
sumption that the normal bundle Np to each component of Fix(r) is trivial. 
See Remark 1.10 following the statement of Theorem A for the formula when 
Np is only assumed orientable. 

Theorem A. Let X be an odd dimensional spin manifold, r : X —> X 
an orientation-reversing isometric involution, and f : Sx —* Sx a> lift to 
spinors which anticommutes with the Dirac operator Dx and satisfies f2 = 
1. Then Dx exchanges the ±l-eigenspaces S±(X) off operating on spinor 
fields. Assume that each component F of the fixed point set Fix(T) has 
trivial normal bundle. The sum over these components appears in the index 
formula 

(1.9) index^x : S+(X) — S-(X)] = £ '-^f. 

Here codimF = 2r(F) + 1 and DF : S+(F) -* 5""(F) is the chiral Dirac 
operator on F relative to an orientation chosen compatibly with f. 

The orientation is explained in the proof (see (1.20)). We make several 
remarks before proceeding to the proof. 

Remark 1.10. More generally, suppose only that each component F of 
the fixed point set has orientable normal bundle. Then (1.9) is replaced by 

(1.11) index[Dx : S+{X) — fir(X)] = \ £ ^L[n 

where A is the usual characteristic class associated to Dirac, chA is the 
Chern character of the spin bundle, and the orientation of F is determined 
below. (One does not need a spin structure to define ch A.) See [AS2, §5] 
for a similar result. This formula only holds rationally in families. 
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Remark 1.12. For the Hofava-Witten example X = S1 x Y, r is reflection 
on the S1 factor, and Theorem A computes 

(1.13) mdex[Dx : S+(X) —+ S'(X)] = indexDy, 

which agrees with [HW]. Here Y is a compact even dimensional spin man- 
ifold. According to Remark 1.15 below this only holds modulo 2-torsion in 
families. In the next section we show that in fact this result holds exactly 
(see (2.11)). 

Remark 1.14. For a single operator we can use the heat kernel approach 
to the Lefschetz formula (see [R], [BGV] for example) to derive (1.9). We 
write 

index[£>x : S+(X) —> S'iX)] = [      Trace(f(x,y)e-'D*(y,a;)) dydx, 
JXxX 

valid for any t, and let t —> 0. The integral then localizes on the fixed point 
set. As always in index theory, this heat kernel approach does not generalize 
to the integral if-theory index of a family of Dirac operators. 

Remark 1.15. Theorem A applies to families of Dirac operators, but only 
gives a result in if(Z)[^], where Z is the parameter space. (Below.we 
use [ASe, Theorem 2.12]. Although this theorem is stated for if-theory^C, 
in our situation the localization of the global symbol of Dirac only involves 
denominators which are powers of 2.) 

Remark 1.16. Theorem A also applies to (families of) real Dirac oper- 
ators and Dirac operators coupled to other vector bundles. The Hofava- 
Witten example is actually for the real Dirac operator coupled to the tangent 
bundle. The quantity of interest is the square root of the determinant line 
bundle, which is computed in XO-theory. (See [F2, §3] for an explanation 
of this square root.) 

Proof of Theorem A.  We apply [ASe, Theorem 2.12] which asserts 

(M7, ^.^^ig^}, 
where ip : F ^ X is the inclusion, <J(DX) 6 KG(TX) is the symbol of 
Dirac, and 

A_i(ArF®C) = ^(-l)7V(JVF®C) € KG(F). 
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Here G = (f), the cyclic group generated by f.   Evaluation on f is the 
homomorphism 

KG{F) ^ K{F) ® R{G) -> K(F) 

which evaluates a virtual character on f. (For the cyclic group of order two 
the virtual characters are real-valued.) 

We work on a fixed component F of codimension 2r(F)+l = 2r+l. Since 
Np is assumed trivial, we have an isomorphism Np — Le(2r+1) in KG(F), 

where L is the trivial real line bundle with f acting as — 1. It follows easily 
that 

(1.18) A_i(ArF(g)C)(f) = 22r+1. 

Recall that the symbol a(Dx) evaluated on a cotangent vector 9 is Clif- 
ford multiplication c(9) : Sx —> Sx- We need to compute this for 9 a 
cotangent vector to F. First, note that F is orientable, since Np is trivial. 
We fix the orientations of F and Np below. Let Np have the trivial spin 
structure. This, together with the spin structure on X, induces a spin struc- 
ture on F. Then, letting Sp, SNF denote the spin bundles on the tangent 
and normal bundles to F, we have 

(1.19) Sx\F=SF®SNF^Sp2r) 

since the normal bundle is trivial. Therefore, ipa(Dx) is Clifford multipli- 
cation on 2r copies of Sp. 

To compute the action of f we fix an equivariant tubular neighborhood 
of F, which is diffeomorphic to F x R2r"fl, and introduce a product metric. 
(This computation is local, so does not use the triviality of Np.) Let e* 
be the standard orthonormal basis of R2r+1, xl the standard coordinates 
on R2r*fl, and / a coordinate on F. Then 

Dx = DF + c(ei)Vei. 

We claim 
(1.20) 

r(/;a;
1,...,a;

2'-+1) = (/;-a:1,...,-a:2'-+1) 

(fV0(/; x1,..., rr2'-'-1) = ±ir+1c(e1)... c(e2r+1)^(/; -x\ ..., -x2r+1) 

= imc(u;F)iP(f;-x1,...,-x2r+1), 

where I/J is a spinor field, dim F = 2m, and ujp is a real volume form on F 
with C(U)F)

2
 = (—l)m. A routine computation shows that the first expression 
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for f satisfies (1.1) and f2 = 1, whence the remark following Lemma 1.5 
implies that this is the correct expression (with one of the signs). The 
second expression for f follows from a simple computation with Clifford 
algebras. It determines up uniquely. 

Now we fix the orientation on F so that ujp is an oriented volume form. 
Then S^ are the db(i~m)-eigenspaces of C((JJF) acting on Sp, which by (1.20) 
are the ±l-eigenspaces off. Use (1.8) and (1.19) to conclude that 

(1.21) £a(£>x)(f) = 2r+M£>F). 

The desired result (1.9) follows from (1.17), (1.21), and (1.18). □ 

2. An index theorem for manifolds with boundary. 

Let X be a compact odd dimensional spin manifold with boundary. The 
orientation on X determines an orientation on dX and so a splitting 

(2.1) Sx\dx*Sax*SZx®Sjx 

of the spin bundle on the boundary. This splitting leads to local boundary 
conditions P± for the Dirac operator Dx'- the domain of {Dx^P^ is the 
set of spinor fields I/J on X with 

(i>\dx)± = G> 

where (f> = </>+ + </>" is the decomposition of a spinor field (f) G S(dX) relative 
to (2.1). These local boundary value problems are a key ingredient in the 
original proof of the Atiyah-Singer index theorem. Indeed [P, §17], [BW, 
§21] 

(2.2) mdex(Dx,P:k) = 0. 

This is used to show that the index of the chiral Dirac operator on the 
boundary vanishes: 

(2.3) indexDax = 0. 

Equation (2.3) is the assertion that the index is a bordism invariant. 
We consider a mixture of these boundary conditions. Namely, we inde- 

pendently choose P"1" or P~ on each component of the boundary. 
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Theorem B. Let X be a compact odd dimensional spin manifold with 
boundary, and dX = UiYi the decomposition of the boundary into com- 
ponents. For each i choose €f = + or ei = — and consider the Dirac opera- 
tor (DxiP€) whose domain is the set of spinor fields I/J such that 

(2.4) MYi)
ei=0. 

Then 

(2.5) mdex(Dx,Pe) = J^ index-^v- = - ^T, indexZfy 
i with i with 

Note that the last equality follows directly from (2.3). Also, if all e* = + 
or all 6i = —, then (2.5) reduces to (2.2) in view of (2.3). As is evident from 
the proof below, Theorem B is a direct consequence of well-known facts 
about boundary-value problems for Dirac operators. 

Remark 2.6. Theorem B also holds in families; then (2.5) is an exact 
equation in K(Z), where Z is the parameter space. (Contrast with The- 
orem A which only holds in K{Z) [^].) As with Theorem A (see Re- 
mark 1.16), Theorem B holds for (families of) real Dirac operators and 
Dirac operators coupled to other vector bundles. 

Remark 2.7. Consider X = [0, 5] x Y, where Y is a closed even dimen- 
sional spin manifold. We use the product metric. Then dX = YbUYi, where 

2 
Yi = Y and YQ = —Y. Here '—Y1 denotes Y with the opposite orientation. 

2 
Let eo = + and ei = —. Then (2.5) gives 

2 

(2.8) index(L>x, Pe) = index Dy 

Let D : H+ —* H~ be the Dirac operator in the Hofava-Witten exam- 
ple (1.13). Here we are working on S1 x Y and ip G H* = S±{S1 x Y) is 
an 5(Y)-valued function on S1 = E/Z satisfying 

(2.9) V(-z) = ±imc(a;y)^(x), 

where ouy is a volume form on Y and dim Y = 2m (cf. (1.20)). We now give 
an a priori argument that 

(2.10) index(£>x, Pe) = index D, 
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even in families. This is consistent with the computations (1.13) and (2.8) 
from Theorem A and Theorem B for single operators, and gives the exact 
result 

(2.11) index!) = index Dy 

in families. (This was previously proved modulo 2-torsion.) 

To prove (2.10) note that relative to the splitting S(Y) = S+{Y)®S-(Y) 
equation (2.9) asserts that I/J G H± satisfies 

^+(-x) = ±^+(x), 

ip-(-x) = ^-(a;). 

Consider the diagram 

^ C*[H-]  >  Go[S{[0^]xY)]   -J-> 0*[S+iy)]eC*[S+(Y)] —¥ 0 

where 'C1'^-]' and 'C^J-]' denote spaces of Holder functions for some 0 < 
6 < 1; ^([O, ^] x Yie)' denotes the space of spinor fields satisfying (2.4), 
which in this case is ^"(O) = T/J" (^) = 0; the first horizontal arrows are 
restriction maps; and 

p(v) = ^-#+(o),-iv>+Q 

?W = (^+(o),^+(| 

(Here ip = -^.) A routine check shows that the rows are exact and the 
diagram commutes. Now (2.10) is a consequence of the following lemma. 
(See [S] for a more general discussion.) 

Lemma 2.12. Let 

0  ► V  ► V  > V"  ► 0 

(2.13) \T> \TZ T" 

0  ► W  ► W  > W" 
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be a commutative diagram with exact rows, where V, V, V", W7, W, W" are 
Banach spaces andT'z,Tz,T" are Fredholm operators depending continuously 
on a parameter z € Z. Then 

(2.14) index(r) = index(r/) + indextT") e K(Z). 

The Banach spaces are allowed to vary continuously; we omit this from 
the notation for convenience. 

Proof. The short exact sequence of chain complexes (2.13) induces a long 
exact sequence in cohomology: 
(2.15) 
0 -> Ker T'z -► Ker Tz -► Ker T^' -> Coker T^ -»Coker r2 -* Coker Tf -> 0. 

The exactness of (2.15) proves (2.14) for a single operator. For a fam- 
ily it suffices to prove (2.14) for Z compact. Then [ASS, §2] we can find 
w'^z),..., w'N,(z) € W and w\(z),..., WN{Z) € W so that 

0  ► V © C*'  * V@CN' ® CN  ► V" © C^  > 0 

[s'z 

0  >      W       > W  ►      W"       > 0 

satisfies the hypotheses of the lemma and in addition 5^, 5Z, S" are surjec- 
tive. Here 

Sz(y- V; /xJ) = Ts(i;) + ^^(z) + ^'^-(z) 

and S'z, S" are the corresponding induced maps. We have 

index S' = index T7 + [Z x C^'] G K(Z) 

with similar formulas for the indices of 5 and S'//. Now the exactness of (2.15) 
(with all cokernels vanishing) proves (2.14); the extra trivial bundles cancel 
out. □ 

Proof of Theorem B. The proof is based on analysis by Calderon and See- 
ley [P, §17]; we rely on the account in [BW]. We remark that the index with 
local boundary conditions is a topoiogical invariant; in fact, it has an inter- 
pretation in if-theory [AB2]. So, for example, we can deform the metric to 
a metric which is a product near the boundary. 
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Consider first a single operator. Let 

K = Kev[Dx : S{X) —> S{XJ\ 

and /C C S(dX) the image of /C under restriction to the boundary. We use 
the Sobolev completions Hl of S(X) and H1'2 of S'(aX). Then K is a closed 
infinite dimensional subspace of S(dX). Let 

P*:S(dX)—♦05e'(y<) 
» 

be the projection defined by the boundary condition (2.4). The first re- 
sult [BW, Theorem 20.12] is that 

(2.16) index(£>x, Pe) = index[P£ : £ —► 0 S^ (Fi)], 
i 

where 'P^' denotes the restriction of Pe to /C. This applies in particular 
to P+ (which is Pe with all e* = +), and so [BW, Theorem 21.2] 

(2.17) 
index(Dx, Pe) - index(Dx, P+) = index(P£) - index(P^) 

= index(P£) + index(P^)* 

= index[P^(P+)* : 0 fi+(y4) -* 0 .S"^)]. 
i with t with 

The final step is the assertion (see [BW, Theorem 21.5]) that P^(P^)* is 
a pseudodifferential operator of order 0 whose symbol—up to a factor and 
after restriction to the sphere bundle—is the symbol of the Dirac operator 
^Dy^   (This is the brunt of the argument; it depends on properties of 

i with 
«* = - 
the Calderon projector.)   Then the first equality in (2.5) follows directly 
from (2.17) and (2.2). 

We briefly consider how to modify this argument for a family of Dirac 
operators parameterized by z G Z. It suffices to consider Z compact for 
index computations. Then as in the proof of the lemma above we can find 
a finite number of spinor fields ^1(2),..., ^N(Z) SO that 

(2 18) (r(*)' **(*)) : $*«(*) © cN —> S(X) 
MA')--DxW + AtyiC*) 
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is surjective. Here Spt^(X) C S(X) is the subspace of spinor fields satis- 
fying the boundary condition Pe(z). Then 

(2.19) index(T, Pe) = mdex(Dx, Pe) + [Zx CN] G K(Z). 

Now T(z)— the operator (2.18) extended to all of S(X) © C^—is also sur- 
jective. Thus the orthogonal complement to the kernel of T(z) varies con- 
tinuously in z (using T(z) as an isomorphism to the continuously varying 
codomains), whence the kernel lC(z) of T(z) varies continuously as well. So 
does its image JC(z) in S(dX) Equation (2.16) is replaced by 

(2.20) index(T, Pe) = index [Pe : JC —► 0 Sei (Yfi]. 
i 

This follows simply by identifying the kernel bundle of the families of opera- 
tors on each side; the cokernels vanish. By adding more ipi(z) we can ensure 
that (2.18) is also surjective for (T(z),P+(z)) and repeat (2.19) and (2.20) 
for P+ replacing Pe. Then equation (2.17) holds—the auxiliary trivial bun- 
dle cancels out—and the proof concludes as before. □ 
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